Charge Radii of Neutron Deficient Fe52,53 Produced by Projectile Fragmentation

K. Minamisono, D. M. Rossi, R. Beerwerth, S. Fritzsche, D. Garand, A. Klose, Y. Liu, B. Maaß, P. F. Mantica, A. J. Miller, P. Müller, W. Nazarewicz, W. Nörtershäuser, E. Olsen, M. R. Pearson, P.-G. Reinhard, E. E. Saperstein, C. Sumithrarachchi, and S. V. Tolokonnikov
Phys. Rev. Lett. 117, 252501 – Published 15 December 2016

Abstract

Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe52,53 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δr2 of Fe52,53 are determined relative to stable Fe56 as δr256,52=0.034(13)fm2 and δr256,53=0.218(13)fm2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δr2. The values of δr2 exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δr2 along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δr2 of closed-shell Ca isotopes.

  • Figure
  • Figure
  • Figure
  • Received 5 October 2016

DOI:https://doi.org/10.1103/PhysRevLett.117.252501

© 2016 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalNuclear Physics

Authors & Affiliations

K. Minamisono1,2, D. M. Rossi3, R. Beerwerth4,5, S. Fritzsche4,5, D. Garand1, A. Klose6, Y. Liu7, B. Maaß3, P. F. Mantica8,9, A. J. Miller1,2, P. Müller10, W. Nazarewicz8,2,11, W. Nörtershäuser3, E. Olsen1, M. R. Pearson12, P.-G. Reinhard13, E. E. Saperstein14,15, C. Sumithrarachchi1, and S. V. Tolokonnikov14,16

  • 1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 3Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
  • 4Helmholtz-Institut Jena, Jena 07743, Germany
  • 5Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
  • 6Department of Chemistry, Augustana University, Sioux Falls, South Dakota 57197, USA
  • 7Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 8Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
  • 9Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
  • 10Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
  • 11Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
  • 12TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
  • 13Institut für Theoretische Physik, Universität Erlangen, D-91054 Erlangen, Germany
  • 14National Research Centre “Kurchatov Institute,” 123182 Moscow, Russia
  • 15National Research Nuclear University MEPhI, 115409 Moscow, Russia
  • 16Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 117, Iss. 25 — 16 December 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×