Lyapunov spectrum of forced homogeneous isotropic turbulent flows

Malik Hassanaly and Venkat Raman
Phys. Rev. Fluids 4, 114608 – Published 25 November 2019
PDFHTMLExport Citation

Abstract

In order to better understand deviations from equilibrium in turbulent flows, it is meaningful to characterize the dynamics rather than the statistics of turbulence. To this end, the Lyapunov theory provides a useful description of turbulence through the study of the perturbation dynamics. In this work, the Lyapunov spectrum of forced homogeneous isotropic turbulent flows is computed. Using the Lyapunov exponents of a flow at different Reynolds numbers, the scaling of the dimension of the chaotic attractor for a three-dimensional homogeneous isotropic flow is obtained through direct computation. The obtained Gram-Schmidt vectors (GSVs) are analyzed. For the range of conditions studied, it is found that the chaotic response of the flow coincides with regions of large velocity gradients at lower Reynolds numbers and enstrophy at higher Reynolds numbers, but does not coincide with regions of large kinetic energy. Further, the response of the flow to perturbations is more and more localized as the Reynolds number increases. Finally, the energy spectrum of the GSVs is computed and is shown to be almost insensitive to the Lyapunov index.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
11 More
  • Received 11 April 2019

DOI:https://doi.org/10.1103/PhysRevFluids.4.114608

©2019 American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Fluid DynamicsNonlinear Dynamics

Authors & Affiliations

Malik Hassanaly* and Venkat Raman

  • Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

  • *malik.hassanaly@gmail.com
  • ramanvr@umich.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 4, Iss. 11 — November 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×