• Editors' Suggestion

Many-body localization and transition by density matrix renormalization group and exact diagonalization studies

S. P. Lim and D. N. Sheng
Phys. Rev. B 94, 045111 – Published 13 July 2016

Abstract

A many-body localized (MBL) state is a new state of matter emerging in a disordered interacting system at high-energy densities through a disorder-driven dynamic phase transition. The nature of the phase transition and the evolution of the MBL phase near the transition are the focus of intense theoretical studies with open issues in the field. We develop an entanglement density matrix renormalization group (En-DMRG) algorithm to accurately target highly excited states for MBL systems. By studying the one-dimensional Heisenberg spin chain in a random field, we demonstrate the accuracy of the method in obtaining energy eigenstates and the corresponding statistical results of quantum states in the MBL phase. Based on large system simulations by En-DMRG for excited states, we demonstrate some interesting features in the entanglement entropy distribution function, which is characterized by two peaks: one at zero and another one at the quantized entropy S=ln2 with an exponential decay tail on the S>ln2 side. Combining En-DMRG with exact diagonalization simulations, we demonstrate that the transition from the MBL phase to the delocalized ergodic phase is driven by rare events where the locally entangled spin pairs develop power-law correlations. The corresponding phase diagram contains an intermediate or crossover regime, which has power-law spin-z correlations resulting from contributions of the rare events. We discuss the physical picture for the numerical observations in this regime, where various distribution functions are distinctly different from results deep in the ergodic and MBL phases for finite-size systems. Our results may provide new insights for understanding the phase transition in such systems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 November 2015
  • Revised 14 June 2016

DOI:https://doi.org/10.1103/PhysRevB.94.045111

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

S. P. Lim and D. N. Sheng

  • Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 4 — 15 July 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×