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A many-body localized (MBL) state is a new state of matter emerging in a disordered interacting system at

high energy densities through a disorder driven dynamic phase transition. The nature of the phase transition

and the evolution of the MBL phase near the transition are the focus of intense theoretical studies with open

issues in the field. We develop an entanglement density matrix renormalization group (En-DMRG) algorithm

to accurately target highly excited states for MBL systems. By studying the one dimensional Heisenberg spin

chain in a random field, we demonstrate the accuracy of the method in obtaining energy eigenstates and the

corresponding statistical results of quantum states in the MBL phase. Based on large system simulations by

En-DMRG for excited states, we demonstrate some interesting features in the entanglement entropy distribution

function, which is characterized by two peaks; one at zero and another one at the quantized entropy S =
ln2 with an exponential decay tail on the S > ln2 side. Combining En-DMRG with exact diagonalization

simulations, we demonstrate that the transition from the MBL phase to the delocalized ergodic phase is driven

by rare events where the locally entangled spin pairs develop power-law correlations. The corresponding phase

diagram contains an intermediate or cross over regime, which has power-law spin-z correlations resulting from

contributions of the rare events. We discuss the physical picture for the numerical observations in this regime,

where various distribution functions are distinctly different from results deep in the ergodic and MBL phases for

finite-size systems. Our results may provide new insights for understanding the phase transition in such systems.

PACS numbers: 73.40.Hm, 71.30.+h, 73.20.Jc

I. INTRODUCTION

Understanding the effects of interaction on Anderson

localization[1–6] has led to a rapidly expanding field, where

a new correlated state of matter, a many-body localized

(MBL) phase emerges[7–13]. Many remarkable proper-

ties of an MBL phase has been established[7–51] based

on extensive theoretical studies. For disordered interact-

ing systems, a random disorder can drive a dynamic phase

transition[7, 12, 52] from a delocalized state to an MBL phase,

where all energy eigenstates become localized. Protected

by the localization, an MBL phase is non-ergodic and can

not thermalize[14, 53, 54], which also challenges the fun-

damental “eigenstate thermalization hypothesis” (ETH) for

quantum statistical physics[55]. The energy eigenstate in

an MBL phase has entanglement entropy satisfying an area

law[7, 23, 28, 29] scaling in contrast to the volume law scal-

ing expected for an ergodic delocalized state. The MBL phase

behaves like integrable systems, respecting extensive numbers

of local conservation laws [9, 20, 21, 56] with the emergence

of the localized-bits (l-bit) representing these conserved lo-

cal degrees of freedom. Interestingly, exotic topological states

usually present at low temperature, can survive to infinite tem-

perature in an MBL environment[22, 28, 32, 57–61], which

greatly enhances the possibility of their applications in future

topological quantum computing. There are also growing ex-

perimental activities observing and probing the nature of the

MBL phase and phase transition in cold atom systems [15–

18, 62–64].

So far, theoretical understanding of the dynamic phase tran-

sition is still at the beginning stage[11–13, 15, 18, 19, 23, 26–

31, 33–39, 45, 51, 65–67]. Larger sizes (with up to N = 22

spins) numerical exact diagonalization (ED) studies[66] of the

1D Heisenberg chain in a random field have demonstrated

a continuous phase transition between a delocalized ergodic

phase to an MBL phase based on extensive finite-size scaling

analysis of different physical quantities including the entan-

glement entropy and the energy level statistics. The numerical

linked cluster expansion calculations suggest a higher critical

disorder strength for entering the MBL phase[68] than that ob-

tained by ED studies[66]. Theoretical[19] and numerical stud-

ies of the low frequency conductivity[24, 25] and energy spec-

tra statistics[45] have suggested that there is an intermediate

regime with sub-diffusive conductivity and (or) semi-Poisson

level statistics between the ergodic and MBL phases. A con-

sistent picture for understanding the dynamic phase transition

and transport properties[69, 70] in such a system is still ab-

sent. One of the difficulties is the presence of rare Griffiths

regions[19, 25, 52] which may have singular contributions in

driving a phase transition. However, so far there is still limited

quantitative understanding about their effects.

To make progress, it is highly desirable to study much

larger systems[71] and to establish the nature of the MBL

phase in the thermodynamic limit, which are great challenges

for such a correlated system at finite energy density. The

MBL phase has low entanglement similar to groundstates of

low dimensional systems, which has stimulated a lot of re-

cent effort in developing the density matrix renormalization

group (DMRG)[72] or tensor network based new algorithms

for studying such systems[65, 73–78]. Exciting progress has

been made including developing modified DMRG methods to

target eigenstates [76–78] in the high energy density region.

One of the main issues that remains to be addressed is if it is

possible to use the DMRG method to unbiasedly obtain differ-

ent excited states with intrinsically fluctuating entanglement
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entropy for large systems. Only when the DMRG method for

excited states can overcome the tendency of picking minimum

entangled states[79] among all excited states at a finite energy

density, will it establish itself as a powerful tool for study-

ing challenging and fundamental issues in quantum statistics

emerging with the MBL phase.

In this article, we report developing a new entanglement

DMRG (En-DMRG) algorithm to meet this challenge. The

En-DMRG will randomly select and target the entanglement

pattern of the highly excited states in an MBL system. By

studying the one dimensional Heisenberg spin chain in a ran-

dom field, we demonstrate the high accuracy of the method

in obtaining excited states and reproducing statistical features

of the system in comparison with ED results. Based on large

system simulations with up to N = 72 spins by En-DMRG,

we first show that a spin-flip process and the associated spin-

entangled pairs have a finite and system-size independent

probability density in the MBL phase. We also obtain the

characteristic probability density distribution function for the

entaglement entropy, which has a continuous spectrum with

a sharp peak at the quantized entropy value S = ln2 and an

exponential decay tail on the S > ln2 side for the MBL phase

in agreement with the earlier observations based on smaller

system studies for different MBL systems[28, 51, 77]. Com-

bining En-DMRG with ED simulations, we study the driving

force of the dynamic phase transition from the MBL phase to

the ergodic phase. We find that spins first become power-law

entangled, which leads to a strong enhancement in the proba-

bility distribution function of the entanglement entropy (fluc-

tuation of half system magnetization) on the larger entropy

(fluctuation) side. We also identify an intermediate regime

where the rare events contribute significantly to the average

of the spin correlations. Our results may provide new insights

for understanding the rich physics of the MBL phase and the

exotic dynamic phase transition in such systems.

II. EN-DMRG METHOD FOR HIGHLY EXCITED STATES

The standard DMRG[72] created by White is an unbiased

and controlled method for obtaining the ground state or a few

low energy excited states of interacting systems. The true

power of the method is in its way of constructing the Hilbert

space (HS) by using the eigenstates of the reduced density ma-

trix. To target excited states in an MBL system, we develop an

En-DMRG method based on the standard DMRG with modi-

fied initial sweeping process to optimally construct larger HS

for these states. During this process, we use a varying bond

dimension to allow a natural development of an entanglement

structure for the quantum state, which leads to a rapid con-

vergence of the entanglement entropy. Here, we outline the

basic steps of the En-DMRG. (i) We start from the standard

DMRG[72] using the “infinite” process. (ii) Once our sys-

tem reaches the required system size with N spins, we start

the sweeping process to build the HS with a varying bond

dimension. The bond dimension will be adjusted according

to the truncation error which can be set to be a small value

less than 10−8. (iii) We use the Lanczos method to obtain

the lowest six energy eigenstates of the squared Hamiltonian

H2 = (H−Et)
2 (Et is the target energy). We usually keep the

lowest energy eigenstate for the reduced density matrix[72]

unless specified below for the purpose of optimization. (iv)

The En-DMRG process takes more sweeps to reach conver-

gence compared to the ground state DMRG. One can enhance

the performance of the En-DMRG by setting a lower accu-

racy for the Lanczos diagonalization in the initial few sweeps

to speed up the calculations, while one can increase the accu-

racy to the order of 10−12 gradually to obtain accurate wave-

function until the targeted state is converged.

Now we discuss the possible optimization for the En-

DMRG process. We start from targeting one state near Et.

During the sweeping process, we define the wavefunction

overlap O = | < Ψl−1|Ψl > | between the wavefunction

|Ψl > of the current l step of the En-DMRG sweeping and

the wavefunction at the previous step |Ψl−1 > to monitor

the evolution of the wavefunction. Sometimes O becomes

much smaller than 1 indicating the difficulty of convergerence

in the En-DMRG for excited state without proper optimiza-

tion. In that case, besides keeping the ground state of H2,

we keep additional one or two states among the lowest six

energy eigenstates of H2 according to their overlaps with the

previous ground state |Ψl−1 >. We also increase the bond

dimension m to enlarge the HS at the same time. The idea of

optimizing for the overlap of the wave-function at two con-

secutive steps during the sweeping is similar to the DMRG-

X[76, 77] method proposed by Khemani et al. Alternatively,

one can also just always keep the lowest energy eigenstate of

H2 and graduatelly increase the bond dimension and Lanc-

zos accuracy to improve the overlap O. After a few sweeps

(around 2 − 20 depending on the disorder configuration and

h), we find that the overlap O usually is stablized to be near

1 with a small error controlled by the truncation error of the

En-DMRG. This signals that we have built a proper HS for

the excited state with its entanglement pattern established and

now only a small number of the Lanczos iterations is required

to find an accurate eigenstate using the wavefunction transfor-

mation following the standard DMRG[72].

We also note that the En-DMRG method is simply us-

ing the Lanczos method to find eigenstates of the square

Hamiltonian H2. The method works here because in the

DMRG approach, we are using the reduced density matrix

eigenstates as the input for building the HS. The eigenstates

with energies close to the target state can be projected

out because they are locally distinct (different) from the

target state for an MBL system as established by the ED

study of Luitz et al[66]. By projecting out nearby energy

eigenstates, one is dealing with an effective system with

larger spectrum gap, which allows the En-DMRG to find the

high energy eigenstate accurately. The aim of our work is to

establish the accuracy of the En-DMRG for excited states and

their quantum statistics for large MBL systems as we will

demonstrate below, while the latter has not been addressed
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so far. In combining with the ED simulation on the smaller

disorder side (where the DMRG method is not applicable

because of the volume entanglement and the wavefunction

similarity for nearby eigenstates) for the delocalized phase,

we will explore the nature of the MBL phase and its transition.

We study the Heisenberg spin-1/2 chain with the following
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FIG. 1: (Color online) (a) The logarithm of the energy variance σ2

as a function of the number of En-DMRG sweeps for 8 randomly

selected En-DMRG processes for system size N = 72 and h = 8
targeting the state at the middle of the energy spectrum. (b) The en-

tropy S evolution for the same processes. (c) For smaller system

N = 18 at h = 8, we show the energy eigen values for i − th
eigenstate found in the energy interval (−2.272,−2.257) near the

energy spectrum center, where an excellent agreement between the

En-DMRG and ED results is found. The absolute energy difference

|∆E| between En-DMRG and ED eigenstates are shown in the inset

of (c), which typically is around 10−9. (d) For all 36 states we found

in (c), we demonstrate their one to one correspondence for entangle-

ment entropy S between ED and En-DMRG results.

Hamiltonian:

H =

N−1∑

i=1

~Si · ~Si+1 −
∑

i

hiS
z
i ,

where the nearest neighbor coupling J = 1 sets the energy

scale and we use open boundary for a better convergence in

DMRG. The h′

is are the random magnetic field couplings,

which distribute uniformly in the interval (−h, h) with h as

the strength of random fields. The ED studies using system

sizes N = 12− 22 established an MBL phase at h & 3.5[66].

The En-DMRG allows us to study larger systems up to N =
72 spins, which substantially enlarges the size-range of the

finite-size scaling analysis for the MBL phase. All results are

obtained near the center of the energy spectrum.

To demonstrate the convergence of the process for our

larger system calculation with N = 72 at h = 8, we

show the evolution of the logarithm of the energy variances

σ2 = 〈H2〉 − 〈H〉2 in Fig. 1a for each sweep of the En-

DMRG process, which usually is proportional to the energy

error of the state obtained by the En-DMRG. Eight different

En-DMRG targeting runs are illustrated in Fig. 1 from one
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FIG. 2: (Color online) (a) The logarithm of the energy variance σ2 as

a function of the number of the maximum bond dimension m used in

En-DMRG averaged over 10000 configurations for bond dimesnions

m ≤ 48 and more than 1000 configurations for larger m. (b) The

typical wavefunction overlap O between the current lowest energy

state (for H2) and the state at the previous step for the En-DMRG

with and without the proper optimization for each DMRG sweep

measured when the En-DMRG sweeps to the middle of the system.

(c) The expectation value of spin-z < Sz
N/2 > during the En-DMRG

sweeping for the cases described in (b).
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random disorder configuration, and we use an initial bond di-

mension M = 24 and vary it up to M = 72 during the sweep-

ing process. We find that the σ2 starts from around 10−8 for

the first a few sweeps and drops to around 10−10 within 60

sweeps, where we complete the En-DMRG process to find

an energy eigenstate near the target energy Et = −1.1. The

corresponding bipartite entanglement entropies are shown in

Fig. 1b, where amazingly we find that entropy S is well con-

verged after a few initial sweeps. As also demonstrated here,

the eigenstates we obtain have a reasonable variance of S val-

ues reflecting different levels of entanglement of the targeted

eigenstates.

To benchmark our results at a smaller size N = 18 and

h = 8, we show the comparison between eigen energies ob-

tained using ED (red star) and En-DMRG (blue box) with a

varying bond dimension around M = 16 ∼ 48, where an ex-

cellent agreement is demonstrated for all energy eigenstates

in the energy interval (−2.272,−2.232) near the energy spec-

trum center for one disorder configuration. The absolute en-

ergy difference |∆E| between En-DMRG and ED eigenstates

are shown in the inset of the Fig. 1c, which typically is around

10−9. In En-DMRG targeting we run about 1000 times with

slightly different targeting energy Et each time. Some states

are found more frequently than other states. In Fig. 1d, we

show their one to one correspondence for entanglement en-

tropy S from ED and En-DMRG calculations. Very inter-

estingly, we also find that entropies intrinsically fluctuate for

these states with very close energies, and En-DMRG can cap-

ture them all precisely. However, due to the unequal appear-

ance of the different eigenstates in En-DMRG runs, one needs

to address the ability for En-DMRG to capture the statistics

of the system for different physical quantities in comparison

with ED results[66]. We will demonstrate the success of En-

DMRG in this aspect as we present new results below.

To demonstrate the overall accuracy of the En-DMRG, we

show the evolution of the logarithms of the energy variances

averaged over more than 1000 disorder configurations as a

function of the maximum bond dimensionm in Fig. 2a. These

results indicate the excellent convergence of the En-DMRG as

we go deeper into the MBL phase (h = 6 and 8). For all En-

DMRG results we show in this work, we keep a varying max-

imum bond dimension M = 48 − 120 states for converged

and reliable results (we increase bond dimension when En-

DMRG picks up a larger entropy eigenstate). The difference

between En-DMRG with and without proper optimization is

illustrated in Fig. 2b and Fig. 2c for the wavefunction overlap

O and the local spin-z expectation value < Sz
N/2 > for the

middle site of the spin chain. Without proper optimization,

we find that the overlap O and < Sz
N/2 > obtained at each

En-DMRG sweep is jumping around without a sign of conver-

gence. By proper optimization, both the O and < Sz
N/2 > ob-

tained by En-DMRG quickly converge similar to the ground

state DMRG.

III. NUMERICAL RESULTS

A. The spin polarization and spin-flip

One of the characteristic features of the MBL phase is that

there is a set of localized l-bits, which represents N locally

conserved and commuting effective spins[9, 19–21, 56]. In

general, these l-bits are locally dressed versions of the under-

lying physical degrees of freedom. To address the microscopic

nature of l-bits and their evolution near the phase transition,

we first examine the probability density distribution function

of each spin for large systems. As shown in Fig. 3a, we plot

the spin-z expectation value 〈Sz
N/2〉 = 〈Ψ|Sz

N/2|Ψ〉 for the

middle (N/2-th) site for the En-DMRG obtained eigenstate
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FIG. 3: (Color online) (a) The spin-z expectation values 〈Sz
N/2〉 for

N/2-th site for eigenstates obtained by En-DMRG for 1000 random

disorder configurations at h = 8 and N = 72. (b) The probability

density distributions P (Sz) for systems with weaker disorder h = 2
and 3 obtained by ED at N = 18 using an ensemble of 2000 dis-

order configurations with 50 states from each configuration. P (Sz)
has the Gaussian distribution for h = 2 while there are two peaks at

〈Sz〉 ∼ ±0.5 for h = 3. (c) P (Sz) for different system sizes from

N = 18 to N = 72 for strong disorder h = 8 using an ensemble

of 20000 disorder configurations. The sharp peaks at 〈Sz〉 ∼ ±0.5
demonstrate the violation of the ETH for this system. The results

obtained by En-DMRG and ED are near identical at N = 18 estab-

lishing the unbiased sampling for our En-DMRG. Shown in the inset

is P (0) as a function of h. For (b-c), the typical standard error bar

(obtained by dividing ensembles into 10 groups) is about the size of

the symbols.
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|Ψ〉 with total Sz
tot = 0 for 1000 random disorder configu-

rations at N = 72 and h = 8 (we take one state from each

configuration). It shows a wide distribution with much en-

hanced appearance near 〈Sz〉 = ±0.5 quite different from an

ergodic state where the single site distribution should take on

values close to the averaged value which is zero here. We

have checked that spins at all other sites show very similar

pattern. For comparison, we first show the probability density

distribution P (Sz) in Fig. 3b for systems with weak disorder

h = 2 and 3 obtained by ED at N = 18 averaged over 2000

disorder configurations with 50 states near energy spectrum

center from each configuration[66]. We find that P (Sz) has

the Gaussian distribution in the ergodic phase at h = 2 with

a strong peak around the value 〈Sz〉 = 0, which also grows

sharper approaching a delta function with the increase of N .

The distribution at h = 3 is quite different with a very broad

structure and peaks near 〈Sz〉 ∼ ±0.5, which also shows a

very weak N dependence.

Now we obtain the distribution function P (Sz) for systems

with different sizes N = 18, 30, and 72 in the MBL phase

with h = 8 using 20000 disorder configurations and one state

from each configuration obtained by En-DMRG as shown in

Fig. 3c. We see a completely different distribution compared

to the h = 2 result (but similar to h = 3 case qualitatively),

with sharp peaks at 〈Sz〉 = ±0.5 demonstrating the viola-

tion of ETH for this MBL system. The results are system size

independent and fully converged suggesting the same distri-

bution in the thermodynamic limit. By comparing the results

obtained by En-DMRG and ED at N = 18 for h = 8 (in

Fig. 3c) we also establish that our En-DMRG is unbiased,

which reproduces all the different events with the right prob-

ability as they appear in the random quantum systems. In the

P (Sz) distribution function, we also see the finite probabil-

ity density P (0) ∼ 0.21 for 〈Sz〉 = 0. We can understand

these regions in a perturbative way. The perturbation from the

xy-coupling in the Hamiltonian gives rise to spin-entangled

pairs in the near polarized spin background, which we refer to

as spin-flip events. The nonzero probability for 〈Sz〉 = 0 is

a consequence of these spin-entangled pairs. We show P (0)
as a function of h in the inset of Fig. 3c, which is gener-

ally nonzero for finite h approximately followingP (0) ∼ 1/h
on larger h side (we obtain results from ED in the smaller h
side) revealing the significance of spin-flip events in the whole

MBL phase. Because the probability density P (0) is system

size independent, then at large N limit, there will be a finite

density for the spin-entangled pairs.

B. Distributions of entanglement entropy and fluctua-

tion of half system magnetization

The bipartite entanglement entropy S has been extensively

used as an effective tool to characterize different many-body

states for such an interacting system[7, 29, 66]. We compute

the Von Neumann entanglement entropy from all eigenvalues

of the reduced density matrix ρA as S = −TrρA ln ρA, by

partitioning the system in the middle of the spin chain. Dif-

ferent from the general volume law entanglement entropy for

ergodic phase on the weak disorder side, the MBL phase at

h & 3.5 side has the entanglement entropy following the area

law, which is the fundamental reason that DMRG can work for

such a phase. We now study the probability density distribu-

tion of the entropyP (S) for spin system near the energy spec-

trum center. We choose the statistical ensemble from at least

50000 disorder configurations for En-DMRG calculations for

each N . As shown in the Fig. 4a, results from system sizes

with N = 18, 30 and 72 are on top of each other, suggesting

the same distribution in the thermodynamic limit. The agree-

ment between the En-DMRG and ED results for N = 18 sys-

tems confirms the robustness of En-DMRG in capturing all

different states with a wide range of the entropy distribution.

The P (S) results in the whole S region are converged (inde-

pendent of the bond dimension) except for a couple of data

points near S ∼ 0, where the En-DMRG results are a few

percent smaller than the ED results for the larger bond dimen-

sions we used. While this small difference does not change

the universal behavior of the N -independent distribution, the

error is caused by the fact that these states are close to prod-

uct states (which are slightly harder to be captured by En-

DMRG).

Focusing on the characteristic feature of P (S), we find that

P (S) is peaked at S = 0 with a continuous spectrum going

into the finite S range, and with a second peak at a quantized

value S = 0.69 ∼ ln2. Quantitatively, the P (S) value at

the second peak is about 1/20 of P (S = 0), which is only

clear in our logarithmic plot. Quite interestingly, the P (S)
has a smooth plateau feature on the S < ln2 side, but shows

a large exponential drop on the S > ln2 side. Similar dis-

tributions are obtained for larger h, where P (S) values goes

to zero on the S > ln2 side exponentially fast with the in-

crease of h. Comparing to the observation of the spin-flip

process in the Sz distribution, we can attribute the ln2 peak

to these small density spin-entangled pairs crossing the two

half systems[51]. For strong disorder, the spin-entanglement

is short-ranged and the observed ln2 peak has similar physical

origin as the observation in the MBL phase of spinless fermion

systems[28]. The continuous spectrum comes from the local

interaction of spin-entangled pairs with surrounding polarized

spins, which partially reduces their entanglement as they be-

come dressed. The exponential drop of P (S) on the S > ln2
side suggests that the events of different spin-entangled pairs

getting entangled together or multi-spin resonant states have

exponentially small probability for h = 8 deep in the MBL

phase. Clearly, our method can accurately describe these rare

events giving rise to large entanglement entropy.

Now we show the evolution of the P (S) into the ergodic

phase by reducing h. The distribution P (S) for h = 8 to

4 are qualitatively similar as shown in Fig. 4b, with a peak

at S = 0 and a second peak near S = 0.69 ∼ ln2. How-

ever P (S) shows much enhanced weight on the S > ln2 side

with reducing h (results at h = 3 and 4 are obtained by ED),

which can be fitted by a power-law behavior P (S) ∼ 1/Sx

for h ≤ 4. In addition, at h = 3, the P (S) shows some

different features with first peak moving away from zero to

S ∼ 0.1 and a long tail at S > ln2 side, which only decays
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very slowly. We can still see a weak peak at S = ln2, which

is very broad and about to disappear. Interestingly, these fea-

tures for P (S) at h = 3 is still quite different[45] from the

Gaussian form with a single peak, which is the case for h = 2
with a sharp peak at the value S ∼ 4.7 as we checked.

To further establish the above picture, we investigate the

probability density distribution P (F ) of the fluctuations of

the magnetization of the half system[66] defined as F =
〈(Sz

h)
2〉 − 〈Sz

h〉
2 calculated using the eigenstate, where Sz

h

is the total spin-z component of the half system. If the half-

system cutting through a spin-entangled pair while all other

spins are short-range correlated (or near polarized), then we

expect the variance F = 1/4. Interestingly, we see that the
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FIG. 4: (Color online) (a) The entropy probability density distribu-

tion function P (S) for N = 18, 30 and 72 at h = 8. For N = 18,

ED and En-DMRG results find excellent agreement. (b) The evolu-

tion of P (S) from the MBL phase to the delocalized phase by re-

ducing h from 8 to 3 for N = 18 from both ED and En-DMRG

calculations. All curves have a peak at or near S = 0 and a second

peak near S = 0.69 ∼ ln2. P (S) at larger S > ln2 side can be

fitted by a power-law behavior P (S) ∼ 1/Sx for h ≤ 4. (c) The

evolution of the probability density P (F ) for the variance of the half

system magnetization F for h = 8, 5, 4, and 3. The second peak is

located at a quantized value F = 1/4. For results shown in Fig. 4,

we use at least 50000 energy eigenstates for each system size. The

typical standard error bar for (a-c) is about the size of symbols and it

is larger near the tail of distributions.

distribution P (F ) indeed has a second peak at the quantized

value F = 1/4, which can be attributed to the spin-entangled

pairs (local spin flips). The overall structure of P (F ) is very

similar to P (S) with the broad continuum at F < 1/4 side

and a tail into larger F side with its magnitude growing with

the reducing of h. At h = 3, the second peak is more robust in

P (F ) than in P (S) indicating the faster growth of the entan-

glement near the phase transition for finite-size systems[46].

C. Spin spin correlation function and many-body phase

diagram

From the entropy distribution function we have seen that

multiple spins getting entangled with each other have expo-

nentially small probability deep inside an MBL phase, which

grow with reducing h toward the transition region. Here, we

seek a better understanding of this feature by calculating the

disorder averaged spin-z correlations[12, 80] Czz(|i − j|) =
|〈Ψ|Sz

i S
z
j |Ψ〉 − 〈Ψ|Sz

i |Ψ〉〈Ψ|Sz
j |Ψ〉| and spin transfer (trans-

verse correlations) Cxy(|i − j|) = |〈Ψ|S+

i S−

j |Ψ〉| (Ψ is the

excited eigenstate and the over-line represents the disorder

and real space average). We find that typical spin correla-
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FIG. 5: (Color online) (a) The disorder averaged spin-z Czz(|i− j|)
and spin-xy Cxy(|i − j|) correlations obtained from En-DMRG

at h = 6 for N = 18 and N = 30. The exponential decays can

be best fit by the correlation lengths ξxy = 1.1 and ξz = 2.78,

respectively. (b) The Czz(|i − j|) develops power-law correlations

(see solid line fitting) for h = 3 and 4 obtained by ED. The dashed

lines represent exponential fittings for longer distance data with

ξz = 18.0 and ξz = 8.0 for h = 3 and 4 respectively, which

show less overall agreement from the raw data comparing to the

powerlaw fittings. (c) The hopping correlations Cxy(|i − j|)
decay exponentially at h = 3 and 4 obtained by ED. The fitting cor-

relation lengths are ξxy = 2.7 and 1.8 for h = 3 and 4, respectively.
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tions are decaying fast even for intermediate disorder strength

h ∼ 4. However, there are rare configurations where the spin

correlations at larger distance are strongly enhanced, which

may be related to rare Griffiths events[19, 25, 52, 80]. The

arithmetic average we use here allows the rare Griffiths events

to have singular contribution to the correlations near the tran-

sition region. First, we show the exponential decay behavior

for these correlations in the MBL phase at h = 6 in Fig. 5a for

N = 18 and 30. We find that the Cxy(|i − j|) decays much

faster than Czz(|i− j|) with correlation length ξxy = 1.1 and

ξz = 2.78, respectively. Again, the ED results at N = 18
agree very well with the En-DMRG results.

Now we move towards the transition region by reducing h
and performing ED calculations. Shown in Fig. 5b for spin-z

correlations, Czz(|i − j|) is best fit by a power-law function

Czz((i − j|) ∝ 1/|i − j|α with the correlation exponents

α = 0.7 and 1.4 for h = 3 and 4, respectively. The fitting is

more robust for larger N = 20 data. But due to the limited

system sizes, one can also fit longer distance parts of data with

exponential decay functions as illustrated by the dashed lines.

The localization lengths for these fitting are ξz = 8.0 and

18.0, for h = 4 and 3, respecitively.

In Fig. 5c, we demonstrate the spin transverse corre-

lations for these systems, where a clear exponential decay

Cxy ∝ exp(−|i − j|/ξxy) is observed with very short cor-

relation lengths ξxy = 2.7 and 1.8 for h = 3 and 4, respec-

tively. If we compare all correlations by fitting all data using

the exponential functions as illustrated in Fig. 5(a-c), then the

correlation length of the spin-z grows much faster than the

one for the transverse correlations as shown in Fig. 6a with

reducing h. These results clearly establish that there is an

intermediate regime around h ∼ 3 − 4, which has exponen-

tial decay spin transfer demonstrated from Cxy(|i− j|), while

the entanglement grows through correlations of different spin-

 0
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(d) xy-corr.

z-corr.

FIG. 6: (Color online) (a) For system size N = 20, if we fit all

correlations using exponential decay functions shown in (a-c), then

the correlation length for spin-z is much larger than the one for

spin-xy. (b) A phase diagram with a delocalized ergodic phase, an

intermediate critical Griffiths regime, and an MBL phase. See more

discussions on the finite-size effect of the critical regime in the main

text.

entangled pairs seen in the power-law-like Czz(|i − j|) cor-

relations. This is also consistent with the entropy distribu-

tion function, where the strong power-law tail develops on the

S > ln2 side for these intermediate h. Based on these results,

we obtain a phase diagram shown in Fig. 6b, where we find

delocalized ergodic phase, a critical Griffiths regime, and an

MBL phase with increasing h. From finite size results, we

estimate the critical regime is between h ∼ 3.0 − 4.0 based

on the exponential decaying behaviors of Cxy before entering

ergodic phase at smaller h side, and also the power-law-like

behavior of the Czz entering the critical Griffiths regime.

IV. SUMMARY AND DISCUSSION

Based on the newly developed En-DMRG method for ex-

cited states of MBL systems, we establish the thermodynamic

distribution functions for spins, entanglement entropy and

fluctuations of the half system magnetization, and demon-

strate the physical picture of the MBL state. We study the

dynamic phase transition from the MBL phase to the ergodic

delocalized phase and find there is an intermediate Griffiths

regime for disorder strength h ∼ 3 − 4, where the power-

law entanglement of spins develops. The intermediate criti-

cal Griffiths regime is consistent with some earlier theoretical

studies using different probes[19, 24, 25, 45, 52]. Distribu-

tion functions for spin-z P (Sz), entanglement entropy P (S)
and fluctuations of the half system magnetizationP (F ) are all

distinctly different from the ergodic phase or the MBL phase

for finite-size systems, which also show slow evolution with

the system size N . The basic physical picture revealed from

our numerical studies is that the emergent conservation laws

remain robust in the process of developing power-law entan-

glements in the critical Griffiths regime for systems accessi-

ble by current numerical simulations. The fate of the critical

regime in the thermodynamic limit is unclear limited by the

system sizes we study. However, these results may provide

new insights for understanding the dynamic phase transition

in such systems.

The En-DMRG algorithm we have developed is a new tool

for studying outstanding and challenging issues in quantum

statistical mechanics emerging in strongly interacting disor-

der systems. One of exciting directions is to explore the na-

ture of MBL phase in higher dimensions as the dimensional-

ity always plays an essential role in localization physics. An-

other direction is to explore the physics of the system with

the quantum order including the topological order in the MBL

regime. On the other hand, it is still a challenge to apply this

method closer to the transition region where the entanglement

distribution is extremely broad, which we hope to address in

a separate work. We also hope that our results of character-

istic spin correlations and distribution functions can stimulate

experimental studies along this direction.
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Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Sci-

ence 349, 842 (2015), 1501.05661.

[63] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,



9

P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, ArXiv e-prints

(2015), 1508.07026.
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