Upper bounds on secret-key agreement over lossy thermal bosonic channels

Eneet Kaur and Mark M. Wilde
Phys. Rev. A 96, 062318 – Published 19 December 2017

Abstract

Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is evidence of having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., Phys. Rev. Lett. 119, 120503 (2017)] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the nonasymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.

  • Figure
  • Received 18 June 2017

DOI:https://doi.org/10.1103/PhysRevA.96.062318

©2017 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Eneet Kaur

  • Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Baton Rouge, Louisiana 70803, USA

Mark M. Wilde

  • Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Baton Rouge, Louisiana 70803, USA and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 6 — December 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×