Symmetry breaking of solitons in two-dimensional complex potentials

Jianke Yang
Phys. Rev. E 91, 023201 – Published 2 February 2015
PDFHTMLExport Citation

Abstract

Symmetry breaking is reported for continuous families of solitons in the nonlinear Schrödinger equation with a two-dimensional complex potential. This symmetry breaking is forbidden in generic complex potentials. However, for a special class of partially parity-time-symmetric potentials, it is allowed. At the bifurcation point, two branches of asymmetric solitons bifurcate out from the base branch of symmetry-unbroken solitons. Stability of these solitons near the bifurcation point are also studied, and two novel properties for the bifurcated asymmetric solitons are revealed. One is that at the bifurcation point, zero and simple imaginary linear-stability eigenvalues of asymmetric solitons can move directly into the complex plane and create oscillatory instability. The other is that the two bifurcated asymmetric solitons, even though having identical powers and being related to each other by spatial mirror reflection, can possess different types of unstable eigenvalues and thus exhibit nonreciprocal nonlinear evolutions under random-noise perturbations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 8 October 2014

DOI:https://doi.org/10.1103/PhysRevE.91.023201

©2015 American Physical Society

Authors & Affiliations

Jianke Yang

  • Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05401, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 2 — February 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×