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Symmetry breaking of solitons in two-dimensional complex potentials
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Symmetry breaking is reported for continuous families of solitons in the nonlinear Schrödinger
equation with a two-dimensional complex potential. This symmetry-breaking bifurcation is forbid-
den in generic complex potentials. However, for a special class of partially parity-time-symmetric
potentials, such symmetry breaking is allowed. At the bifurcation point, two branches of asymmetric
solitons bifurcate out from the base branch of symmetry-unbroken solitons. Stability of these soli-
tons near the bifurcation point are also studied, and two novel stability properties for the bifurcated
asymmetric solitons are revealed. One is that at the bifurcation point, zero and simple imaginary
linear-stability eigenvalues of asymmetric solitons can move directly into the complex plane and
create oscillatory instability. The other is that the two bifurcated asymmetric solitons, even though
having identical powers and being related to each other by spatial mirror reflection, can possess
different types of unstable eigenvalues and thus exhibit non-reciprocal nonlinear evolutions under
random-noise perturbations.

PACS numbers: 42.65.Tg, 05.45.Yv

I. INTRODUCTION

Parity-time (PT ) symmetric systems are dissipative
systems with balanced gain and loss. The name of
PT symmetry was derived from non-Hermitian quantum
mechanics with complex potentials [1]. This concept has
since been applied to optics [2, 3], Bose-Einstein con-
densation [4], electric circuits [5], mechanical systems [6]
and other settings. PT -symmetric systems have some re-
markable properties, such as all-real linear spectra [1, 7–
9] and existence of continuous families of solitons [8–
27], which set them apart from other dissipative systems
and make them resemble conservative systems. In multi-
dimensions, the concept of PT symmetry has been gen-
eralized to include partial parity-time (PPT ) symmetry,
and it is shown that PPT -symmetric systems share most
of the properties of PT systems [28]. Even some non-PT -
symmetric systems have been found to posesse certain
properties of PT systems, such as all-real linear spectra
[29–31] and/or existence of soliton families [32, 33].

Symmetry-breaking bifurcation for continuous families
of solitons in symmetric systems is a fascinating phe-
nomenon. In conservative systems with real symmet-
ric potentials, such symmetry breaking occurs frequently
[34–43]. That is, branches of asymmetric solitons can bi-
furcate out from the base branch of symmetric solitons
when the power of symmetric solitons is above a certain
threshold. But in PT -symmetric complex potentials,
such symmetry breaking is generically forbidden [44].
Mathematically the reason for this forbidden bifurca-
tion is that this bifurcation requires infinitely many non-
trivial conditions to be satisfied simultaneously, which
is generically impossible. Intuitively this forbidden bi-
furcation can be understood as follows. Should it oc-
cur, continuous families of asymmetric solitons would be
generated. Unlike in conservative systems, these asym-
metric solitons in PT systems would require not only
dispersion-nonlinearity balancing but also gain-loss bal-
ancing, which is generically impossible. Surprisingly for a

special class of one-dimensional (1D) PT -symmetric po-
tentials of the form V (x) = g2(x)+αg(x)+ ig′(x), where
g(x) is a real even function and α a real constant, symme-
try breaking of solitons was reported very recently [45].
This invites a natural question: can this symmetry break-
ing occur in 2D complex potentials? If so, what type of
2D complex potentials admit such symmetry breaking?

In this article, we study symmetry-breaking bifur-
cations of continuous families of solitons in 2D com-
plex potentials. We show that in a special class of
PPT -symmetric separable potentials, symmetry break-
ing can occur. Specifically, from a base branch of PPT -
symmetric solitons and above a certain power thresh-
old, two branches of asymmetric solitons with identical
powers can bifurcate out. At the bifurcation point, the
base branch of PPT -symmetric solitons changes stabil-
ity, analogous to conservative systems. However, the
bifurcated asymmetric solitons can exhibit new stabil-
ity properties which have no counterparts in conserva-
tive systems. One novel property is that at the bifur-
cation point, the zero and simple imaginary eigenvalues
in the linear-stability spectra of asymmetric solitons can
move directly into the complex plane and create oscil-
latory instability. Another novel property is that the
two asymmetric solitons can possess different types of
linear-instability eigenvalues. As a consequence, these
two asymmetric solitons, which are related to each other
by spatial mirror reflection, can exhibit non-reciprocal
evolutions under random-noise perturbations.

II. SYMMETRY BREAKING OF SOLITONS

Nonlinear beam propagation in an optical medium
with gain and loss can be modeled by a nonlinear
Schrödinger equation [46]

iΨz +∇2Ψ+ V (x, y)Ψ + σ|Ψ|2Ψ = 0, (2.1)
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where z is the propagation distance, (x, y) is the trans-
verse plane, ∇2 = ∂xx + ∂yy, V (x, y) is a complex poten-
tial, and σ = ±1 is the sign of nonlinearity.
Solitons in Eq. (2.1) are sought of the form

Ψ(x, y, z) = eiµzψ(x, y), (2.2)

where µ is a real propagation constant, and ψ(x, y) is a
localized function solving the equation

∇2ψ + V (x, y)ψ + σ|ψ|2ψ = µψ. (2.3)

If the complex potential V (x, y) is PT -symmetric or
PPT -symmetric, continuous families of PT -symmetric
or PPT -symmetric solitons are admitted [18, 28], but
symmetry breaking of such solitons is generically for-
bidden [44]. However, for certain special forms of 1D
PT potentials, symmetry breaking of 1D solitons has
been reported very recently [45].
In this article, we show that symmetry breaking of 2D

solitons is also possible in the model (2.1) for a special
class of complex potentials

V (x, y) = g2(x) + αg(x) + ig′(x) + h(y), (2.4)

where g(x) is a real even function, i.e.,

g(−x) = g(x),

h(y) is an arbitrary real function, and α is a real con-
stant. This potential is separable in (x, y), and its imag-
inary part is y-independent. In addition, this potential
is PPT -symmetric, i.e.,

V ∗(x, y) = V (−x, y), (2.5)

where the asterisk represents complex conjugation. Due
to separability of this potential, it is easy to see that its
linear spectrum can be all-real [28]. Note that a potential
of the form (2.4) but with x and y switched is equivalent
to (2.4) and thus does not deserve separate consideration.
The x-component of the separable potential (2.4) is the

same as the 1D complex potential for symmetry break-
ing as reported in [45], but the y-component of this sep-
arable potential is real and quite different. Should this
y-component be complex and also take the form of its
x-component, we have found that symmetry breaking
would no longer occur. This indicates that symmetry
breaking in the special 2D potential (2.4) is by no means
obvious and cannot be anticipated from the 1D potential
for symmetry breaking in [45].
Below we use two explicit examples of the potential

(2.4) to demonstrate symmetry breaking of 2D solitons
and reveal their unique linear-stability properties.

Example 1 In our first example, we take the poten-
tial (2.4) with

g(x) = 0.3
[

e−(x+1.2)2 + e−(x−1.2)2
]

, (2.6)

α = 10, h(y) = 0. (2.7)

This is a y-independent stripe potential which is illus-
trated in Fig. 1. The spectrum of this potential is all-
real, and all eigenvalues lie in the continuous spectrum
of (−∞, 2.0569].
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FIG. 1: (Color online) A stripe complex potential (2.4) with
(2.6)-(2.7) in Example 1. (a) Re(V ); (b) Im(V ).

Solitons in Eq. (2.3) under this potential will be com-
puted by the Newton-conjugate-gradient method. This
method features high accuracy as well as fast speed. The
application of this method for solitons in conservative
systems has been described in [47, 48]. In those cases, the
linear Newton-correction equation was self-adjoint and
thus could be solved directly by preconditioned conju-
gate gradient iterations. However, the present equation
(2.3) is dissipative, hence the resulting Newton-correction
equation is non-self-adjoint. In this case, direct conju-
gate gradient iterations on this equation would fail, and
it is necessary to turn this equation into a normal equa-
tion and then solve it by preconditioned conjugate gradi-
ent iterations. In the appendix, this Newton-conjugate-
gradient method for Eq. (2.3) is explained in more detail.
In addition, a simple Matlab code is displayed.
Using this Newton-conjugate-gradient method, we find

that from the edge of the continuous spectrum µ0 =
2.0569, a continuous family of solitons ψs(x, y;µ), local-
ized in both x and y directions, bifurcate out. The power
curve of this soliton family is displayed in Fig. 2 (blue
curve in the first row). Here the power is defined as

P (µ) =

∫

∞

−∞

∫

∞

−∞

|ψ(x, y;µ)|2dxdy.

At two points ‘a,b’ of this power curve, soliton profiles
are shown in Fig. 2 (the second and third rows). These
solitons respect the same PPT symmetry of the potential,
i.e.,

ψ∗

s (x, y) = ψs(−x, y). (2.8)

The existence of this soliton family respecting the same
symmetry of the potential is anticipated.
What is surprising is that, when the power of this

soliton family reaches a critical value Pc ≈ 8.60, two
branches of asymmetric solitons bifurcate out through a
pitchfork bifurcation. These asymmetric solitons do not
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respect the PPT symmetry (2.8). At the same µ value,
they have identical powers and are related to each other
through a spatial reflection

ψ(1)∗
a (x, y) = ψ(2)

a (−x, y). (2.9)

The power curve of these two branches of asymmet-
ric solitons is plotted in Fig. 2 (red curve in the first
row). Notice that unlike the symmetric (base) branch,
the power slope of these asymmetric branches is negative
at the bifurcation point. At point ‘c’ of the asymmet-
ric branches, the profile for one of the two asymmetric
solitons is displayed in Fig. 2 (the bottom row). Asym-
metry in its profile can clearly be seen. These solitons
have lost the PPT symmetry of the underlying potential,
thus symmetry breaking has occurred.
Next we analyze linear stability of these symmetric and

asymmetric solitons. To determine linear stability, we
perturb these solitons as

Ψ(x, y, z) = eiµz
[

ψ(x, y) + ũ(x, y) eλz + w̃∗(x, y) eλ
∗z
]

,

where |ũ|, |w̃| ≪ |ψ|. After substitution into equation
(2.1) and linearizing, we arrive at the eigenvalue problem

L

(

ũ
w̃

)

= λ

(

ũ
w̃

)

, (2.10)

where

L = i

(

L11 L12

L21 L22

)

,

and

L11 = ∇2 + V − µ+ 2σ|ψ|2,

L12 = σψ2,

L21 = −σ
(

ψ2
)∗

,

L22 = −
(

∇2 + V − µ+ 2σ|ψ|2
)∗

.

If eigenvalues with positive real parts exist, the soliton is
linearly unstable; otherwise it is linearly stable.
Linear-stability eigenvalues exhibit important differ-

ences for symmetric and asymmetric solitons. For
symmetric solitons ψs(x, y), it is easy to show from
soliton symmetry (2.8) and potential symmetry (2.5)
that if {λ, ũ(x, y), w̃(x, y)} is an eigenmode, then so
is {λ∗, w̃∗(x, y), ũ∗(x, y)}, {−λ, w̃(−x, y), ũ(−x, y)} and
{−λ∗, ũ∗(−x, y), w̃∗(−x, y)}. Thus for symmetric soli-
tons, real and imaginary eigenvalues appear as pairs
(λ,−λ), and complex eigenvalues appear as quartets
{λ, λ∗,−λ,−λ∗}.
For asymmetric solitons, however, the situation is dif-

ferent. While it is still true that if λ is an eigenvalue, so is
λ∗, but due to the lack of soliton symmetry (2.8), −λ and
−λ∗ are no longer eigenvalues. In other words, for asym-
metric solitons, complex eigenvalues appear as conjugate
pairs (λ, λ∗), not as quartets; and real eigenvalues appear
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FIG. 2: (Color online) Symmetry breaking of solitons in Ex-
ample 1. First row: power curves of symmetric (blue) and
asymmetric (red) solitons; the right panel is an amplifica-
tion of the left panel around the bifurcation point. Second
to fourth rows: soliton profiles at points ‘a,b,c’ of the power
curve; left panels: amplitude fields; right panels: phase fields.

as single eigenvalues, not as (λ,−λ) pairs. These differ-
ences on eigenvalue symmetry between symmetric and
asymmetric solitons will have important implications, as
we will see later in this section.

For the two branches of asymmetric solitons, their
linear-stability eigenvalues are related. Indeed, from the
mirror symmetry (2.9) between these two bifurcated soli-
ton branches, it is easy to see that if λ is an eigenvalue of

the soliton ψ
(1)
a (x, y;µ), then −λ∗ will be an eigenvalue

of the companion soliton ψ
(2)
a (x, y;µ). In other words,

linear-stability spectrum of the soliton ψ
(1)
a (x, y;µ) is a

mirror reflection of that spectrum of the companion soli-
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ton ψ
(2)
a (x, y;µ) around the imaginary axis.

The eigenvalue problem (2.10) can be computed by the
Fourier collocation method (for the full spectrum) or the
Newton-conjugate-gradient method (for individual dis-
crete eigenvalues) [48]. We find that near the symmetry-
breaking bifurcation point µc ≈ 2.33, symmetric solitons
are stable before the bifurcation point (µ < µc) and un-
stable after it (µ > µc), and both branches of asymmetric
solitons are unstable. This stability behavior is marked
on the power curve in Fig. 3 (upper left panel). To
shed light on the origins of these stabilities and instabili-
ties, linear-stability spectra at three points ‘a,b,c’ of this
power curve, for the three solitons displayed in Fig. 2,
are displayed in panels (a,b,c) of Fig. 3 respectively. We
see from panel (a) that before the bifurcation, the sym-
metric soliton has a pair of discrete eigenvalues on the
imaginary axis. At the bifurcation point, this pair of
imaginary eigenvalues coalesce at the origin. After bi-
furcation, these coalesced eigenvalues split along the real
axis in opposite directions for both symmetric and asym-
metric solitons. Along the symmetric branch, the two
split eigenvalues form a (λ,−λ) pair [see panel (b)]. But
along the asymmetric branches, the two split eigenval-
ues do not form a (λ,−λ) pair since they have different
magnitudes [see panel (c)]. These spectra show that the
instability of symmetric and asymmetric solitons after bi-
furcation is due to the zero-eigenvalue splitting along the
real axis at µ = µc, and this instability is exponential
(caused by real eigenvalues).

It is interesting to observe that the power-curve struc-
ture and the associated stability behaviors in Fig. 3 (up-
per left panel) resemble that in the conservative general-
ized nonlinear Schrödinger equations with real potentials
(see Fig. 2c in Ref. [43]). In that conservative case, it
was shown that if the power slopes of the symmetric and
asymmetric solitons at the bifurcation point have oppo-
site signs, then both solitons will share the same stability
or instability [43]. Fig. 3 of the present article suggests
that such a statement might hold for complex potentials
as well. But whether it holds for other complex potentials
merits further investigation.

The linear-stability results of Fig. 3 are corroborated
by nonlinear evolution simulations of those solitons under
random-noise perturbations. To demonstrate, we per-
turb the three solitons of Fig. 2 by 1% random-noise per-
turbations, and their nonlinear evolutions are displayed
in Fig. 4. As can be seen, the perturbed symmetric
soliton before bifurcation shows little change even af-
ter z = 100 units of propagation, confirming that it is
linearly stable (see top row of Fig. 4). The perturbed
symmetric soliton after bifurcation, on the other hand,
clearly breaks up and evolves into a highly asymmetric
profile after 20 units of propagation, confirming that it
is linearly unstable (see middle row of Fig. 4). The per-
turbed asymmetric soliton, whose initial intensity hump
is located at the right side, also breaks up and evolves
into a profile whose intensity hump moves to the left side
after 50 units of propagation, confirming that it is lin-
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FIG. 3: (Color online) Linear-stability behaviors of solitons
near the symmetry-breaking point in Example 1. Upper left
panel: the power curve with stability marked (solid blue for
stable and dashed red for unstable). Panels (a,b,c): linear-
stability spectra for the solitons at points ‘a,b,c’ of the power
curve.

early unstable as well (see bottom row of Fig. 4).

Example 2 In our second example, we take the po-
tential (2.4) with

g(x) = 0.3
[

e−(x+1.2)2 + e−(x−1.2)2
]

, α = 10,

and

h(y) = 2
[

e−(y+1.2)2 + 0.8e−(y−1.2)2
]

.

This potential is illustrated in Fig. 5. Its real part is no
longer a stripe potential, neither is it symmetric in y.
The spectrum of this potential is all-real, and it consists
of three discrete eigenvalues of {2.5643, 2.5689, 3.2028}
and the continuous spectrum of (−∞, 2.0569].
From the largest discrete eigenvalue of µ0 = 3.2028, a

continuous family of PPT -symmetric solitons bifurcates
out. The power curve of this soliton family is plotted in
Fig. 6(A) (blue curve). When the power of these soli-
tons reaches a threshold of Pc ≈ 5.24 (at µc ≈ 3.56),
two branches of asymmetric solitons bifurcate out, whose
power curves are also displayed in Fig. 6(A) (red curve).
As before, these two asymmetric solitons are related to
each other by Eq. (2.9), thus they have identical pow-
ers. Enlargement of this power curve near the bifurcation
point is shown in Fig. 6(B). At points ‘a,b,c,d’ of this
amplified power diagram, the solitons’ amplitude profiles
are plotted in Fig. 6 (middle and bottom rows). Here
points ‘c,d’ are the same power points but on different
asymmetric-soliton branches. We can see that solitons
at points ‘a,b’ of the base branch are PPT -symmetric,
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FIG. 4: (Color online) Nonlinear evolutions of the three soli-
tons in Fig. 2 under 1% random-noise perturbations (loca-
tions of these solitons on the power curve are marked in both
Figs. 2 and 3).
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FIG. 5: (Color online) The PPT -symmetric complex poten-
tial (2.4) in Example 2. (a) Re(V ); (b) Im(V ).

with ‘a’ before bifurcation and ‘b’ after it. The solitons
at point ‘c,d’ of the bifurcated branches, however, are
asymmetric, with the energy concentrated on the right
and left side of the x-axis respectively. In this example,
power slopes of the base and bifurcated soliton branches
have the same sign at the bifurcation point, which is dif-
ferent from Example 1.

Now we discuss linear-stability behaviors of solitons
in Example 2. For the base branch of PPT -symmetric
solitons, they are linearly stable before the bifurcation
point and linearly unstable after it, which is similar to
Example 1 and is not surprising. To illustrate, linear-
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FIG. 6: (Color online) Symmetry breaking of solitons in Ex-
ample 2. (A) power curves of PPT -symmetric (blue) and
asymmetric (red) solitons; (B) enlargement of the left power
curves near the bifurcation point (solid blue indicates linearly-
stable branch, and dashed red indicates linearly-unstable
branches). Middle and bottom rows: profiles of soliton am-
plitudes at points ‘a,b,c,d’ of the power curve.

stability spectra for the two PPT -symmetric solitons at
points ‘a,b’ of the power curve in Fig. 6(B) are plotted in
Fig. 7(a,b) respectively. At point ‘a’ (before bifurcation),
all eigenvalues are imaginary, indicating linear stability.
At point ‘b’ (past bifurcation), a pair of real eigenvalues
±0.3704 appear, which makes this PPT -symmetric soli-
ton linearly unstable. What happens is that when the
power of the base branch crosses the bifurcation point,
a pair of imaginary eigenvalues collide at the origin and
then bifurcate out of the origin along the real axis, cre-
ating a ±λ pair of real eigenvalues and hence instability.

The most interesting new phenomena in Example 2
are linear-stability behaviors of asymmetric solitons. We
find that both branches of asymmetric solitons are lin-
early unstable, but origins of their instabilities are differ-
ent. To demonstrate, linear-stability spectra for the two
asymmetric solitons at points ‘c,d’ of Fig. 6(B) are plot-
ted in Fig. 7(c,d). These two spectra are related to each
other by mirror reflection around the imaginary axis, as
we have pointed out earlier in the text. In addition,
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FIG. 7: (Color online) (a-d): Linear-stability spectra for soli-
tons at points ‘a-d’ of the power curve in Fig. 6(B).

eigenvalues of these asymmetric solitons must appear in
conjugate pairs (λ, λ∗), but no other eigenvalue symme-
try exists.

The first phenomenon we notice in these spectra is
that, both asymmetric solitons are linearly unstable due
to oscillatory instabilities caused by complex eigenval-
ues. The second phenomenon is that, even though these
spectra contain complex eigenvalues, these eigenvalues
do not appear in quartets {λ, λ∗,−λ,−λ∗}. This con-
trasts asymmetric solitons in real (conservative) poten-
tials, where complex eigenvalues must appear in quartets.

The third and probably most noteworthy phenomenon
in these spectra is that, unstable eigenvalues in these
two asymmetric solitons have different origins. Indeed,
before the bifurcation, PPT -symmetric solitons on the
base branch have two pairs of simple discrete imaginary
eigenvalues [see Fig. 7(a)]. At the bifurcation point, the
smaller pair of simple imaginary eigenvalues coalesce at
the origin, while the larger pair remain on the imaginary
axis. When asymmetric solitons bifurcate out from the
base branch, for the one with energy concentrated on
the right side (see Fig. 6, at point ‘c’), the pair of sim-
ple eigenvalues on the imaginary axis move directly to
the right half plane, creating oscillatory instability [see
Fig. 7(c)]. The coalesced zero eigenvalues at the origin,
on the other hand, move leftward into the complex plane,
creating a conjugate pair of stable complex eigenvalues
[see Fig. 7(c)]. For the asymmetric soliton with energy
concentrated on the left side, the situation is just the
opposite [see Fig. 7(d)]. Thus the origin of instability
for one branch of asymmetric solitons is due to a pair
of simple imaginary eigenvalues moving directly off the
imaginary axis, while the origin for the other branch of
asymmetric solitons is due to the zero eigenvalue moving
to the complex plane.

The above phenomenon of zero and simple imaginary
eigenvalues moving directly into the complex plane and
creating oscillatory instability in solitons is very novel,
since it contrasts conservative systems with real poten-
tials. In real potentials, linear-stability complex eigen-
values of solitons appear as quartets {λ, λ∗,−λ,−λ∗}.
Partly because of it, bifurcation of complex eigenvalues
off the imaginary axis typically occurs through collision
of imaginary eigenvalues of opposite Krein signatures (a
bifurcation referred to as Hamiltonian-Hopf bifurcation
in the literature [49]). In addition, complex eigenvalues
(not on the real and imaginary axes) cannot bifurcate
from the origin when two simple eigenvalues collide there.
But in complex potentials, the situation can be very dif-
ferent as is explained above.

The fourth phenomenon in the spectra of Fig. 7 is that,
the maximal growth rates of perturbations in these two
asymmetric solitons are different. Indeed the unstable
eigenvalues in Fig. 7(c) are 0.0067 ± 0.7721i, giving a
growth rate of 0.0067; while the unstable eigenvalues in
Fig. 7(d) are 0.0090±0.2692i, giving a larger growth rate
of 0.0090. The fifth phenomenon is that these oscillatory
instabilities in asymmetric solitons are rather weak due
to these small growth rates. This means that these oscil-
latory instabilities will take long distances to develop.

Of the five phenomena mentioned above, the third
and fourth ones are the most fundamental, and they are
rarely seen (if ever) for asymmetric solitons arising from
symmetry-breaking bifurcations.

Since the two branches of asymmetric solitons have
different origins of instability and different growth rates,
small perturbations in these solitons will grow differently,
leading to non-reciprocal developments of instability. To
demonstrate, evolutions of the two asymmetric solitons
in Fig. 6 under 1% random-noise perturbations are dis-
played in Fig. 8. We see that even though these two
asymmetric solitons are related to each other by a mirror
reflection (2.9) and are reciprocal, their evolutions under
weak perturbations are not reciprocal. Indeed, after 1000
distance units of propagation, they reach similar asym-
metric states. This non-reciprocal evolution is most vis-
ible in Fig. 8(c,d), where amplitude evolutions at spatial
positions (x, y) = (−1.2,−1.2) and (1.2,−1.2) for the two
perturbed asymmetric solitons are plotted respectively.
These amplitude evolutions vividly confirm that (a) the
two asymmetric solitons are linearly unstable; (b) their
instabilities are caused by different unstable modes with
different growth rates; and (c) the nonlinear evolutions
are non-reciprocal even though the asymmetric solitons
are.

In Example 2, when asymmetric solitons bifurcate out,
the coalesced zero eigenvalue and the pair of imaginary
eigenvalues move in opposite directions in the complex
plane, causing instability to both asymmetric solitons
[see Fig. 7(c,d)]. For other potentials and/or nonlineari-
ties, if those eigenvalues bifurcate in the same direction,
then one asymmetric soliton would be linearly stable and
the other unstable. Such a scenario would be very re-
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FIG. 8: (Color online) Non-reciprocal evolutions of two recip-
rocal asymmetric solitons in Fig. 6 under 1% random-noise
perturbations in Example 2. First and second rows: initially
perturbed asymmetric solitons and their evolved solutions at
z = 1000. (c,d) Evolutions of solution amplitudes |Ψ| versus
z at two spatial positions (x, y) = (−1.2,−1.2) (blue) and
(1.2,−1.2) (red) for the two asymmetric solitons of Fig. 6 un-
der perturbations.

markable. Whether such scenarios exist or not is an open
question.
In the above two examples, symmetry breaking was

observed for complex potentials of the form (2.4). We
have also tried a related class of complex potentials

V (x, y) = g2(x)+αg(x)+ ig′(x)+h2(y)+βh(y)+ ih′(y),
(2.11)

where g(x), h(y) are real even functions, and α, β are
real constants. This potential is PT -symmetric, i.e.,
V ∗(x, y) = V (−x,−y), and it admits PT -symmetric soli-
tons. But we did not find symmetry breaking here, i.e.,
we did not find branches of asymmetric solitons bifurcat-
ing from the branch of PT -symmetric solitons.
Why does symmetry breaking occur in potentials of

the form (2.4) but not in some others such as (2.11)?
This question is not clear yet. In fact, even for one-
dimensional symmetry-breaking bifurcations reported in

[45], the reason for that symmetry breaking was not en-
tirely clear either. In the 1D case, the forms of potentials
for symmetry breaking in PT -symmetric potentials and
for soliton families in asymmetric potentials are the same
[32, 45]. For those potentials, there is a conserved quan-
tity which, when combined with a shooting argument,
helps explain the existence of soliton families in asym-
metric complex potentials [33]. That conserved quantity
may prove useful to explain symmetry breaking in those
1D potentials as well.
For the present class of 2D potentials (2.4), we have

found that Eq. (2.1) also admits a conservation law

Qt + Jx +Ky = 0, (2.12)

where

Q = iΨ(Ψ∗

x − iĝΨ∗),

J = ΨΨ∗

yy+|Ψx+iĝΨ|2−iΨΨ∗

t+

(

h−
α2

4

)

|Ψ|2+
σ

2
|Ψ|4,

K = Ψy(Ψ
∗

x − iĝΨ∗)−Ψ(Ψ∗

x − iĝΨ∗)y ,

and

ĝ(x) = g(x) +
α

2
.

For solitons (2.2), substituting their functional form into
the above conservation law, a reduced conservation law
for the soliton function ψ(x, y) can also be derived. For
the other class of potentials (2.11), however, we could not
find such a conservation law. This suggests that there
is indeed a connection between the existence of a con-
servation law and the presence of symmetry breaking of
solitons. But this connection in the 2D case would be
harder to establish since shooting-type arguments would
break down.
In 1D, symmetry breaking in symmetric potentials and

existence of soliton families in asymmetric potentials oc-
cur in complex potentials of the same form [32, 45]. This
invites a natural question: for the class of 2D complex po-
tentials (2.4) which admits symmetry breaking, if these
potentials are not PPT -symmetric, i.e., if g(x) is real
but not even, can they support continuous families of
solitons? The answer is positive as our preliminary nu-
merics has shown.

III. SUMMARY AND DISCUSSION

In this article, we reported symmetry breaking of soli-
tons in the nonlinear Schrödinger equation with a class
of two-dimensional PPT -symmetric complex potentials
(2.4). At the bifurcation point, two branches of asym-
metric solitons bifurcate out from the base branch of
PPT -symmetric solitons, and this bifurcation is quite
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surprising. Stability of these solitons near the bifurca-
tion point were also studied. In the two examples we
investigated, we found that the base branch of symmet-
ric solitons changes stability at the bifurcation point, and
the bifurcated asymmetric solitons are unstable. For the
asymmetric solitons, two novel stability properties were
further revealed. One is that at the bifurcation point, the
zero and simple imaginary linear-stability eigenvalues of
asymmetric solitons can move directly into the complex
plane and create oscillatory instability. The other is that
the two bifurcated asymmetric solitons, even though hav-
ing identical powers and being related to each other by
spatial mirror reflection, can have different origins of lin-
ear instability and thus exhibit non-reciprocal nonlinear
evolutions under random-noise perturbations.
We should point out that the complex potentials (2.4)

possess a single (PPT ) symmetry, thus they must be
in that special form in order for symmetry breaking to
occur. If a complex potential exhibits more than one
spatial symmetry, say double PPT symmetries

V ∗(x, y) = V (−x, y), V ∗(x, y) = V (x,−y),

or one PT and one PPT symmetry, say

V ∗(x, y) = V (−x,−y), V ∗(x, y) = V (−x, y),

then this potential can admit symmetry breaking without
the need for special functional forms (this prospect has
been mentioned in [44] and confirmed by our own numer-
ics). When symmetry breaking occurs in such double-
symmetry potentials, the base branch of solitons respect
both symmetries of the potential, while the bifurcated
solitons lose one symmetry but retain the other. The
simple mathematical reason for symmetry breakings in
double-symmetry potentials is that the infinitely many
analytical conditions for symmetry breaking in [44] are all
satisfied automatically due to the remaining symmetry of
the bifurcated solitons. That situation is fundamentally
different from symmetry breakings in potentials of special
forms such as (2.4), which admit a single spatial symme-
try. The mathematical reason for symmetry breaking
in single-symmetry potentials of special functional forms
such as (2.4) is still not clear.
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Appendix: A Numerical Method for Computing

Solitons in Complex Potentials

In this appendix, we describe the Newton-conjugate-
gradient method for computing solitons in Eq. (2.3) with
a complex potential.

The general idea of the Newton-conjugate-gradient
method is that, for a nonlinear real-valued vector equa-
tion

L0(u) = 0, (A.1)

its solution u is obtained by Newton iterations

un+1 = un +∆un, (A.2)

where the updated amount ∆un is computed from the
linear Newton-correction equation

L1n∆un = −L0(un) (A.3)

where L1n is the linearization operator L1 of Eq. (A.1)
evaluated at the approximate solution un. If L1 is self-
adjoint, then Eq. (A.3) can be solved directly by precon-
ditioned conjugate-gradient iterations [47, 48, 50]. But if
L1 is non-self-adjoint, we first multiply it by the adjoint
operator of L1 and turn it into a normal equation

L
A
1nL1n∆un = −L

A
1nL0(un), (A.4)

which is then solved by preconditioned conjugate gradi-
ent iterations.
For Eq. (2.3), we first split the complex function ψ and

the complex potential V into their real and imaginary
parts,

ψ = ψ1 + iψ2, V = V1 + iV2.

Substituting these equations into (2.3), we obtain two
real equations for (ψ1, ψ2) as

∇2ψ1 + (V1 − µ)ψ1 − V2ψ2 + σ(ψ2
1 + ψ2

2)ψ1 = 0,

∇2ψ2 + (V1 − µ)ψ2 + V2ψ1 + σ(ψ2
1 + ψ2

2)ψ2 = 0.

These two real equations are the counterpart of Eq. (A.1)
for the vector function u = [ψ1, ψ2]

T , where the super-
script ‘T ’ represents transpose of a vector. The lineariza-
tion operator of the above nonlinear equations is

L1 =

[

L11 L12

L21 L22

]

,

where

L11 = ∇2 + V1 − µ+ σ(3ψ2
1 + ψ2

2),

L12 = 2σψ1ψ2 − V2,

L21 = 2σψ1ψ2 + V2,

L22 = ∇2 + V1 − µ+ σ(3ψ2
2 + ψ2

1).

This linearization operator is non-self-adjoint, thus the
Newton-correction is obtained from solving the normal
equation (A.4), where the adjoint operator of L1 is

LA
1 = LT

1 =

[

L11 L21

L12 L22

]

.
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For Eq. (2.3), the preconditioner in conjugate-gradient
iterations for solving the normal equation (A.4) is taken
as

M = diag
(

(∇2 + c)2, (∇2 + c)2
)

,

where c is a positive constant (which we take as c = 3 in
our computations).
While the above numerical algorithm is developed for

real functions (ψ1, ψ2), during computer implementation,
it is more time-efficient to recombine (ψ1, ψ2) into a com-
plex function ψ, so that the derivatives of (ψ1, ψ2) can
be obtained simultaneously from ψ by the fast Fourier

transform. Correspondingly, linear operators L1 and LA
1

acting on real vector functions are combined into scalar
complex operations as well. Due to this recombination,
the code also becomes more compact.

In the Supplemental Material of this article [51], a
sample Matlab code is provided for the computation of
an asymmetric soliton in Example 1 at µ = 2.4 (see
Fig. 2, at point ‘c’). On a Desktop PC (Dell Optiplex 990
with CPU speed 3.3GHz), this code takes 192 conjugate-
gradient iterations and under 1.5 seconds to finish with
solution accuracy below 10−12.
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