Role of Quasiparticles in an Electric Circuit with Josephson Junctions

Benoît Rossignol, Thomas Kloss, and Xavier Waintal
Phys. Rev. Lett. 122, 207702 – Published 22 May 2019

Abstract

Although Josephson junctions can be viewed as highly nonlinear impedances for superconducting quantum technologies, they also possess internal dynamics that may strongly affect their behavior. Here, we construct a computational framework that includes a microscopic description of the junction (full fledged treatment of both the superconducting condensate and the quasiparticles) in the presence of a surrounding electrical circuit. Our approach generalizes the standard resistor capacitor Josephson model to arbitrary junctions (including, e.g., multiterminal geometries and/or junctions that embed topological or magnetic elements) and arbitrary electric circuits treated at the classical level. By treating the superconducting condensate and quasiparticles on equal footings, we capture nonequilibrium phenomena such as multiple Andreev reflection. We show that the interplay between the quasiparticle dynamics and the electrical environment leads to the emergence of new phenomena. In a RC circuit connected to single channel Josephson junction, we find out-of-equilibrium current-phase relations that are strongly distorted with respect to the (almost sinusoidal) equilibrium one, revealing the presence of the high harmonic ac Josephson effect. In an RLC circuit connected to a junction, we find that the shape of the resonance is strongly modified by the quasiparticle dynamics: close to resonance, the current can be smaller than without the resonator. Our approach provides a route for the quantitative modeling of superconducting-based circuits.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 January 2019

DOI:https://doi.org/10.1103/PhysRevLett.122.207702

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Benoît Rossignol, Thomas Kloss, and Xavier Waintal

  • University of Grenoble Alpes, CEA, INAC-Pheliqs, 38000 Grenoble, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 122, Iss. 20 — 24 May 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×