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While Josephson junctions can be viewed as highly non-linear impedances for superconducting
quantum technologies, they also possess internal dynamics that may strongly affect their behav-
ior. Here, we construct a computational framework that includes a microscopic description of the
junction (full fledged treatment of both the superconducting condensate and the quasi-particles)
in presence of a surrounding electrical circuit. Our approach generalizes the standard Resistor-
Capacitor-Josephson model (RCJ) to arbitrary junctions (including e.g. multi-terminal geometries
and/or junctions that embed topological or magnetic elements) and arbitrary electric circuits treated
at the classical level. By treating the superconducting condensate and quasi-particles on equal foot-
ings, we capture non-equilibrium phenomena such as Multiple Andreev Reflection. We show that
the interplay between the quasi-particle dynamics and the electrical environment leads to the emer-
gence of new phenomena. In a RC circuit connected to single channel Josephson junction, we find
out-of-equilibrium current-phase relations that are strongly distorted with respect to the (almost
sinusoidal) equilibrium one, revealing the presence of high harmonic AC Josephson effect. In an
RLC circuit connected to a junction, we find that the shape of the resonance is strongly modified
by the quasi-particle dynamics: close to resonance, the current can be smaller than without the
resonator. Our approach provides a route for the quantitative modeling of superconducting based
circuits.

There is currently a huge effort around the world - both
within academia and major industrial partners - to pro-
mote the superconducting transmon quantum bit [1–3]
from a laboratory object to a viable technology for build-
ing a quantum computer. The central element of this ap-
proach is a weak normal link between two pieces of super-
conductors, the Josephson junction. Although tunneling
junctions with an insulating (oxide) barrier are the most
mature elements, other types of junctions such as atomic
contacts [4] (with very few propagating channels), semi-
conducting nanowires [5] (with high spin-orbit suitable
for stabilizing Majorana bound states) superconducting-
ferromagnetic-superconducting [6, 7] (with anomalous
current phase relations) or multiterminal devices [8]
could provide new functionalities to the superconducting
toolbox. While the theoretical description of these ob-
jects is rather well understood [9], many relevant regimes
lie outside of what may be treated analytically and the
development of numerical methods is important. In fact,
the complexity of the circuits that are being created is
increasing very rapidly and building predictive numeri-
cal tools is a key element for the success of any quantum
technology.

Two very successful complementary viewpoints are
commonly used to describe Josephson junctions cir-
cuits. The first one is the RCJ model [10, 11] (Resistor-
Capacitor-Josephson) that views the Josephson junction
as a highly non-linear impedance embedded in an elec-
tric circuit. In this model, one considers a classical circuit
such as the ones shown in the insets of Fig. 1 or Fig. 3
with resistances V = RI, capacitances I = C∂tV , induc-
tances V = L∂tI or other classical elements. The Joseph-
son junction is described by its current-phase relation
I = Ic sinϕ and the Josephson relation ∂tϕ = (2e/h̄)V .

FIG. 1. Upper left inset the simulated circuit, an RC biased
Josephson junction. Main panel result of the RC-BdG simula-
tion. Dashed line: voltage RI0 applied by the generator versus
time t. I0 is raised and decreased slowly to keep the system
quasi-adiabatic. Blue line: voltage V (t) measured across the
junction. Upper right inset: zoom of the main curve revealing
the oscillations due to the AC Josephson effect.

Such a simple model is surprisingly powerful. It cap-
tures the hysteresis loops of the I − V curves. Its simple
extension, where one adds a Langevin stochastic term
to account for finite temperature, accurately describes
the noise properties found experimentally including the
probability for the junction to switch from the supercon-
ducting branch [12]. It has also been successfully used for
more elaborate circuits that include resonators [13]. Its
quantum extension provides the model used to design the
various sorts of superconducting qubits [14] and has been
shown to describe very accurately a large corpus of ex-
perimental data [15]. Yet, the model fails dramatically in
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some very simple limits. For instance, at large voltages,
it does not properly reproduce the Ohmic behavior of the
circuit, since the latter involves the excitation spectrum
of the junction which is not accounted for in the current-
phase relation. More importantly, it does not account
for some important out-of-equilibrium phenomena such
as Multiple Andreev Reflexion [16, 17] (MAR) processes.

The second model uses a microscopic mean-field de-
scription of the junction through the (time-dependent)
Bogoliubov-De-Gennes (BdG) equation. BdG models
capture most of the salient features of these junctions
including those which contain exotic (e.g. topological or
magnetic) materials. It naturally describes MAR [17],
the interplay with microwaves [18], ac Josephson effects
and emergent topological effects in multi-terminal geome-
tries [19]. Until recently, however, the direct numerical
integration of BdG equations has been very limited due
to the intrinsic computational complexity [20] and did
not include the electromagnetic environment of the junc-
tion.

The present letter builds on recent advances made
in time-dependent computational transport [21] to con-
struct a numerical method that merges the RCJ model
with the BdG equation, thereby providing a fully self-
consistent treatment of the Josephson junction and its
electromagnetic environment at the BdG level (hereafter
called RC-BdG model). The method has an arbitrary
precision and is scalable to hundreds of thousands of or-
bitals, paving the way to the simulations of complex su-
perconducting circuits. It applies to arbitrary BdG equa-
tions and classical electromagnetic environments.

Problem formulation. We model our circuits in two
parts. First, the junction itself is described with a micro-
scopic BdG Hamiltonian Ĥ(ϕ, t) that depends explicitly
on time t (through e.g. a capacitive gate) and on the
phase difference ϕ(t) between the two superconductors
(which extends to a vector when more than two supercon-
ductors are involved). Note that due to the AC Joseph-
son effect, the problem is intrinsically time-dependent
even in the absence of time-dependent perturbations. In-
tegrating the BdG equation provides the density matrix
ρ̂(t) from which one can compute the current I(t) that
flows through the system. Below, we restrict ourself to
the average current, but its quantum fluctuations are also
accessible through our formalism [22]. The second part
of the model describes the classical circuit, or the elec-
tromagnetic environment, that surrounds the junction.
The classical equations that describe these circuits take
the form of a differential equation for ϕ. More complex
circuits are described in a similar way with more degrees
of freedom describing the classical circuit. The set of

equations reads,

ih̄∂tρ̂ = [Ĥ(ϕ, t), ρ̂], (1a)
I(t) = Tr(Î ρ̂), (1b)
d2ϕ

dt2
= F

(
ϕ,
dϕ

dt
, I(t)

)
, (1c)

where the function F (ϕ, dϕ/dt, I(t)) describes the dy-
namics of the classical circuit (RC or RLC equation in
the examples below) with I(t) as an external source
term. We numerically solve the BdG equation within
the Keldysh formalism using the approach developed in
[23, 24] where the problem is unfolded onto a set of
Schrödinger equations for scattering wave functions. An
efficient algorithm has been constructed in [20] to inte-
grate the corresponding equations. The corresponding
software, “t-Kwant” relies on the Kwant package [25]
and will be released as open source in a near future.
Eq.(1a) alone amounts to solving a few hundred time-
dependent Schrödinger equations (the actual number de-
pending on the required energy resolution). The self-
consistent condition Eq.(1b) and (1c) makes the problem
significantly more challenging since it creates non-linear
couplings between these Schrödinger equations. Follow-
ing [21], we address this non-linear coupling by taking
advantage of the separation of time scales in the problem
between the microscopic time scales of the BdG equation
(which imposes discretized time steps of lengths much
smaller than h̄/EF with EF the Fermi energy) and the
evolution of the electromagnetic variables I(t) and ϕ(t)
that takes place on much slower time scales (typically
GHz frequencies as compared with PHz for the Fermi en-
ergy in actual devices). Hence, we use a doubly adaptive
predictor-corrector approach for ϕ(t) as explained in [21]:
Eq.(1a) is integrated with a “predicted” function ϕ(t) and
Eq.(1b) and (1c) are used on the larger time scale to con-
struct this prediction. A straightforward time adaptive
fourth order Runge-Kutta [26] is used for the integration
of Eq.(1c). We used the algorithm of [27] to calculate the
(Andreev) bound states of the model with precision. The
method is general to any Hamiltonian Ĥ that is quadratic
in creation/destruction operators. Hence, it may handle
electron-electron interaction effects at the mean field or
Random Phase Approximation level[21] but does not cap-
ture correlation effects. Static or dynamic disorder may
be added directly[23]. The full code used for generating
the data of this article can be found in [28]

To be specific, we now turn to a particular BdG Hamil-
tonian that describes a single channel junction. The
BdG Hamiltonian describes a one dimensional systems
with the two superconductor corresponding to x < 0 and
x > 0 while the normal region is formed by a single site
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at x = 0 placing the system in the short junction limit,

Ĥ =
+∞∑

x=−∞
σ=↑,↓

eiϕ(t)δx,−1 ĉ†xσ ĉx+1,σ + (Uδx,0 − EF )ĉ†xσ ĉxσ

+
+∞∑

x=−∞
∆(1− δx,0)ĉ†x↑ĉ

†
x↓ + h.c. (2)

Here ϕ(t) = (e/h̄)
∫ t
V (t′)dt′ where V (t) is the voltage

difference across the junction, ∆ is the superconducting
gap inside the superconductors, U is a potential bar-
rier used to tune the transmission probability D of the
junction. In the calculations below we used EF = 2,
∆ = 0.1 (which will be used as our unit of energy), and
U = 2 which corresponds to a junction with intermedi-
ate transmission D = 0.5. For this value, the equilibrium
current-phase relation has small deviations with respect
to a sinusoidal shape but the I − V characteristics of
the isolated junction exhibits distinct cusps at voltages
eV = ∆/n, n ∈ {1, 2, 3 . . . } (MAR) [17]. The precise
relation I(ϕ) = Ic sin(ϕ) is recovered in the tunneling
regime D � 1 and eV < ∆ with Ic = 2e∆D/h.

Results for the RC-BdG model. The first electromag-
netic environment we consider is a simple RC circuit as
sketched in Fig. 1. The capacitance C typically accounts
for the electron-electron interaction in the junction it-
self while the resistance R accounts for the finite resid-
ual resistance in the whole circuit. This RC circuit is
the minimum electromagnetic environment that must be
considered. The RCJ model for this circuit (where the
BdG equation is replaced by the current-phase relation)
reads,

d2ϕ

dt2
+ 1
Q

dϕ

dt
+ sin(ϕ) = I0

Ic
, (3)

where the time t has been rescaled as t → ω0t. ω0 =√
h̄Ic/(2eC) is the intrinsic frequency of the circuit for

small oscillating amplitudes and Q = RCω0 is the cor-
responding quality factor. The physics of this model is
well understood [11]: for I0 < Ic all the current passes
through the junction (super-current branch) while for
I0 > Ic the equilibrium solution is unstable and a voltage
develops across the junction. Interestingly, this model is
hysteretic for underdamped circuits Q > 1 and a dy-
namical solution with ϕ̇ 6= 0 exists for some values of
I0 < Ic. At high bias current I0 � Ic, most of the cur-
rent is dissipated by the resistor R and the RCJ model
predicts I0 = RV̄ (where V̄ is the average voltage dif-
ference seen by the junction. This prediction misses an
important contribution from the junction, its intrinsic re-
sistance RJ = h/(2e2D) in the normal state. Indeed, at
large bias current, one expects I0 = (1/R+ 1/RJ)V̄

We now turn to the full simulation of the RC-BdG
model. The bare simulation data is shown in Fig. 1
where the dashed line corresponds to a slow (quasi-static)

ramp of I0 so that the entire I − V characteristics of the
device can be extracted from a single simulation. We
ramp the current first up and then down to zero in order
to capture the hysteresis loop of the junction. The blue
line corresponds to the voltage across the junction as a
function of time. As shown in the inset, the blue line
contains an important oscillating part that corresponds
to the AC Josephson effect. From this data, we calcu-
late the voltage V̄ across the junction, averaged over a
small time window (to get rid of the AC Josephson sig-
nal). Fig. 2 show the resulting plot of I0 versus V̄ (blue
line). The dotted line corresponds to the various asymp-
totic of the RCJ model discussed above while the dashed
line corresponds to the pure BdG model in the absence of
the electromagnetic environment. The pure BdG model
displays the usual kinks characteristics of the opening of
a new MAR channel [18]. The RC-BdG simulations rec-
oncile the two limits: the pure MAR curve at high bias
and the supercurrent branch of the RCJ model at small
bias. In the crossover between these two extreme limits,
it provides the minimum model that captures all impor-
tant physical contributions, hence quantitatively predicts
the full hysteresis loop including the retrapping current.
The most interesting features of the system show up in its
dynamics. Recording the phase difference ϕ(t) across the
junction and the current I(t) that flows through it, the
dynamics is properly captured by the corresponding out-
of-equilibrium current phase I−ϕ relation obtained from
the corresponding parametric plot. the result is shown in
the upper panel of Fig. 2. Such out-of-equilibrium I −ϕ
could be reconstructed from a high-frequency measure-
ment of the different harmonic of V (t). As a reference,
Fig. 2 includes the equilibrium I − ϕ characteristics of
the junction (dotted line) obtained by taking all contri-
butions into account (i.e. both Andreev bound states
and the small contribution from the continuous part of
the spectrum). This equilibrium I − ϕ relation contains
small deviations to the sinusoidal form. However, out-of-
equilibrium relations can be strongly different from the
simple sinusoidal shape. This is true in particular in the
returning part of the hysteresis loop (red line, square,
visible component of the second harmonic) and close
to the MAR cusps (yellow line, triangle, strongly non-
sinusoidal). In these regimes, the excursions in voltage
across the junction are wide (as can be seen directly from
Fig. 1) and the junction effectively highly non-linear.

Results for the RLC-BdG model. We now turn to a
second circuit where the junction is put in series with a
classical RLC resonator as sketched in the inset of Fig.
3. The electromagnetic circuit is slightly more complex
than the previous RC model, but in return, the highly
non-linear behavior shown in the previous example mani-
fests itself already on DC observables. The resonator has
a quality factor Q = R

√
C/L and a resonance pulsation

ω0 = 1/
√
LC. The corresponding impedance Z(ω) takes

the form R/Z(ω) = 1 + iQ[ω/ω0 − ω0/ω] and filters fre-
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FIG. 2. RC-BdG model. Bottom panel: bias current I0 versus
the average voltage across the junction V̄ for an underdamped
oscillator Q ≈ 1.7. Dotted lines: various asymptotes of the
RCJ model, see text. Dashed line: pure BdG model without
the environment. Upper panels: out-of-equilibrium current-
phase relations at 4 different points of the I0 − V̄ curve. The
dotted line corresponds to the equilibrium current-phase re-
lation of the pure junction.

FIG. 3. RLC-BdG model. Upper inset: schematic of the
RLC circuit. Main panel: voltage VJ (t) across the junction
(blue line) versus time t for a linear voltage ramp in V0(t)
(red dashed line). Q = 20, ω0 = ∆ and R = 3h/2e2 '
38.7 kΩ. Bottom inset: zoom of the main curve showing the
ac Josephson effect oscillations. The resonance of the RLC
circuit is visible for eVJ = h̄ω0/2 and eVJ = h̄ω0/4

quency around ω0. Such an environment has been stud-
ied in a series of recent experiments using tunnel junc-
tions [30–33]. The RLC circuit provides a direct probe of
the AC signal present in the system. We expect a main
resonance for 2eVJ/h̄ = ω0 when the AC Josephson effect
drives the RLC circuit. Due to the non-linear character
of the junction, higher harmonic of the AC Josephson
effects are generated, so that additional features are ex-

pected at 2eVJ/h̄ = ω0/n. Likewise, the non linearities
imply that the RLC circuit can also be driven paramet-
rically at 2ω0 leading to features at eVJ/h̄ = ω0/n.

We compare the RLC-BdG calculations with an im-
proved RLCJ model. The improved RLCJ model cap-
tures the super-current branch and the MAR non-linear
I-V curve as,

I(ϕ) = Ic sinϕ+ IMAR(2eϕ̇/h̄) (4)

where IMAR(V ) is the DC non-linear I − V character-
istic of the junction in the absence of electromagnetic
environment (dashed line of Fig. 4). The numerical re-
sults for the average current Ī versus voltage are shown
in Fig. 4 for four different RLC circuits with differ-
ent frequencies ω0. We concentrate on the main fea-
tures around 2eVJ/h̄ = ω0 and disregard the smaller
peaks associated with higher harmonics and/or paramet-
ric pumping. The improved RLCJ model (dotted line)
presents a Lorentzian like resonance at 2eVJ/h̄ = ω0
for all four RLC circuits. When the resonance lies in
the tunneling regime of the junction (blue line), there
is a very good agreement between the improved RLCJ
model and the full RLC-BdG simulations. The agree-
ment is also qualitatively (but not quantitatively) good
when the resonance corresponds to high voltages in the
almost “Ohmic” regime of the junction (yellow line).
However, for the two circuits where the resonance lies
in the vicinity of a kink of the IMAR(V ) characteristic,
the two models are strikingly different and the improved
RLCJ model no longer applicable (green and red lines):
the improved RLCJ model is typically off by ±50% in-
cluding in the linewidth. In these regimes, we find that
for 2eVJ/h̄ > ω0, the current is reduced with respect to
IMAR(V ) instead of the Lorentzian increase observed in
the improved RLCJ model. This reduction of the current
is a direct manifestation of the non-linear AC physics
happening in the device. This DC prediction is the
counterpart of the highly non-sinusoidal non-equilibrium
current-phase relations discussed above for the RC-BdG
case. However, the fact that the observable is in DC
makes this prediction more easily accessible to an exper-
imental test.

Conclusion. The Environment-BdG model presented
in this manuscript unifies simple RCJ like models with
microscopic models that include the quasi-particle spec-
trum of the junctions as well as its dynamics out-of-
equilibrium. We have shown that the interplay between
the two physics strongly modifies the behavior of the
system and lead to new phenomena such as the voltage
induced non-sinusoidal current phase relations. Our ap-
proach provides a practical route to study the engineering
of electromagnetic environments in the presence of junc-
tions that go beyond simple tunneling devices. Besides
the example studied in this letter (a single channel junc-
tion with arbitrary transparency), other systems such
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FIG. 4. Current-voltage relation for four different res-
onator frequencies ω0/∆ = 1/4, 2/3, 1 and 1.4. Dashed line:
IMAR(V ) in the absence of environment, thin color lines:
RLC-BdG simulations, dotted lines: improved RLCJ model.
Bottom panels: zoom of the main figure.

as Josephson FETs [34], Majorana devices [35], multi-
terminal devices [36] that are being developed by the
community could be studied with the same technique
[29]. On the technical level, the approach could be ex-
tended to include electron-electron interaction and/or a
self-consistent calculation of the superconducting gap at
the time-dependent mean-field level [21].
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