Stochastic Fokker-Planck equation in random environments

Paul C. Bressloff
Phys. Rev. E 94, 042129 – Published 21 October 2016

Abstract

We analyze the stochastic dynamics of a large population of noninteracting particles driven by a common environmental input in the form of an Ornstein-Uhlenbeck (OU) process. The density of particles evolves according to a stochastic Fokker-Planck (FP) equation with respect to different realizations of the OU process. We then exploit the connection with previous work on diffusion in randomly switching environments in order to derive moment equations for the distribution of solutions to the stochastic FP equation. We use perturbation theory and Green's functions to calculate the mean and variance of the distribution when the relaxation rate of the OU process is fast (close to the white-noise limit). Finally, we show how the theory of noise-induced synchronization can be recast into the framework of a stochastic FP equation.

  • Figure
  • Received 31 August 2016

DOI:https://doi.org/10.1103/PhysRevE.94.042129

©2016 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsInterdisciplinary Physics

Authors & Affiliations

Paul C. Bressloff

  • Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 4 — October 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×