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We analyze the stochastic dynamics of a large population of non-interacting particles driven by
a common environmental input in the form of an Ornstein-Uhlenbeck (OU) process. The density
of particles evolves according to a stochastic Fokker-Planck (FP) equation with respect to different
realizations of the OU process. We then exploit the connection with previous work on diffusion
in randomly switching environments, in order to derive moment equations for the distribution of
solutions to the stochastic FP equation. We use perturbation theory and Green’s functions to
calculate the mean and variance of the distribution when the relaxation rate of the OU process is fast
(close to the white-noise limit). Finally, we show how the theory of noise-induced synchronization
can be recast into the framework of a stochastic FP equation.

I. INTRODUCTION

A number of recent modeling studies have considered
stochastic partial differential equations (SPDEs) that de-
scribe the evolution of the density of particles diffusing in
a domain with randomly switching boundary conditions
[1–3]. The environmental variables that determine the
boundary conditions are taken to switch between a finite
number of states according to a continuous-time Markov
chain. The resulting SPDE is thus piecewise determin-
istic. This type of model has recently been applied to
several problem domains in biology and biophysics, in-
cluding diffusion-limited reactions [4], neurotransmission
[5], insect physiology [6], and stochastically gated gap
junctions [7].
Suppose, for the sake of illustration, that particles are

diffusing in some bounded domain Ω ⊂ R
d and that

the current state of the environment is n(t) = n, with
n ∈ Γ ⊂ Z. Each realization of the environment up to
time t, σ(t) = {n(τ), 0 ≤ τ < t}, will tend to generate a
different solution of the underlying SPDE, which we de-
note by the density P (x, t) - this represents the density
of particles in state x at time t. The presence of the ran-
dom environment means that the particle density P (x, t)
is itself a random field, so that there is a distribution
of densities. Introducing the r-th order moments of the
corresponding distribution of P ,

C(r)(x1, . . . , xr, n) = Eσ[P (x1, t) · · ·P (xr, t)1n(t)=n],

where expectation is taken with respect to realizations σ,
one can derive a closed hierarchy of moment equations in
the form of deterministic PDEs. This then establishes
a relationship between C(r)(x1, . . . , xr, n) and the joint
probability density for r diffusing particles having posi-
tions x1, . . . , xr at time t, given that the random envi-
ronment is currently in state n(t) = n.
Although the relationship between the moments of the

distribution of solutions to an SPDE and the joint statis-
tics of a finite number of particles evolving in the same
random environment has been investigated primarily for
diffusion-like processes, it is in fact a much more general
principle. For example, rather than considering diffus-
ing particles, one could model a population of random

walkers in a randomly switching environment [8]. The
diffusion equation for particle density is replaced by a
stochastic birth-death master equation for the distribu-
tion of particles on a lattice, where the hopping rates
between neighboring lattice sites are themselves stochas-
tic. In this paper we focus on another example, namely, a
large population of non-interacting particles driven by a
common environmental input in the form of an Ornstein-
Uhlenbeck (OU) process [11]. At the population level
the density of particles evolves according to a stochastic
Fokker-Planck (FP) equation that depends on the partic-
ular realization of the random environment. It should be
noted that we use the term “particle” loosely here. That
is, although x ∈ R

d could denote the position of a physi-
cal particle, it could also represent a set of concentrations
for some biochemical network evolving according to mass
action kinetics. In the latter case, a particle might be a
single gene or cell and the environmental variable might
control the switching on and off of genes. Alternatively, x
could represent voltage and ion-channel gating variables
in the case of a neuron [10].

We take as our starting point the classical problem
of a Brownian particle driven by colored noise in the
form of an OU process [11] (section II). In the white-
noise limit the associated two-dimensional Fokker-Planck
(FP) equation reduces to a scalar FP equation of the
Stratonovich form. We then consider a population of
identical particles driven by a common OU process, with
the latter identified as some environmental variable α(t).
For a given realization of the OU process, the population
density evolves according to an FP equation that depends
on α(t), which implies that the density is itself a random
field with respect to different realizations of the OU pro-
cess. We then exploit the connection with previous work
on diffusion in randomly switching environments [2], in
order to derive moment equations for the distribution of
solutions to the stochastic FP equation (section III). We
thus show how the r-th moment is related to the joint
probability density of r identical particles driven by the
same OU process. We highlight the fact that the two
quantities are not necessarily equivalent, particularly in
the case of boundary value problems. In section IV we
use perturbation theory and Green’s functions to calcu-
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late the steady-state solution of the first and second-order
moment equations when the relaxation rate of the OU
process is fast (close to the white-noise limit). Finally,
in section V we apply our stochastic FP formulation to
recent work on noise-induced synchronization [12–19]. In
particular, we emphasize how the SPDE perspective al-
lows one to establish synchronization of a population of
oscillators under a single realization of the common ran-
dom input.

II. A CLASSICAL SDE WITH NON-WHITE

NOISE: AN SPDE PERSPECTIVE

A classical problem in stochastic processes is the
derivation of the Stratonovich version of the FP equa-
tion for a single particle driven by external white noise
[11]. Let X(t) denote the position of the particle at time
t, which is taken to evolve according to the stochastic
differential equation (SDE)

dX(t) = [F (X) + γb(X)α(t)]dt+
√
2DdW (t), (2.1)

where α(t) is a stochastic external input evolving accord-
ing to the OU process

dα(t) = −γ2α(t)dt + γdŴ (t). (2.2)

Here W (t) and Ŵ (t) are independent Wiener processes
with

〈dW (t)〉 = 0 = 〈dŴ (t)〉, 〈dW (t)dW (t′)〉 = δ(t−t′)dtdt′

and

〈dŴ (t)dŴ (t′)〉 = δ(t− t′)dtdt′, 〈dW (t)dŴ (t′)〉 = 0.

For simplicity, we take the intrinsic noise to be additive
and independent of α(t). Heuristically speaking, in the
limit γ → ∞ we can set α(t)dt = dW (t)/γ such that we
obtain the scalar SDE

dX(t) = F (X)dt+
√
2DdW (t) + b(X)dŴ (t). (2.3)

However, since we have a multiplicative noise term, there
is an ambiguity with regards the interpretation of this
term from the perspective of stochastic calculus, that is,
whether one should choose the Ito or Stratonovich ver-
sions. This means that the form of the corresponding
FP equation is also ambiguous. (For the moment, we
will assume that X(t) ∈ R so that boundary conditions
can be ignored.) One way to resolve the above issue is
to start with the full 2D Fokker-Planck equation and to
reduce it to a scalar FP equation in the limit γ → ∞ us-
ing an adiabatic reduction and projection methods [11].
This yields a Fokker-Planck equation for x that is in the
Stratonovich form [11]:

∂ρ∞
∂t

= − ∂

∂x
F (x)ρ∞(x, t) +D

∂2

∂x2
ρ∞(x, t)

+
1

2

∂

∂x
b(x)

∂

∂x
b(x)ρ∞(x, t). (2.4)

Now suppose that γ is finite and treat the system
given by Eqs. (2.1) and (2.2) as a two-dimensional
SDE for the variables α(t), X(t). One then has to deal
with the full 2D FP equation for the probability density
p(x, α, t|x0, α0, 0). This takes the form (after dropping
the explicit dependence on initial conditions)

∂p

∂t
= γ2

(
∂

∂α
α+

1

2

∂2

∂α2

)
p− γ

[
∂

∂x
b(x)α

]
p

+

[
− ∂

∂x
F (x) +D

∂2

∂x2

]
p. (2.5)

Note that from a computational perspective, the proba-
bility p(x, α, t) can be determined by numerically solving
Eqs. (2.1) and (2.2) for an ensemble of independent par-
ticles each evolving in a different realization of the envi-
ronment, see Fig. 1(a). It is convenient to rewrite (2.1)
in the more suggestive form

dX = F (X,α)dt+
√
2DdW (t), (2.6)

with F (X,α) = F (X) + γb(X)α(t) and α evolving ac-
cording to the OU process (2.2). We can then view
α(t) as some stochastic environmental variable, whilst
x(t) is an internal state variable. For a given realiza-
tion σ(t) = {α(τ), 0 ≤ τ < t} of the stochastic process
α(t), Eq. (2.6) is an SDE that reduces to a deterministic,
non-autonomous ODE when D = 0 (no intrinsic noise).
Let us now consider an ensemble of identical particles

labeled by i = 1, . . . ,N with internal variables Xi(t) all
being driven by the same external or environmental vari-
able α(t), see Fig. 1(b). Eq. (2.6) becomes

dXi(t) = F (Xi, α(t))dt +
√
2DdWi(t), (2.7)

for i = 1, . . . ,N and independent Wiener processes
Wi(t), with the stochastic variable α(t) independent of
i and evolving according to Eq. (2.2). Assume that the
initial positions of the particles, xi(0), are randomly gen-
erated from a density p0(x). Take the thermodynamic
limit N → ∞, and let P (x, t) denote the density of par-
ticles in state x at time t given a particular realization
σ(t) of the OU process. The population density evolves
according to the stochastic FP equation

∂

∂t
P (x, t) =

[
− ∂

∂x
F (x, α(t)) +D

∂2

∂x2

]
P (x, t), (2.8)

with P (x, 0) = p0(x). An important observation is that
the density P (x, t) is a random field with respect to re-
alizations σ.
In the following we will refer to the deterministic FP

Eq. (2.5) for p(x, α, t) as representing a particle per-
spective, whereas the SPDE given by (2.8) for P (x, t)
represents a population or continuum perspective. (This
should not be confused with the distinction between par-
ticle (Lagrangian) and population (Eulerian) descriptions
corresponding, respectively, to SDEs and their associated
deterministic FP equations.) A similar classification has
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FIG. 1. Diagram illustrating the difference between the particle and population perspectives. (a) Multiple realizations of a
single particle moving in a random environment generates the probability density p(x,α, t). (b) Large population (N → ∞) of
particles evolving in a single realization σ of the common random environment generates the population density P (x, t). (c)
The stochastic FP equation describes the evolution of the population density P (x, t) for a given realization σ of the noisy input
α(t).

recently arisen in other problem domains. One exam-
ple is the diffusion of particles in a randomly switching
environment, specifically, a finite domain with randomly
switching boundary conditions [1–4, 6]; a related study
looks at random walks in random environments [8].

III. MOMENT EQUATIONS OF THE SPDE

Consider an ensemble of particles evolving according
to Eqs. (2.7) and (2.2) in the thermodynamic limit N →
∞. For the sake of illustration, suppose that X ∈ [0, L]
and there are reflecting boundary conditions at x = 0, L
In order to analyze the corresponding stochastic FP Eq.
(2.8), we follow the approach of [2] by discretizing x using
a finite-difference scheme so that (2.8) is converted to a
higher-level SDE. Introduce the lattice spacing a such
that x = ja for j = 0, . . . , N + 1 with (N + 1)a = L.
Let Pj(t) = P (aj, t) and Fj(α) = F (ja, α) = F (ja) +
γb(ja)α. Then

dPi

dt
= −

N∑

j=1

Kij(α)Pj , if α(t) = α (3.1)

Away from the boundaries (i 6= 1, N),

Kij(α) =
1

a
[δi,j−1 − δi,j ]Fj(α) −∆ij , (3.2)

where ∆ij is the discrete Laplacian

∆ij =
D

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (3.3)

At the two ends we have

u0F0(α)−
D

a
[u1 − u0] = 0,

uN+1FN+1(α) −
D

a
[uN+1 − uN ] = 0.

These boundary conditions can be implemented by tak-
ing

K1j(α) =
F2(α)

a
δ2,j −

D

a2
[δ2,j − δ1,j].

and

KNj(α) = −FN−1(α)

a
δN−1,j −

D

a2
[δN−1,j − δN,j].

Let P(t) = (Pj(t), j = 1, . . . , N) and introduce the joint
probability density

̺(P, α, t)dPdα (3.4)

= P[P(t) ∈ (P,P+ dP), α(t) ∈ {α, α+ dα}]
where we have dropped the explicit dependence on initial
conditions. The resulting FP equations for the SDE given
by Eqs. (3.1) and (2.2) is

∂̺

∂t
=

N∑

i=1

∂

∂Pi






N∑

j=1

Kij(α)Pj


 ̺(P, α, t)




+ γ2
(
∂

∂α
α+

1

2

∂2

∂α2

)
̺(P, α, t). (3.5)

Since the FP Eq. (3.5) is linear in ̺, we can derive a
closed set of equations for the moments of ̺. (Discretiz-
ing space allows us to avoid dealing with a functional FP
equation.)
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First, let

Vj(α, t) = Eσ[Pj(t)1α(t)=α] =

∫
̺(P, α, t)Pj(t)dP,

(3.6)
where

∫
F (P)dP =

[
N∏

i=1

∫ ∞

0

dPi

]
f(P).

The subscript σ denotes taking expectations with respect
to realizations of the OU process. Multiplying both sides
of Eq. (3.5) by Pk(t) and integrating by parts with re-
spect to P gives (for ̺(P, α, t) → 0 as P → ∞)

∂Vk
∂t

= −
N∑

j=1

Kkj(α)Vj + γ2
(
∂

∂α
α+

1

2

∂2

∂α2

)
Vk.

We have assumed that the initial variable α(0) is dis-
tributed according to the stationary distribution ps(α).
If we now retake the continuum limit a → 0, we obtain
the FP equation

∂V

∂t
=

[
− ∂

∂x
F (x, α) +D

∂2

∂x2

]
V

+ γ2
(
∂

∂α
α+

1

2

∂2

∂α2

)
V. (3.7)

for V (x, α, t) = Eσ[P (x, t)1α(t)=α].
Next we consider the second-order moments

Ckl(α, t) = Eσ[Pk(t)Pl(t)1α(t)=α]

=

∫
̺(P, α, t)Pk(t)Pl(t)dP.

Multiplying both sides of Eq. (3.5) by Pk(t)Pl(t) and
integrating by parts with respect to P gives

dCkl

dt
= −

N∑

j=1

Kkj(α)Cjl −
N∑

j=1

Klj(α)Cjk

+ γ2
(
∂

∂α
α+

1

2

∂2

∂α2

)
Ckl.

If we now retake the continuum limit a → 0, we obtain
an FP equation for the equal-time two-point correlations

C(x, y, α, t) = Eσ[P (x, t)P (y, t)1α(t)=α], (3.8)

given by

∂C

∂t
= − ∂

∂x
(F (x, α)C) − ∂

∂y
(F (y, α)C)

+D
∂2C

∂x2
+D

∂2C

∂y2
+ γ2

(
∂

∂α
α+

1

2

∂2

∂α2

)
C.

(3.9)

Similarly, the r-th moments of ̺, r > 2, are

C(r)(x1, . . . , xr, α, t) ≡ Eσ[P (x1, t) · · ·P (xr, t)1α(t)=α]

evolve according to an r-dimensional FP equation.
Formally speaking, Eq. (3.7) for the first-order mo-

ments V (x, α, t) is identical in form to the deterministic
FP Eq. (2.5) for the single-particle probability density
p(x, α, t). Similarly, Eq. (3.9) for the second moment
C(x, y, α, t) is identical in form to the FP equation that
would be written down for the joint probability density
of two particles with positions x and y at time t. More
generally, C(r) is related to the joint probability density
of r particles. (The latter would correspond to having
r particles in each of the boxes in Fig. 1(a).) However,
these two representations are not equivalent, particularly
in the case of bounded domains [2]. From a physical per-
spective, there is a much wider class of boundary condi-
tions that one can impose on the SPDE (2.8) compared to
the SDE (2.1) or its finite particle extension (2.7). This
reflects the fact that particle conservation needn’t hold
at the SPDE level. For example, if X ∈ [0, L] then one
could impose an inhomogeneous boundary condition at
x = L, say, of the form (i) P (L, t) = η or (ii) J(L, t) = η,
where

J(x, t) =

[
F (x) + γα(t)b(x)−D

∂

∂x

]
P (x, t). (3.10)

These represent, respectively, maintenance of a bath of
particles or a constant flux at x = L, which does not
make sense at the single-particle level. One of the ma-
jor benefits of the discretization scheme used to derive
Eq. (3.5) is that boundary conditions can be absorbed
into the discrete operator Kij(α). Hence, the boundary
conditions are maintained when one takes moments and
retakes the continuum limit a→ 0.

IV. STEADY-STATE SOLUTIONS OF MOMENT

EQUATIONS

In this section we use a combination of perturbation
theory and Green’s functions to obtain general approx-
imate expressions for the steady-state solutions of the
first-order and second-order moment Eqs. (3.7) and
(3.9), respectively.

A. Perturbation expansion in γ−1

We begin by carrying out a perturbation series expan-
sion in the small parameter ǫ = γ−1 for large γ. We use a
more direct method than the use of projection operators
in [11] and include higher-order terms. Suppose that we
rescale time according to τ = γ2t and set ε = γ−1. (We
non-dimensionalize time by taking the relaxation dynam-
ics of the ODE ẋ = F (x) to be O(1).) Eq. (3.7) for the
first-order moments V (x, α, t) now becomes

∂V

∂τ
= LεV ≡ (L1 + εL2 + ε2L3)V. (4.1)
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with the operators Lj given by

L1 =
∂

∂α
α+

1

2

∂2

∂α2
(4.2a)

L2 = − ∂

∂x
b(x)α (4.2b)

L3 = − ∂

∂x
F (x) +D

∂2

∂x2
. (4.2c)

In the limit ε → 0, we obtain the steady-state equation
L1V = 0, which has the (normalized solution) V (x, α) =

e−α2

/
√
π. In order to solve the corresponding steady-

state equation LεV = 0 for ε > 0, we will carry out a
perturbation expansion of V in terms of the eigenvalues
λ and eigenfunctions φλ of the linear operator L1 for the
OU process:

L1φλ(α) = −λφλ(α).

Noting that this eigenvalue equation can be transformed
into a time-independent Schrodinger equation with a har-
monic potential, one obtains a discrete spectrum with
λn = n = 0, 1, 2, . . . and

φn(α) =

√
1

2nn!π
e−α2

Hn(α), (4.3)

where Hn(α) are Hermite polynomials. In particular, the
first few polynomials are

H0(α) = 1, H1(α) = 2α, H2(x) = 4α2 − 2. (4.4)

It is also necessary to determine the eigenfunction ψn of

the adjoint operator L†
1, defined by

L
†
1ψn = −λnψn, L

†
1 = −α ∂

∂α
+

1

2

∂2

∂α2
.

It is easy to show that ψn and φn are related according
to

φn(α) = ps(α)ψn(α), ps(α) =

√
1

π
e−α2

, (4.5)

and satisfy the biorthogonality relation
∫ ∞

−∞

ψn(α)φm(α)dα = δn,m.

In particular, setting n = 0 or n = 1 we have the nor-
malization conditions
∫ ∞

−∞

φm(α)dα = δn,0,

∫ ∞

−∞

αφm(α)dα =
1√
2
δm,1

(4.6)
We now introduce the following perturbation series ex-

pansion of the steady-state solution of Eq. (4.1):

V (x, α) = A0(x)φ0(α) (4.7)

+
∑

m

φm(α)
[
εA(1)

m (x) + ε2A(2)
m (x) +O(ε3)

]
.

Substituting Eq. (4.7) into Eq. (4.1) and collecting O(ε)
terms gives

∑

m

mA(1)
m (x)φm(α) = L2A0(x)φ0(α). (4.8)

Multiplying Eq. (4.8) by the adjoint ψk(α), integrating
with respect to α and using Eq. (4.2b) yields (k 6= 0)

A
(1)
k (x) = −R0k

k

∂

∂x
b(x)A0(x). (4.9)

Note that we have used the completeness of the eigen-
functions φn(x) to write

αφn(α) =
∑

l

Rnlφl(α). (4.10)

Proceeding to O(ε2) we obtain the equation

∑

m

mφm(α)A(2)
m (x) = L2

(∑

m

φm(α)A(1)
m (x)

)

+ φ0(α)L3A0(x). (4.11)

Again taking the inner product with respect to φk(α),
and using Eqs. (4.2b), (4.2c) and the expansion (4.10),
we have

−kA(2)
k (x) =

∑

m

Rmk
∂

∂x
b(x)A(1)

m (x) − δk,0L3A0(x).

(4.12)

Substituting for A
(1)
m shows that for k 6= 0 we have

A
(2)
k (x) = L

(2)
k A0(x) (4.13)

=


∑

m 6=0

R0mRmk

km

∂

∂x
b(x)

∂

∂x
b(x)


A0(x).

Similarly, setting k = 0 in Eq. (4.12) yields a differential
equation for A0(x):

L3A0(x) =
∑

m 6=0

R0mRm0

m

∂

∂x
b(x)

∂

∂x
b(x)A0(x) (4.14)

In the case of an OU process, one can use standard re-
cursion relations for Hermite polynomials to show that

Rnm = Rmn = δn,m−1

√
n+ 1

2
+ δn,m+1

√
n

2
, (4.15)

and
∑

m 6=0R0mRm0/m = 1/2. Comparing Eq. (4.14)

with the Stratonovich FP Eq. (2.4) we deduce that
A0(x) = V∞(x), where V∞(x) is the steady-state solu-
tion of the latter. Finally, combining Eqs. (4.7), (4.9)
and (4.13) we obtain the following approximation of the
steady-state solution of Eq. (4.1):
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V (x, α) =



φ0(α) − ε

∑

n>0

φn(α)


R0n

n

∂

∂x
b(x)− ε

∑

m 6=n

R0mRmn

nm

∂

∂x
b(x)

∂

∂x
b(x)





V∞(x). (4.16)

Multiplying Eq. (4.16) by αl, l = 0, 1, integrating with respect to α and using Eq. (4.6) gives

∫ ∞

−∞

V (x, α)dα = V∞(x),

∫ ∞

−∞

αV (x, α)dα = −1

2

∂

∂x
b(x)V∞(x), (4.17)

which hold for all γ. Incidentally, these results provide an alternative derivation of the (steady-state) Stratonovich
FP Eq. (2.4), based on integrating (2.4) with respect to α. Finally, using Eqs. (4.4) and (4.15),

V (x, α) = ps(α)

[
1− εα

∂

∂x
b(x) + ε2

(
2α2 − 1

4

∂

∂x
b(x)

∂

∂x
b(x)

)]
V∞(x). (4.18)

It is straightforward to extend the above perturbation analysis to steady state solution of Eq. (3.9) and we find
that

C(x, y, α) = ps(α)

[
1− εα

(
∂

∂x
b(x) +

∂

∂y
b(y)

)
+ ε2

2α2 − 1

4

(
∂

∂x
b(x) +

∂

∂y
b(y)

)2
]
C∞(x, y), (4.19)

where

C∞(x, y) =

∫ ∞

−∞

C(x, y, α)dα

is the steady-state solution of the two-dimensional
Stratonovich equation

∂C∞

∂t
=

[
− ∂

∂x
F (x) − ∂

∂y
F (y) +D

∂2

∂x2
+D

∂2

∂y2

]
C∞

+
1

2

∂

∂x
b(x)

∂

∂x
b(x)C∞ +

1

2

∂

∂y
b(y)

∂

∂y
b(y)C∞

+
∂

∂y
b(y)

∂

∂x
b(x)C∞. (4.20)

(The latter could also be derived by extending the pro-
jection method of Gardiner [11] to the second-order FP
Eq. (3.9).) The mixed-derivative terms in Eqs. (4.19)
and (4.20) reflect the emergence of statistical correlations
due to the randomly switching environment: it prevents
us from decomposing the solution into the product form
C∞(x, y, t) = V∞(x, t)V∞(y, t) where V is the solution to
Eq. (3.7).

B. Eigenfunction expansion for C∞

So far we have expressed the steady-state solutions
of the first-order and second-order moment equations in
terms of a perturbation expansion with respect to γ−1,
which takes the form of a linear operator acting on the
steady-state solution (V∞ or C∞) of the corresponding
Stratonovich FP equation obtained in the limit γ → ∞.

When dealing with second-order (and higher-order) mo-
ment equations one has to solve a multivariate FP equa-
tion, which generally does not have an explicit solution.
However, in certain limits, it is possible to proceed using
another form of eigenfunction expansion. In order to il-
lustrate this, consider the stochastic FP Eq. (2.8) on the
bounded domain [0, L] with boundary conditions

P (0, t) = 0, P (L, t) = η,

and additive environmental noise, b(x) =
√
2σ. Set

Deff = D + σ. We proceed by finding the steady-state
solutions of Eqs. (2.4) and (4.20) for p∞ = V∞ and C∞.
First, Eq. (2.4) becomes

0 = − d

dx
F (x)V∞(x) +Deff

d2

dx2
V∞(x), (4.21)

with V∞(0) = 0 and V∞(L) = η. Integrating once yields

dV∞
dx

− F (x)

Deff
V∞ =

J0
Deff

,

where the integration constant J0 is the flux flowing from
the right to the left boundary. Setting F (x) = −U ′(x),
integrating again and using the boundary conditions
shows that

V∞(x) = η exp

(−(U(x)− U(L))

Deff

)
∫ x

0

eU(y)/Deffdy

∫ L

0

eU(y)/Deffdy

.

(4.22)
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Next, Eq. (4.20) becomes

0 = − ∂

∂x
F (x)C∞ − ∂

∂y
F (y)C∞ +Deff

∂2C∞

∂x2

+Deff
∂2C∞

∂y2
+ 2σ

∂2C∞

∂y∂x
, (4.23)

with the boundary conditions C∞(x, 0) = C∞(0, y) = 0
and C∞(x, L) = ηV∞(x), C∞(L, y) = ηV∞(y). Unfortu-
nately, the give boundary value problem cannot be solved
explicitly. (For an example that can be solved, see sec-
tion V.) Therefore, we will proceed using a perturbation
expansion in the noise term σ. That is, we set

C∞(x, y) = V∞(x)V∞(y) + σφ(x, y) +O(σ2)

and substitute into (4.23). Collecting O(σ) terms yields

0 = − ∂

∂x
F (x)φ− ∂

∂y
F (y)φ+Deff

∂2φ

∂x2

+Deff
∂2φ

∂y2
+ 2

∂V∞(y)

∂y

∂V∞(x)

∂x
, (4.24)

with boundary conditions φ(0, y) = φ(x, 0) = φ(L, y) =
φ(x, L) = 0. Eq. (4.24) can be solved using Green’s
functions.
Let

Lx =
∂

∂x
F (x) +Deff

∂2

∂x2

and consider the following eigenvalue equation on [0, L]:

LxΦn(x) = λnΦn(x),

for integers n with the boundary conditions Φ(x) = 0 =
Φ(L). Clearly λn 6= 0 for all n. We can now rewrite Eq.
(4.24) as

Lxφ(x, y) + Lyφ(x, y) = Σ(x, y) ≡ −2
∂V∞(y)

∂y

∂V∞(x)

∂x
.

Next, consider the eigenvalue equation

Lxφ(x, y) + Lyφ(x, y) = Λφ(x, y).

This can be solved using separation of variables:
φ(x, y) = A(x)B(y) such that

LxA(x) = CA(x), LyB(y) = (C − Λ)B(y),

for some constant C. It follows that A(x) = Φn(x) and
B(y) = Φm(y) for integers m,n with C = λn and C −
Λ = λm, that is, Λ = λm + λn. Assuming that the
eigenfunctions Φn(x) form a complete biorthonormal set
on [0, L], we can write down an eigenfunction expansion
for the Green’s function of the operator Lx + Ly :

(Lx + Ly)G(x, y|x0, y0) = δ(x − x0)δ(y − y0),

with G vanishing at x = 0, L and y = 0, L. That is,

G(x, y|x0, y0) =
∑

n,m

Φn(x)Φn(x0)Φm(y)Φm(y0)

λn + λn
. (4.25)

Given the Green’s function G, the O(σ) contribution to
the second moment is

φ(x, y) =

∫ L

0

∫ L

0

G(x, y|x0, y0)Σ(x0, y0)dx0dy0. (4.26)

Combining our various results we find that to O(σ)

C∞(x, y) = V∞(x)V∞(y) + σ
∑

n,m

CnCm
Φn(x)Φn(y)

λn + λn
,

(4.27)

where

Cn =

[∫ L

0

Φn(z)
∂V∞(z)

∂z
dz

]
. (4.28)

V. STOCHASTIC SYNCHRONIZATION OF AN

ENSEMBLE OF POPULATION OSCILLATORS

So far we have considered one-dimensional particle dy-
namics, X(t) ∈ R. However, all of the analysis carries
over to higher spatial dimensions where more compli-
cated dynamics can occur in the deterministic limit, in
particular limit cycle oscillations. The d-dimensional ver-
sion of Eq. (2.7) is

dXµ
j = Fµ(Xj)dt+ γbµ(Xj)α(t)dt +

√
2DdWµ

j (t)

(5.1)

for j = 1, . . . ,N and µ = 1, . . . , d, where µ labels the
components of the vector Xj ∈ R

d for the j-th parti-
cle. We associate an independent set of Wiener processes
Wµ

j , µ = 1, . . . , d with each particle (independent noise)
but take the extrinsic environmental noise to be given
by a common OU process α(t) evolving according to Eq.
(2.2). Hence,

〈dWµ
k (t)dW

ν
l (t

′)〉 = δk,lδµ,νδ(t− t′)dt (5.2)

〈dWµ
k (t)dŴ (t)〉 = 0. (5.3)

SDEs of the form (5.1) have been the starting point for
a number of recent studies of noise–induced synchroniza-
tion of uncoupled limit cycle oscillators [12–19]. Here Xj

represents a set of state-variables for a single oscillator,
which could be the concentrations of reacting chemical
species in the case of a chemical oscillator or voltage
and ion-channel gating variables in the case of neural
oscillators. It is assumed that the deterministic ODE,
ẋ = F(x), supports a stable limit cycle. Most previous
studies of noise-induced synchronization have taken the
white-noise limit γ → ∞ and have carried out a stochas-
tic phase reduction of the resulting SDEs for finite N ,
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taking care of the subtle features of stochastic calculus.
One exception is Ref. [16], where the authors carry out
a careful phase reduction of a single limit cycle oscillator
with colored external noise, which takes into account the
different time-scales of the system. Here we will also keep
γ finite and explore the issue of noise-induced synchro-
nization from the perspective of stochastic FP equations.

A. Stochastic phase reduction

Introduce the phase variable θ ∈ (−π, π] such that
the dynamics of an individual limit cycle oscillator (in
the absence of noise) reduces to the simple phase equa-

tion θ̇ = ω, where ω = 2π/T is the natural frequency
of the oscillator and denote the limit cycle solution by
x = x

∗(θ(t)). The phase reduction method [20, 21] ex-
ploits the observation that the notion of phase can be
extended into a neighborhood M ⊂ R

d of each deter-
ministic limit cycle, that is, there exists an isochronal
mapping Ψ : M → [−π, π) with θ = Ψ(x). This al-
lows us to define a stochastic phase variable according
to Θj(t) = Ψj(t)) ∈ [−π, π) with Xj(t) evolving accord-
ing to equation (5.1). Since the extrinsic noise is col-
ored and the intrinsic noise is additive, we do not have
to worry about Ito vs. Stratonovich in carrying out the
phase reduction. However, it is necessary to take the
noise terms to be sufficiently weak so that the probabil-
ity of large deviations from the attracting limit cycle can
be ignored. We thus obtain the stochastic phase equa-
tions [12, 14, 16]:

dΘj = ω + ǫ

d∑

µ=1

Zµ(Θj)
[
γbµ(Θj)α(t)dt +

√
2DdWµ

j

]
.

(5.4)

Here Zµ(θ) is the µ-th component of the infinitesimal
phase resetting curve (PRC) defined as

Zµ(θ) =
∂Ψ(x)

∂xµ

∣∣∣∣
x=x

∗(θ)

(5.5)

with
∑d

µ=1 Zµ(θ)Fµs(x
∗(θ)) = ω. We have also scaled

the intrinsic and extrinsic noise terms by a small factor ǫ
to ensure that we are operating in the weak-noise regime.
(This factor is distinct from ε = γ−1.) All the terms
multiplying Zk(θ) are evaluated on the limit cycle. Note
that Eq. (5.4) is valid provided that the rate of relaxation
γp to the limit cycle is must faster than the relaxation
rate γ of the colored noise [16]. Now introduce the joint
probability density p(θ, α, t) according to

p(θ, α, t)dθdα = P[θ < Θ(t) < θ+dθ, α < α(t) < α+dα]

This satisfies the multivariate FP equation of the form

∂p(θ, α, t)

∂t
= −

N∑

j=1

∂

∂θj
[F(θj , α)p(θ, α, t)] (5.6)

+ǫ2D
N∑

j=1

∂2p(θ, α, t)

∂θ2j
+ γ2

(
∂

∂α
α+

1

2

∂2

∂α2

)
p(θ, α, t)

where

F(θ, α) = ω + γǫB(θ)α, (5.7)

and

B(θ) =
d∑

µ=1

Zµ(θ)bµ(θ). (5.8)

Applying the projection method of Gardiner [11], we can
also derive a Stratonovich FP equation for

ρ(θ, t) = lim
γ→∞

p(θ, α, t)

given by

∂ρ(θ, t)

∂t
= −

N∑

j=1

∂

∂θj
[ωρ(θ, t)] + ǫ2D

N∑

j=1

∂2p(θ, α, t)

∂θ2j

+
ǫ2

2

N∑

i,j=1

∂

∂θi
B(θi)

∂

∂θj
B(θj)ρ(θ, t). (5.9)

One could also derive higher-order corrections to Eq.
(5.9) by carrying out a perturbation-expansion in γ−1

along the lines highlighted in section IV. Note that ρ(θ, t)
satisfies periodic boundary conditions on the N -torus
[−π, π]N .

B. Phase averaging

Having obtained the FP Eq. (5.9), we can now carry
out the averaging procedure of Nakao et. al. [14]. The
basic idea is to introduce the slow phase variables ψ =
(ψ1, . . . , ψN ) according to θj = ωt+ψj and set Q(ψ, t) =
ρ(ωt1+ψ, t) with 1 = (1, 1, . . . , 1). For sufficiently weak
noise (small bµ and D), Q is a slowly varying function
of time so that we can average Eq. (5.6) for Q over one
cycle of length T = 2π/ω. (One cannot apply averaging
to Eq. (5.6), due to the γ2 term.) In order to carry out
the averaging procedure, we first convert (3.9) into the
Ito form

∂ρ(θ, t)

∂t
= −

N∑

j=1

∂

∂θj
[ω + ǫ2B′(θj)]ρ(θ, t) (5.10)

+ǫ2D

N∑

j=1

∂2ρ(θ, t)

∂θ2j

+
ǫ2

2

N∑

i,j=1

∂

∂θi

∂

∂θj
B(θi)B(θj)ρ(θ, t).
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The averaged FP equation for Q is then

∂Q(ψ, t)

∂t
=

N∑

i,j=1

∂2

∂ψi∂ψj
[D(ψi, ψj)Q(ψ, t)],

(5.11)

where we have absorbed the factor ǫ2 into t and

D(ψi, ψj) = g(ψi − ψj) +Dδi,j (5.12)

with

g(ψ) =
1

4π

∫ π

−π

B(θ′)B(θ′ + ψ)dθ′. (5.13)

Following Nakao et. al. [14] and Ly and Ermentrout [17],
one can now investigate the role of common environmen-
tal noise on the synchronization of a pair of oscillators.
Setting N = 2 in Eq. (5.11) gives

∂Q

∂t
= (g(0) +D)

[(
∂

∂ψ1

)2

+

(
∂

∂ψ2

)2
]
Q

+
∂2

∂ψ1∂ψ2
[g(ψ1 − ψ2)Q].

Performing the change of variables

ψ = (ψ1 + ψ2)/2, φ = ψ1 − ψ2

and writing Q(ψ1, ψ2, t) = Ψ(ψ, t)Φ(φ, t) we obtain the
pair of PDEs

∂Ψ

∂t
=

1

2
[g(0) + g(φ) +D]

∂2Ψ

∂ψ2

and

∂Φ

∂t
= 2

∂2

∂φ2
[g(0)− g(φ) +D] Φ.

These have the steady–state solution [14]

Ψs(ψ) =
1

2π
, Φs(φ) =

Γ0

(g(0)− g(φ)) +D
, (5.14)

where Γ0 is a normalization constant. A number of im-
portant results follow from (5.14). First, in the absence
of a common extrinsic noise source (g ≡ 0) and D > 0,
Φ0(φ) is a uniform distribution, which means that the
oscillators are completely desynchronized. On the other
hand, IfD = 0 (no intrinsic noise), the distribution Φ0(φ)
diverges at θ = 0 while keeping positive since it can be
shown that g(0) ≥ g(θ) [14]. Hence, the phase differ-
ence between any pair of oscillators accumulates at zero,
resulting in complete noise–induced synchronization.

C. SPDE perspective

The analysis carried out in sections VA and VB was
from the particle perspective, in which deterministic FP
equations were derived for the joint probability densi-
ties of N uncoupled oscillators evolving in the same en-
vironment. Thus Eqs. (5.6) and (5.9) for N = 2 are
the analogs of the second-order moment Eqs. (3.9) and
(4.20). An additional feature of the phase oscillator
model is that under an appropriate separation of time-
scales, one can use phase-averaging to solve the associ-
ated multivariate FP equation. However, one limitation
of the above analysis is that noise-induced synchroniza-
tion was established after averaging over multiple realiza-
tions of the environmental noise. A stronger result is to
show that a population of oscillators synchronizes within
a single realization of the random environment. This can
be achieved using the population or SPDE perspective.
Consider the phase-reduced SDE (5.4) for a given re-

alization σ(t) = {α(τ), 0 ≤ τ < t} of the stochastic pro-
cess α(t). Suppose that the initial phase of the oscilla-
tors, Θj(0), are randomly generated from a density p0(θ).
Taking the thermodynamic limit, the resulting popula-
tion density P (θ, t) evolves according to the stochastic
FP equation

∂P (θ, t)

∂t
= − ∂

∂θ
[F(θ, α(t))P (θ, t)] + ǫ2D

∂2P (θ, t)

∂θ2

(5.15)

with F(θ, α) given by Eq. (5.7), and P (θ, t) represents
the density of oscillators that have the phase θ at time t.
As in the 1D case, we have the mapping

p(θ1, . . . , θr, α, t) → Eσ[P (θ1) · · ·P (θr)1α(t)=α].

(5.16)

That is, the r-th moments of the distribution of P satisfy
the same FP equation as the r-th order joint probability
density p.
Let us now focus on the special case of zero intrinsic

noise (D = 0). In that case, the phase of each oscillator in
the population evolves according to the non-autonomous
ODE

dθ

dt
= ω + ǫB(θ)α(t). (5.17)

This has the formal solution

θ(t, q) = ωt+ ǫ

∫ t

0

B(θ(s, q))α(s)ds + q, (5.18)

with θ(0, q) = q. Moreover,

P (θ, t) =

∫ 2π

0

δ(θ − θ(t, q))p0(q)dq, (5.19)

where p0(q) is the initial distribution of phases. Synchro-
nization can be established if the solution θ(t, q) becomes
independent of the initial phase q in the large t limit. We
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will proceed by carrying out a perturbation expansion in
ǫ along the lines of Ref. [18]. That is, we substitute the
approximation

θ(s, q) ≈ ωs+ ǫ

∫ t

0

B(ωs+ q)α(s)ds+ q

into the integral on the right-hand side and Taylor ex-
pand B to obtain the O(ǫ2) solution

θ(t, q) = ωt+ q + ǫ

∫ t

0

B(ωs+ q)α(s)ds (5.20)

+ǫ2
∫ t

0

B′(ωs+ q)

∫ s

0

B(ωs′ + q)α(s′)α(s)ds′ds

Now suppose that γ ≫ ω/2π so that the colored noise
α(t) varies much more rapidly than the phase ωt. We
can then time-average the noise so that

θ(t, q) ≈ ωt+ q + ǫ

∫ t

0

B(ωs+ q)〈α(s)〉ds (5.21)

+ǫ2
∫ t

0

B′(ωs+ q)

∫ s

0

B(ωs′ + q)〈α(s′)α(s)〉ds′ds

Since we have a stationary OU process, which is ergodic,
we can replace the time averages by ensemble averages
with 〈α(s)〉 = 0 and

〈α(s)α(s′)〉 = C(s− s′) =
1

2γ
e−γ|s−s′|.

Shifting s and s′, we thus obtain the approximation

θ(t, q) = ωt+ q + (5.22)

+ǫ2
∫ t+q/ω

q/ω

B′(ωs)

∫ s+q/ω

q/ω

B(ωs′)C(s− s′)ds′ds

Note that θ(t, q) is no longer dependent on the particular
realization σ. Finally, dividing through by t and taking
the large-t limit, we see that the dependence on the initial
phase disappears such that θ(t, q) → Θ(t), where

Θ(t) = (ω + ǫ2Λ)t, (5.23)

with

Λ = lim
t→∞

1

t

∫ t

0

B′(ωs)

∫ s

0

B(ωs′)C(s− s′)ds′ds. (5.24)

It follows from Eq. (5.19) that

P (θ, t) → δ(θ −Θ(t)),

which is independent of the particular realization of the
noise. We conclude that an ensemble of uncoupled iden-
tical phase oscillators evolving in the same random en-
vironment driven by fast colored noise synchronize their
activity, and the collective oscillation has an O(ǫ2) cor-
rection to the natural frequency ω. We can also take the

white-noise limit in Eq. (5.24) with C(s− s′) → δ(s− s′)
to obtain

Λ =
1

T

∫ T

0

B′(ωs)B(ωs)ds = 0. (5.25)

We have exploited the fact that B(θ) is 2π-periodic. For
an explicit numerical example of noise-induced synchro-
nization under a single realization of a common noisy
environment, see Fig. 1 of Ref. [12].
Although the above results are not new, our deriva-

tion in terms of independence of initial conditions and
our explicit emphasis of the SPDE framework is distinct
from previous studies [12–19]. Several of the latter es-
tablish synchrony by calculating the Lyapunov exponent
of nearby trajectories for oscillators driven by the same
environmental noise and showing that the Lyapunov ex-
ponent is always negative. (The expression for the Lya-
punov exponent is given by the integrals in Eq. (5.24) or
(5.25) after replacing B′ by B′′.) In summary, the major
difference between the particle and population perspec-
tives within the context of noise-induced synchronization
is that the latter establishes a stronger form of synchrony
based on a single realization of the random environmental
input. As noted in section III, another difference between
the particle and population or SPDE formulations is that
the latter can incorporate a broader range of boundary
conditions. For example, one could consider a more gen-
eral class of model, in which the number of oscillators is
not conserved.

VI. DISCUSSION

In this paper we developed a general framework for
studying SDEs in random environments, based on the
idea that one can separate out the realizations (ensemble
averaging) of intrinsic and environmental noise, see Fig.
1. The standard approach, which we call the particle
perspective, is to simultaneously consider realizations of
both sources of noise, which results in a deterministic FP
equation. Here we introduced the so-called population or
SPDE perspective, in which we consider multiple realiza-
tions of the intrinsic noise for a single realization of the
environmental noise, which leads to a stochastic FP equa-
tion. A relationship between the particle and population
perspectives was obtained by deriving moment equations
for the distribution of the resulting stochastic population
density by averaging over multiple realizations of the en-
vironment. We gave two examples where the two formu-
lations are not equivalent. The first involved boundary
value problems that do not conserve particle number, and
the other concerned establishing noise-induced synchro-
nization of oscillators without averaging with respect to
realizations of the environment.
As we indicated in the introduction, one could apply

the same approach to systems where either or both the
intrinsic and environmental noise are discrete rather than
continuous stochastic processes. One example where
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both processes are discrete is a population of random
walkers moving on a stochastically-gated lattice, which
has applications to the diffusion of particles in the plasma
membrane of cells [8]. An example of a hybrid system
with continuous intrinsic noise and discrete environmen-
tal noise is a population of stochastic gene networks in
which the switching on and off of a promoter site is driven
by discrete environmental noise.
In this paper, the particles were taken to be non-

interacting so that any statistical correlations arose from
the fact that they were driven by a common random en-
vironment. Another mechanism for introducing correla-
tions would be to include physical coupling between a
set of N particles. One could apply our methods if each
“particle” was identified with a single interacting popu-
lation so that x ∈ R

N and we considered an ensemble of
independent populations driven by a common environ-
mental input. We could then analyze inter-population
correlations. However, most studies of interacting parti-
cle systems focus on intra-population correlations in the

absence of a common environmental drive. Examples in-
clude interacting Brownian particles with long-range in-
teractions [23, 24] and the Kuramoto model [20, 25–27].
In the thermodynamic limit N → ∞ one can derive a
mean-field model that takes the form of a nonlinear FP
equation; for finite N , fluctuations about the mean-field
solution can be modeled in terms of a stochastic FP equa-
tion. Note, however, there has been some work on noise-
induced synchronization of coupled phase oscillators with
environmental noise, based on solutions of deterministic
FP equations [17].
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