Curvature invariants, geodesics, and the strength of singularities in Bianchi-I loop quantum cosmology

Parampreet Singh
Phys. Rev. D 85, 104011 – Published 4 May 2012

Abstract

We investigate the effects of the underlying quantum geometry in loop quantum cosmology on spacetime curvature invariants and the extendibility of geodesics in the Bianchi-I model for matter with a vanishing anisotropic stress. Using the effective Hamiltonian approach, we find that even though quantum geometric effects bound the energy density and expansion and shear scalars, divergences of curvature invariants are potentially possible under special conditions. However, as in the isotropic models in LQC, these do not necessarily imply a physical singularity. Analysis of geodesics and strength of such singular events, point towards a general resolution of all known types of strong singularities. We illustrate these results for the case of a perfect fluid with an arbitrary finite equation of state w>1, and show that curvature invariants turn out to be bounded, leading to the absence of strong singularities. Unlike classical theory, geodesic evolution does not break down. We also discuss possible generalizations of sudden singularities which may arise at a nonvanishing volume, causing a divergence in curvature invariants. Such finite volume singularities are shown to be weak and harmless.

  • Received 9 January 2012

DOI:https://doi.org/10.1103/PhysRevD.85.104011

© 2012 American Physical Society

Authors & Affiliations

Parampreet Singh*

  • Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

  • *Electronic address: psingh@phys.lsu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 10 — 15 May 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×