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We investigate the effects of the underlying quantum geometry in loop quantum cosmology
on spacetime curvature invariants and the extendibility of geodesics in the Bianchi-I model
for matter with a vanishing anisotropic stress. Using the effective Hamiltonian approach, we
find that even though quantum geometric effects bound the energy density and expansion
and shear scalars, divergences of curvature invariants are potentially possible under special
conditions. However, as in the isotropic models in LQC, these do not necessarily imply a
physical singularity. Analysis of geodesics and strength of such singular events, point towards
a general resolution of all known types of strong singularities. We illustrate these results for
the case of a perfect fluid with an arbitrary finite equation of state w > −1, and show that
curvature invariants turn out to be bounded, leading to the absence of strong singularities.
Unlike classical theory, geodesic evolution does not break down. We also discuss possible
generalizations of sudden singularities which may arise at a non-vanishing volume, causing
a divergence in curvature invariants. Such finite volume singularities are shown to be weak
and harmless.

I. INTRODUCTION

Theorems of Penrose, Hawking and Geroch prove that existence of space-like singularities is a
generic feature of Einstein’s theory of general relativity (GR) [1]. These events can be characterized
in various ways, such as in terms of divergences of curvature invariants, breakdown of geodesics,
tidal forces becoming infinite etc. They signal that the limit of applicability of classical gravity
has been reached. It is believed that new physics from a quantum theory of gravity will provide
insights on the resolution of singularities, leading to a non-singularity theorem. However, before
we implement the techniques of quantum gravity to attempt the resolution of singularities, it is
important to distinguish which of these are harmful, and which are harmless. Neither a divergence
of curvature invariants implies an end to geodesic extendibility nor geodesic incompleteness nec-
essarily implies existence of a physical singularity. To understand the nature of a singularity one
needs to analyze its different properties in unison. In particular, it becomes important to examine
the strength of singular events – whether they lead to an inevitable destruction of in-falling objects
or allow passage of sufficiently strong objects. The former characterize strong singularities, and
the latter, weak singularities [2–4]. It has been conjectured that strong singularities correspond to
events which can not be geodesically extended [5, 6], and thus represent the true singularities that
need to be resolved.

In recent years, methods of loop quantum gravity (LQG) have been successfully used in the
quantization of homogeneous spacetimes to address the issue of singularity resolution [7, 8]. In
this canonical framework, known as loop quantum cosmology, a complete quantization of various
isotropic spacetimes has been performed for several matter models [9–19]. These investigations
show that in various loop quantized spacetimes, the big bang singularity of GR is replaced by
a big bounce which occurs when spacetime curvature approaches Planck regime.1 These results
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1 The existence of bounce has recently been demonstrated in the consistent probabilities framework applied to LQC



have been extended to the anisotropic spacetimes where the quantum evolution has been shown to
be non-singular [22–25], and rich physical implications have been derived [26–31]. The resulting
physics of LQC stands in striking contrast to those in Wheeler-DeWitt quantum cosmological
models where singularity resolution has remained a formidable challenge to overcome. A key aspect
of LQC which separates it from previous attempts is the underlying quantum geometry inherited
from LQG. It has various profound implications. Not only it is responsible for the quantum
Hamiltonian constraint to be a quantum difference equation in the geometric representation in
LQC, it also leads to upper bounds on energy density [11, 15, 22, 31, 32] and expansion and shear
scalars of the congruence of geodesics [27, 31–33]. Existence of these bounds provide important
insights on singularity resolution and also the new physics in loop quantum spacetimes. As an
example, a spatially flat isotropic universe sourced with a matter content with equation of state
satisfying weak energy condition (WEC) bounces in LQC when the upper bound for energy density
is saturated [11, 34]. Thus, avoiding the big bang/crunch singularity. On the other hand, if it is
filled with matter which violates WEC, it recollapses when the maximum of energy density is
reached, and avoids big rip singularity2 [36, 37].

An important question is whether the singularity resolution in LQC is a generic phenomena. In
particular, whether all strong singularities of the classical theory are resolved in LQC. This ques-
tion was recently addressed by the author in the spatially flat isotropic model using the effective
dynamics of LQC resulting from an effective Hamiltonian [33]. The effective Hamiltonian approach,
based on the geometrical formulation of quantum mechanics [38], provides an invaluable tool to
understand the underlying discrete quantum evolution in terms of variables in the continuum ef-
fective spacetime. The resulting physics obtained from the effective dynamical equations has been
extensively tested to confirm with the underlying quantum difference equation for isotropic and
anisotropic models [11, 12, 14, 19, 39, 40]. The modified dynamics from the effective Hamiltonian
has been used to prove that all strong singularities of the spatially flat isotropic LQC are resolved.
These include big bangs/crunches and also finite volume singularities, such as the big freeze singu-
larity [41], which can arise in models with a generalized equation of state. The effective spacetime
of spatially flat isotropic LQC turns out to be geodesically complete [33]. Investigations carried out
for spatially curved isotropic models in LQC, strongly suggests similar results [42]. It is interesting
to note that these studies also find events where curvature invariants diverge in isotropic LQC.
Such events correspond to the sudden singularities, which occur at a finite volume and energy
density but have a divergent pressure and have been recently studied in GR [43–46]3. All of the
events where curvature invariants diverge in isotropic LQC, turn out to be weak singularities which
are harmless.4

The goal of this work is to analyze these questions for Bianchi-I models in LQC using the
effective Hamiltonian approach. Due to an interplay of the non-vanishing Weyl curvature with the
Ricci curvature, Bianchi-I spacetimes provide one of the simplest expositions of the rich structure
of singularities in GR, and thus an opportunity for a non-trivial and important generalization of the
results on generic resolution of strong singularities so far proved in isotropic models in LQC. For
perfect fluids, depending on the equation of state of matter and the initial anisotropy, singularities
can be of the form of a barrel (one of the scale factors is finite and other two vanish), a cigar (one

[20]. Similar methods for Wheeler-DeWitt quantization show that the probability for the singularity to occur is
unity [21].

2 The big rip singularity in GR occurs when volume diverges in finite time with a divergences in energy density. For
an example of a scalar field model leading to such a singularity, see Ref. [35].

3 For a discussion of such singularities in modified gravity scenarios, see Ref. [47] and reference there in.
4 The first example of such a ‘singular’ event in LQC was first reported for a scalar field model in Ref. [48]. It
was then shown that such events can arise quite commonly in isotropic LQC with a suitable choice of generalized
equation of state [33].
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of the scale factors diverges and other two vanish), a pancake (one of the scale factors vanishes
and other two approach finite non-zero values) or a point which are isotropic singularities (all
scale factors vanish) [49–54]. In contrast to the isotropic models, where for a fixed equation of
state, behavior of energy density is sufficient to capture the details of the spacetime curvature, in
Bianchi-I model one must take in to account the important role played by the shear scalar. Roughly
speaking, it is both the energy density and the shear scalar which determine whether the expansion
scalar behaves more in an isotropic or in an anisotropic way. This is also reflected in the effective
dynamics of Bianchi-I model in LQC, where bounces do not occur at maximum value of energy
density, but when at least the energy density or the shear scalar approach values in the Planck
regime [27, 31]. Due to these rich features, analysis of various aspects of singularity resolution,
such as the strength of singularities in Bianchi-I model using Tipler and Królak’s conditions is
more subtle than in the isotropic models [4]. To simplify the analysis, we restrict ourselves to the
study of matter with a vanishing anisotropic stress, and aim to answer following questions related
to resolution of singularities in the effective dynamics of Bianchi-I LQC. First, are the curvature
invariants bounded in LQC or as in the isotropic spacetimes they can potentially diverge? If so,
under what conditions such divergences occur? Secondly, under what circumstances the geodesic
equations in the effective spacetime breakdown? In particular, can geodesics be extended beyond
the events where curvature invariants diverge? Finally, do these events correspond to strong or
weak singularities?

The analysis carried out in this work and the main results are organized as follows. In Sec.
II, for completeness, we summarize the dynamical equations obtained from the connection-triad
variables for the orthogonal Bianchi-I model in GR as well as in effective spacetime description
of LQC. Here we demonstrate the way universal bounds on energy density, expansion and shear
scalars of geodesic congruences are reached. (For further details on this part, we refer the reader
to Refs. [26, 27, 31, 32]). These dynamical equations are used to obtain the expressions for
curvature invariants – Ricci scalar, Kretschmann scalar and the square of the Weyl curvature in
Sec III. We then find the conditions under which curvature invariants can potentially diverge in
the effective dynamics of LQC. In Sec. IV, we first analyze the behavior of null geodesics and
obtain the conditions for which they can break down in the effective spacetime of Bianchi-I model
in LQC. These conditions show that events where curvature invariants may diverge in LQC are
not necessarily geodesically inextendible. We then perform an analysis of the strength of singular
events. Interestingly, the conditions where singularities can potentially be strong turn out to
be identical to those which determine the inextendibility of geodesics. In Sec. IVC, we discuss
the physical implications of these results for a (non-viscous) perfect fluid with an arbitrary finite
equation of state w > −1. For this model, we show that unlike the classical theory, there exist no
curvature divergent events in LQC. The effective spacetime in LQC turns out to be geodesically
complete and devoid of any strong singularities. This is followed by a discussion of the fate of
certain types of exotic singularities which may arise with a generalized equation of state. In
particular, we analyze the singularities which may occur at finite volume with a divergence in
curvature invariants. Such events, which generalize sudden [43] and big freeze singularities [41] of
isotropic models to anisotropic spacetimes, are shown be geodesically extendible weak singularities.
We summarize the results in Sec. V.
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II. CLASSICAL AND EFFECTIVE HAMILTONIAN IN ASHTEKAR VARIABLES:
SOME KEY FEATURES

We consider a homogeneous (orthogonal) Bianchi-I spacetime with a spatial manifold R
3. In

order to introduce a symplectic structure, one needs to introduce a fiducial cell V on the manifold.5

The cell has a fiducial volume Vo = l1l2l3, where li’s denote the coordinate lengths, with respect to
the fiducial metric q̊ab on R

3. The physical spacetime metric for the orthogonal Bianchi-I spacetime
is given by,

ds2 = −N2 dt2 + a21 dx
2 + a22dy

2 + a23dz
2 (2.1)

where N is the lapse function. The basic gravitational variables in LQG are the matrix valued
Ashtekar-Barbero connection Ai

a and triad Ea
i . Due to underlying symmetries of the spacetime,

these are symmetry reduced to connection ci and triads pi (where i = 1, 2, 3) [22, 56, 57]. The
triads are kinematically related to the directional scale factors as to the triad components pi as

|p1| = l2l3 a2a3, |p2| = l1l3 a1a3, |p3| = l2l3 a2a3 . (2.2)

The modulus sign arises because of the orientations of the triad. In the following, we choose the
orientation to be positive and fiducial lengths li to be unity, without any loss of generality. In the
phase space, the connection and the triad variables satisfy:

{ci, pj} = 8πGγδij (2.3)

where γ = 0.2375 is the Barbero-Immirzi parameter in LQG. After imposition of symmetries, the
only constraint we need to solve is the Hamiltonian constraint. This is expressed in terms of the
holonomies of connection and triads, and quantized to obtain the physical solutions in LQC. In
the following, we first discuss the dynamical equations resulting from the Hamiltonian constraint
in GR for the Bianchi-I spacetime. This is followed by the analysis with the effective Hamiltonian
of LQC in Bianchi-I spacetime.

A. Classical dynamics

For lapse N = 1, the classical Hamiltonian constraint in the symmetry reduced variables ci’s
and pi’s can be written as,

Hcl = − N

8πGγ2V
(c1p1 c2p2 + c3p3 c1p1 + c2p2 c3p3) +Hmatt , (2.4)

where Hmatt denotes the matter part of the Hamiltonian constraint. Using, Hcl, dynamical equa-
tions can be obtained by solving for the Hamilton’s equations for gravitational and matter phase
space variables (such as φ, pφ, if we consider a scalar field model). In the gravitational sector, these
equations are obtained as follows:6

ṗi = {pi,Hcl} = −8πGγ
∂Hcl

∂ci
(2.5)

5 The cell plays the role of the infra-red regulator which is removed by taking the limit V → R
3. Physical predictions

must not depend on the choice of this cell. This holds for the analysis in this work, as is for several works in LQC.
For a discussion on ramifications of these limits and invalidity of unphysical quantizations, see ref. [55].

6 The calculation for matter part follows the same strategy, and is simpler. For a scalar field, the matter phase space
variables satisfy {φ, pφ} = 1. In this case, Hamilton’s equations yield Klein-Gordon equation [27].
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and

ċi = {ci,Hcl} = 8πGγ
∂Hcl

∂pi
, (2.6)

where a ‘dot’ denotes time derivative with respect to proper time t. Using eq.(2.5), a relation
between connection components and the directional Hubble rates, defined as Hi = ȧi/ai, follows

ci = γliȧi = γHiai . (2.7)

Considering matter with a vanishing anisotropic stress, i.e. when ρ(p1, p2, p3) = ρ(p1p2p3), (cipi −
cjpj) turn out to be constant of motion [26, 27]. Using above Hamilton’s equations, this in turn
implies that,

cipi − cjpj = V (Hi −Hj) = γκij , (2.8)

where κij is a constant anti-symmetric matrix. This feature of GR, that V (Hi−Hj) are constants
of motion, results in the characteristic dependence of shear scalar on 1/V 2. To understand this, let
us recall that the covariant derivative of the unit fluid velocity vα tangent to time-like geodesics,
can be written as

vµ;ν = θµν + ωµν (2.9)

where θαβ is the expansion tensor and ωαβ is the vorticity tensor.7 Since the considered fluid
velocity is orthogonal to the spatial hypersurface, ωµν vanishes. The expansion tensor can be
expressed in terms of traceless and trace parts:

θµν =
1

3
(gµν + vµv

ν) + σµν . (2.10)

where θ is the expansion scalar:

θ = V̇ /V = (H1 +H2 +H3), (2.11)

and σµν is the shear tensor, satisfying σµνv
ν = 0. Its magnitude defines the shear scalar σ2:

σ2 =
1

3

(

(H1 −H2)
2 + (H2 −H3)

2 + (H3 −H1)
2
)

. (2.12)

Another measure of anisotropic shear which is used commonly is the scalar Σ2, defined as Σ2 :=
σ2V 2/6. Using eq. (2.8), it turns out to be

Σ2 = κ212 + κ223 + κ231 . (2.13)

The scalar Σ2 is thus a constant of motion in GR for matter with a vanishing anisotropic stress,
and thus σ2 ∝ 1/V 2 in GR. In the classical theory, the expansion scalar θ (2.11) and shear scalar
σ2 are related to the energy density, defined as ρ = Hmatt/V , as

θ2

9
=

8πG

3
ρ+ σ2 . (2.14)

Since, mean Hubble rate H = θ/3, above equation provides a generalization of the isotropic
Friedmann equation in the Bianchi-I spacetime. Solutions of the dynamical equations have been

7 The expansion tensor can be introduced in a similar way for null geodesics [58].
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extensively studied for different matter content [49–52]. These exhibit singular behavior at van-
ishing physical volume where geodesics break down [1]. All the singularities studied so far in the
classical Bianchi-I model are strong in nature which cause inevitable destruction of all the detec-
tors falling in them [2, 3]. Late time evolution of the universe, whether it becomes isotropic or
remains anisotropic depends on the matter content. From (2.14), we find that the expansion scalar
isotropizes, at large volume, if the universe is filled with matter such as dust or radiation or when
ever the energy density of the matter decays slower than the anisotropic shear scalar σ2 in GR.

B. Effective dynamics

Loop quantization of Bianchi-I spacetimes has been rigorously performed for a massless scalar
field and implications for the quantum theory have been studied recently [22] (see also Ref. [25]).8

To quantize, the classical Hamiltonian constraint is expressed in terms of the elementary variables
for the quantum theory: the holonomies of the connection Ai

a taken over closed loops and the
fluxes of the triads Ea

i (which turn out to be proportional to triads). The procedure leads to
a non-local nature of the field strength of the connection in the quantum theory, resulting in a
quantum difference equation in geometric representation. The quantum difference equation turns
out to be non-singular and results in a continuous differential equation for Wheeler-DeWitt theory
when spacetime curvature becomes small. An important technique to extract new physics result-
ing from loop quantization of cosmological spacetimes is the effective Hamiltonian method. The
effective spacetime description of LQC is derived using techniques of the geometric formulation of
quantum mechanics [38]. In this formulation, one treats the space of quantum states as an infinite
dimensional quantum phase space and seeks a faithful embedding of the classical phase space in
the latter. The underlying procedure, requires a judicious choice of coherent states, and results in
an effective Hamiltonian up to well controlled approximations.9 Using the effective Hamiltonian,
modified dynamical equations incorporating quantum geometric effects can be derived [61–63].
Resulting effective equations have been tested in different models using extensive numerical simu-
lations, and have been demonstrated to capture various details of underlying quantum evolution to
an excellent accuracy for isotropic models [10–12, 14, 19] and also anisotropic models [39, 40]. In
the Bianchi-I model, the effective Hamiltonian has been used to understand various physical im-
plications of the loop quantization [26–30, 32] and have also been studied in the context of Gowdy
spacetimes [64]. As in these works, we would assume that the effective spacetime description for
the Bianchi-I model to be valid in our analysis.

For lapse N = 1, the effective Hamiltonian constraint for the Bianchi-I model in LQC is given
by

Heff = − 1

8πGγ2V

(

sin(µ̄1c1)

µ̄1

sin(µ̄2c2)

µ̄2
p1p2 + cyclic terms

)

+ Hmatt (2.15)

where µ̄i are proportional to the length of the edges of the loop over which holonomies are evaluated
and are given by,

µ̄1 = λ

√

p1
p2p3

, µ̄2 = λ

√

p2
p1p3

, and µ̄3 = λ

√

p3
p1p2

. (2.16)

8 For earlier works in LQC on Bianchi-I spacetime, see Refs. [39, 40, 57, 59, 60].
9 There also exist terms proportional to quantum fluctuations resulting from the quantum properties of the state.
These turn out be negligible for the physical universes which grow to a macroscopic size, as is demonstrated by
several numerical simulations [10–12, 14, 19]. Our analysis will assume that such terms can be neglected for the
effective Hamiltonian for Bianchi-I model in LQC.
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Here λ denotes the square root of the minimum eigenvalue of the area operator in LQG: ∆ =
4
√
3πγl2Pl, which is the minimum area to which the loop can be shrunk in the quantum theory

[65]. The matter part in the effective Hamiltonian is treated as obtained from Fock quantization.10

The effective Hamiltonian leads to the modified dynamical equations, which can be obtained using
eqs.(2.5) and (2.6). An immediate consequence of the equation of motions for the triads is that
the connection components, unlike in the classical theory, are not proportional to ȧi. Due to this
reason, the directional Hubble rate for a particular scale factor is determined by all the connection
components. As an example, the relation for H1 is given by

H1 =
1

2γλ
(sin (µ̄1c1 − µ̄2c2) + sin (µ̄2c2 + µ̄3c3) + sin (µ̄1c1 − µ̄3c3)) (2.17)

(and similarly for H2 and H3). Here we have used

ṗi =
pi
γλ

(sin(µ̄jcj) + sin(µ̄kck)) cos(µ̄ici) (2.18)

and the relation between the directional Hubble rate and the time derivatives of triads:

Hi =
1

2

(

ṗj
pj

+
ṗk
pk

− ṗi
pi

)

, (2.19)

with i, j and k taking different values corresponding to the anisotropic directions.

Though, ci 6= γaiHi in LQC, using the Hamilton’s equation for connection,

ċ1 =
1

2p1γλ

[

c2p2 cos(µ̄2c2)(sin(µ̄1c1) + sin(µ̄3c3)) + c3p3 cos(µ̄3c3)(sin(µ̄1c1) + sin(µ̄2c2))

− c1p1 cos(µ̄1c1)(sin(µ̄2c2) + sin(µ̄3c3))− µ̄1p2p3

[

sin(µ̄2c2) sin(µ̄3c3)

+ sin(µ̄1c1) sin(µ̄2c2) + sin(µ̄3c3) sin(µ̄1c1)

]

]

+ 8πGγ

√

p2p3
p1

(

ρ

2
+ p1

∂ρ

∂p1

)

,

(2.20)

and similarly for c2 and c3, it is straightforward to verify that

d

dt
(cipi − cjpj) = 0 . (2.21)

Thus, as in GR, (cipi − cjpj) are constants of motion in LQC, equal to γκij (eq.(2.8)) [26, 27].
However, cipi − cjpj 6= V (Hi − Hj). Thus, shear scalar σ2 in LQC is not proportional to 1/V 2.
In other words, if one defines Σ2

LQC = σ2V 2 in LQC, Σ2
LQC is not a constant. In the limit when

spacetime curvature becomes small, Σ2
LQC approaches the constant value Σ2 of the classical theory.

Novel properties of the above effective dynamical equations have been studied in various works
[26–29, 31]. Here we summarize the results for the expansion scalar, energy density and the shear

10 In principle, there can be quantum geometric modifications to the matter Hamiltonian, originating from the inverse
triad terms in the loop quantization. However, these can only be meaningfully defined for compact topologies and
are significant only at the scales of Planck length [8, 11].
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scalar, which are relevant for our work. (We refer the reader to Ref. [31] for details). We first note
that the directional Hubble rates have a universal maxima, given by

H
(max)
i =

3

2γλ
. (2.22)

Using eq.(2.19) in the definition of the expansion scalar, we obtain

θ =
1

2γλ
(sin (µ̄1c1 + µ̄2c2) + sin (µ̄2c2 + µ̄3c3) + sin (µ̄1c1 + µ̄3c3)) . (2.23)

It has a universal maxima given by θmax = 3/(2γλ). Thus, unlike in the classical GR, where the
directional Hubble rates and the expansion scalar diverges for arbitrary matter in the Bianchi-I
spacetime, they are generically bounded in LQC. The boundedness of the directional Hubble rates
immediately implies the same for the shear scalar σ2 given by eq.(2.12), which turns out to be,

σ2 =
1

3γ2λ2

[

(cos (µ̄2c2)(sin (µ̄1c1) + sin (µ̄3c3))− cos (µ̄1c1)(sin (µ̄2c2) + sin (µ̄3c3)))
2

+ cyclic terms

]

, (2.24)

with a maxima given by σ2
max = 10.125/(3γ2λ2). Recall that the shear scalar in classical GR

diverges as 1/V 2 as a singularity is approached. However, in LQC, its behavior is very different in
the Planck regime where it departs from the classical behavior and is generically bounded without
any assumption on the matter content. Finally, the expression for energy density, defined as
ρ = Hmatt/V , can be obtained from the vanishing of the Hamiltonian constraint, Heff ≈ 0:

ρ =
1

8πGγ2λ2
(sin (µ̄1c1) sin (µ̄2c2) + cyclic terms) , (2.25)

which is also a universally bounded function with a maxima given by

ρmax =
3

8πGγ2λ2
≈ 0.41ρPl . (2.26)

Thus, in the loop quantization of Bianchi-I spacetime, the expansion and the shear scalar of the
geodesic congruences and the energy density of the matter content turn out to be generically
bounded. This is direct consequence of the underlying discreteness of the quantum geometry in
LQC, captured by λ. In the limit, λ → 0, the quantum discreteness disappears and the behavior
of the above physical quantities turns out to be in agreement with GR, diverging as the volume
goes to zero.

III. CURVATURE INVARIANTS

In GR, one of the characteristic feature of singularities is the associated divergence in the
curvature invariants. The key question is whether the quantum geometric effects encoded in the
effective dynamics of LQC lead to a bound on the curvature invariants. The answer to this question
is not obvious from the properties of energy density, and the expansion and shear scalars, without
further assumptions on the nature of the considered matter or its equation of state. Since the
curvature invariants involve the second order time derivatives of the metric, it is possible that even
when ρ, θ and σ2 are bounded, for a certain choice of the equation of state w, curvature invariants
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may blow up in the evolution. Examples of such events, exist in isotropic LQC, where they originate
from the divergences in the pressure P of the matter content [33, 42]. In the following, we study
the properties of the Ricci scalar R, Kretschmann scalar K where K = RαβµνR

αβµν and the square
of the Weyl curvature CαβµνC

αβµν .11

In terms of the directional Hubble rates Hi and the second order time derivatives of the direc-
tional scale factors, the expressions for the Ricci scalar, Kretschmann scalar and the square of the
Weyl curvature can be written as:

R = 2

(

H1H2 +H2H3 +H3H1 +
3
∑

i=1

äi
ai

)

, (3.1)

K = 4

(

H2
1H

2
2 +H2

1H
2
3 +H2

2H
2
3 +

3
∑

i=1

ä2i
ai

)

, (3.2)

and

CαβµνC
αβµν =

4

3

[

H2
1H

2
2 +H2

2H
2
3 +H2

3H
2
1 −H1H2H3(H1 +H2 +H3)

+
ä1
a1

(

ä1
a1

−H1H2 −H3H1 + 2H2H3

)

+
ä2
a2

(

ä2
a2

−H1H2 −H2H3 + 2H3H1

)

ä3
a3

(

ä3
a3

−H2H3 −H3H1 + 2H1H2

)

− ä1
a1

− ä2
a2

− ä3
a3

]

.

From above expressions, it is clear that since the directional Hubble rates in the effective spacetime
of Bianchi-I model in LQC are bounded, as evident from eq.(2.17), the boundedness of curvature
invariants is determined by the dynamical equations äi/ai. These can be obtained by using the
Hamilton’s equations for pi (eq.(2.18)) and ci (eq.(2.20)). As an example, the equation for ä1/a1
can be written as,

ä1
a1

=
1

2γλ

[

cos(µ̄1c1 − µ̄2c2)
d

dt
(µ̄1c1 − µ̄2c2) + cos(µ̄1c1 − µ̄3c3)

d

dt
(µ̄1c1 − µ̄3c3)

+ cos(µ̄2c2 + µ̄3c3)
d

dt
(µ̄2c2 + µ̄3c3) +

1

2γλ
(sin(µ̄1c1 − µ̄2c2) + sin(µ̄1c1 − µ̄3c3) + sin(µ̄2c2 + µ̄3c3))

2

]

(3.3)

which for matter with a vanishing anisotropic stress, can be expressed in the following form:

ä1
a1

= −4πG(ρ+ P ) +
1

4V

(

6(cos(µ̄1c1 − µ̄2c2)κ21 + cos(µ̄1c1 − µ̄3c3)κ31)H + (κ12 + κ13)
ṗ1
p1

+κ23

(

ṗ2
p2

− ṗ3
p3

))

+
1

4γ2λ2
χ2 , (3.4)

11 Other curvature invariants can be studied similarly, or there expressions can be obtained from these invariants.
As an example, properties of another useful invariant RαβR

αβ can be obtained using the identity: RαβR
αβ =

1

2
(K − CαβµνC

αβµν +R2/3).
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where pressure P = −∂Hmatt/∂V , and χ2 is a bounded function defined as

χ2 := (sin(µ̄1c1 − µ̄2c2) + sin(µ̄1c1 − µ̄3c3) + sin(µ̄2c2 + µ̄3c3))
2 . (3.5)

In order to obtain (3.4), we have used the relation between the connection and triad components
and the constants κij (given by eq.(2.8)). Similar calculations, result in the equations for ä2/a2
and ä3/a3. Using these dynamical equations, along with those for the directional Hubble rates
(2.19), expressions for curvature scalars can be obtained by straightforward calculations.

Substituting eqs.(2.17) and (3.4), and similar equations for the time derivatives of a2 and a3 in
the expression for the Ricci scalar (3.1), for matter with a vanishing anisotropic stress, we get,

R = −24πG(ρ + P ) +
1

V

(

ṗ1
p1

(κ12 + κ13) +
ṗ2
p2

(κ23 + κ21) +
ṗ3
p3

(κ31 + κ32)

)

+
1

2γ2λ2

[

3 + cos2(µ̄1c1)
(

sin2(µ̄3c3) + 4 sin(µ̄2c2) sin(µ̄3c3)− cos(2µ̄2c2)
)

+ cos2(µ̄2c2)
(

sin2(µ̄1c1) + 4 sin(µ̄1c1) sin(µ̄3c3)− cos(2µ̄3c3)
)

+ cos2(µ̄3c3)
(

sin2(µ̄2c2) + 4 sin(µ̄1c1) sin(µ̄2c2)− cos(2µ̄1c1)
)

−
(

sin2(µ̄1c1) sin
2(µ̄2c2) + sin2(µ̄1c1) sin

2(µ̄3c3) + sin2(µ̄2c2) sin
2(µ̄3c3)

)

]

. (3.6)

Let us analyze the behavior of Ricci scalar in the effective spacetime. From the dynamical
equations in Sec.II (eqs.(2.18) and (2.25)), ρ and ṗi/pi are universally bounded in LQC. Further,
κij are the constants equal to (cipi − cjpj) in LQC (eq.(2.21)). These imply, that the Ricci scalar
can diverge only if volume vanishes and/or the pressure diverges at a finite energy density. Note
that if we consider the case of a fluid with a finite equation of state and the dynamical evolution
is such that the volume does not vanish, then Ricci scalar does not diverge. In such a case, Ricci
scalar is always bounded. An example of such a matter content is the case of perfect fluids which
will be discussed in Sec. IVC.

The computation of the Kretschmann scalar for matter with a vanishing anisotropic stress can
be performed in an analogous way. Using the equations for Hi and äi/ai, in eq.(3.2), we obtain

K =
χ2

2γ4λ4

{

(2 + cos(µ̄1c1 − µ̄2c2 − 2µ̄3c3) + cos(µ̄1c1 − µ̄2c2 + 2µ̄3c3)) sin
2
( µ̄1c1+µ̄2c2

2

)

+ sin2(µ̄1c1 − µ̄2c2) + 2(cos(µ̄2c2)− cos(µ̄1c1)) sin(µ̄1c1 − µ̄3c3) sin(µ̄3c3)
}

+
1

4γ2λ2V 2

[

ṗ1
p1

(κ12 + κ13) + κ23

(

ṗ2
p2

− ṗ3
p3

)

+ 6H(κ21 cos(µ̄1c1 − µ̄2c2) + κ31 cos(µ̄1c1 − µ̄3c3))

− 16πG(ρ + P )V

][

γλ {6Hγλ(κ21 cos(µ̄1c1 − µ̄2c2) + κ31 cos(µ̄1c1 − µ̄3c3))

+ κ23(cos(µ̄2c2)(sin(µ̄1c1) + sin(µ̄3c3))− cos(µ̄3c3)(sin(µ̄1c1) + sin(µ̄2c2)))

+ (κ12 + κ13) cos(µ̄1c1)(sin(µ̄2c2) + sin(µ̄3c3))}+ 2V
(

−8πGγ2λ2(ρ+ P ) + χ2
)

]

+ cyclic terms . (3.7)

Analysis of various terms in the above expression shows that as in the case of the Ricci scalar,
the Kretschmann scalar can also diverge in LQC. Potential divergent terms are proportional to
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1/V 2, P/V and terms linear and quadratic in pressure. If the dynamical evolution restricts these
possibilities, then K is bounded.

Similarly, we can compute the square of the Weyl curvature. In order to obtain its expression,
it is useful to note that eq.(3.3) can be written in the following symmetric form

CαβµνC
αβµν =

4

3

[

Ḣ1(Ḣ1 − Ḣ2)− Ḣ1((H2 −H3)
2 +H1H2 +H2H3 − 2H2

1 )

+H2
1 (H

2
1 +H2H3 −H1H2 −H3H1) + cyclic terms

]

. (3.8)

Using the equations for the directional Hubble rates and its time derivative (obtained using (3.4)),
in the above equation, we obtain the following expression for a matter with a vanishing anisotropic
stress,

CαβµνC
αβµν =− 1

32γ2λ2V

[

2 cos(2(µ̄1c1 − µ̄2c2) + cos(µ̄1c1 + µ̄2c2)− cos(2(µ̄1c1 + µ̄2c2)))

+ 5 cos(µ̄1c1 − µ̄2c2) + cos(2µ̄2c2)(3− 2 cos(µ̄3c3)) + cos(2µ̄1c1)(−6 + cos(2µ̄3c3))

+ 3 cos(2µ̄3c3) + 3(sin(2µ̄1c1)− 4 cos(µ̄2c2)(sin(µ̄1c1) + sin(µ̄2c2))) sin(2µ̄3c3)

− 2
{

8 cos2(µ̄1c1) sin(µ̄2c2) sin(µ̄3c3) + 2 sin(µ̄1c1) [− cos(2µ̄3c3) sin(µ̄2c2)

+ 6 cos(µ̄2c2) cos(µ̄3c3)(sin(µ̄1c1) + sin(µ̄2c2))− 2 cos2(µ̄2c2) sin(µ̄3c3)
]

+ 3cos(µ̄1c1) (− cos(µ̄3c3) + cos(2µ̄2c2 + µ̄3c3) + cos(µ̄2c2 + 2µ̄3c3)

− 2 sin(µ̄1c1) sin(µ̄2c2 + µ̄3c3)) }
]

×
[

ṗ1
p1

(κ12 + κ13) + κ23

(

ṗ2
p2

− ṗ3
p3

)

+ 6H(κ21 cos(µ̄1c1 − µ̄2c2) + κ31 cos(µ̄1c1 − µ̄3c3))− 16πG(ρ + P )V

]

+
χ2

4γ4λ4
(cos(µ̄3c3)(sin(µ̄1c1) + sin(µ̄2c2))− cos(µ̄1c1)(sin(µ̄2c2) + sin(µ̄3c3)))

(cos(µ̄2c2)(sin(µ̄1c1) + sin(µ̄3c3))− cos(µ̄1c1)(sin(µ̄2c2) + sin(µ̄3c3)))

− 1

16V 2

[

ṗ1
p1

(κ31 − κ12) + κ23

(

ṗ3
p3

− ṗ2
p2

)

+ 16πG(ρ + P )V

+ 6H(κ12 cos(µ̄1c1 − µ̄2c2)− κ31 cos(µ̄1c1 − µ̄3c3))

]

×
[

κ12

(

ṗ1
p1

+
ṗ2
p2

)

− ṗ3
p3

(κ31 + κ23)

− 6H (2κ12 cos(µ̄1c1 − µ̄2c2)− κ31 cos(µ̄1c1 − µ̄3c3)− κ23 cos(µ̄2c2 − µ̄3c3))

]

+ cyclic terms . (3.9)

Though more complicated than the expressions for R and K, above expression reveals similar
properties regarding the boundedness and possible divergences. As for Ricci and Kretschmann
scalars, the square of the Weyl curvature can also diverge in LQC if the pressure becomes infinite
and/or volume vanishes at a finite value of the energy density.

Let us now summarize the main result of this section. Restricting to the case of matter with a
vanishing anisotropic stress, analysis of the behavior of various curvature invariants reveals some
important features of loop quantum dynamics in Bianchi-I spacetimes. We have found that in LQC,
even though energy density and the expansion and shear scalars are universally bounded by values
determined by eqs.(2.23,2.24) and (2.25), curvature invariants can potentially diverge. It is to be
noted that for all matter models, which lead to dynamics such that the pressure is bounded and

11



physical volume never vanishes during the evolution, curvature invariants are bounded. However,
if there exists a physical solution such that at a finite value of ρ, θ and σ2, pressure diverges and/or
volume vanishes then curvature scalars can diverge. For conventional matter models, such as dust,
radiation or stiff matter, these conditions are not satisfied. Conventional singularities for Bianchi-
I spacetimes for fluids with a finite equation of state, occur with an associated divergence of ρ, θ
and σ2. Since these quantities are generically bounded in LQC, all such singularities are avoided

in effective spacetime. In all these cases, curvature invariants turn out to be bounded. Thus, in
contrast to GR, conditions for which curvature invariants can diverge in the effective spacetime
description of LQC are highly restrictive. This is illustrated in Sec. IVC, where we show that for
perfect fluids with w > −1, there are no divergences in curvature invariants. On the other hand,
in GR, such fluids generically lead to divergences in curvature invariant.

Our result on the curvature invariants generalize the one for the isotropic models in LQC where
it was demonstrated that curvature scalars can diverge if the pressure becomes infinite at a finite
value of energy density [33]. We find that such singularities can also arise in effective spacetime
description of Bianchi-I models. Possible divergence in curvature invariants leads to some important
questions: What is the nature of the singularities associated with events where curvature invariants
can potentially diverge in Bianchi-I spacetime in LQC? Certainly, these singularities are rather
special as they occur when ρ, θ and σ2 are all finite. However, are these singularities strong or
weak? And do they imply, breakdown of geodesics? We answer these questions in the next section.

IV. GEODESICS AND STRENGTH OF SINGULARITIES: GENERAL
CHARACTERISTICS AND EXAMPLES

In order to understand the nature of events where curvature invariants diverge, one must analyze
the behavior of geodesics and the strength of such singular events. It is important to note that
divergence of curvature invariants though an indication, is not a sufficient condition for a physical
singularity to exist. As discussed earlier, a singular event in terms of curvature invariants may allow
a safe passage of detectors, in which case the singularity turns out to be weak. In order to determine
whether a singularity is strong or weak, we consider the criterion developed by Tipler and Królak,
which involves integrals of Ricci and Weyl curvature components over null or time-like geodesics
[4]. Here, without any loss of generality, we will analyze null geodesics.12 In the following we first
analyze the geodesic equations and contrast their behavior in GR and in the effective spacetime
description of LQC. We then analyze the conditions for the strength of the singularities. Together
with geodesic equations, these conditions enable us to understand general features of singularity
resolution in the Bianchi-I spacetime in LQC which point towards the lack of strong singularities.
We then consider the case of perfect fluids with a vanishing anisotropic stress and a finite equation
of state w = P/ρ > −1. Our results show that unlike in GR where such a fluid leads to strong
singularities of barrel, cigar, pancake and point types, all strong singularities are absent in LQC
and the effective spacetime is geodesically complete. We also discuss the potential possibilities of
finite volume singularities which can lead to divergences in curvature invariants. These are possible
generalizations of sudden singularities in Bianchi-I models [43, 44]. We find that such singularities
are weak in nature, and geodesics can be extended beyond them.

12 Similar analysis can be carried out for time-like geodesics, and similar conclusions as reached in our analysis can
be obtained.
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A. Geodesic evolution in Bianchi-I spacetime

For the metric (2.1), the null geodesics obey,

(uα)′ + Γα
βδ u

βuδ = 0 , (4.1)

where the 4-velocities uα: uα = dxα/dτ , satisfy uαu
α = 0, and a ‘prime’ denotes derivative with

respect to the affine parameter τ . Computing the Christoffel symbols for the metric (2.1), a
straightforward calculation leads to the following equations:

x′′ = −2x′t′H1, y′′ = −2y′t′H2, z′′ = −2z′t′H3, t′′ = −a21H1 x
′2 − a22H2 y

′2 − a23H3 z
′2 (4.2)

and

x′ =
kx
a21

, y′ =
ky
a22

, z′ =
kz
a23

, t′ =

(

k2x
a21

+
k2y
a22

+
k2z
a23

)1/2

, (4.3)

where ki are constants. From these equations, one can analyze the geodesic extendibility. In
particular, one finds that the geodesic evolution breaks down at a finite value of the affine
parameter when any of the directional scale factors ai → 0 and/or the directional Hubble rates Hi

become infinite.

To analyze the fate of geodesics, we first consider the cases which are expected to arise in
most physical situations. These correspond to the scenarios where in classical evolution, energy
density, expansion and shear scalars diverge as the singularity is approached. From eqs.(3.1-
3.3), we see that such divergences cause curvature invariants to blow up. These cases have been
extensively studied for the perfect fluids [49–54]. In terms of the directional scale factors (and their
permutations), the resulting singularities are of the following types: (i) barrel, characterized by
a1 → finite value, a2, a3 → 0, (ii) cigar, where a1 → ∞, a2, a3 → 0, (iii) pancake, where a1 → 0,
a2, a3 → finite value, and (iv) point or isotropic, characterized by all scale factors vanishing. For
all these singularities, at least one of the scale factors and the physical volume vanishes at the
singularity. Since the directional Hubble rates diverge at these singularities in the classical theory,
eqs.(2.11, 2.12, 2.14) and eqs.(3.1-3.3), imply the divergence of ρ, θ, σ2 and the curvature invariants
in the classical theory. From eqs.(4.2) and (4.3), we find that the geodesic equations break down
at above singularities in the classical theory.

On the other hand, in LQC, for all such cases geodesic equations do not break down. Classical
singularities which occur such that ai → 0 and |Hi| → ∞ simultaneously, are forbidden in LQC.
Since Hi is bounded (eq.(2.22)), the scale factors at which above singularities occur are excluded
from the effective spacetime. To illustrate, in a typical evolution where a resolution of above
singularities occurs, one starts with an initial data which for the classical evolution leads to a
vanishing of a scale factor and a divergence of the corresponding directional Hubble rate in a
finite value of affine parameter. For concreteness, let these be a1 and H1 respectively, where
we assume H1 to be positive and increasing in the backward evolution towards the classical
singularity. Let us first note, that when the spacetime curvature is small (µ̄ici ≪ 1), effective
dynamical equations approximate the classical dynamical equations. This can be explicitly seen
by comparing the effective Hamiltonian constraint (2.15) with the classical Hamiltonian constraint
(2.4). In this regime, H1 in LQC approximates its counterpart in GR. However, as H1 becomes
large, spacetime curvature increases, and deviations between LQC and GR become significant.
Analysis of eq.(2.17) and (3.4) shows that depending on the values of µ̄ici in the evolution, H1

13



attains a maximum value in the Planck regime, and starts decreasing, subsequently vanishing
before becoming negative.13 This causes a turn around of the scale factor a1 in effective dynamics
and the singularity is avoided.14 Unlike GR, where H1 diverges and a1 approaches zero, effective
dynamical equations cause a turn around of a1 and the vanishing of a1 does not occur. Similar
conclusion holds, if more than one scale factors vanish at a classical singularity with associated
divergences in the directional Hubble rates. Thus, due to quantum gravitational modifications
encoded in effective dynamics, classical singularities accompanied by ai → 0 and a divergence in
Hi are avoided. Eqs.(4.2) and (4.3), then immediately imply that geodesic evolution in these cases
does not break down in the effective spacetime description of Bianchi-I spacetime in LQC.

Remark: In GR, divergence of ρ, Hi, θ and σ2 may not always occur at a vanishing physical vol-
ume. In isotropic models, singularities where ρ and isotropic Hubble rate diverge at non-vanishing
volume have been investigated recently (see for eg. [35, 41]. These are the big rip (occurring at
infinite volume) and big freeze (occurring at a finite non-zero volume) singularities, which are
geodesically inextendible events in GR. In isotropic spacetimes in LQC, such singularities have
been shown to be avoided due to the boundedness of Hubble rate in LQC [33, 36, 37, 42]. In the
effective dynamics, Hubble rate vanishes in the Planck regime and causes a turn-around of the
scale factor. This leads to a recollapse of the universe before scale factors at which above classical
singularities occur. Assuming that such singularities exist in Bianchi-I models in GR, these will
result in break down of geodesics in the classical theory due to divergences in the directional Hubble
rates. Since Hi are bounded in LQC, above singularities will be avoided in LQC in the same way
as singularities at vanishing scale factors (with associated divergence in Hi) are avoided. From
eqs. (4.2) and (4.3), we find that the geodesic equations will be well behaved for these cases in LQC.

So far we have discussed the cases of singularities where divergence in curvature scalars is
accompanied by a divergence in ρ, θ and σ2. For all such cases, we have found that geodesic
evolution does not break down in effective spacetime description of LQC. We now turn to the
cases where curvature invariants can diverge at a finite value of ρ, θ and σ2. Examples of such
singularities are not known in Bianchi-I models.15 Here we would assume that such possibilities
can arise in the physical evolution in LQC. From the previous section, we recall that curvature
invariants in LQC can diverge under following conditions: if the physical volume of the spacetime
approaches zero, and/or the pressure becomes infinite in magnitude. If these conditions are
satisfied for physical solutions of effective dynamics in LQC then following two contrasting
scenarios can arise:

(i) If in the physical evolution, curvature invariants diverge at a finite value of ρ, θ and σ2,
and a vanishing volume, (which implies that at least one of the scale factors ai vanishes) at a
finite value of the affine parameter, then geodesic equations (4.2) and (4.3) break down. If such
curvature invariant diverging events exist, then geodesic evolution is not complete.16

(ii) If in the physical evolution, pressure becomes infinite at a finite value of ρ, θ and σ2, and

13 For a pictorial illustration of this behavior in a model in effective dynamics in Bianchi-I spacetime, see Ref. [27]
(Fig. 4).

14 The situation is analogous to isotropic models in LQC, where in the backward evolution towards the big bang, a
bounce of the scale factor occurs after the Hubble rate attains its maximum value. For examples, see Ref. [34, 66].

15 In the anisotropic models in classical theory, such singularities occurring at finite scale factors have been investi-
gated in Bianchi-VII0 spacetime [44].

16 However, there may still be no physical singularity. An example being if the spacetime is maximally extendible.
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a non-vanishing values of the scale factors, and hence non-vanishing volume, then the geodesic
equations are well behaved. For these curvature invariant diverging events, geodesic evolution is
complete in the effective spacetime description of LQC. The behavior in this case is similar to the
case of pressure singularities occurring in isotropic models in LQC [33, 42, 48], where though for
an exotic choice of matter, curvature invariants diverge in the evolution, but the spacetime turns
out to be geodesically complete [33].17

To summarize this part, we find that irrespective of the choice of matter, geodesic evolution in
the effective spacetime description of Bianchi-I LQC is complete for all the cases except the isolated
case when physical evolution may allow divergence of curvature invariants at finite values of ρ, θ
and σ2 with at least one of the scale factors vanishing, at a finite value of the affine parameter. No
known classical singularities of Bianchi-I model satisfy the conditions for this isolated case, and at
this stage, its existence is only a potential possibility.

B. Strength of singularities

The strength of singularities can be determined using the necessary and sufficient conditions
obtained by Tipler [2] and Królak [3]. These conditions are used to classify the singularities as
strong and weak types, which provide insights on the magnitude of tidal forces experienced by an
in-falling detector (or an observer) towards the singularity [4]. According to the Królak’s criteria,
the conditions to determine the strength of the singularities are the following. If for a null geodesic,
the integral over Ricci curvature components,

∫ τ

0
dτ ′Rµν u

µuν (4.4)

or the integral over Weyl curvature components

∫ τ

0
dτ ′

(

∫ τ ′′

0
dτ ′′|Cαβµν u

βuν |
)2

(4.5)

diverges, then the singularity is considered to be strong. Else the singularity is weak. Tipler’s
conditions are similar to those of Królak, but involve an additional integral over the affine
parameter [4]. As an illustration of when a singularity is strong or weak, if in a physical evolution
Rαβu

αuβ is proportional to 1/τm and Cαβµνu
βuν is proportional to 1/τn, then a singularity is

strong curvature type by Królak’s criteria if m ≥ 1 or n ≥ 3/2. Similarly, a singularity is strong
following Tipler’s criteria if m or n ≥ 2. Thus, a singularity can be strong by Królak’s criteria,
yet it can be weak according to Tipler’s criteria. However, all singularities which are strong by
Tipler’s criteria are also strong by Królak’s criteria. Due to this reason, we will consider Królak’s
criteria to address the resolution of strong curvature singularities in our analysis.

To analyze the strength of potentially singular events in effective spacetime description of
LQC, we find the expressions for the integrands in the integrals (4.4) and (4.5). For the met-
ric (2.1), the only non-vanishing components of Ricci and Weyl tensors are Rii (i = 1..4) and
C1212, C1313, C1414, C2323, C2424, C3434 (and those obtained by symmetric and anti-symmetric trans-
formations on the indices, such as C2121, C2112 etc.). Using eq.(4.3) with the expression for the

17 Geodesics can be extended beyond such events even in GR [45].
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Ricci tensor components in terms of first and second order time derivatives of the directional scale
factors ai, one can obtain the integrand for (4.4) as

Rab u
aub =

k2x
a21

(

H1H2 +H1H3 −
ä2
a2

− ä3
a3

)

+
k2y
a22

(

H1H2 +H2H3 −
ä1
a1

− ä3
a3

)

+
k2z
a23

(

H3H1 +H2H3 −
ä1
a1

− ä2
a2

)

, (4.6)

where ki are constants obtained from the geodesic equation (4.3).

A similar calculation for the integrand of (4.5) yields,

Cabcd u
aub =

k2x
6a21

[

(1 + a21)

(

H1H2 +H1H3 − 2H2H3 +
ä2
a2

+
ä3
a3

− 2
ä1
a1

)

+ 3(a22 − a23)

(

ä3
a3

− ä2
a2

+H1H2 −H1H3

)

]

+
k2y
6a22

[

(1 + a22)

(

H2H3 +H1H2 − 2H1H3 +
ä1
a1

+
ä3
a3

− 2
ä2
a2

)

+ 3(a23 − a21)

(

H2H3 −H1H2 +
ä1
a1

− ä3
a3

)

]

+
k2z
a23

[

(1 + a23)

(

H2H3 +H1H3 − 2H1H2 +
ä1
a1

+
ä2
a2

− 2
ä3
a3

)

+ 3(a22 − a21)

(

ä1
a1

− ä2
a2

+H2H3 −H1H3

)

]

+
1

3

[(

kxky − kz

(

k2x
a21

+
k2y
a22

+
k2z
a23

))

(

H2H3 +H3H1 − 2H1H2 +
ä1
a1

+
ä2
a2

− 2
ä3
a3

)

+

(

kykz − kx

(

k2x
a21

+
k2y
a22

+
k2z
a23

))

(

H1H2 +H3H1 − 2H2H3 − 2
ä1
a1

+
ä2
a2

+
ä3
a3

)

+

(

kzkx − ky

(

k2x
a21

+
k2y
a22

+
k2z
a23

))

(

H2H3 +H1H2 − 2H3H1 +
ä1
a1

− 2
ä2
a2

+
ä3
a3

)

]

.

(4.7)

In order to determine whether a singularity is strong in effective spacetime description of LQC,
we substitute (4.6) and (4.7) in (4.4) and (4.5) respectively. Both of the above integrands, involve
quadratic terms in the directional Hubble rates, linear terms in äi/ai and terms with inverse scale
factors. Expressing äi/ai in terms of Hi and Ḣi, integration by parts of (4.4) and (4.5) yields
integrals with terms with directional Hubble rates and 1/a2i . Since, directional Hubble rates are
bounded functions (2.22), whether or not the integrals in Królak’s conditions diverge depend on
the behavior of 1/a2i terms. In particular, if in an evolution ai → 0 as the singularity is approached
in a finite value of affine parameter, then integrals (4.4) and (4.5) can diverge, leading to a strong
singularity à la Królak.

Let us determine the strength of those curvature invariant diverging events in LQC which occur
due to divergence in pressure at finite non-vanishing value of directional scale factors (or finite
volume). For such ‘pressure’ singularities, divergence of curvature invariants appears only due to
divergence in äi/ai terms. Since these terms are integrated over affine parameter at least once in the
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Królak’s conditions (and at least twice in the Tipler’s) conditions, they do not yield divergences of
the integrals (4.4) and (4.5). Pressure singularities occurring at a finite value of scale factors, thus,
turn out to be weak singularities in the effective spacetime description of Bianchi-I model in LQC.
This conclusion supplements the result obtained in the previous sub-section where we established
that for such singularities, geodesic evolution does not break down. Thus, these singularities are
harmless – they are weak in strength and do not forbid extension of geodesics. We recall that
the properties of pressure singularities occurring at finite scale factors are similar to the isotropic
models in LQC, where as for Bianchi-I model, they turn out to be weak and geodesically extendible
[33].

The only case where strength of the singular events in LQC can be strong is when at least one of
the scale factors vanishes at a finite value of ρ, θ and σ2 in the physical evolution at a finite value of
affine parameter. This is the identical condition for the isolated case of geodesic inextendibility for a
mathematically allowed possibility in effective dynamics of LQC found in Sec. IVA. If such an event
turns out to be physically realizable in effective dynamics of LQC, then one can explicitly compute
the integrals (4.4) and (4.5) and determine whether it corresponds to a strong or a weak singularity.

In conclusion, we find that those events which lead to a divergence in curvature invariants in
LQC are weak singularities if they occur due to divergence in pressure at non-vanishing scale factors.
If the divergence in curvature invariants is associated with vanishing of one more scale factors at
a finite energy density and expansion and shear scalars at a finite value of affine parameter, then
the singularity can be strong or weak. We emphasize that examples of events of latter type in GR
or LQC are not known, and this case may turn out to be physically not realizable.

C. Fate of geodesics and strong singularities: physical examples

We now discuss specific examples where the implications of modified loop quantum dynamics
on singularity resolution can be manifestly seen. We start with the case of a perfect fluid with an
the equation of state w > −1 and a vanishing anisotropic stress. Perfect fluids with different values
of w have been extensively studied in the Bianchi-I models in GR and in many situations analytical
solutions are also known [49–54]. Singularities in the classical theory, which are of barrel, cigar,
pancake and point like, are strong and geodesically inextendible events occurring at a vanishing
volume. We will show that in LQC, all these singularities are resolved. We then discuss aspects of
singularity resolution for potential curvature invariant divergent events in Bianchi-I model in LQC
which can arise for more general fluids satisfying a generalized equation of state P = P (ρ), which
in principle allow singularities other than those found for perfect fluids in GR. These would be
anisotropic generalization of big rip, big freeze and sudden singularities found in isotropic models
[35, 41, 43]. Since explicit examples of equations of state which lead to these singularities in Bianchi-
I model are not yet known, our discussion will only point out the general features of resolution of
such potential singularities.

1. Perfect fluid with w > −1

A perfect fluid with a vanishing anisotropic stress and a constant equation of state w = P/ρ
which is greater than -1 constitutes a large type of matter models which have been studied in
Bianchi-I spacetimes in GR, which include dust (w = 0), radiation (w = 1/3) and stiff matter (w =
1) [49–54]. In the effective dynamics of Bianchi-I model in LQC, quantum geometric modifications
do not influence the matter part of the Hamiltonian constraint, and the stress-energy tensor of the
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matter content satisfies the conservation law T µ
ν;µ = 0, where

Tµν = (ρ+ P )vµvν + Pgµν . (4.8)

The conservation law leads to

ρ̇+ (H1 +H2 +H3)(1 + w)ρ = 0 , (4.9)

which on integration gives,

ρ = C(a1a2a3)
−(1+w) (4.10)

where C is a constant determined by the initial conditions.
Let us recall some features of the classical evolution for the perfect fluids. For w > −1, energy

density diverges as the mean scale factor a = (a1a2a3)
1/3 approaches zero in a finite proper time.

At these events directional Hubble rates diverge, causing expansion and the shear scalar to become
infinite in GR. Due to these divergences, expressions for Ricci (3.1), Kretschmann (3.2) and the
square of the Weyl curvature (3.3) reveal that these curvature invariants grow unbounded as the
singularity in classical theory is reached. The singularity, depending on w and initial anisotropies
can be of the form of a barrel, cigar, pancake or a point [49–51]. Also, integrals (4.4, 4.5) to
determine the strength of singularities diverge and the singularities turn out to be strong. From
the geodesic equations (4.2) and (4.3), we find that at these events, geodesic evolution breaks
down. Thus, in classical GR, perfect fluids with w > −1 generically lead to physical singularities
in Bianchi-I model.

We now analyze the existence of above classical singularities in LQC. Since the conservation law
(4.9) is unmodified in LQC, the resulting proportionality of energy density with the scale factors,
turns out to be identical as in GR. However, unlike GR, where ρ can grow unboundedly as V → 0
for w > −1, it is bounded by a universal value in LQC. Using the upper bound on energy density
(2.26), eq.(4.10) yields,

C(a1a2a3)
−(1+w) ≤ 3

8πGγ2λ2
. (4.11)

This inequality implies that in a physical evolution, volume V = a1a2a3 never becomes smaller
than a minimum value given by,

Vmin =

(

8πGγ2λ2C

3

)

1

1+w

. (4.12)

Given that P = wρ, the bound on energy density also leads to a bound on the pressure of the
perfect fluid: Pmax = wρmax ≈ 0.41wρPl. Recall that in Sec. III we showed that the curvature
invariants in LQC can diverge only if the physical volume vanishes or the pressure of the matter
content diverges. Using above results in eqs.(3.6, 3.7) and (3.9), we find that for a perfect fluid
with a finite equation of state w > −1, Ricci and Kretschmann scalars and the square of the Weyl
curvature are always bounded in LQC.

The existence of a minimum volume (4.12) in LQC, leads to another important implication.
Note that all the classical singularities for a perfect fluid with w > −1, whether they are barrel,
cigar, pancake or point like, occur at a vanishing physical volume [49–54]. Irrespective of the
geometry of the singularity, a non-vanishing physical volume implies that the values of the scale
factors where these singularities occur in GR are excluded by the effective dynamics in LQC.
Along with the bounds on the directional Hubble rates, Hi max = 3/(2γλ) obtained from (2.17),
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this ensures that the geodesic equations (4.2) & (4.3) remain well defined in LQC. Thus, for a

perfect fluid with w > −1 geodesic evolution never breaks down in LQC. This result is in sharp
contrast to the behavior of geodesics for perfect fluids with w > −1 in GR, where irrespective of
the choice of w or initial conditions, classical spacetime is geodesically incomplete.

Finally, let us consider the integrands (4.6) and (4.7). Since the vanishing of the scale factors
ai in the effective dynamics of LQC is ruled out for perfect fluid with w > −1 and the directional
Hubble rates are bounded, these integrands can only diverge if äi/ai become infinite. However,
eqs.(3.4) (and similar equations for ä2/a2 and ä3/a3) imply that for a non-vanishing volume and
finite pressure, äi/ai are always bounded in LQC. Therefore, the integrands (4.6) and (4.7) are
always bounded. The integrals (4.4) and (4.5) over these integrands are thus finite for any finite
range of integration. Hence Królak and Tipler’s conditions for the existence of strong singularities
fail to be satisfied. We thus conclude that for a perfect fluid with w > −1, geodesic evolution is
well defined for all times in LQC and there is neither a divergence of curvature invariants nor any
strong singularities in the effective spacetime.

2. Potential exotic singularities

For a perfect fluid with w > −1, singularities in classical theory occur when physical volume
vanish. However, if we consider a fluid with a generalized equation of state, singularities at
finite volume are potentially possible.18 These singularities come in variety of forms and have
been classified depending on the properties of Hubble rate, ä/a and higher order time derivatives
[67–69]. Since the Królak’s and Tipler’s conditions require at least the second time derivative
of scale factor to diverge in order for a singularity to be potentially strong, we will restrict our
discussion to only such events, i.e. to big rip, big freeze and sudden singularities. In the following,
we assume that generalization of these singularities exist in the Bianchi-I spacetime in GR and
discuss the effects of loop quantization on them. As in the previous section, we assume a fluid
with a vanishing anisotropic stress.

(i) Big rip singularities: In isotropic models in GR, this singularity occurs when the scale
factor diverges with a divergence in energy density and Hubble rate. In LQC, for isotropic
models, these singularities have been shown to be absent [33, 36, 37, 42]. Its generalization in
Bianchi-I spacetime would involve a divergence of at least one of the scale factors, directional
Hubble rate and energy density, causing θ and σ2 to become infinite. Due to these divergences,
integrals (4.4) and (4.5) would diverge, and these singularities will be strong curvature type
in GR (à la Królak’s criteria). Analysis of geodesic equations (4.2,4.3) shows that they would
break down in the classical theory, due to divergence in directional Hubble rates. On the
other hand, in the effective dynamics of LQC, energy density and directional Hubble rates are
bounded, and hence the scale factors at which these divergences occur will be excluded from
the effective spacetime. Thus, big rip singularities of Bianchi-I models in GR will be absent in LQC.

(ii) Sudden singularities: These singularities occur at a finite value of scale factor, energy density
and Hubble rate but a divergent pressure in isotropic models [43]. In the anisotropic setting, a
sudden singularity would occur under similar conditions: a divergence in pressure at a finite value
of the mean scale factor and energy density. From eq.(3.4) we find that this divergence would cause
äi/ai to blow up, resulting in curvature invariants (3.6-3.9) to become infinite. Since these singu-

18 For examples of models, in isotropic spacetimes in GR, where such generalized equations of state have been
extensively studied, we refer the reader to Ref. [35, 41, 43, 67–69].
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larities would occur at finite ai > 0 and with a divergence only in the pressure, analysis of Sec. IVB
shows that these will be weak singularities, both in GR as well as LQC. Analysis of geodesic equa-
tions (4.2) and (4.3) shows that as in the isotropic case, these events will be geodesically extendible.

(iii) Big freeze singularities: These singularities share the properties of big rip and sudden singu-
larities. In isotropic models, these occur at a finite scale factor but with a divergence in energy
density and Hubble rate. They are strong and geodesically inextendible in GR. In LQC, such
singularities have been shown to be forbidden in isotropic models [33, 42]. Their fate in Bianchi-I
models will be similar. Due to bounds on directional Hubble rates and expansion scalar (2.17) and
(2.23), effective dynamics would cause a turn-around of scale factors before the classical singularity
could be reached, and these singularities would be avoided.

In summary, if we allow generalizations of big rip, sudden and big freeze singularities in Bianchi-
I spacetime in GR, then of these only sudden singularities are the ones that are not excluded in the
effective spacetime description of LQC. Though at these events, curvature invariants in effective
spacetime description of LQC diverge, these turn be weak singularities beyond which geodesics can
be extended.

V. SUMMARY

It is widely believed that a viable theory of quantum gravity must address the way space-like
singularities of the GR are overcome. An important issue is whether such a theory resolves all

space-like singularities, in particular those beyond which geodesics in classical theory can not be
extended, and which are strong by strength.19 The goal of this work, is to take a first step in
answering this question for the loop quantization of Bianchi-I model. In recent years, resolution
of big bang/crunch singularities has been successfully demonstrated in LQC for different models,
and detailed analytical, phenomenological and numerical aspects of the quantum theory of various
cosmological spacetimes have been studied. An effective spacetime description of the underlying
quantum theory has also been derived, using geometrical formulation of quantum mechanics [38].
It is based on an effective Hamiltonian [61–63], whose resulting dynamics turns out to have an
excellent agreement with the quantum evolution in isotropic and anisotropic models [10–12, 14, 19,
40]. Effective dynamics has been extensively used to extract various novel physical predictions in
LQC (see Sec. V of Ref. [8] for a review). These developments in LQC, set the stage to investigate
the issue of generic resolution of strong singularities in Bianchi-I models.

To understand the general nature of singularity resolution, key properties of curvature invari-
ants, geodesic equations and strength of any singular events need to be analyzed. These were
investigated in this work, assuming the validity of effective spacetime description, and for matter
with a vanishing anisotropic stress. Using effective dynamics of Bianchi-I model, it has been earlier
shown that for generic matter, energy density (ρ) and directional Hubble rates (Hi) are bounded
by universal values. The latter lead to bounds on expansion (θ) and shear (σ2) scalars of geodesic
congruences in the effective spacetime [27, 31, 32]. These bounds are direct ramifications of the
underlying quantum geometry in LQC. Our results on the properties of curvature invariants show
that though quantum geometric effects bind them in many cases of physical interest, interestingly,
they can in principle diverge. Thus, the bounds on ρ, θ and σ2 do not guarantee the boundedness
of curvature invariants. We show that curvature invariants are bounded in Bianchi-I model in

19 Questions about the resolution of other singularities can also be raised in quantum gravity. As an example, it has
been argued that a viable theory of quantum gravity should not resolve a certain class of time-like singularities
[70].
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LQC except if in the physical evolution, pressure becomes infinite and/or the volume vanishes.
Since these conditions must be satisfied at a finite value of ρ, θ and σ2, divergences of curvature
invariants occur under very special conditions. In isotropic models, for a generalized equation of
state, divergence in pressure at finite scale factor and energy density results in a sudden singularity
which is weak and a geodesically extendible event in classical theory as well as LQC [33]. General-
ization of these singularities in Bianchi-I models, satisfy the conditions for divergence in curvature
invariants in LQC. However, unlike pressure singularities, examples of potential singularities which
may occur at vanishing volume with a finite energy density and expansion and shear scalars are
not known.

Existence of events where curvature invariants can potentially diverge, does not necessarily im-
ply existence of a strong singularity or geodesic inextendibility. We show that this turns out to
be true in the Bianchi-I model in LQC. Analysis of the (null) geodesic equations in the effective
spacetime reveals that geodesic evolution remains well defined for events where curvature invari-
ants diverge due to pressure becoming infinite at finite scale factors. Such singularities also turn
out to be weak, and thus are harmless. These curvature invariant divergent events, thus do not
lead to physical singularities in LQC. Only when the divergence in curvature invariants occurs
at a vanishing volume with a finite value of energy density, and expansion and shear scalars, at
a finite value of affine parameter, can the geodesic equations in effective spacetime of Bianchi-I
model in LQC break down. None of the known classical singularities of Bianchi-I models, satisfies
this condition. At this stage, this isolated case is only a potential possibility which may not be
physically realized in the effective dynamics. Assuming that such a curvature invariant diverging
event is allowed by physical solutions, the resulting singularity may be strong or weak, depending
on the details of the dynamical evolution. To understand the existence of such a potential sin-
gularity, it will be important to understand the validity of effective spacetime description when
scale factors approach zero. If effective dynamics gets additional corrections at small scale factors,
above potentially curvature invariant diverging event may be ruled out.20 It is important to note
that such a singularity does not arise for matter which obeys positive energy conditions. Hence, it
is also possible that such a potential singularity is realized for unphysical conditions for matter in
the effective dynamics, which may be restricted by the quantum theory.

These results stand in sharp distinction to the ones in the classical theory where Bianchi-I
models generically lead to strong singularities and the spacetime is geodesically incomplete. To
illustrate this, we consider a perfect fluid with equation of state w > −1. In classical theory, this
choice leads to barrel, cigar, pancake and point singularities which are strong and geodesically
inextendible [1, 49–54]. In contrast, we show that all these singularities are resolved in LQC.
Curvature invariants turn out to be bounded and geodesic evolution never breaks down for perfect
fluid with w > −1 in LQC. We also discussed the potential generalizations of big rip, sudden and big
freeze singularities in Bianchi-I spacetime. Analysis of the general features of these singularities
using effective dynamics of Bianchi-I model shows that big rip and big freeze singularities are
resolved by quantum geometric effects, whereas sudden singularities turn out to be of weak strength.
As discussed above, these will correspond to pressure singularities in Bianchi-I LQC where curvature
invariants diverge. However, geodesics are extendible beyond them.

Analysis in this work generalizes the one for the spatially flat isotropic models in LQC performed
earlier [33]. There we found that all strong singularities were resolved and the effective spacetime
turned out to be geodesically complete. Analysis of the effective dynamics for k = ±1 model,
suggests the same result for spatially curved models [42]. We have now shown that similar results

20 If the topology is considered compact, terms originating from inverse scale factor corrections in loop quantization
(see Ref. [8] for details), would also potentially play an important role in this regime.
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appear in the presence of non-vanishing Weyl curvature. To understand the physical implications
of our analysis in more detail, it is important to include the cosmological constant and matter with
equation of state w < −1. It is also important to study the implications for the vacuum Bianchi-I
model where the singularities result only from the divergence in Weyl curvature. Though these
can be considered as a straightforward generalization of our analysis, given the rich structure of
singularities in classical Bianchi-I model, important subtleties can not be ruled out. Further, our
analysis assumed matter with a vanishing anisotropic stress. In future work, this assumption will
be relaxed. Though we do not expect a qualitative change of results, presence of matter with a
non-vanishing anisotropic stress is expected to enrich the phenomenological implications.

The genericity of these results on singularity resolution, achieved earlier for isotropic models
[33, 42] and here for Bianchi-I model, suggest existence of a non-singularity theorem in quantum
gravity analogous to the singularity theorems in classical theory. Though these works can regarded
as a first steps towards realizing such a non-singularity theorem, in future works, several steps need
to be carefully and systematically taken as we consider more complex models to understand the
underlying conditions of such a theorem. Some insights on these conditions arise from the recent
work on detailed contrasts on physics of anisotropic models performed in Ref. [31]. There it was
found that inclusion of spatial curvature in anisotropic setting, as in the case of quantization of
Bianchi-II and Bianchi-IX models done in Refs.[23, 24], reveals two interesting features. First of
these is the non-trivial role of energy conditions, and second is the role of inverse triad (or volume)
corrections (in spatially curved models) on the physics of singularity resolution. Both of these
features are expected to play an important role in proving such a theorem. These observations also
make our expectations on genericness of non-singularity results stronger. First, it is well understood
in LQC (see for eg. Ref. [71]), that inverse volume modifications for model with positive curvature
help the singularity resolution.21. Thus, we expect that with modifications coming from both the
holonomies yielding trignometric functions in the Hamiltonian constraint and the inverse triad
effects, singularity resolution results would strengthen. Second, even in GR, singularity theorems
are proved by demanding that matter satisfies certain energy conditions. Energy conditions can
weed out unphysical solutions, such as those which violate weak energy conditions. Thus, inclusion
of energy conditions which restrict unphysical matter is expected to bring us closer to prove a
non-singularity theorem on similar lines as the singularity theorems in the classical theory.

Next steps in the above direction to prove genericity of singularity resolution would require
going beyond the effective spacetime description, and the inclusion of inhomogeneities. For the
first step, one will require a derivation of these results in full loop quantization. Though techniques
exist to address these issues at the quantum theory level for some matter, these would require
extensions to arbitrary matter or with certain energy conditions (such as the weak energy condi-
tion) to prove genericity of singularity resolution. So far little work has been done on the inclusion
of inhomogeneities in loop quantization of symmetric models, though useful insights have been
gained by treating inhomogeneities à la Fock quantization methods [64]. Such a hybrid method,
suggests resolution of singularities in a qualitatively similar fashion as in isotropic and anisotropic
spacetimes in LQC. In future work, it will be important to understand various aspects of singu-
larity resolution in such hybrid methods for arbitrary matter, both at the effective spacetime and
quantum theory levels. Perhaps the most challenging step would then be to understand the full
loop quantization of inhomogeneous spacetimes. In this direction, important insights are expected
to arise by carrying forward works attempting to link LQG with LQC [73, 74], and also by under-
standing detailed physics of incorporation of inhomogenities in LQG using spinfoam methods [75].

21 In fact, it is possible to obtain bounce in k = 1 model with inverse volume modifications, even if holonomy
modifications are not considered (see for eg. [72])
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Given the nascent stage of results on inclusion of inhomogenities in LQC and relation with LQG,
at this stage, one can only speculate about the possible roadblocks on the road to prove a non-
singularity theorem. On general grounds, we expect one of these to be related with the difficulties
in expressing holonomies as almost periodic functions of connection, which can make analysis of
the physics of singularity resolution more involved. Fortunately, quantization of Bianchi-II [23] and
Bianchi-IX spacetimes [24], performed without the feature of almost periodicity, and the resulting
analysis of new physics [31], provide important hints to proceed in such a situation. It is hoped that
future work on symmetry reduced models and on inclusion of inhomogeneities, on the lines of the
analysis performed here, will provide vital clues and a deeper understanding on this fundamental
issue in quantum gravity.
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