Kondo effect in a topological insulator quantum dot

Xianhao Xin and Di Zhou
Phys. Rev. B 91, 165120 – Published 17 April 2015

Abstract

We investigate theoretically the nonequilibrium transport properties of a topological insulator quantum dot (TIQD) in the Coulomb blockade and Kondo regime. An Anderson impurity model is applied to a TIQD system coupled to two external leads, and we show that the model realizes the spin-orbital Kondo effect at the Dirac point where the edge states are not split by a finite-size effect, leading to an additional SU(4) symmetry because of the presence of strong mixture among four internal degrees of freedom. In a more realistic situation where the degeneracy is lifted due to the finite-size effect, we demonstrate that there is a richer structure in transport measurements. We illustrate a continuous crossover from four (spin and orbital) Coulomb peaks with large interpair spacing and small intrapair spacing to a double-peak structure in the local density of states (LDOS) as increasing the hybridization strength Γ within the Coulomb blockade regime. When temperature falls below the Kondo temperature TK, four Kondo peaks show up in the nonequilibrium LDOS. Two of them are located at the chemical potential of each lead, and the other two are shifted away from the chemical potential by an amount proportional to the TIQD's bare energy level, leading to a triple-peak structure in the differential conductance when a bias voltage is applied.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 October 2014
  • Revised 2 March 2015

DOI:https://doi.org/10.1103/PhysRevB.91.165120

©2015 American Physical Society

Authors & Affiliations

Xianhao Xin and Di Zhou

  • Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 16 — 15 April 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×