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We investigate the non-equilibrium transport properties of a topological insulator quantum dot
(TIQD) in the Coulomb blockade and Kondo regime theoretically. An Anderson impurity model is
applied to a TIQD system coupled to two external leads, and we show that the model realizes the
spin-orbital Kondo effect at Dirac point where the edge states are not split by a finite-size effect,
leading to an additional SU(4) symmetry because of the presence of strong mixture among four
internal degrees of freedom. In a more realistic situation where the degeneracy is lifted due to the
finite-size effect, we demonstrate that there is a richer structure in transport measurements. We
illustrate a continuous crossover from four (spin and orbital) Coulomb peaks with large inter-pair
spacing and small intra-pair spacing to a double-peak structure in the local density of states (LDOS)
as increasing the hybridization strength Γ within the Coulomb blockade regime. When temperature
falls below the Kondo temperature TK , four Kondo peaks show up in the non-equilibrium LDOS.
Two of them are located at the chemical potential of each lead, and the other two are shift away
from the chemical potential by the amount proportional to the TIQD’s bare energy level, leading
to a triple-peak structure in the differential conductance when a bias voltage is applied.

PACS numbers: 72.15.Qm, 73.20.-r, 73.23.-b, 73.63.Kv

I. INTRODUCTION

The study of transport properties in quantum dot
(QD) systems is one of the fundamental paradigms of
mesoscopic condensed matter physics. Compared to con-
ventional condensed matter systems, the QD provides a
controllable circumstance to investigate the strong cor-
related physics such as Kondo effect. The conventional
Kondo effect requires the presence of a magnetic impurity
in the bulk of material. However the localized electron
within a QD behaves like a quantum impurity with spin
1/2. It enables many studies of Kondo effect in QD sys-
tems. At low temperatures, a spin singlet state is formed
between the localized electrons in a QD and the con-
duction electrons from external leads at the Fermi level.
Hence QD systems exhibit the Kondo effect at the tem-
peratures below the Kondo temperature TK .1 The spin
of localized electrons is strongly correlated with conduc-
tion electrons and are screened accordingly. The compe-
tition between Coulomb interaction and band hybridiza-
tion plays an important role to produce the Kondo ef-
fect. The Anderson’s impurity model provides an excel-
lent description of Kondo physics at low temperatures.2

One of the most remarkable features of Kondo effect is
the emergence of a Kondo resonance at the Fermi level
in the LDOS. As a result, the theory predicts a zero-
bias peak in the differential conductance.3,4 Kondo effect
and its related transport properties have been observed
experimentally in many QD systems.5–9

Recent development in nano-fabrication techniques al-
lows controllable studies of Kondo physics in more com-
plex coupled QD systems as well as carbon nanotube
quantum dot (CNQD) systems. For double quantum dot
(DQD) devices, spin degrees of freedom within each dot
and orbital degrees of freedom crossing two dots are cou-
pled each other, leading to a realization of so-called spin-

orbital Kondo effect. The orbital degrees of freedom in
DQDs play the role of psuedospin in addition to the spin
degrees of freedom. Similarly, the orbital degrees of free-
dom in CNQD systems correspond to the clockwise and
counterclockwise wrapping modes in CNQDs. It is the
quantum fluctuations among QD’s four internal degrees
of freedom that result in the spin-orbital Kondo effect.
The spin-orbital Kondo effect has been investigated in
great amount in CNQDs,10–25vertical quantum dots,26

grain-dot systems,27,28 and parallel quantum dots.29–43

Compared with the conventional Kondo effect, in which
only spin degrees of freedom are involved, the spin-orbital
Kondo effect is characterized by the intra-dot and inter-
dot interactions in DQD systems. The intra-dot inter-
action is determined by usual spin Kondo correlation,
while the inter-dot interaction is associated with the on-
site Coulomb interaction between two QDs. A SU(4)
Kondo state with entangled spin and orbital degrees of
freedom emerges when intra-dot interaction is fine-tuned
to be inter-dot interaction. One of the technical obstruc-
tions to observe the SU(4) spin-orbital Kondo effect in
DQD systems is because of the difficulty of fine-tuning
intra- and inter-dot interactions symmetrically. These
two on-site interactions are not directly measurable phys-
ical quantities within our knowledge. They can only be
inferred through fitting experimental data to some theo-
retical formulas, thereby it makes the symmetrical con-
trol even worse experimentally. CNQD systems face the
similar obstacles since there is no guarantee that the on-
site Coulomb interactions between spin degrees of free-
dom should be identical to those between wrapping (or-
bital) modes. A fine-tuning among experimental parame-
ters is required in order to realize the SU(4) Kondo effect
in DQD systems as well as CNQD systems.

Because of the requirement of fine-tuning in DQD sys-
tems as well as CNQD systems, we propose another way
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to realize the spin-orbital Kondo effect based on one QD
made by a topological insulator (TI). TIs have nontriv-
ial bulk band topology with the presence of peculiar
metallic states on their surfaces. These surface states
are protected by time-reversal symmetry, hence are sta-
ble against any time-reversal invariant perturbation. The
back scattering, which requires an electron to flip its spin,
is strictly prohibited due to the presence of time-reversal
symmetry. Gapless surface states can be described by a
massless Dirac equation, where spin and momentum are
locked together.44–48 The electrical conductance due to
time-reversal symmetry protected edge states was mea-
sured in a quantum well structure of HgTe/CdTe, show-
ing a signature of the existence of quantum spin Hall
insulators (two dimensional TIs).49 The experimental re-
alizations of three dimensional TIs’ symmetry protected
surface states were also observed afterwards in mate-
rials such as Bi2Se3 and Bi2Te3 using angle-resolved
photoemission spectroscopy (ARPES).50–52 In addition,
there are many other researches studying the quantum
effect induced by magnetic impurities on the surface of
TIs.53–58 However the study of Kondo effect in TIQDs
is still sparse. Because of the intrinsic spin-orbital lock-
ing feature existed in TI materials, a TIQD is a nat-
ural candidate to realize the spin-orbital Kondo effect.
One of the advantages of using such devices is that it
can avoid the possible fine-tuning between intra-dot and
inter-dot Coulomb repulsive interactions as usually re-
quired by conventional DQD systems as well as CNQD
systems. We highlight the fact that SU(4) Kondo physics
can be probed in such a setup, eliminating the obstacle
faced by DQD and CNQD systems. Recent successful
fabrication of the QD made by Bi2Se3 makes the study
of the spin-orbital Kondo effect in TIQDs more promising
in the future.59

This article is organized as follows. In Sec. II, we intro-
duce the model starting from an Anderson-type Hamilto-
nian. We demonstrate that the effective Anderson Hamil-
tonian exhibits SU(4) Kondo features at Dirac point due
to strong entanglement between spin degrees of freedom
and orbital degrees of freedom. In Sec. III, the LDOS
based on the non-equilibrium Green’s function method
is calculated in the mean-field regime, Coulomb blockage
regime, and Kondo regime respectively. In the Kondo
regime, a triple-peak structure in the differential conduc-
tance is also shown in Sec. III. Main results are then
summarized in Sec. IV. Some detailed calculations of
the non-equilibrium Green’s functions are presented in
appendices.

II. MODEL HAMILTONIAN

We consider a QD formed in a thin circular TI slab
as depicted schematically in Fig. 1. The dot is coupled
to two external leads symmetrically. A gate voltage is
applied to the system so that only the energy levels near
Dirac point contribute to transport through the TIQD.

FIG. 1: Sketch of a TIQD attached to two external leads.
The geometry of the TIQD is a thin circular slab. The gate
voltage VG adjusts the energy levels so that only those levels
near Dirac point contribute to the transport properties of the
TIQD. The biased voltage eV is controlled by the difference
between left and right leads’ chemical potential: eV = µL −
µR.

A full model Hamiltonian can be written as

H = Hdot +Hcol +Hl +Ht. (1)

The first term, Hdot, describes the electrons’ edge
states in a TIQD. It has been shown that the edge states
of a disk-shaped TIQD can be characterized as mass-
less Dirac fermions.60 These edge states are fully spin-
polarized and exhibit so-called spin-angular momentum
locking: spin-up electrons rotate clockwise, while spin-
down electrons rotate counterclockwise. The similar con-
clusion can also be applied to a three-dimensional TIQD,
where its surface states can be approximated by Dirac
equations with spin connection.61,62 Therefore the low
energy spectrum of a circular shaped TIQD is linear
against the angular momentum quantum number m, and
the low energy edge states are described by a four-band
effective Hamiltonian in basis | ↑ +〉, | ↑ −〉, | ↓ +〉, and
| ↓ −〉. The effective Hamiltonian then reads

Hdot =
∑

m,
σ=↑,↓,
τ=+,−

c†m,στH (m)στ,σ′τ ′cm,σ′τ ′ ,

where

H (m) =

(

A~vF kFmσx ∆I

∆∗
I −A~vFkFmσx

)

, (2)

in which A is a dimensionless constant of order 1, vF is
the Fermi velocity, kF is the Fermi wave-vector and m is
the angular momentum quantum number.
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Here c†m,στ (cm,στ ) creates (annihilates) a localized
electron with angular momentum m and spin σ = {↑, ↓}
on either top (τ = {+}) or bottom (τ = {−}) side of the
TIQD. ∆ is a finite size energy gap produced by the cou-
pling between the top and bottom edge states. The ge-
ometry of the TIQD considered in this paper is a circular
thin slab with thickness L. In this case, the level spacing
of the edge states would be dominated by the size of the
TI slab, while the finite size gap ∆ decays in an exponen-
tial law of the thickness L.63 It is the quantum fluctua-
tions among four internal channels: {↑ +, ↓ +, ↑ −, ↓ −}
that lead to an unusual strongly correlated Fermi liquid
behavior.
Hamiltonian (2) can be diagonalized with eigenvalues

E± = ±
√

A2~2v2F k
2
Fm

2 + |∆|2 by introducing a new set
of basis states:

cα =
∑

στ

Uα,στ cστ , α = 1, 2, 3, 4; (3)

στ =↑ +, ↓ +, ↑ −, ↓ − ,

where matrix U is defined as

U =
1√
2









sin Ω
2 cos Ω

2 −eiφ sin Ω
2 eiφ cos Ω

2
cos Ω

2 sin Ω
2 eiφ cos Ω

2 −eiφ sin Ω
2

− cos Ω
2 sin Ω

2 eiφ cos Ω
2 eiφ sin Ω

2
sin Ω

2 − cos Ω
2 eiφ sin Ω

2 eiφ cos Ω
2









.

The parameters in matrix U are defined as eiφ = ∆
|∆| ,

sinΩ = A~vF kFm
E+

and cosΩ = |∆|
E+

. Then Eq. (2) can be

rewritten in terms of the new basis vectors {cα}s as

Hdot =
∑

m

∑

α

ǫα(m)c†αcα, (4)

where ǫ1 = ǫ2 = E+ and ǫ3 = ǫ4 = E−. We have to
point out that Hamiltonian (4) has four-fold degeneracy
at Dirac point when ∆ = 0. In practice, this four-fold de-
generacy nearly retains even if ∆ 6= 0 provided ∆ is much
smaller than all other energy scales, such as temperature.
This is an important aspect to realize the SU(4) Kondo
effect.
The second term, Hcol, represents the on-site Coulomb

repulsive interaction between the localized electrons in
the TIQD. The strength of repulsive interaction is char-
acterized by a Coulomb integral2

Uαα′ =

∫

|Ψα(r1)|2e2|r12|−1|Ψα′(r2)|2dr1dr2, (5)

where Ψα ≡ c†α |0〉 is the eigenfunction of Hamilto-
nian (2). The Coulomb repulsive interaction strength,
Uαα′ , is approximately proportional to the inverse of the
slab’s thickness L.
Furthermore, we notice that the density distributions

of Ψα are related to the density distributions of edge
states’ wave-functions through the relations:

|Ψ1,4|
2 =

1

2

(

sin2 Ω

2

(

|Ψ↑+|2 + |Ψ↑−|2
)

+ cos2
Ω

2

(

|Ψ↓+|2 + |Ψ↓−|2
)

)

|Ψ2,3|
2 =

1

2

(

cos2
Ω

2

(

|Ψ↑+|2 + |Ψ↑−|2
)

+ sin2 Ω

2

(

|Ψ↓+|2 + |Ψ↓−|2
)

)

.

Since the top and bottom edge states’ wave-functions
Ψ↓± are related by means of the time-reversal operation:
Ψ↓± = ΘΨ↑∓, we find that the density distributions of
Ψα equally mix the density distributions of both top and
bottom edge states:

|Ψα|2 =
1

2
|Ψ+|2 +

1

2
|Ψ−|2, α = 1, 2, 3, 4, (6)

where |Ψ±|2 ≡ |Ψ↑±|2 = |Ψ↓±|2 because of the presence
of time-reversal symmetry in the TIQD system. This
implies that all four internal states must have the same
Coulomb integrals: Uαα′ = U . Formally, an exchange
and correlation term can be written as

1

2
U

(

∑

α

nα

)(

∑

α

nα

)

− 1

2
U

(

∑

α

nαnα

)

,

where nα = c†αcα and we have subtracted the contri-
bution due to self-correlation. Therefore Hcol can be
schematized as

Hcol = U
∑

α<α′

nαnα′ , (7)

where the on-site Coulomb integral Uαα′ is independent
of all internal degrees of freedom. This is the key to
realize SU(4) symmetry in the TIQD system without
the requirement of fine-tuning. Moreover, we notice
that Hamiltonian (7) is time-reversal invariant, thus the
single-particle edge states remain intact even in the pres-
ence of large on-site Coulomb repulsive interactions.
The third term, Hl, describes the unperturbed states

of conduction electrons from left or right reservoir:

Hl =
∑

τ=1,2
σ=↑,↓

∑

k∈L,R

ǫkc
†
k,τ,σck,τ,σ, (8)

where ǫk is the energy spectrum of conduction electrons
with momentum k, L/R represents left or right lead, and

c†k,τ,σ(ck,τ,σ) creates (annihilates) a conduction electron
with spin σ in channel τ . Without loss of generality,
we assume that there are two distinguished groups of
channels τ = 1, 2 in left/right leads. Since the energy
spectrum ǫk is independent of the spin index σ as well
as the artificial orbital index τ , Eq. (8) remains diagonal
after rotating the basis vectors within the spin-orbital σ-
τ subspace. Therefore one can rewrite Eq. (8) in terms
of a new set of basis states {|α〉}s under the transforma-
tion (3) as

Hl =
∑

α,k∈L,R

ǫkc
†
kαckα. (9)

We make a further assumption that the conduction
bands of both two external leads are flat with band
width 2W . The corresponding LDOS is then given by
ρ̃(ǫ) = ρ̃0 = 1/(2W ). This assumption is made just for
simplicity and can be easily released. One can verify that
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a reasonable energy variation of ρ̃(ǫ) does not change the
results qualitatively.
The fourth part of Eq. (1) is a hybridization term,

which is described as

Ht =
∑

α,k∈L,R

(

Vkαc
†
αckα +H.c.

)

. (10)

Thus we conclude that the model Hamiltonian describ-
ing a TIQD coupled to two external leads can be written
as

H =
∑

α,k∈L,R

ǫkc
†
kαckα +

∑

m

∑

α

ǫα(m)c†αcα (11)

+U
∑

α<α′

nαnα′ +
∑

α,k∈L,R

(

Vkαc
†
αckα +H.c.

)

.

Since we are only interested in the temperature scales
that are much smaller than the average level spacing of
a TIQD, we consider the case that the angular momen-
tum quantum number m takes only one single value in
the second term of Eq. (11). The method we discuss in
this paper can be readily extended to multiple-m value
cases. We conclude that full Hamiltonian (11) realizes
the spin-orbital Kondo effect because of the existence
of strong mixing among the TIQD’s four internal chan-
nels. The spin-orbital Kondo effect in the TIQD system
is characterized by a constant Coulomb repulsive inter-
action strength U . In an idealized situation where all
four internal states are energetically degenerate at Dirac
point, the TIQD exhibits an additional SU(4) symmetry
and the spin-orbital Kondo effect emerges. On the other
hand, in general, the four-fold degeneracy can be lifted
by a finite size effect, leading to a triple-peak structure
in the differential conductance within the Kondo regime
as shown in the following.

III. NON-EQUILIBRIUM GREEN’S FUNCTION

METHOD

We consider a problem involving a TIQD coupled to
two external leads. A non-equilibrium Green’s function
is constructed through the equations-of-motion (EOM)
method.4,64,65 In the Heisenberg representation, the
time-evolution of a Heisenberg operator is determined
by its commutator with the corresponding Hamiltonian.
This is the essence of the EOM method. Two coupled
equations describing the equations of motion governed
by Hamiltonian (11) are obtained as

i~
∂

∂t
cα = ǫαcα +

∑

k∈L,R

Vkαckα +
∑

α′ 6=α

Uc†α′cα′cα,

i~
∂

∂t
ckα = (ǫk − iη)ckα + V ∗

kαcα + Skα, (12)

where a source term Skα is added into the second term
of Eqs. (12) ad hoc. The solution of the second equation

in Eqs. (12) reads

ckα = c
(0)
kα +

∫ +∞

−∞

dt′V ∗
kαGkα(t− t′)cα(t

′), (13)

where Gkα(t − t′) = 1
i~θ(t − t′)e−

i
~
(ǫk−iη)(t−t′), which

is the Green’s function for the operator Lkα = i~ ∂
∂t −

(ǫk − iη), and Lkαc
(0)
kα = Skα. Plugging Eq. (13) into the

first equation of Eqs. (12) and performing the Fourier
transformation on the result, we obtain

(

ω − ǫα − Σ(0)
α (ω)

)

cα = Sα +
∑

α′ 6=α

UF{c†α′cα′cα}(ω),

(14)

where Sα =
∑

k∈L,R Vkαc
(0)
kα , Σ

(0)
α (ω) =

∑

k∈L,R
|Vkα|2

ω−ǫk+iη

and F{c†α′cα′cα}(ω) represents the Fourier transform of

the triple-product operator c†α′(t)cα′(t)cα(t). Eq. (14)
can be solved approximately by closing it up to a certain
order, which generates the Green’s function correspond-
ing to that order.

A. Mean Field Approximation

The simplest way to close Eq. (14) is the mean field

approximation: {c†α′cα′cα}(ω) ≈ 〈nα′〉cα(ω). Therefore
the Green’s function under the mean field approximation
can be written as

GMF
α (ω) =

1

ω − ǫα − Σ
(0)
α − U

∑

α′ 6=α〈nα′〉
. (15)

The LDOS can be expressed in terms of the mean field
Green’s function GMF

α as

ρ(ω) = − 1

π
Tr Im (Gα(ω)) , (16)

where the trace accounts for the summation over all four
internal degrees of freedom. The occupation number of
the state α is given by

〈nα〉 =
1

2

∫

dω ρα(ω) [fL(ω) + fR(ω)] (17)

for symmetric barriers.
There is an obstruction to evaluate the Green’s func-

tion GMF
α (ω). The expression of GMF

α (ω) depends on the
occupation configuration {〈nα〉} (see Eq. (15)), which
in turn itself has to be calculated through the Green’s
function. This requires solving the Green’s function
and the occupations simultaneously (see Eq. (15) and
Eq. (17)). A self-consistent iterative algorithm is devel-
oped as shown below.

• Starting with an initial value of 〈n0
α〉 and calculat-

ing the Green’s function GMF
α (ω) from Eq. (15).
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• Calculating the value of 〈nα〉 from Eq. (17) with
ρ(ω) given by Eq. (16).

• Comparing the new occupation 〈nα〉 calculated
from step 2 with the initial guess 〈n0

α〉. If the
new one 〈nα〉 is not sufficiently close to the orig-
inal guess, we revise our guess by

〈nnew
α 〉 = 〈nold

α 〉+ ε
(

〈nα〉 − 〈nold
α 〉
)

,

where ε is a positive number less than 1.

• Repeating the iterative processes 1 − 3 until the
Green’s function GMF

α (ω) yields the occupation
configuration {〈nα〉} which is sufficiently close to
the previous input value within a predetermined
tolerance level.

The remaining question is how we could be able to give
a reasonable initial guess of 〈n0

α〉? Under the deep-level
assumption that the resonant level ǫα is deep well below
the chemical potential µ, the LDOS ρα(ω) in Eq. (16) is
integrated up to its extreme right side of the tail. There-
fore we can choose 〈n0

α〉 = 1 as a proper initial guess of
the occupations in the self-consistent calculation.
For each internal state with finite U , we find that all

single-particle resonances are shifted away from ǫα to
ǫα + U

∑

α′ 6=α〈nα′〉, as shown in Fig. 2. The imaginary

part of self-energy Σ
(0)
α gives rise to the total energy level

broadening in the LDOS.

−10 −5 0 5 10
0

0.2
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0.6

0.8

1
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1.4

ω / Γ

π
Γρ

(ω
)

FIG. 2: Density of states ρ(ω) for TIQDs symmetrically
coupled to two external leads with parameters U = 0.1Γ
and ǫα = ±2Γ. Two leads’ chemical potential is set to be
µL = µR = 8Γ. Under the mean field approximation, two
distinct peaks are shifted away from the original resonances
±2Γ to the new ones ±2Γ∓ U〈n〉 in the LDOS.

The mean field approximation is valid only when kBT
or Γα is comparable to U , where Γα = π|Vkα|2ρ0 is the
hybridization strength between a TIQD and two exter-
nal leads. The mean field approximation provides an
acceptable description when U is small or temperature

is high. However in real experimental setups, the on-
site Coulomb interaction U is typically about the order
of several meV , while both the hybridization strength
Γ and the temperature kBT are typically of the order
of several µeV . Therefore the mean field approximation
discussed in this section does not even provide a qualita-
tively reliable scheme within the regimes for most of the
experimental setups. This requires us to obtain a the-
ory beyond the mean field approximation, which we are
going to discuss in the following.

B. Coulomb Blockade Regime

When the Coulomb interaction strength U between lo-
calized electrons exceeds both the temperature kBT and
the hybridization strength Γ, the Coulomb blockade ef-
fect is dominant in this regime provided that T < TK .
One has to truncate the equations of motion up to next-
to-leading order in order to close Eq. (14). The corre-
sponding Green’s function is derived in Appendix A:

GCB
α (ω) =

1−

∑

α′ 6=α

(

〈nα′ 〉

N
(α)

α′

)

ω − ǫα −Σ
(0)
α

+
∑

α′ 6=α

(

〈nα′ 〉

N
(α)

α′

)

ω − ǫα − UN
(α)
α′ − Σ

(0)
α

,

(18)

where N
(α)
α′ ≡ 1 +

∑

β 6=α,α′〈nβ〉, and Σ
(0)
α (ω) =

∑

k∈L,R
|Vkα|2

ω−ǫk+iη is the self-energy term due to tunnel-

ing of the α electrons into the leads. The Green’s func-
tion GCB

α (ω) in the Coulomb blockade regime has four
resonances for each internal channel α. One of them is
located at the resonant level ǫα weighted by the probabil-

ity factor 1−∑α′ 6=α

(

〈nα′〉/N (α)
α′

)

, and the other three

are shifted and located at ǫα + UN
(α′)
α weighted by the

probability factor 〈nα′〉/N (α′)
α .

The Green’s function GCB
α (ω) depends on both tem-

perature and chemical potential through the occupation
configuration {〈nα〉} in general. The occupations have
to be computed via the self-consistent algorithm with
constraints 〈n1〉 = 〈n2〉 and 〈n3〉 = 〈n4〉 as discussed in
the previous section. To determine a reasonable guess
of an initial 〈n0

α〉, we assume that the resonant level ǫα
of TIQDs is deep enough below the chemical potential
µ: |µ − ǫα| >> |ǫα|. We further assume that the oc-
cupations of four internal states are all identical, i.e.
〈nα〉 ≡ 〈n〉 , ∀α = 1, 2, 3, 4 in order to accelerate the
iterative processes in the self-consistent computation. It
is the Coulomb interaction energy U that dominates all
the energy scales in this regime. Therefore only one single
resonant level ǫα is occupied, while the energy levels of
unoccupied states are raised by UN . Double occupancy
is energetically costly and hence is forbidden in the large
U limit. All unoccupied levels are pushed outside the
chemical potential in this limit, and the occupied levels
are the only ones contributing to the occupations. This
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leads to an equation for the initial guess of the occupation
number 〈n0〉:

〈n0〉 = 1−
∑

α′ 6=α

〈n0〉
1 +

∑

β 6=α,α′〈n0〉 . (19)

The solution of Eq. (19) reads 〈n0〉 = 1
2

(√
3− 1

)

.
This solution turns out to work quite well as a clever
initial guess of the occupation configuration {〈nα〉} for
the self-consistent algorithm. The occupations will even-
tually converge to certain consistent values after several
iterative steps. After obtaining the self-consistent occu-
pation numbers, the corresponding Green’s function in
the Coulomb blockade regime can be inferred through
Eq. (18). Under the assumption that all the occupa-

tions are the same, three shifted resonances ǫα+UN
(α′)
α

(α′ 6= α) in GK
α (ω) are degenerate to be one located at

ǫα + U(1 + 2〈n〉) for each index α. Therefore one shall
expect that the corresponding LDOS exhibits four split
Coulomb peaks at ω = ±|ǫ| and ω = ±|ǫ|+ U(1 + 2〈n〉)
respectively, when the hybridization strength Γ is not too
strong compared to the QD’s absolute energy level |ǫα|
as indicated in Fig 3(a).
In principle a four-peak structure should occur in the

LDOS when all the occupation numbers are nearly the
same. However only two peaks, split by the amount
of UN , remain when the hybridization strength Γ ex-
ceeds a critical value Γc ≈ |ǫα| as shown in Fig. 3(b).
The suppression of peak numbers follows from the fact
that the hybridization strength Γ characterizes the level
broadening of each discrete eigenstate caused by the cou-
pling between the TIQD and two external leads. When
the hybridization strength Γ is made to be greater than
Γc, the LDOS spreads out around the original resonant
peaks due to the level broadening. As a result, two
peaks at ω = ±ǫ are merged together as well as the
other two peaks located at ω = ±ǫ+ UN . We conclude
that there exists a continuous crossover from a four-peak
structure to a double-peak structure in the LDOS as the
hybridization strength Γ increases in the Coulomb block-
ade regime.
In summary, when Γ is relatively small compared

to |ǫα|, we find Coulomb peaks form pairs with large
inter-pair spacing (∼ UN ) and small intra-pair spac-
ing (∼ |ǫα|) within the Coulomb blockade regime. Two
intra-pair peaks have comparable width and height, while
the height of inter-pair peaks is usually different. As
the hybridization strength Γ is increased above the crit-
ical value Γc, the intra-pair peaks merge together, nev-
ertheless two inter-pair peaks still remain in the LDOS.
Since electric conductance is proportional to the LDOS
at low temperatures, similar features should be expected
to be observed in the electric conductance measurement
as well. The separation between the conductance’s inter-
pair peaks is set by the large on-site Coulomb interac-
tion energy, whereas the separation between the intra-
pair peaks is determined by the QD’s absolute energy
level. In the Coulomb blockade regime, a transition from

0.5

1

 

 

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

ω / U

π
Γρ

(ω
)

 

 

 Γ = 0.1U

 Γ = 0.3U

(a)

(b)

FIG. 3: Local density of states πΓρ(ω) vs energy ω in units
of U in the Coulomb blockade regime with the hybridization
strength (a) Γ < Γc and (b) Γ > Γc. (a) The LDOS exhibits
a quadruple-peak structure at ǫ = ±0.2U and ǫ = ±0.2U +
(1 + 2〈n〉)U in the weak coupling limit (Γ = 0.1U). The
occupations 〈n〉 converges to 0.3670 via the self-consistent
algorithm. (b) Four Coulomb peaks merge into a double-
peak structure when the hybridization strength Γ is above
the critical value Γc ≈ 0.2U in the strong coupling limit (Γ =
0.3U).

weak to strong coupling between localized and conduc-
tion electrons results a crossover from a quadruple-peak
structure to a double-peak structure in the LDOS and
electric conductance.

C. Kondo Effect Regime

In this section, our aim is to calculate the trans-
port current through a TIQD as well as the correspond-
ing differential conductance via the self-consistent EOM
method in the Kondo regime.

1. Renormalization Group Analysis

In the framework of the renormalization group (RG),
high-energy degrees of freedom are successively inte-
grated out and one obtains a low-energy effective theory
eventually. A poor-man’s scaling approach based on the
RG analysis is applied to study the low-energy proper-
ties of Hamiltonian (11). The key idea is to integrate
out high-energy modes in the interval [D,D0], where the
cutoff D might be the band width of conduction elec-
trons, and rescale all energies and fields appropriately
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to construct a new effective Hamiltonian H(D). The
RG method relies on the fact that all physical quantities
should solely depend on the effective low energy scales
such as the Kondo temperature TK . The band cutoff D
should be irrelevant and does not appear in any physi-
cally observable quantity. As a consequence, it is pos-
sible to absorb the cutoff D into renormalized coupling
constants by the requirement that physically observable
quantities are invariant under the RG rescaling, leading
to the emergence of new energy scales.
First of all, the original Hamiltonian(11) can be rewrit-

ten as

H =
∑

α,k∈L,R

ǫkc
†
kαckα +

∑

α

ǫαc
†
αcα (20)

+
∑

α,k∈L,R

(

V c†αckα +H.c.
)

+
1

2
U

(

N − 1

2

)2

− 1

8
.

where N ≡
∑4

α=1 nα is the total number operator, and
we assume that all internal degrees of freedom in the
TIQD are equally coupled to two external leads, i.e.
Vk1 = Vk2 = Vk3 = Vk4 ≡ V .
We now investigate the limit of U → ∞. In this case,

only one electron is accommodated in the whole TIQD
system. We obtain the following effective Kondo-type
Hamiltonian after performing a Schriffer-Wolf transfor-
mation:66

HK =
∑

α,k∈L,R

ǫkc
†
kαckα + J [S ·

(

Ψ†
rσΨr

)

+
(

Ψ†
rτΨr

)

·T+ S ·
(

Ψ†
rστΨr

)

·T], (21)

where Ψ†
k =

(

c†k1, c
†
k2, c

†
k3, c

†
k4

)

is the spinnor of the

conduction electrons in two leads and Ψ†
r ≡ ∑

k Ψ
†
k.

Similarly, the field operator for the TIQD is defined as

Ψ†
d ≡

(

c†1, c
†
2, c

†
3, c

†
4

)

. S is the spin operator for the TIQD

defined as S ≡ Ψ†
dσΨd, while T ≡ Ψ†

dτΨd defines the
orbital pseudo-spin operator. σ (τ) are Pauli matrices
operating on the spin (pseudo-spin) space respectively.
The effective coupling constant J in the infinity U limit

is initially given by J = |V |2

|µ−ǫd|
and the corresponding

scaling equation up to the second order in J reads

dJ

d lnD
= −4ρ̃0J

2, (22)

where ρ̃0 is the DOS of external leads and D is the renor-
malization energy cutoff. The coupling constant J expo-
nentially flows into the strong coupling limit as reduc-
ing the cutoff D. This reflects a four-fold degeneracy
among spin and pseudo-spin degrees of freedom. We no-
tice that Hamiltonian (21) is the renowned SU(4) Kondo
Hamiltonian, where the spin and orbital pseudo-spin de-
grees of freedom are entangled due to the presence of the

third term in Eq. (21). Physically, the spin-orbital en-
tanglement is realized naturally in the TI system through
its unique spin-orbital locking phenomena. It avoids the
possible fine-tuning requirement faced by the DQD and
CNQD system. The corresponding Kondo temperature
is given by TK ≈ D exp (−1/4ρ̃0J). Similar results have
been examined in carbon nanotube systems13, vertical
quantum dots systems26,67, grain-dot systems27 and par-
allel double quantum dots systems31,68,69. This discus-
sion based on the RG analysis demonstrates the exis-
tence of SU(4) Kondo states in the TIQD. In the next
section, we show that the LDOS and differential conduc-
tance would indicate the main features of spin-orbital
Kondo physics, which can be used as experimental probes
to detect the spin-orbital Kondo effect in the TIQD sys-
tem.

2. Local Density of States and Differential Conductance

Before we start to calculate any relevant physical quan-
tities, let us discuss several important characteristic en-
ergy scales in the Kondo regime. The depth of a QD’s
energy level ǫα relative to the chemical potential µ is one
of these characteristic scales. It is defined as ∆ǫdep ≡
|µ − ǫα|. One requirement of the emergence of Kondo
physics is that the hybridization strength Γ has to be
smaller than this energy scale ∆ǫdep. Otherwise local-
ized electrons can spread from the QD into the leads
without applying external voltage. Charge quantization
is completely lost even at zero temperature due to this
spread-out effect. Therefore the condition Γ < ∆ǫdep has
to be held in the Kondo regime. Another characteristic
energy scale determining the Kondo effect is the Kondo
temperature: TK . The hybridization strength and on-
site Coulomb interaction give rise to the Kondo physics
only if the temperature is comparable to or lower than
the Kondo temperature, i.e. kBT < kBTK . On the
other hand, the hybridization strength Γ cannot be too
small, otherwise the conduction electrons from the leads
would be completely trapped in the QD and no trans-
port would occur. This requires Γ to be large enough to
overcome the Kondo temperature kBTK . In summary,
the characteristic energy scales have a hierarchical struc-
ture: kBT < kBTK < Γ < ∆ǫdep in the Kondo physics
regime. On-site Coulomb repulsive interaction U is the
last significant characteristic energy scale. In most exper-
imental setups, U ≈ 1meV and Γ ≈ 1−10µeV . It means
that the on-site Coulomb interaction U is several orders
of magnitude larger than the hybridization strength Γ in
reality and hence is the largest energy scale in the Kondo
regime. U is typically set to be infinity in theory in order
to forbid possible double occupancy. This limit is con-
sistent with the vast majority of experimental setups for
the QD systems.
As shown in the RG analysis, the Kondo tempera-

ture TK for the SU(4) Kondo-type model is enhanced
exponentially by a factor of 2, comparing to the con-
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ventional single-level SU(2) Anderson model. An es-
timation for the Kondo temperature in the enhanced
Kondo regime is TK ≈ De−π|µ−ǫα|/4Γα (see Eq. (22)),
where D is the band width cutoff and Γα is the hy-
bridization strength. In addition, we take the con-
duction band of two symmetric leads to be flat with
width 2W , so the DOS of two external leads is given
by ρ̃(ω) = ρ̃0 = 1/(2W ) for |ω| < W . Thus the hy-
bridization strength for each lead could be rewritten as

Γ
L/R
α (ω) = 2π

∑

k∈L/R |Vkα|2δ(ω − ǫkα) = 2πρ̃0|Vkα|2.
It is convenient to re-define a modified hybridization
strength as Γα = ΓL

αΓ
R
α/
(

ΓL
α + ΓR

α

)

= πρ̃0|Vkα|2, serv-
ing as a unit of energy in the following discussion.
The LDOS of TIQDs can be calculated via the non-

equilibrium Green’s function (see Eq. (16)). We combine
the EOMmethod and the self-consistent algorithm to cal-
culate a consistent Green’s function GK(ω) in the Kondo
regime as shown in Appendix B. Numerical computa-
tions based on the non-equilibrium Green’s function have
been extremely useful to present a quantitative reliable
picture of low temperature, non-equilibrium transport
through a QD.4,13,64,65 In this section, we derive a non-
equilibrium Green’s function based on the self-consistent
EOMmethod to produce the LDOS and non-linear differ-
ential conductance in the Kondo regime. The full non-
equilibrium Green’s function is given by Eq. (B10) as
derived in Appendix B. In the infinite-U limit, it can be
simplified and reduced to the form:

GK
α (ω) =

1−
∑

α′ 6=α
〈nα′〉

N
(α)

α′

ω − ǫα − Σ
(0)
α −∑α′ 6=α

1

N
(α)

α′

Σ̃
(2)
α′α

,

with

Σ(0)
α (ω) =

∑

k∈L,R

|Vkα|2
ω − ǫk + iη

,

Σ̃
(2)
α′α(ω) =

∑

k∈L,R

|Vkα′ |2fkα′

ω − ǫα + ǫα′ − ǫk + iη
, (23)

where fkα′ is the Fermi-Dirac distribution in the
left/right lead. The overall amplitude of the non-
equilibrium Green’s function GK

α (ω) is proportional to

the factor 1 −
∑

α′ 6=α
〈nα′〉

N
(α)

α′

, where 〈nα′〉 is the occu-

pation numbers of internal channels other than α, and

N
(α)
α′ ≡ 1 +

∑

β 6=α,α′〈nβ〉.
As discussed in the previous section, the occupations

have to be computed using the self-consistent algorithm
along with the non-equilibrium Green’s function Eq. (23).
Under the same assumption as in the last section, the
initial guess of the occupation numbers can be chosen
as 〈n0

α〉 = 1
2 (
√
3 − 1). After obtaining the final conver-

gent occupation numbers through the iterative process,
the corresponding Green’s function Eq. (23) can be au-
tomatically computed without any ambiguity.

The terms, Σ
(0)
α (ω) and Σ̃

(2)
α′α(ω), in Eq. (23) are the

self-energies due to the coupling to the leads. The loca-

tions of Kondo resonances are totally determined by the

poles of Green’s function. Since Re{Σ(0)
α (ω)} = 0, the

self-energy Σ
(0)
α (ω) has no contribution to the poles. It

is the other self-energy term, Σ̃
(2)
α′α(ω), that gives rise to

the Kondo resonances in the non-equilibrium LDOS. Be-
cause the Fermi-Dirac distribution fkα′ has an abrupt
change near the chemical potential µL,R at low tem-

perature, Re{Σ̃(2)
α′α(ω)} has single-particle resonances,

which are logarithmically divergent at ω = µL,R and
ω = µL,R + 2ǫα. It produces the Kondo resonances in
the LDOS near those energies. The equilibrium LDOS
for each internal channel α: ρα(ω) = − 1

π Im
(

GK
α (ω)

)

displays a double-peak structure. One peak is located
at chemical potential µ = µL = µR, and another is
shifted away from the chemical potential by 2ǫα. The
peak moves downwards for those negative energy states
(α = 1, 2) and upwards for those positive energy states
(α = 3, 4) as shown in Fig. 4(a),(b). As a bias volt-
age ∆µ is applied, two Kondo peaks are split into pairs,
leading to a quadruple-peak structure exhibited in the
non-equilibrium LDOS. In this case, two original Kondo
peaks in the equilibrium LDOS are further split into pairs
spaced by the chemical potential difference ∆µ. For each
state index α, four Kondo peaks appear near ω = µL,R

and ω = µL,R + 2ǫα as shown in Fig. 4(c),(d). A new
energy scale, the Kondo peak broadening ∆b, emerges.
The size of ∆b is about the same magnitude as the Kondo
temperature kBTK , which can serve as a practical tool
to determine the Kondo temperature experimentally.
Our goal is to calculate the electric current I through

the TIQD. I can be expressed in terms of the non-
equilibrium Green’s function and the Fermi-Dirac dis-
tribution. An exact expression for I follows from the
Keldysh formalism:70

I =
e

~

∑

α

∫

dω (fL(ω)− fR(ω)) Γα(ω)

(

− 1

π
ImGK

α (ω)

)

,

(24)

where Γα(ω) = πρ0|Vkα|2, and fL/R(ω) ≡ f(ω−µL/R) is
the Fermi-Dirac distribution function for left/right lead
with µL = µR +∆µ. The differential conductance σd is
sequentially defined as differentiating the current I with
respect to the applied bias voltage ∆µ: σd ≡ e dI

d∆µ . σd is

an experimentally observable quantity and can be used
as a means of detection to Kondo physics.
The non-linear differential conductance σd exhibits a

triple-peak structure for temperatures below the Kondo
temperature kBTK as shown in Fig. 5. This can be ex-
plained intuitively through so called ”matching mecha-
nism”. As discussed previously, Kondo resonances are
located at ω = µL,R and ω = µL,R ± 2|ǫα| in the non-
equilibrium LDOS. The differential conductance σd is en-
hanced if and only if three Kondo peaks in the left-lead’s
LDOS matches the other three peaks in the right-lead’s
LDOS. Accordingly, a triple-peak structure appears in
the differential conductance at ∆µ = 0 and ∆µ = ±2|ǫα|
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FIG. 4: Local Density of states πΓρα(ω) for a TIQD sym-
metrically coupled to two external leads with the chemical
potential µL and µR in the limit of U → ∞. The TIQD is
prepared to have four internal states with levels ǫ1,2 = −Γ
and ǫ3,4 = Γ. Temperature is set to be T = 0.01Γ, while the
Kondo temperature is roughly estimated to be TK ≈ 0.08Γ.
(a) and (b) display the equilibrium (µL = µR = 10Γ) LDOS
for negative levels ǫα=1,2 (a) and positive levels ǫα=3,4 (b).
It exhibits a double-peak structure at ω = 10Γ and ω = 9Γ
for (a) and at ω = 10Γ and ω = 11Γ for (b). (c) and (d)
are the non-equilibrium LDOS for negative energy states (c)
and positive energy states (d). Four Kondo peaks emerge in
the non-equilibrium LDOS. Two of them are located at each
lead’s chemical potential: µL = 10.5Γ, µR = 10Γ (arrows 1
and 2), and the other two peaks are shift either downwards
from the chemical potential by −2Γ (= −2|ǫα|) (arrows 3
and 4 in (c)) or upwards from the chemical potential by 2Γ
(= 2|ǫα|) (arrows 5 and 6 in (d)).

respectively. As the chemical potential is shifted away
from the Kondo peaks, the differential conductance σd

falls off rapidly once the mismatch between two exter-
nal leads exceeds the Kondo peak broadening ∆b. This
means that the full width at half maximum (FWHM) of
the differential conductance linewidth should have the
same order of magnitude as the peak broadening ∆b
of the LDOS. The triple-peak structure in the differen-
tial conductance disappears as the temperature is raised
above the Kondo temperature due to the complete de-
struction of Kondo states when T > TK as shown in
dashed line in Fig. 5. The experimental Observation of
this triple-peak structure in the differential conductance
was reported recently in parallel DQD systems when the
orbital degeneracy is artificially lifted.38

Next, we provide a more rigorous theoretical treatment
of differential conductance, and demonstrate that the dif-
ferential conductance σd is closely related to the summa-
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FIG. 5: Differential conductance as a function of the applied
bias voltage ∆µ in units of e2/h via the EOM method for
the temperatures above TK (solid line) and below TK (dashed
line). When ∆µ is adjusted so that the Kondo peaks in the left
lead’s DOS coincides with those in the right lead’s DOS, the
differential conductance σd is enhanced. It shows a triple-peak
structure at ∆µ = 0 and ∆µ = ±2|ǫα| = ±2Γ (solid line).
When the temperature is raised above the Kondo temperature
TK , the triple-peak structure in the differential conductance
disappears as shown in dashed line.

tion of LDOS over all four internal conduction channels.
Hence the peak structure in the differential conductance
is determined by the corresponding peak structure in
the LDOS. In particular, the zero-temperature current
I can be calculated as an integral of LDOS over the in-
terval [µR, µL], weighted by the hybridization strength
Γα(ω). Therefore we can obtain an exact expression for
the differential conductance in terms of the single-particle
LDOS in the zero-temperature limit:

σd =
e2

h
2πΓ

∫

dω

(

−∂f(ω − µR −∆µ)

∂ω

)

∑

α

ρα(ω).

(25)

We notice that −∂f(ω)
∂ω becomes a Dirac delta-function

when T → 0, so we can rewrite Eq. (25) as

σT=0
d (∆µ) ∼= e2

h
2πΓ

∑

α

ρα(µR +∆µ). (26)

Eq. (26) connects the nonlinear differential conductance
at zero temperature to the summation of LDOS over four
internal degrees of freedom. In this limit, the peak struc-
ture of the differential conductance depends on the value
of the corresponding LDOS at µR + ∆µ, leading to a
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condition for the peak structure of the differential con-
ductance:

µR +∆µ = µR,L, µR,L ± 2|ǫα|. (27)

Three cases need to be discussed separately:
Case (1): µR + ∆µ = µL. This condition is trivially

satisfied. It illustrates the existence of the overall
background conductance in σd, which is independent of
the applied bias voltage ∆µ.

Case (2): µR +∆µ = µL ± 2|ǫα|. There is no solution
can be found in this case.

Case (3): µR + ∆µ = µR or µR ± 2|ǫα|. This is
the most interesting condition, where three solutions
exist: ∆µ = 0,±2|ǫα|. These three solutions correspond
exactly to the locations of the three peaks built upon
the background conductance in σd as depicted in Fig. 5.
The result agrees with our intuitive argument as well
as the general numerical calculation. Although the
analysis is performed in the zero temperature limit, the
triple-peak structure still preserves for temperatures
below the Kondo temperature TK .

This discussion demonstrates the existence of spin-
orbital Kondo states in TIQD systems. One of the advan-
tages of such devices is that it can potentially avoid the
fine-tuning between intradot and iterdot charging ener-
gies in DQDs or the fine-tuning between spin and wrap-
ping modes in CNQDs. We also prove that the differ-
ential conductance σd, as an experimental measurable
quantity, indicates the principal features of spin-orbital
Kondo effect. The fact that the spin-orbital Kondo states
can be observed in TIQD systems as a triple-peak struc-
ture in the non-linear differential conductance is impor-
tant, since it could serve as a means of experimental de-
tection of spin-orbital Kondo physics.

IV. SUMMARY AND CONCLUSIONS

In this paper we investigate the non-equilibrium trans-
port properties of TIQDs in the Coulomb blockade and
Kondo regime. An Anderson-type model, which de-
scribes the low temperature transport properties through
a QD, is derived. We illustrate that the corresponding
Anderson impurity Hamiltonian realizes the spin-orbital
Kondo effect due to the intrinsic spin-orbital entangle-
ment in TI materials. We conclude that TIQDs can be
used to study the spin-orbital Kondo effect in addition
to conventional DQD or CNQD systems.
We demonstrate that the mean field approximation

is not applicable to the energy scales related to the

Coulomb blockade or Kondo regime. A continuous
crossover of peak structures controlled by the hybridiza-
tion strength is found in the Coulomb blockade regime.
As the hybridization strength Γ is raised above a crit-
ical value Γc, the intra-pair peaks are merged together
so that only two inter-pair peaks remain in the LDOS.
A transition from a quadruple-peak to a double-peak
structure occurs when the hybridization strength Γ in-
creases. A similar crossover phenomena is also expected
to be observed in the transport measurements in the
Coulomb blockade regime. For temperatures below the
Kondo temperature TK , we have shown the emergence
of four Kondo peaks in the non-equilibrium LDOS for
each conduction channel α. Two of them are located
at the chemical potential µL/R, while the other two
peaks are shifted away from the chemical potential by
the amount of 2ǫα. This result leads to the experimen-
tal prediction of a triple-peak structure in the differen-
tial conductance σd provided that the energy hierarchy
kBT < kBTK < Γ < ∆ǫdep ≪ U is satisfied. The
triple-peak feature vanishes when the temperature is high
enough to break the spin-orbital Kondo states. In con-
trast to conventional DQD or CNQD systems, no fine-
tuning of experimental parameters is necessary in TIQD
setups in order to realize the SU(4) Kondo effect. There-
fore TIQD systems provide a more controllable platform
to investigate the spin-orbital Kondo effect.

An interesting issue not discussed in this paper is the
Kondo physics in TIQD systems when a finite magnetic
filed is applied. Since the symmetry protected edge states
are no longer stable in the presence of an external mag-
netic field, we expect a totally different transport behav-
ior in comparison with the usual DQD or CNQD systems.
Our paper is just the first step to understand the spin-
orbital Kondo physics associated with TIQDs. Further
investigations regarding the spin-orbital Kondo effect in
TIQDs under an external magnetic field are demanded
for future research.
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Appendix A: Green’s Function within Coulomb Blockade Regime

In this section, we present a derivation of the Green’s function GCB(ω) within the Coulomb blockade regime. We
start from Eq. (14) and notice that the expression of Eq. (14) is not closed yet because of the presence of a triple-

product operator: c†α′(t)cα′(t)cα(t). Therefore we differentiate the triple-product operator with respect to time in
order to close the equations-of-motion. The final result is given by

i~
∂

∂t

(

c†α′cα′cα

)

= −
(

−i~
∂c†α′

∂t

)

cα′cα + c†α′

(

i~
∂cα′

∂t

)

cα + c†α′cα′

(

i~
∂cα
∂t

)

= ǫαc
†
α′cα′cα +

∑

k∈L,R

(

−V ∗
kα′c

†
kα′cα′cα + Vkα′c†α′ckα′cα + Vkαc

†
α′cα′ckα

)

+ U
∑

β 6=α

c†α′cα′cαc
†
βcβ

≈



ǫα + U + U





∑

β 6=α,α′

〈nβ〉







 c†α′cα′cα +
∑

k∈L,R

(

Vkαc
†
α′cα′ckα

)

, (A1)

where we ignore the contributions coming from terms c†kα′cα′cα and c†α′ckα′cα (notice α 6= α′) up to the first-order
approximation. The Fourier transform of Eq. (A1) reads



ω − ǫα − U



1 +
∑

β 6=α,α′

〈nβ〉







F{c†α′cα′cα}(ω) =
∑

k∈L,R

VkαF{c†α′cα′ckα}(ω), (A2)

where F{...} represents the Fourier transform of any operator inside the curly bracket.

Eq. (A2) still does not close the equations-of-motion because of the presence of another triple-product term c†α′cα′ckα.
Hence one has to further take the time derivative over this triple-product:

i~
∂

∂t

(

c†α′cα′ckα

)

= −
(

−i~
∂c†α′

∂t

)

cα′ckα + c†α′

(

i~
∂cα′

∂t

)

ckα + c†α′cα′

(

i~
∂ckα
∂t

)

= (ǫk − iη)c†α′cα′ckα +
∑

k′∈L,R

(

−V ∗
k′α′c

†
k′α′cα′ckα + Vk′α′c†α′ck′α′ckα

)

+ V ∗
kαc

†
α′cα′cα + Skαc

†
α′cα′

≈ (ǫk − iη)c†α′cα′ckα + V ∗
kαc

†
α′cα′cα + 〈nα′〉Skα. (A3)

The fourier transform of Eq. (A3) gives

F{c†α′cα′ckα}(ω) =
V ∗
kα

ω − ǫk + iη
F{c†α′cα′cα}(ω) + 〈nα′〉c(0)kα (ω). (A4)

Substituting Eq. (A4) into Eq. (A2), a closed form is finally obtained as

F{c†α′cα′cα}(ω) =
〈nα′〉

ω − ǫα − U
(

1 +
∑

β 6=α,α′〈nβ〉
)

− Σ
(0)
α

Sα. (A5)

Plugging Eq. (A5) into the original Eq. (14), one obtains the Green’s function in the Coulomb blockade regime as

Gα(ω)
CB =

(

ω − ǫα − Σ(0)
α

)−1



1 +
∑

α′ 6=α

U〈nα′〉
ω − ǫα − U

(

1 +
∑

β 6=α,α′〈nβ〉
)

− Σ
(0)
α





=

1−
∑

α′ 6=α

(

〈nα′〉

N
(α)

α′

)

ω − ǫα − Σ
(0)
α

+
∑

α′ 6=α

(

〈nα′ 〉

N
(α)

α′

)

ω − ǫα − UN
(α)
α′ − Σ

(0)
α

, (A6)

where N
(α)
α′ ≡ 1 +

∑

β 6=α,α′〈nβ〉.
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Appendix B: Green’s function within Kondo regime

We derive the Green’s function in the Kondo regime in this section. We start from Eq. (14) and apply the equations-
of-motion method up to the second-order approximation. The equations-of-motion method is based on the Heisenberg

equation, and in this case it consists of differentiating the triple-product operator c†α′cα′cα with respect to time. A
series of operator-product terms is generated and has to be approximated to certain order in order to close the
equations-of-motion eventually. Higher-order approximation is required in order for the emergence of Kondo physics.

First of all, we take the time derivative over the triple-product operator c†α′cα′cα:

i~
∂

∂t

(

c†α′cα′cα

)

= −
(

−i~
∂c†α′

∂t

)

cα′cα + c†α′

(

i~
∂cα′

∂t

)

cα + c†α′cα′

(

i~
∂cα
∂t

)

= ǫαc
†
α′cα′cα +

∑

k∈L,R

(

−V ∗
kα′c

†
kα′cα′cα + Vkα′c†α′ckα′cα + Vkαc

†
α′cα′ckα

)

+ U
∑

β 6=α

c†α′cα′cαc
†
βcβ

≈



ǫα + U + U





∑

β 6=α,α′

〈nβ〉







 c†α′cα′cα +
∑

k∈L,R

(

−V ∗
kα′c

†
kα′cα′cα + Vkα′c†α′ckα′cα + Vkαc

†
α′cα′ckα

)

,

(B1)

where the contributions from terms c†kα′cα′cα and c†α′ckα′cα are kept in this case. The Fourier transform of Eq. (B1)
can be written as


ω − ǫα − U



1 +
∑

β 6=α,α′

〈nβ〉







F{c†α′cα′cα} =
∑

k∈L,R

(

−V ∗
kα′F{c†kα′cα′cα}+ Vkα′F{c†α′ckα′cα}+ VkαF{c†α′cα′ckα}

)

.

(B2)

In order to close the equations-of-motion, we have to further take the time derivatives over the remaining operator-

product terms c†kα′cα′cα, c†α′ckα′cα and c†α′cα′ckα respectively. We have already obtained the Fourier transform

F{c†α′cα′ckα} from Appendix A as shown in Eq. (A4):

F{c†α′cα′ckα}(ω) =
V ∗
kα

ω − ǫk + iη
F{c†α′cα′cα}(ω) + 〈nα′〉c(0)kα (ω). (B3)

The time derivatives over the other two operator-product terms appearing in Eq. (B2) are given by

i~
∂

∂t

(

c†kα′cα′cα

)

= −
(

−i~
∂c†kα′

∂t

)

cα′cα + c†kα′

(

i~
∂cα′

∂t

)

cα + c†kα′cα′

(

i~
∂cα
∂t

)

= (ǫα + ǫα′ − ǫk − iη) c†kα′cα′cα − Vkα′c†α′cα′cα +
∑

k′∈L,R

(

Vk′α′c†kα′ck′α′cα + Vk′αc
†
kα′cα′ck′α

)

+
∑

β 6=α′

Uc†kα′c
†
βcβcα′cα +

∑

β 6=α

Uc†kα′cα′c†βcβcα − S∗
kα′cα′cα

≈



ǫα + ǫα′ − ǫk + U + 2U
∑

β 6=α,α′

〈nβ〉 − iη



 c†kα′cα′cα − Vkα′c†α′cα′cα + Vkα′fkα′cα, (B4)

where fkα′ is the unperturbed Fermi-Dirac distribution for the leads, and

i~
∂

∂t

(

c†α′ckα′cα

)

= −
(

−i~
∂c†α′

∂t

)

ckα′cα + c†α′

(

i~
∂ckα′

∂t

)

cα + c†α′ckα′

(

i~
∂cα
∂t

)

= (ǫα − ǫα′ + ǫk − iη) c†α′ckα′cα +
∑

k∈L,R

(

Vk′αc
†
α′ckα′ck′α − V ∗

k′α′c
†
k′α′ckα′cα

)

+ V ∗
kα′c

†
α′cα′cα

−
∑

β 6=α′

Uc†α′c
†
βcβckα′cα +

∑

β 6=α

Uc†α′ckα′c†βcβcα + Skα′c†α′cα

≈ (ǫα − ǫα′ + ǫk − iη) c†α′ckα′cα − V ∗
kα′fkα′cα + V ∗

kα′c
†
α′cα′cα. (B5)
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Then the Fourier transforms of Eqs. (B4) and (B5) can be written as

F{c†kα′cα′cα}(ω) = − Vkα′

ω − ǫα − ǫα′ + ǫk − U
(

1 + 2
∑

β 6=α,α′〈nβ〉
)

+ iη
F{c†α′cα′cα}(ω)

+
Vkα′fkα′

ω − ǫα − ǫα′ + ǫk − U
(

1 + 2
∑

β 6=α,α′〈nβ〉
)

+ iη
cα(ω), (B6)

and

F{c†α′ckα′cα}(ω) =
V ∗
kα′

ω − ǫα + ǫα′ − ǫk + iη
F{c†α′cα′cα}(ω)−

V ∗
kα′fkα′

ω − ǫα + ǫα′ − ǫk + iη
cα(ω). (B7)

Substituting Eqs. (B3), (B6) and (B7) into Eq. (B2), we obtain a closed form:

F{c†α′cα′cα}(ω) = − Σ
(2)
α′α

ω − ǫα − Σ
(0)
α − UN

(α)
α′ − Σ

(1)
α′α

cα(ω) +
〈nα′〉

ω − ǫα − Σ
(0)
α − UN

(α)
α′ − Σ

(1)
α′α

Sα, (B8)

where the self-energy terms are defined as

Σ(0)
α (ω) =

∑

k∈L,R

|Vkα|2
ω − ǫk + iη

,

Σ
(1)
α′α(ω) =

∑

k∈L,R





|Vkα′ |2
ω − ǫα + ǫα′ − ǫk + iη

+
|Vkα′ |2

ω − ǫα − ǫα′ + ǫk − U
(

1 + 2
∑

β 6=α,α′〈nβ〉
)

+ iη



 ,

Σ
(2)
α′α(ω) =

∑

k∈L,R





|Vkα′ |2fkα′

ω − ǫα + ǫα′ − ǫk + iη
+

|Vkα′ |2fkα′

ω − ǫα − ǫα′ + ǫk − U
(

1 + 2
∑

β 6=α,α′〈nβ〉
)

+ iη



 . (B9)

Finally we substitute Eq. (B8) back into Eq. (14), so we obtain the full Green’s function within the Kondo regime:

GK
α (ω) =



ω − ǫα − Σ(0)
α + U

∑

α′ 6=α

Σ
(2)
α′α

ω − ǫα − Σ
(0)
α − UN

(α)
α′ − Σ

(1)
α′α





−1

1 + U
∑

α′ 6=α

〈nα′〉
ω − ǫα − Σ

(0)
α − UN

(α)
α′ − Σ

(1)
α′α





=

1−∑α′ 6=α
〈nα′ 〉

N
(α)

α′

ω − ǫα − Σ
(0)
α + U

∑

α′ 6=α Σ
(2)
α′α

(

ω − ǫα − Σ
(0)
α − UN

(α)
α′ − Σ

(1)
α′α

)−1

+
∑

α′ 6=α

〈nα′〉

N
(α)

α′

ω − ǫα − Σ
(0)
α − UN

(α)
α′ − U

(

N
(α)
α′ Σ

(1)
α′α − Σ

(3)
α′α

)(

ω − ǫα − Σ
(0)
α − Σ

(1)
α′α

)−1 , (B10)

where the self-energy Σ
(3)
α′α(ω) is defined as

Σ
(3)
α′α(ω) =

∑

β 6=α

Σ
(2)
βα(ω)

(

ω − ǫα − Σ
(0)
α − UN

(α)
α′ − Σ

(1)
α′α

ω − ǫα − Σ
(0)
α − UN

(α)
β − Σ

(1)
βα

)

. (B11)
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