Optical absorption properties of laser-driven matter

Bing Gu and Ignacio Franco
Phys. Rev. A 98, 063412 – Published 12 December 2018

Abstract

Characterizing and controlling matter driven far from equilibrium represents a major challenge for science and technology. Here, we develop a theory for the optical absorption of electronic materials driven far from equilibrium by resonant and nonresonant lasers. In it, the interaction between matter and the driving light is treated exactly through a Floquet analysis, while the effects of the probing light are captured to first order in perturbation theory. The resulting equations are reminiscent to those for equilibrium absorption but with the Floquet modes playing the role of the pristine eigenstates. The formalism is employed to characterize the optical properties of a model nanoscale semiconductor dressed by nonresonant light of intermediate intensity (nonperturbative, but nonionizing). As shown, nonresonant light can reversibly turn this transparent semiconductor into a broadband absorber and open strong absorption and stimulated emission bands at very low frequencies (meV). Further, the absorption spectra of the driven material exhibit periodic features energetically spaced by the photon energy of the driving light that reflect the periodic structure of the Floquet bands. These developments offer a platform to understand and predict the emergent optical properties of materials dressed by the electric field of light, and catalyze the design of laser-driven materials with desired optical properties.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 21 June 2018

DOI:https://doi.org/10.1103/PhysRevA.98.063412

©2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics

Authors & Affiliations

Bing Gu1 and Ignacio Franco1,2,*

  • 1Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
  • 2Department of Physics, University of Rochester, Rochester, New York 14627, USA

  • *ignacio.franco@rochester.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 6 — December 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×