Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations

Dhara J. Trivedi, Danqing Wang, Teri W. Odom, and George C. Schatz
Phys. Rev. A 96, 053825 – Published 10 November 2017

Abstract

We present a theoretical study of lasing action when plasmonic metallic structures that show lattice plasmon resonances are embedded in a gain medium. Our model combines classical electrodynamics for arrays of gold nanoparticles with a four-level quantum Liouville model of the laser dye photophysics. A numerical solution was implemented using finite-difference time-domain calculations coupled with a finite-difference solution to the Liouville equation. A particular focus of this work is the influence of dephasing in the quantum dynamics on the emission intensity at the threshold for lasing. We find that dephasing in the quantum system leads to reduced lasing emission, but with little effect on the long-term population inversion. Both electronic and vibrational dephasing is considered, but only electronic dephasing is significant, with the fully dephased result appearing for dephasing times comparable to plasmon dephasing (10 fs) while fully coherent results involve >100 ps dephasing times as determined by the rate of stimulated emission. There are factor-of-2 differences between the Maxwell-Liouville results (greater emission intensities and narrower widths) compared to the corresponding results of rate-equation models of the dye states, which indicates the importance of using the Maxwell-Liouville approach in modeling these systems. We also examine rate-equation models with and without constraints arising from the Pauli exclusion principle, and we find relatively small effects.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 September 2017

DOI:https://doi.org/10.1103/PhysRevA.96.053825

©2017 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Dhara J. Trivedi1, Danqing Wang2, Teri W. Odom1,2, and George C. Schatz1,2,*

  • 1Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
  • 2Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, USA

  • *g-schatz@northwestern.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 5 — November 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×