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We present a theoretical study of lasing action when plasmonic metallic structures that show
lattice plasmon resonances are embedded in a gain medium. Our model combines classical electro-
dynamics for arrays of gold nanoparticles with a four-level quantum Liouville model of the laser dye
photophysics. Numerical solution was implemented using finite-difference time-domain calculations
coupled with a finite difference solution to the Liouville equation. A particular focus of this work
is the influence of dephasing in the quantum dynamics on the emission intensity at the threshold
for lasing. We find that dephasing in the quantum system leads to reduced lasing emission, but
with little effect on the long term population inversion. Both electronic and vibrational dephasing
is considered, but only electronic dephasing is significant, with the fully dephased result appearing
for dephasing times comparable to plasmon dephasing (∼10 fs) while fully coherent results involve
>100 ps dephasing times as determined by the rate of stimulated emission. There are factor of two
differences between the Maxwell-Liouville results (greater emission intensities and narrower widths)
compared to the corresponding results of rate-equation models of the dye states, which indicates the
importance of using the Maxwell-Liouville approach in modeling these systems. We also examine
rate equation models with and without constraints arising from the Pauli Exclusion Principle, and
we find relatively small effects.

PACS numbers: 42.25.Kb, 42.50.Ct, 42.55.Mv, 73.20.Mf, 78.67.-n

I. INTRODUCTION

Studies of the optical properties of plasmonic nano-
structures have gained a lot of attention due to their
wide range of applications, including biochemical sens-
ing [1, 2], energy harvesting [3, 4], light generation [5],
near-field imaging [6, 7] and nanoscale photochemistry
[8, 9]. The combination of surface plasmon (SP) exci-
tation of the plasmonic nanoparticles (NPs) with exci-
tation of a molecular gain medium leads to additional
optical functions, in particular lasing action can occur in
some situations [10–15]. While there are several possible
platforms for plasmon laser research, one that has proven
especially effective involves using narrow and sharp res-
onances known as lattice plasmons [16, 17] in which the
plasmonic particles are arranged in an array such that
both diffraction and plasmon resonances can be excited
simultaneously. Recent experimental studies have shown
that stimulated emission by gain molecules in the pres-
ence of lattice plasmons is sufficiently enhanced that it
overcomes losses from light absorption and other pro-
cesses, yielding lasing action at relatively low intensi-
ties [10]. In addition to that, experimental research has
shown lasing from a single plasmonic nanoparticle with
a dye-doped core-shell structure [18] and a random [19],
quasi-periodic and aperiodic plasmonic lattice structure
[20] in a dye-doped waveguide. However, lattice plasmon
resonances have a higher quality factor Q [21, 22], and
this makes it possible for periodic arrays coupled with
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a gain medium to show low threshold room-temperature
lasing, together with spatial coherence, directional emis-
sion normal to the surface, and tunability over near in-
frared wavelengths [23, 24].
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molecules

Gold 
nanoparticles

Glass 
substrate

FIG. 1. Schematic representation of the nanoparticle array
laser.

A schematic diagram of a typical plasmonic nanocav-
ity array laser is shown in Fig. 1. It is composed of a
2-dimensional array of Au NPs patterned on a glass sub-
strate and then covered by a polymer gain layer. This
plasmon laser setup is similar to a cavity laser where the
resonant cavity gets replaced by NPs. For both cavity
and lattice plasmon lasers, it is desirable to have a the-
oretical model to describe excited state population dy-
namics and cavity electrodynamics so as to determine
the optimum laser structure and choice of laser dye and
excitation source for lasing. Many methods have now
been proposed for this purpose[25–31], however modeling
the lattice plasmon lasers has continued to present im-
portant challenges and opportunities. The most common
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and successful approach has involved describing the elec-
tromagnetic fields using Maxwell’s equations while treat-
ing the gain molecules with rate equations that govern
the population dynamics. The populations are then as-
sumed to drive the fields by assuming a phenomenological
driven harmonic oscillator response for the polarization
induced in the gain medium to the population inversion.
To solve Maxwell’s equations for the dynamics of the EM
fields, the finite-difference time-domain (FDTD) method
is the most used computational approach [32, 33], and
this nicely can be connected to a finite difference solution
to the rate equations and driven oscillator dynamics.

In addition to using rate equations for the atomic pop-
ulations [25, 33], Bloch equations have also been consid-
ered [31]. Although the Bloch equations lead to compre-
hensive studies of light-matter interactions, the number
of levels involved constrains the computation [26, 30, 34].
So far the most complete theory for describing plasmonic
lasing in nanocavity arrays was developed by Dridi et al.
[28] by implementing the FDTD method in conjunction
with a four-level description of the dye molecules, and the
oscillator model coupling polarization to the local field.
Despite its versatile and simple formulation, it cannot
appropriately model dephasing in the quantum system,
which is worrisome given that the time scale of dephasing
is expected to be similar to that for plasmon dephasing
in the classical electromagnetic field.

The interaction of light with a thermally fluctuating
environment perturbs phase relationships in the quan-
tum system, leading to dephasing of the quantum states,
and ultimately decoherence of any coherent superposi-
tions of quantum states [35, 36] that is produced in the
initial excitation of the system with an ultrafast laser.
Dephasing is the central feature in the transition between
quantum and classical behavior in any system [37, 38].
Coherence loss is facilitated by a lack of phase- space
structure [39], and becomes an irreversible phenomenon
in systems with many degrees of freedom. Plasmon exci-
tation is typically associated with rapid dephasing (< 10
fs), and this dephasing effect is treated classically in the
classical electrodynamics. However the gain medium in
the lattice plasmon laser can also dephase due to envi-
ronmental interactions. Dephasing can affect lasing in
two ways: It can destroy the lasing effect by decreasing
the efficiency of energy exchange between plasmons and
the gain medium, lowering population inversion. Also,
it effectively broadens the molecular states that inter-
act with the plasmons. If destructive effects dominate,
lasing can either be quenched, or increased pumping is
needed to achieve lasing. The effect of dephasing within
such a system can be captured properly by considering
the quantum dynamics of open systems, which extends
the unitary evolution of the Schrödinger equation for the
wave function into a nonunitary stochastic Schrödinger
equation [40, 41]. Alternatively we can generalize to the
quantum Liouville-von Neumann equation for the den-
sity matrix [42] in combination with solving Maxwell’s
equations for the field, the so-called Maxwell-Liouville

method.
In this work, we investigate the effect of gain molecule

dephasing on the properties of lattice plasmon lasers.
This is done using the Maxwell-Liouville approach, in-
cluding the classical model of the polarization response
to the applied field (which is based on the rotating wave
approximation). A detailed analysis of the effect of de-
phasing on populations and laser emission is presented,
and we also make comparisons with the results of the es-
tablished rate equation methods. The paper is organized
as follows: In Section II, we present the theoretical model
describing lasing action based on the coupled Maxwell-
Liouville equations. In Sec. III, we provide details of the
numerical implementation. Section IV presents the study
of an array of gold NPs embedded in a gain medium, in-
cluding an analysis of the impact of various dephasing
times on lasing. We also briefly compare our method
with previously proposed methods for studying stimu-
lated emission using classical rate equations, including
methods that do or do not impose constraints associated
with the Pauli Exclusion Principle. Finally in Sec. V we
summarize our results with a future research outlook.

II. MODEL

We seek to understand the mechanism underlying the
coupling and dynamics of EM fields of the nanoparticles
and the quantized response of gain molecules in a lattice
plasmon laser. The interaction of the EM field, induced
due to the plasmonic system, with the gain medium can
be split into two parts: the action of the EM wave on the
molecule and the action of the molecule on the EM field.
The gain medium consists of molecules that are initially
in the ground state. The EM field of the incident ultra-
fast excitation pulse induces electronic transitions, and
the excited state photodynamics leads to transitions be-
tween energy levels that result in population inversion. In
order to model all these effects in a self-consistent man-
ner requires the simulation of coupled Maxwell-Liouville
equations, providing a scheme for understanding the ef-
fects of dephasing on the evolution. The dynamics of the

EM fields, ~E and ~H, is governed by Maxwell’s equations,

∇× ~E(t) = −µ0
∂ ~H(t)

∂t
(1)

∇× ~H(t) = ε
∂ ~E(t)

∂t
+
∂ ~P (t)

∂t
(2)

where µ0 is the magnetic permeability of free space and

ε is dielectric permittivity. ~P is the net macroscopic po-
larization of the molecular system resulting from the EM
field induced by optical transitions.

For a self-consistent interaction between gain medium
and the EM field, we need to determine the time evolu-
tion of the local molecular polarizability, which depends
on the evolution of the molecular density matrix in the
presence of the EM field. The net macroscopic polar-
ization, induced due to population differences between
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pairs of optically coupled states, is locally driven by the
electric field. In the rotating wave approximation, the
Heisenberg equation for the time evolution of the molec-
ular polarization can be cast in the form of a classical
electron oscillator model (see the Appendix), within the
linear response domain, leading to an equation for the

time dependence of ~P given by [27, 43].

d2 ~P

dt2
+ ∆ω

d~P

dt
+ ω2 ~P = κN∆ρ(t) ~E(t) (3)

Here, ∆ω is the bandwidth of the transition of interest,
N is the number density of molecules in the gain medium,
∆ρ(t) is the fractional difference in the populations be-
tween the two energy levels that drive the polarization,
κ = 6πε0c

3/ω3τ and τ is the lifetime of the spontaneous
emission associated with the transition. Note that the
right hand side of Eq. 3 depends on population differ-
ences, i.e. diagonal elements of density matrix, but not
the off-diagonal density matrix elements. This result,
which comes by invoking the rotating wave approxima-
tion, plays a crucial role in determining the effect of de-
phasing in the quantum system on evolution of the clas-
sical fields. While the rotating wave approximation is
not always satisfied, the primary deviations arise when
the field-matter interactions are strong, which would not
seem to be relevant to the threshold behavior of the laser
systems we are considering.

As a next step, we need to determine the time evolu-
tion of the full density matrix. Assuming that the con-
centration of the quantum medium is low enough to ne-
glect Coulomb interaction (leading to exciton transfer)
between individual quantum systems, one can describe
the quantum dynamics using the Liouville-von Neumann
equation for a single molecule,

ı~
dρ̂

dt
= [Ĥ, ρ̂]− ı~Γ̂ρ̂ (4)

where, ρ̂ is the density matrix of the molecule and Ĥ
is the total Hamiltonian, including the gain medium-
EM field interaction term. The relaxation processes, de-
scribed by the phenomenological operator, Γ̂, are consid-
ered to be Markovian [44]. The diagonal elements of it
describe excited state lifetimes, while non diagonal ele-
ments account for dephasing effects. The Hamiltonian
includes a time-independent free component Ĥ0 and a
term describing interaction with the electromagnetic field
~E(t),

Ĥ(t) = Ĥ0 − ~d · ~E(t) (5)

where, ~d is the dipole moment operator of the quantum
system. This equation shows that the field-molecule in-
teraction Hamiltonian depends on the angle between elec-
tric field and transition dipole moment of the molecule.
This angular dependence greatly impacts the threshold
and intensity of the stimulated emission, but the trends
are easy to understand so we assume that the two vectors
are aligned in this work.

In order to fully describe the lasing dynamics we model
each molecule as a four level system with an optical tran-
sition for absorption (and emission) (0 ↔ 3) and for
the emission (and absorption) (2 ↔ 1), based on the
schematic energy diagram shown in Fig. 2. When the
dye is optically pumped on the transition (0 ↔ 3), the
four-level model will provide gain via stimulated emission
for the transition (2 ↔ 1). The spontaneous decay rates
of transitions between (3 → 2) and (1 → 0) are assumed
to be fast enough that not enough population accumu-
lates in states 3 and 1. On the other hand, the sponta-
neous decay rates for the transitions (2→ 1) and (3→ 0)
are assumed to be small. Following a fast non radiative
transition (3 → 2), population inversion is achieved. For
sufficiently high incident field intensities [10, 28], plas-
mon driven stimulated emission associated with the 2 ↔
1 transition leads to lasing.

In order to understand this model it is convenient to
think of the states 3 and 2 as vibrational states of the
same excited electronic state, while states 1 and 0 are
vibrational states of the ground electronic state. We will
use the terms “electronic” and “vibrational” later in this
paper in describing the results.

FIG. 2. Scheme showing the energy transfer process for the
optically excited four-level gain medium coupled to lattice
plasmons in nanoparticle arrays: the dashed lines are for
spontaneous transitions and continuous lines for stimulated
transitions.

The Hamiltonian for the system can be written as,

Ĥ =

 ε0 0 0 Ω03

0 ε1 Ω12 0
0 Ω21 ε2 0

Ω30 0 0 ε3

 (6)

where, εi is the energy of ith energy level, Ω = − ~dij · ~E(t)
is the coupling energy between two energy levels with dij
being the transition dipole moment between states i and
j.

Equations (1)-(6) describe the self consistent time evo-
lution of interactions between the dye molecules and EM
fields associated with the NP arrays. Equations (4) and
(6) lead to coupled Maxwell-Liouville equations for the
molecular density matrix elements:
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dρ00
dt

=
1

ı~
(Ω03ρ30 − Ω30ρ03) + ∆30ρ33 + ∆10ρ11, (7a)

dρ01
dt

=
1

ı~
(Ω03ρ31 − Ω21ρ02 − ρ01(ε1 − ε0))− γ01ρ01,

(7b)

dρ02
dt

=
1

ı~
(Ω03ρ32 − Ω12ρ01 − ρ02(ε2 − ε0))− γ02ρ02,

(7c)

dρ03
dt

=
1

ı~
(Ω03(ρ33 − ρ00)− ρ03(ε3 − ε0))− γ03ρ03,

(7d)

dρ10
dt

=
1

ı~
(Ω12ρ20 − Ω30ρ13 + ρ10(ε1 − ε0))− γ10ρ10,

(7e)

dρ11
dt

=
1

ı~
(Ω12ρ21 − Ω21ρ12)−∆10ρ11 + ∆21ρ22, (7f)

dρ12
dt

=
1

ı~
(Ω12(ρ22 − ρ11)− ρ12(ε2 − ε1))− γ12ρ12,

(7g)

dρ13
dt

=
1

ı~
(Ω12ρ23 − Ω03ρ10 − ρ13(ε3 − ε1))− γ13ρ13,

(7h)

dρ20
dt

=
1

ı~
(Ω21ρ10 − Ω30ρ23 + ρ20(ε2 − ε0))− γ20ρ20,

(7i)

dρ21
dt

=
1

ı~
(ρ21(ε2 − ε1)− Ω21(ρ22 − ρ11))− γ21ρ21,

(7j)

dρ22
dt

=
1

ı~
(Ω21ρ12 − Ω12ρ21)−∆21ρ22 + ∆32ρ33, (7k)

dρ23
dt

=
1

ı~
(Ω21ρ13 − Ω03ρ20 − ρ23(ε3 − ε2))− γ23ρ23,

(7l)

dρ30
dt

=
1

ı~
(ρ30(ε3 − ε0)− Ω30(ρ33 − ρ00))− γ30ρ30,

(7m)

dρ31
dt

=
1

ı~
(Ω30ρ01 − Ω21ρ32 + ρ31(ε3 − ε1))− γ31ρ31,

(7n)

dρ32
dt

=
1

ı~
(Ω30ρ02 − Ω12ρ31 + ρ32(ε3 − ε2))− γ32ρ32,

(7o)

dρ33
dt

=
1

ı~
(Ω30ρ03 − Ω03ρ30)− (∆30 + ∆32)ρ33 (7p)

where, ∆ijs are excited state decay rates and γijs are
dephasing rates between two energy levels, i and j.

Eq. 7 shows how the off-diagonal density matrix el-
ements get coupled to the populations through the Li-
ouville equation. The electric field is coupled to these
off-diagonal elements through the coupling in Eq. 5, so
this provides the possibility for phases of the field to cou-
ple to coherences in the density matrix.

III. NUMERICAL DETAILS

To solve the above coupled Maxwell-Liouville equa-
tions, we employ an algorithm based on a finite difference
approach that generalizes the usual FDTD technique to
include time evolution of the density matrix elements of
the molecule. Initially proposed in [27], this approach
has several attractive merits including simplicity, numer-
ical stability, and applicability to objects with arbitrary
geometry and optical properties.

The numerical implementation scheme to solve the
coupled Maxwell-Liouville equations is as follows: 1) The
magnetic field is determined via Faraday’s law. Next us-
ing the macroscopic polarization current density of the
previous time step, the electric field is updated. 2) With
knowledge of the local electric field components we up-
date the density matrix at each spatial point. 3) Finally,
with knowledge of the electric field components and the
updated density matrix, we calculate the macroscopic po-

larization current d~P
dt at a corresponding grid point.

In the FDTD framework both electric and magnetic
fields are propagated in the time and space using the cou-
pled Maxwell’s curl equations based on the Yee algorithm
[32, 45]. Based on second-order central differences, the
FDTD method implements the space derivatives of the
curl operators via finite differences in regular interleaved
three dimensional Cartesian space meshes for the elec-

tromagnetic fields. ~E and ~H components are arranged in
a leapfrog arrangement as a function of time in the 3D

grid. Hence, each ~E component is surrounded by four

circulating ~H components and every ~H component is sur-

rounded by four circulating ~E components. The molecu-
lar density matrix and net macroscopic polarizations are

calculated using the spatial average of the ~E components
on adjacent half-cells. In order to take in account for
anisotropic simulation cells, the electric flux is computed
to accurately determine the electric field [28, 46].

The simulation cell has periodic boundary conditions
in the x and y directions while UPML (uniaxial perfect
matched layer) [32] is used at the top and bottom to
absorb waves at the cell boundaries.

To investigate the role of dephasing in our model, we
consider the setup schematically shown in Fig. 1. This
setup is identical to the one previously implemented in
[28] using a rate equation approach. The gold particles
in this setup are cylinders with an elliptical cross section.
The major axis, minor axis and height of Au NPs are 100
nm, 50 nm and 60 nm respectively. The periodicity of
the plasmonic structure along the x and y axis is 300 nm
(square lattice), the refractive index of the surrounding
medium is n = 1.5 and the thickness of the dye is 200
nm. A Drude-Lorentz fit function [47] is used to describe
the complex dielectric function of gold.

The absorption (λ30) and emission (λ21) wavelengths
of the dye are 600 nm and 720 nm, respectively. The
spectral bandwidths of the emission and absorption tran-
sitions are both assumed to be 100 nm. The incident
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TABLE I. The spontaneous and dephasing relaxation
timescales of various transitions.

Transitions Spontaneous Transitions Dephasing
Relaxation (∆) Timescale (γ)

3 → 0 1 ns 3 ↔ 0 2 fs
3 → 2 10 fs 3 ↔ 2 0.2 ps
2 → 1 1 ns 2 ↔ 1 2 fs
1 → 0 10 fs 1 ↔ 0 0.2 ps

pulse is a Gaussian pulse centered at λ30 with a tempo-
ral bandwidth of 150 fs and is polarized along the major
axis of the particles. The incident light is assumed to
propagate along the z direction which is normal to the
NP array. The concentration of the dye is 2.5 × 1025

molecules · m−3, corresponding to 25 molecules in a 10
nm3 cell. This is small enough that energy transfer be-
tween molecules is too slow to play a role on the time
scales of importance to this work. The emission spec-
trum is collected along the z- direction (as dictated by
the lattice plasmon diffraction condition) using a spatial
average of the NP array in the time domain.

The spontaneous decay and dephasing rates depend on
the energy difference between the levels under considera-
tion. We empirically assign the timescales of spontaneous
relaxation and dephasing in the present study. The spon-
taneous relaxation timescale between electronic states is
assumed to be in the ns range (here we note that Purcell
effects would shorten it, as considered previously[28], but
the revised timescale would still be much longer than is
important in this work), while it is taken to be in the
fs range between vibrational states. The dephasing rates
between two levels are expected to vary inversely with
the energy spacing between them [48–50], so we have as-
sumed the dephasing of vibrational states is in the ps
range, while dephasing of the electronic states is in the fs
range. The parameters we have chosen are listed in Table
I. The parameters for spontaneous decay are the same
as implemented in [28]. Later in the paper we examine
sensitivity of the results to choices of dephasing times.

IV. EFFECT OF DEPHASING ON LASING

In Fig. 3(a), we have plotted the extinction spectrum
of the passive structure of Fig. 1. The broad peak near
730 nm is a typical lattice plasmon dipolar mode. The
emission spectrum of the active medium, for the pump in-
tensity above the threshold, is shown in Fig. 3(b). There
are two distinct emission peaks in the spectrum: The
first one is at λ = 600 nm, the absorption wavelength
of the dye. It appears due to stimulated emission at the
exciting wavelength as results from incomplete loss of
population in state 3 from the 3→ 2 transition. The sec-
ond peak is at λ = 732 nm, corresponding to stimulated
emission between states 2 and 1. The narrow emission
profile along with threshold behavior of the peak are typ-
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FIG. 3. (a) Extinction spectra of passive structure (b) Emis-
sion spectra of active structure (c) Time dependence of the oc-
cupation densities of the gain medium (d) Time dependence of
the normalized population inversion. The input pulse energy
for these calculations is equal to 60 mJ·cm−2, corresponding
to the threshold for lasing in this model.

ical of stimulated emission for the four level model. In
Fig. 3(c) we show the normalized state populations as a
function of time after the initial pulse. Plasmon coupling
with the gain medium leads to a steady population in-
version that is essential for lasing. To be more precise,
the term 1

ı~ (Ω21ρ12 − Ω12ρ21) in Eq. 7(k) drives the in-
version condition, essential for stimulated emission. This
term modifies the population of the metastable state ex-
plicitly which in turn modifies the local net polarization.
In Fig. 3(d) we plot the population inversion between
states 2 and 1, confirming the buildup of this inversion
during the 150 fs of the initial pulse, and then its slow
decay thereafter.

A. Electronic Dephasing vs Vibrational Dephasing

Previous studies have demonstrated that dephasing af-
fects the state populations[36, 51] in the molecules and
their coupling with the plasmonic field [52–54]. Since
population inversion is a prerequisite for lasing, it is crit-
ical to understand the influence of dephasing on it. In
addition, our model contains both electronic and vibra-
tional dephasing, so it is important to study how each
factor impacts the lasing dynamics.

Here we study four cases in detail to investigate the
influence of dephasing on steady state population inver-
sion and in turn on stimulated emission. In the first
case, the system evolves coherently (no dephasing), and
the results are labeled as None. As second case, we ex-
amine the dephasing only between vibrational levels, i.e.
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FIG. 4. Comparison between the impact of various types of
dephasing on emission. Plots of (a) full emission profile and
(b) zoomed version of stimulated emission peak. Red solid
line, without any kind of dephasing; blue solid line, complete
dephasing; green dotted line, only vibrational dephasing; or-
ange dotted line, only electronic dephasing. Threshold for an
input energy is equal to 60 mJ·cm−2.

nonzero γij ’s in Eq. 7 using the value in Table 1 for levels
3 & 2 and 1 & 0, while the electronic levels stay in perfect
coherence. As a third case, the vibrational levels stay in
perfect coherence while decoherence between electronic
states is taken in account, i.e. nonzero γij ’s for levels
2 & 1 and 3 & 0. In the fourth scenario, all levels lose
coherence simultaneously with the values in Table 1. In
Fig. 4(a), we plot the emission spectra in all four cases. It
is evident from the figure that electronic dephasing influ-
ences the intensity of stimulated emission, Fig. 4(b), but
dephasing between vibrational states has no affect. This
outcome is understandable, as the assumed timescale for
vibrational dephasing is much longer than the time scale
for spontaneous relaxation for the 3 & 2 and 1 & 0 tran-
sitions, so vibrational dephasing should have no effect.
Meanwhile the timescale for electronic dephasing is much
shorter than the relaxation time, so this has a bigger ef-
fect (though only reducing the intensity by only about
10%). Also note that the peak near 600 nm is robust
under dephasing, as this peak is a result of pump driven
transitions and is very short lived.
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FIG. 5. Comparison between the impact of various types of
dephasing on steady state population inversion as a function
of time. (b) Plot of the first 30 fs of the dynamics. Red solid
line, without any kind of dephasing; blue solid line, complete
dephasing; green dotted line, only vibrational dephasing; or-
ange dotted line, only electronic dephasing. Input pulse en-
ergy is 60 mJ·cm−2, which is just above the laser threshold.

In Fig. 5(a), we have plotted the normalized steady
state population inversion for the four choices of de-
phasing times. This shows that the population oscil-
lates rapidly, between levels 2 and 1, for first ∼150 fs,
corresponding to the time when the pump is on. From
Fig. 5(b) it is evident that electronic dephasing damp-
ens the oscillations in the population inversion during
the first 30 fs, while vibrational dephasing has no effect
(matching the fully coherent results during this time in-
terval). At longer times than about 200 fs, the popula-
tions are all very similar, which suggests that the initial
differences at short times do not significantly affect the
longer time scale population inversion.

We further systematically study the impact of vibra-
tional and electronic dephasing to investigate conver-
gence behavior. In the first scenario, we decrease the
coherence time between vibrational levels to explore im-
pact of vibrational dephasing, fixing the electronic de-
phasing time at 2 fs. The results are plotted in Fig. 6(a).
It is evident from the spectra that vibrational dephasing
even at the timescale of 2 as does not influence stimulated
emission.
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FIG. 6. Plot of stimulated emission peak (a) for different
vibrational dephasing timescales, with constant 2 fs electronic
dephasing (b) for different electronic dephasing timescales,
with constant 200 fs vibrational dephasing. In the inset, the
curves are ordered from top to bottom going from 200 ps (top)
to 2 fs (bottom).

To explore the convergence behavior for electronic de-
phasing, we keep the vibrational dephasing time at 200
fs and gradually increase the electronic dephasing time.
The emission spectra in this case are plotted in Fig. 6(b).
It is evident from the results (see the inset to the fig-
ure) that unlike vibrational dephasing the time scale of
electronic dephasing strongly influences the peak stimu-
lated emission intensity, with fully dephased results be-
ing obtained for dephasing times on the order of 10 fs,
and fully coherent results obtained for dephasing times
greater than 100 ps. In between these two limits there is
a smooth transition in peak emission from dephased to
coherent limits. Note that the 100 ps coherent timescale
is faster than the 2 → 1 radiative lifetime, reflecting the
fact that at the lasing threshold stimulated emission is
faster than spontaneous emission. At the same time, the
10 fs limit for fully dephased results is comparable to the
plasmon dephasing time.
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B. Classical Rate Eqn and Density Matrix Rate
Eqn

In this subsection, we compare our method with pre-
viously established rate equation approaches developed
by Chang et al. [25] and Dridi et al. [28]. Chang’s
model is based on a four level system in which there are
two interacting electrons of the same spin. As a result,
transitions between energy levels are governed by cou-
pled rate equations that include a factor of (1-N) in the
spontaneous emission rates to describe the effect of the
Pauli Exclusion Principle (PEP) on allowed transitions.
The time dependence of the populations is given by:

dN3

dt
= −N3(1−N2)

τ32
− N3(1−N0)

τ30
+

1

~ω30

~E · d
~P30

dt
(8a)

dN2

dt
=
N3(1−N2)

τ32
− N2(1−N1)

τ21
+

1

~ω21

~E · d
~P21

dt
(8b)

dN1

dt
=
N2(1−N1)

τ21
− N1(1−N0)

τ10
− 1

~ω21

~E · d
~P21

dt
(8c)

dN0

dt
=
N3(1−N0)

τ30
+
N1(1−N0)

τ10
− 1

~ω30

~E · d
~P30

dt
(8d)

The PEP model has been widely used in describ-
ing semiconductor lasers, but its applicability to dye
molecules is unknown.

The method developed by Dridi and Schatz is based
on combining EM fields with a four level description gov-
erned by a one-electron system in which the Pauli Prin-
ciple plays no role. The time evolution of electron popu-
lation is determined using the rate equations:

dN3

dt
= −N3(t)

τ32
− N3(t)

τ30
+

1

~ω30

~E · d
~P30

dt
(9a)

dN2

dt
=
N3(t)

τ32
− N2(t)

τ21
+

1

~ω21

~E · d
~P21

dt
(9b)

dN1

dt
=
N2(t)

τ21
− N1(t)

τ10
− 1

~ω21

~E · d
~P21

dt
(9c)

dN0

dt
=
N3(t)

τ30
+
N1(t)

τ10
− 1

~ω30

~E · d
~P30

dt
(9d)

Note that the spontaneous rates in these equations are
equivalent to our density matrix model in the limit of
a fully decohered system at all times. However we note
that even in this limit, the Liouville and rate equation
models are not precisely the same, as there is a Markovian
approximation in addition to fast dephasing in converting
the Liouville equation formalism to rate equations.

Figure 7 presents the direct comparison of these mod-
els with our method. Both types of dephasing, electronic
and vibrational, have been included while solving the
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FIG. 7. (a) Stimulated emission peak and (b) Steady state
condition of population inversion. The emission profile is nor-
malized to the same input energy.

Maxwell-Liouville equations, using the parameters pre-
sented earlier (Table I). Note that the threshold powers
needed in the three cases are slightly different, so results
are normalized to the same incident pump energy. What
we see from the figures are stimulated emission profiles
obtained from the two rate equation methods that are
comparable, Fig. 7(a), however both sets of rate equa-
tion results have a peak emission rate that is about half
that of the Liouville equation result. In addition, the
Liouville equation result is narrower. The steady state
population inversion condition (Fig. 7(b)) in all the three
cases is achieved around the same timescale, as makes
sense given that the 150 fs pump plays a major role in
producing this result, but it is in contrast to the results of
previous attempts to include dephasing in lasing models
[26].

The good agreement of PEP and non-PEP rate equa-
tion results arises because the state populations are gen-
erally low, which means that the influence of the 1-N
term in the PEP model is insignificant. In the Maxwell-
Liouville method, the presence of initially oscillating be-
havior is a signature of initial coherent excitation [26].
At times above 200 fs, the Maxwell-Liouville population
inversion is smaller than the rate equation result, which
means that the rate equation results will tend to under-
estimate lasing threshold.

V. CONCLUSIONS

In this paper, we have presented an approach to model
plasmon-enhanced laser systems using a self consis-
tent electrodynamical model based on coupled Maxwell-
Liouville equations. This model goes beyond earlier
models of lattice plasmon lasers through its incorpora-
tion of dephasing effects in the quantum system (the
gain medium), which allows us to study the transition
from coherent to decohered evolution of the system dur-
ing and after ultrafast excitation and lasing. The pro-
posed model is applied to investigate a four-level den-
sity matrix description of active medium which allows
for both electronic and vibrational excitation of the laser
dye molecules.
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We have applied our model to study arrays of gold NPs
embedded in a gain medium to investigate the emission
spectra of the active structure under circumstances where
lattice plasmon resonance excitation leads to strongly en-
hanced stimulated emission. We present a detailed study
of the correlation between dephasing rates and stimu-
lated emission, showing that rapid dephasing between
various energy levels changes the population inversion
behavior at short times as well as reducing the ampli-
tude of the lasing peak. We find that for fast dephasing
(on the order of 10 fs or less) between levels 2 and 1
(the states associated with the population inversion) has
the most impact on reducing the intensity of stimulated
emission, with emission intensities that are 10% smaller
than for the fully coherent limit that arises for electronic
dephasing times above 100 ps. The lasing behavior is
even less sensitive to vibrational dephasing effects.

One possible reason for small dephasing effects is that
in the rotating wave approximation leading to Eq. 3,
there is no phase dependence in the coupling between
the plasmonic field and the induced polarization in the
quantum system. Since the rotating wave approximation
is likely to be valid for the low intensity lasers that have
been studied so far, this result supports the earlier stud-
ies based on rate equation models. However the compar-
ison of Maxwell-Liouville and rate equation results was
less quantitative (factor of two differences), which indi-
cates that differences between the theories are driven by
effects beyond vibrational or electronic dephasing, such
as the Markovian approximation. Also, we found that
rate equation models that include for the Pauli Exclu-
sion Principle lead to results with only small differences
compared to those that do not, due to the low occupa-
tion numbers associated with the dye laser structures we
studied.

Our method provides a detailed description of lasing
action in coupled plasmonic NPs arrays, and other plas-
monic systems with gain molecules. In addition, the
method is versatile and easily extended to study inter-
actions between other gain media (semiconductors) and
plasmons. The code we have developed can consider ran-
dom, quasi-periodic and aperiodic structures for the plas-
monic nanoparticles with little modification of the code.
The technique should therefore be of general use for in-
terpreting, predicting and controlling the interactions in
novel nanoscale nanoplasmonic lasers and other optical
devices.

ACKNOWLEDGMENTS

This Liouville equation studies were supported by the
Department of Energy, Basic Energy Sciences, under
grant DE-SC00001059. (D.J.T., G.C.S.). The classical
rate equation work was supported by National Science
Foundation (DMR-1608258; D.W., T.W.O.). The au-
thors thank Montacer Dridi for valuable comments.

APPENDIX: DERIVATION OF NET
MACROSCOPIC MOLECULAR POLARIZATION

Here we present detailed derivation of the net macro-
scopic molecular polarizations associated with the
emission and absorption transitions. The optically
pumped transition leads to a microscopic polarization
of the molecule that can be described by a classical
electron oscillator (CEO) model using the equation of
motion. Within the linear frequency domain, it has been
generalized to account for a population of molecules
that under an EM field oscillate at the same resonance
frequency as the individual molecules. Although these
equations has been previously derived in [25, 27], here
we are attaching detailed derivation with the purpose of
simplicity and consistency of the paper.

The atom-photon Hamiltonian for a two-level system
can be expressed as:

Ĥ = ĤAtom + ĤField + ĤAF (A.10)

where,

ĤAtom = ~ωaN̂u ; ĤField = Σk~ωk(â†kâk + 1
2 ) ;

ĤAF = −µ̂ · Ê
N̂u = |u >< u| = number operator for the upper level
|u >
N̂g = |g >< g| = number operator for the ground level
|g >
~ωa = energy difference between |u > and |g >
â†k = photon creation operator

The electric field is given by,

Ê = −dÂ
dt

= ı
∑
k

√
~ωk
2ε0ν

ek(âke
ık.x − â†ke

−ık.x) (A.11)

with ωk = |k|·c
n , n is the refractive index of the medium.

The dipole operator is

µ̂ = −er̂ =
∑
``′

µ``′ V̂``′ (A.12)

where e is the electron charge and V̂``′ = |` >< `′| is
the atomic transition operator. For two level system the
dipole operator reduces to,

µ̂ = µV̂ † + µ∗V̂ (A.13)

with µ =< u|er̂|g >= dêz and V̂ = |g >< u|.

From the second quantized Hamiltonian, we will de-
rive the Heisenberg equation for motion for the atomic
transition operator,

dV̂

dt
=
ı

~
[Ĥ, V̂ ] (A.14)
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Lets solve it for two level system term by term,

ı

~
[ĤAtom, V̂ ] =

ı

~
(ĤAtomV̂ − V̂ ĤAtom)

= (
ı

~
)(~ωa)(N̂u|g >< u| − |g >< u|N̂u)

= −ıωaV̂ (A.15)

Using, < α|β >= δα,β .

Next term,

ı

~
[ĤField, V̂ ] =

ı

~
(
∑
k

~ωk(â†kâk +
1

2
)|g >< u|

− |g >< u|
∑
k

~ωk(â†kâk +
1

2
))

= 0 (A.16)

Using, â|g >= 0 and â†|u >= 0.

For Atom-Field interaction term,

ı

~
[ĤAF , V̂ ] = − ı

~
[µ̂ · Ê, V̂ ]

= − ı
~

[(µV̂ † + µ∗V̂ ) · Ê, V̂ ]

= − ı
~

[(µV̂ † + µ∗V̂ ), V̂ ] · Ê

= − ı
~

((µV̂ † + µ∗V̂ )V̂ − V̂ (µV̂ † + µ∗V̂ )) · Ê

= − ı
~
µ(V̂ †V̂ − V̂ V̂ †) · Ê (A.17)

Next,

V̂ †V̂ = |u >< g||g >< u| = N̂u (A.18)

V̂ V̂ † = N̂g (A.19)

V̂ †V̂ † = V̂ V̂ = 0 (A.20)

Using Eqs (A.18)-(A.20) in Eq. (A.17),

ı

~
[ĤAF , V̂ ] = − ı

~
[µ̂ · Ê, V̂ ]

= − ı
~
µ(N̂u − N̂g) · Ê (A.21)

Substituting Eqs. (A.15), (A.16) and (A.21) in Eq.
(A.14),

dV̂

dt
= −ıωaV̂ −

ı

~
~µ(N̂u − N̂g) · Ê− γV̂ (A.22)

The last term is damping term and empirically added
in the Eq. (A.22). Similarly,

dV̂ †

dt
= ıωaV̂ † −

ı

~
µ∗(N̂u − N̂g) · Ê− γV̂ † (A.23)

From Eq. (A.13),

dµ̂

dt
= µ

dV̂ †

dt
+ µ∗

dV̂

dt

= µ(ıωaV̂ † −
ı

~
µ∗(N̂u − N̂g) · Ê− γV̂ †)

+ µ∗(−ıωaV̂ −
ı

~
µ(N̂u − N̂g) · Ê− γV̂ )

= ıωa(µV̂ † − µ∗V̂ )− γµ̂− 2ı

~
|d|2(N̂u − N̂g)(ez · Ê)

(A.24)

Next taking time derivative of Eq. (A.24),

d2µ̂

dt2
= ıωa

d(µV̂ † − µ∗V̂ )

dt
− γ dµ̂

dt
− 2ı

~
|d|2(N̂u − N̂g)(ez ·

dÊ

dt
)

− 2ı

~
|d|2(

dN̂u
dt
− dN̂g

dt
)(ez · Ê) (A.25)

Now,

d(µV̂ † − µ∗V̂ )

dt
= µ

dV̂ †

dt
− µ∗ dV̂

dt

= ıωa(µV̂ † + µ∗V̂ )

= ıωaµ̂ (A.26)

The population transition rate equations between lev-
els can be achieved from the Heisenberg equation for mo-
tion.

dN̂u
dt

= −dN̂g
dt

= − ı
~
µ̂ · Ê (A.27)

Substituting Eqs. (A.26) and (A.27) in Eq. (A.25),

d2µ̂

dt2
= −ω2

aµ̂− γ
dµ̂

dt
− 2ı

~
|d|2(N̂u − N̂g)(ez ·

dÊ

dt
)

− 2ı

~
|d|2(−2ı

~
µ̂ · Ê)(ez · Ê) (A.28)

Hence one recovers,

d2µ̂

dt2
+2γ

dµ̂

dt
+(ω2

a+(
2|d|
~

)2Ê2)µ̂ =
2ı

~
|d|2(N̂g−N̂u)(ez·

dÊ

dt
)

(A.29)

The additional γ term is added empirically in the equa-
tion.
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