Collision-energy dependence of pt correlations in Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

J. Adam et al. (STAR Collaboration )
Phys. Rev. C 99, 044918 – Published 26 April 2019

Abstract

We present two-particle pt correlations as a function of event centrality for Au+Au collisions at sNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These results are compared to previous measurements from CERES at the Super Proton Synchrotron and from ALICE at the Large Hadron Collider. The data are compared with UrQMD model calculations and with a model based on a Boltzmann-Langevin approach incorporating effects from thermalization. The relative dynamical correlations for Au+Au collisions at sNN=200 GeV show a power-law dependence on the number of participant nucleons and agree with the results for Pb+Pb collisions at sNN=2.76TeV from ALICE. As the collision energy is lowered from sNN=200 to 7.7 GeV, the centrality dependence of the relative dynamical correlations departs from the power-law behavior observed at the higher collision energies. In central collisions, the relative dynamical correlations increase with collision energy up to sNN=200 GeV in contrast to previous measurements that showed little dependence on the collision energy.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 January 2019

DOI:https://doi.org/10.1103/PhysRevC.99.044918

©2019 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 4 — April 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×