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We present two-particle pt correlations as a function of event centrality for Au+Au collisions at√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at the Relativistic Heavy Ion Collider

using the STAR detector. These results are compared to previous measurements from CERES
at the Super Proton Synchrotron and from ALICE at the Large Hadron Collider. The data are
compared with UrQMD model calculations and with a model based on a Boltzmann-Langevin
approach incorporating effects from thermalization. The relative dynamical correlations for Au+Au
collisions at

√
sNN = 200 GeV show a power law dependence on the number of participant nucleons
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and agree with the results for Pb+Pb collisions at
√
sNN = 2.76 TeV from ALICE. As the collision

energy is lowered from
√
sNN = 200 GeV to 7.7 GeV, the centrality dependence of the relative

dynamical correlations departs from the power law behavior observed at the higher collision energies.
In central collisions, the relative dynamical correlations increase with collision energy up to

√
sNN

= 200 GeV in contrast to previous measurements that showed little dependence on the collision
energy.

PACS numbers: 25.75.-q

The study of event-by-event correlations and fluc-
tuations in global quantities can provide insight into
the properties of the hot and dense matter created in
Au+Au collisions at ultrarelativistic collision energies [1–
21]. Correlations of transverse momentum, pt, have been
proposed as a measure of thermalization [15, 22, 23] and
as a probe for the critical point of quantum chromody-
namics (QCD) [14, 24]. A detailed study of the depen-
dence of two-particle pt correlations on collision energy
and centrality may elucidate the effects of thermaliza-
tion. If the matter produced in ultrarelativistic collisions
passes through a possible QCD critical point, the fluctu-
ations are predicted to increase with respect to a base-
line of uncorrelated emission. A possible signature of the
critical point could be non-monotonic behavior of two-
particle correlations as a function of collision energy in
central collisions.

In this paper we present an experimental study of
the collision energy dependence of pt correlations using
Au+Au collisions at center of mass energies ranging from√
sNN = 7.7 GeV to 200 GeV, taken during the RHIC

Beam Energy Scan (BES) using the Solenoidal Tracker
at RHIC (STAR). The 7.7-, 11.5-, 39-, and 62.4-GeV
data were taken in 2010. The 19.6-, 27-, and 200-GeV
data were taken in 2011. The 14.5-GeV data were taken
in 2014. The main detectors used were the Time Projec-
tion Chamber (TPC) [25] and the Time of Flight detector
(TOF) [26], both located in a solenoidal magnetic field
of 0.50 T. Charged tracks from the TPC with 0.2 GeV/c
≤ pt ≤ 2.0 GeV/c and |η| < 0.5 were used in this analysis,
where η is the pseudorapidity. Tracks in the TPC were
characterized by the distance of closest approach (DCA),
which is the smallest distance between the projection of
the track and the measured event vertex. To suppress
secondary particles from weak decays, all tracks were re-
quired to have a DCA less than 1 cm. Each track was
required to have at least 15 measured points and a ratio
of the number of measured points to the possible number
of measured points greater than 0.52. Each event was re-
quired to have at least one track matched to a TOF hit
to minimize pileup. For each collision energy, events were
accepted if they originated from within 1 cm of the cen-
ter of the focused beam in the plane perpendicular to the
beam axis and within 30 cm of the center of STAR along
the beam line to achieve uniform detector performance.
The statistical errors were determined by dividing the
dataset into five subsets and calculating the observables
for each subset. The standard deviation of these observ-
ables divided by the square root of the number of subsets

√
sNN (GeV) Events (M)

7.7 1.43
11.5 2.46
14.5 12.0
19.6 15.4
27 28.7
39 24.8
62.4 14.9
200 22.2

TABLE I. Summary of the number of events analyzed in this
analysis.

was used to calculate the error. We estimated the sys-
tematic errors of the observables by studying the effects
of varying the DCA cut from 0.8 to 1.2 cm, varying the
acceptance in η from |η| = 0.4 to 0.6, and by varying
the lower cut for pt from 0.18 to 0.22 GeV/c. The av-
erage relative systematic errors related to the DCA, the
η cut, and the lower cut of pt are 1.3%, 2.7%, and 4.0%
respectively.

All the data shown are from minimum bias triggers.
For 7.7 and 11.5 GeV, the minimum bias triggers were
defined as an OR of the signals from the Vertex Posi-
tion Detectors (VPD) [27] and the Beam-Beam Counters
(BBC) [28]. For 14.5 GeV, 19.6, and 27 GeV, the mini-
mum bias triggers were an OR of the VPD and the BBC
and the Zero Degree Calorimeters (ZDC) [29]. For 39,
62.4, and 200 GeV an OR of the VPD and ZDC was
used.

Table I shows the number of events analyzed at each
collision energy. The centrality bins were defined in terms
of a reference multiplicity, which was defined as the num-
ber of detected charged particles within an acceptance of
0.5 < |η| < 1.0. For the 200 GeV data, this quantity was
corrected for the luminosity dependence and the position
of the event vertex along the beam axis. This central-
ity was defined so that the particles used to determine
the event centrality did not include the particles used to
calculate the pt correlations. The centrality bins used
in this analysis were defined in terms of the fraction of
total inelastic cross section. Specifically the bins were
0-5% (most central collisions), 5-10%, 10-20%, 20-30%,
30-40%, 40-50%, 50-60%, 60-70%, and 70-80% (most pe-
ripheral). The average number of participating nucleons,
Npart, was calculated for each centrality bin at each colli-
sion energy using a Monte Carlo Glauber model [30, 31].

The results are compared with calculations using the
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UrQMD model [32, 33]. Version 3.3 of UrQMD with de-
fault parameters was used for Au+Au collisions at RHIC
energies and version 3.4 was used for Pb+Pb collisions
at

√
sNN = 2.76 TeV. UrQMD is a hadronic transport

model that does not incorporate effects from a decon-
fined system of quarks and gluons. For comparison to
the STAR results, the STAR acceptance and tracking ef-
ficiency were applied with a dependence on particle type,
pt, collision energy, and centrality. The detector efficien-
cies were first obtained from simulations and then applied
to the UrQMD results. For comparison to the ALICE re-
sults, the ALICE acceptance was applied to the UrQMD
calculations but no efficiency effects were considered.

To characterize the pt correlations, we used the two-
particle pt correlation defined as the covariance given by:

〈∆pt,i,∆pt,j〉 =
1

Nevents

Nevents
∑

k=1

Ck

Nk (Nk − 1)
, (1)

where

Ck =

Nk
∑

i=1

Nk
∑

j=1,j 6=i

(pt,i − 〈〈pt〉〉) (pt,j − 〈〈pt〉〉) . (2)

Nevents is the number of events, Nk is the number of
tracks in the kth event, and pt,i is the transverse mo-
mentum of the ith track in the given event. The event-
averaged pt is defined as

〈〈pt〉〉 =

∑Nevents

k=1 〈pt〉k
Nevents

, (3)

where 〈pt〉k is the average pt of the kth event defined as

〈pt〉k =

∑Nk

i=1 pt,i
Nk

. (4)

The quantities 〈〈pt〉〉 and 〈∆pt,i,∆pt,j〉 were calculated
as a function of the reference multiplicity and then av-
eraged over the centrality bin to remove any dependence
on the size of the centrality bins [34].

To characterize two-particle pt correlations,
we present the relative dynamical correlation,
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉. The relative dynamical cor-
relation represents the magnitude of the dynamic
fluctuations of the average transverse momentum in
units of 〈〈pt〉〉 and can be compared directly to the
observables used by CERES [35] and ALICE [36].

Figure 1 shows the relative dynamical correlation
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉 as a function of centrality for
eight collision energies. Also shown in this figure are
the UrQMD calculations. The measured relative dynam-
ical correlations for Au+Au collisions at 200 GeV are
well reproduced by a power law given by 22.3%/

√

Npart.
This power law distribution is also shown for the other
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FIG. 1. The relative dynamical correlation
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉 as a function of Npart for eight
collision energies and UrQMD calculations. Statistical
and systematic errors are shown. The solid straight lines
represent a power law given by 22.3%/

√

Npart. Also shown
are the ratios of the measured data to the power law and to
UrQMD calculations.

seven collision energies. The relative dynamical correla-
tion distributions deviate from this power law with de-
creasing collision energy. Figure 1 also shows the ratio of
the measured relative dynamical correlation to the power
law distribution observed at 200 GeV and the ratio of the
measured values to the UrQMD calculations at each col-
lision energy.

The previous STAR measurements of the relative dy-
namical correlation at 19.6, 62.4, 130, and 200 GeV
[16] used different acceptance cuts including 0.15 GeV/c
≤ pt ≤ 2.0 GeV/c and |η| < 1.0 as well as a different cen-
trality definition using detected charged particles with |η|
< 0.5. The previous data at 19.6, 62.4, and 200 GeV are
consistent with the current data.

Figure 2 shows the UrQMD results for the relative
dynamical correlation for three cases. The first case is
the direct output from the model. The second case is
UrQMD in which the effect of an 80% constant tracking
efficiency was introduced. The third case is the method
used in this paper in which the UrQMD calculations are
obtained by introducing the effect of the STAR track-
ing efficiency, which depends on the particle type, the
particle pt, the collision energy, and the collision central-
ity. These calculations show that the relative dynamical
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FIG. 2. UrQMD calculations for the relative dynamical corre-
lation

√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉 as a function of Npart for eight
collision energies. Three cases are shown; UrQMD uncor-
rected, which has no efficiency corrections, UrQMD 80% eff.,
which uses a fixed efficiency of 80%, and UrQMD, which uses
a tracking efficiency that depends on particle type, pt, cen-
trality, and collision energy.

correlation is not sensitive to the efficiency, which allows
for the presentation of the experimental results without
correction for tracking efficiency.

Figure 3 shows the comparison of a Boltzmann-
Langevin approach to the study of equilibration and ther-
malization effects on two-particle pt correlations [23].
The results for local equilibrium flow and partial ther-
malization are shown compared with current results for
19.6 and 200 GeV collisions as well as the results from
Pb+Pb collisions at 2.76 TeV [36]. The local equilibrium
flow predictions are realized using a blast wave model in-
cluding the fluctuation of thermalized flow while a time
dependent relaxation time is used to obtain the partial
thermalization results. The authors of Ref. [23] point
out that these comparisons suggest incomplete thermal-
ization in peripheral collisions because they disagree with
a local equilibrium flow model. The agreement in Fig. 3
of the model calculations for partial thermalization with
the measured two-particle pt correlations at all centrali-
ties at these three widely-spaced collision energies lends
support to this model.

Figure 4 shows the relative dynamical correlation for
Au+Au collisions at 7.7 and 200 GeV compared with
similar results from Pb+Pb collisions at 2.76 TeV [36].
The ALICE collaboration determined the relative dy-
namical correlation using tracks with 0.15 GeV/c ≤ pt ≤
2.0 GeV/c and |η| < 0.8. The results for Au+Au colli-
sions at 200 GeV agree well with the results for Pb+Pb
collisions at 2.76 TeV. The dashed line represents a power
law fit to the STAR Au+Au data at 200 GeV of the
form 22.3%/

√

Npart. This fit also reproduces the ALICE
Pb+Pb results at 2.76 TeV except for the most central
collisions. Not only does the relative dynamical corre-
lation scale as a power law, but it scales as 1/

√

Npart,
adding credence to the idea that the observed particle
production comes from uncorrelated sources. As the col-
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FIG. 3. Comparison of a model [23] incorporating a
Boltzmann-Langevin approach to the calculation of thermal-
ization effects for the relative dynamical correlation from
Au+Au collisions at

√
sNN = 19.6 and 200 GeV. Also shown

are model comparisons to results from Pb+Pb collisions at√
sNN = 2.76 TeV [36].

Statistical error

Systematic error
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FIG. 4. The relative dynamical correlation
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉 for
√
sNN = 7.7 GeV and 200 GeV

Au+Au collisions compared with similar results from Pb+Pb
collisions at

√
sNN = 2.76 TeV[36]. The dashed line rep-

resents a fit the to data at
√
sNN = 200 GeV given by

22.3%/
√

Npart. Statistical and systematic errors are shown.

lision energy is lowered, the relative dynamical correla-
tion as a function of Npart shows a breakdown in this
power law scaling as demonstrated by the results for
7.7 GeV in Fig. 4.

Figure 5 shows the relative dynamical correlation
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉 as a function of
√
sNN for the

most central bin (0-5%). Also shown are the results for
Pb+Pb collisions from ALICE [36] and Pb+Pb collisions
from CERES [35]. UrQMD calculations are shown as
described above.

The data from CERES [35] in Fig. 5 are from Pb+Pb
collisions at

√
sNN = 8.7, 12.3 and 17.3 GeV. The CERES
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FIG. 5. The relative dynamical correlation
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉 for Au+Au collisions as a func-
tion of collision energy for the 0-5% centrality bin along with
results for Pb+Pb from CERES [35] and results for Pb+Pb
from ALICE [36] along with UrQMD calculations and results
from Boltzmann-Langevin model calculations [23]. The solid
line is drawn to guide the eye. Statistical and systematic
errors are shown for the data points.

results were published using an observable (Σpt
), which

is mathematically identical to
√

〈∆pt,i,∆pt,j〉/ 〈〈pt〉〉.
STAR had shown previously [16] that the CERES results
taken together with STAR results at 19.6, 62.4, 130, and
200 GeV for 0-5% centrality indicated that the relative
dynamical correlation was constant with collision energy.
The present results for 7.7 GeV to 200 GeV, although in
reasonable agreement with the CERES data, show that
the relative dynamical correlation decreases at lower col-
lision energy.

Figure 5 also shows the relative dynamical correlation
for the 5% most central collisions from Pb+Pb collisions
at 2.76 TeV from ALICE [36]. This result seems to show
that the relative dynamical correlation plateaus above
200 GeV. The relative dynamical correlation at 2.76 TeV
is somewhat lower than the value at 200 GeV. This dif-
ference could be partially due to the fact that the 0-5%
centrality bin for Pb+Pb collisions at 2.76 TeV is asso-
ciated with a somewhat larger value of Npart than the
value for 200 GeV Au+Au collisions, leading to a lower
value of the relative dynamical correlation assuming a
1/

√

Npart scaling.

The UrQMD calculations agree with the measured rel-
ative dynamical correlation for Au+Au central collisions
at 7.7 GeV and with the relative dynamical correlation
for Pb+Pb collisions at 2.76 TeV. However, the mea-
sured relative dynamical correlation increases more than
the calculated values from UrQMD as the collision en-
ergy is increased from 7.7 GeV to 200 GeV. Also shown
in Fig. 5 are the predictions of the Boltzmann-Langevin
calculations [23] for central collisions of Au+Au at 19.6
and 200 GeV and central collisions of Pb+Pb at 2.76
TeV. These results show little dependence on the colli-

sion energy and agree with the measured results at 19.6
GeV and 2.76 TeV but slightly under-predict the results
at 200 GeV.

In conclusion, we observe a power law scaling of the
form 1/

√

Npart for the relative dynamical correlation in
Au+Au collisions at 200 GeV. A similar power law scal-
ing had been previously observed in Pb+Pb collisions at
2.76 TeV [36] except in the most central collisions. As
the collision energy for Au+Au collisions is decreased to
7.7 GeV, the power law scaling observed at 200 GeV
breaks down. For the most central Au+Au collisions,
the relative dynamical correlations increase with colli-
sion energy up to 200 GeV showing no evidence of non-
monotonic behavior in this range of Au+Au collision en-
ergies. The relative dynamical correlation for the most
central bin for Pb+Pb collisions at 2.76 TeV is lower than
the value for the most central bin for Au+Au collisions
at 200 GeV. This is due partially to the fact that the
value of Npart associated with the most central bin for
Pb+Pb collisions at 2.76 TeV is higher than the value of
Npart for the most central bin for Au+Au collisions and
the relative dynamical correlations in Au+Au collisions
scale as 1/

√

Npart. This effect is not enough to explain
the observed decrease from Au+Au central collisions at
200 GeV to Pb+Pb central collisions at 2.76 TeV. The
relative dynamical correlation in the most central bin for
Pb+Pb collisions at 2.76 TeV is lower that the relative
dynamical correlation in the most central bin for Au+Au
collisions at 200 GeV. We observe that two-particle pt
correlations show evidence of incomplete thermalization
when compared with the Boltzmann-Langevin model in
Ref. [23] in the most peripheral collisions. New calcu-
lations from this model at collision energies below 19.6
GeV would be of interest to better determine the extent
of thermalization.

ACKNOWLEDGMENTS

We thank the RHIC Operations Group and RCF at
BNL, the NERSC Center at LBNL, and the Open Science
Grid consortium for providing resources and support.
This work was supported in part by the Office of Nuclear
Physics within the U.S. DOE Office of Science, the U.S.
National Science Foundation, the Ministry of Education
and Science of the Russian Federation, National Natural
Science Foundation of China, Chinese Academy of Sci-
ence, the Ministry of Science and Technology of China
and the Chinese Ministry of Education, the National
Research Foundation of Korea, Czech Science Founda-
tion and Ministry of Education, Youth and Sports of the
Czech Republic, Department of Atomic Energy and De-
partment of Science and Technology of the Government
of India, the National Science Centre of Poland, the Min-
istry of Science, Education and Sports of the Republic of
Croatia, RosAtom of Russia and German Bundesminis-
terium fur Bildung, Wissenschaft, Forschung and Tech-
nologie (BMBF) and the Helmholtz Association.



7

[1] H. Heiselberg and A. D. Jackson, Phys. Rev. C 63,
064904 (2001).

[2] Z.-w. Lin and C. M. Ko, Phys. Rev. C 64, 041901(R)
(2001).

[3] S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076 (2000).
[4] S. A. Bass, P. Danielewicz, and S. Pratt, Phys. Rev. Lett.

85, 2689 (2000).
[5] S. A. Voloshin, V. Koch, and H. G. Ritter, Phys. Rev. C

60, 024901 (1999).
[6] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev.

D 60, 114028 (1999).
[7] H. Heiselberg, Phys. Rept. 351, 161 (2001).
[8] M. Asakawa, U. Heinz, and B. Müller, Phys. Rev. Lett.

85, 2072 (2000).
[9] Q. Liu and T. A. Trainor, Phys. Lett. B 567, 184 (2003).

[10] E. V. Shuryak and M. A. Stephanov, Phys. Rev. C 63,
064903 (2001).

[11] C. Pruneau, S. Gavin, and S. Voloshin, Phys. Rev. C 66,
044904 (2002).

[12] S. A. Bass, M. Gyulassy, H. Stöcker, and W. Greiner, J.
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