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Construction and discussion of phase equivalent potentials, i.e., of potentials which give equal phase shifts
for 5-waves. In particular, it is shown that the phase shifts do not determine the energy of bound states,
and that there exist continuous families of phase equivalent potentials.

'HE elastic scattering cross section of a particle of
energy E moving in a central field of force is de-

termined by the phase shifts it&(k) of the partial waves
(of different angular momenta t) into which the par-
ticle's Schrodinger function may be decomposed. Here, k
is the wave number, and, in appropriate units, E=k'.
(We restrict ourselves to the non-relativistic case.) One
may ask to what extent the scattering potential V(r) is
determined (a) by the function gi(k) for a fixed angular
momentum (for example, l=0), (b) by all functions

q &(k) (l= 0, 1, 2, ). The answer to the second question
follows from a recent investigation by X. Ievinson. '
Two potentials which are known to decrease rapidly
enough at large distances from the scattering center are
identical if they give the same phase shifts for all /.

(See Sec. 6 below. ) The present paper deals mainly with
the first question, specifically, with the case l= 0
(S-scattering).

Our method consists in studying "phase equivalent"
potentials, i.e., potentials with the same function y(k).
(In what follows, q(k) stands for no(k). ) An example of
two phase equivalent potentials has recently been pub-
lished. ' In the present paper we shall construct addi-
tional examples in a somewhat more systematic fashion.
In each case the Schrodinger equation may be solved in
terms of elementary functions, so that the phase shift
g(k) may be explicitly computed N. Le. vinson has
proved' that two phase equivalent potentials are
identical if both decrease rapidly enough and if neither
gives rise to a bound state. It has not been possible to
formulate any other reasonable qualitative criteria for
phase equivalence. In fact, phase equivalent potentials
may have a markedly di8erent appearance. They may
have bound states of different energy; there even exist
continuous families of phase equivalent potentials.

Connectionwith the theory of the , S matrix. A spherically-
symmetric solution of the Schrodinger equation has, for
large distances, the asymptotic form (o/r) (S(k)e'""
—e '"') where o is a constant and S(k)=e""'"&. The

' N. Levinson, Phys. Rev. 75, 1445 (1949).I am greatly indebted
to Professor Levinson for communicating his results prior to
publication.

Pote added in proof: Professor E. A. Hylleraas has kindly in-
formed me that he has independently arrived at Levinson's main
conclusions.' V. Bargmann, Phys. Rev. 75, 301 (1949).

3 In a paper to be published soon.
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amplitude of the scattered wave is (S(k) —])/2ikr,
and S(k) is a proper value of the S-matrix. By analytic
continuation, the function $(k) may be defined for
complex k, and, in particular, for imaginary values
k= —k(~) 0). As H. A. Kramers' observed, the station-
ary states should then be obtained from the zeros of
S(k) (for k= —ig). S. T. Ma, ' however, discovered the
existence of "redundant" zeros of S(k), i.e., of zeros
which do not correspond to bound states, and R. Jost'
showed in a careful investigation (on which the present
paper is based) that the redundant zeros are connected
with singularities of the function f(k, r) (see Sec. 1
below). The existence of phase equivalent potentials
with diferent bound states shows that, in general, the
knowledge of S(k) is certainly insuflicient for the de-
termination of the bound states, irrespective of any
further conditions which may be added to the equation
S(k) = 0. One might either rule out the redundant zeros
by requiring the potentials to decrease faster than any
exponential function (see Sec. 6)—which seems hardly
justi6able —or else one would have to use the totality
of all St(k) (for all angular momenta) in order to de-
termine the bound states. The latter alternative, how-
ever, would probably lead to extreme difficulties if one
attempted to treat problems more complicated than the
motion of a particle in a central Geld of force.

1. INTRODUCTORY REMARKS

The functions f(k, r)

Let. P(r) be the wave function of the particle for
angular momentum zero. Then

e"+k'S= V(r) e (1.1)
where @= r f (The energy 8. equals k'. ) We specifically
assume that Jo"

~
V(r)

~
dr is finite, so that the scattering

theory may be applied. Following Jost' we introduce
two independent solutions f(k, r) and f( k, r) of (1.1)—
which are defined by their asymptotic behavior for large
r, viz. , lim„„e'""f(k,r)=1, and lim„„e"""f( k, r)=1.'—
Moreover, we set

f(k) =f(k, 0); f( k.) =f(—k, 0).— (1.2)
4 Quoted by C. Mgller, Kgl. Danske Vid. Sels. Math. -Fys. Medd.

24, Xo. 19 (1946), see p. 3.
5 S. Y. Ma, Phys. Rev. 69, 668 (1946); 71, 195 (1947). See also

D. ter Haar, Physica 12, 509 (1946).
6 R. Jost, Helv. Phys. Acta 20, 256 (1947).
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For real non-vanishing k, f(k, r) and f( k—, r) are com-
plex conjugate, continuous in k and r, f(k)NO, and
limi „f(k)= 1. In case (1.8) holds, f(k, r) is also continu-
ous at k=0. The function

@=(1/2ilf(k) l) {f(k)f(—k, r) —f(—k)f(k, r)I (1.3)

vanishes at the origin (r=0), and is therefore, apart
from a constant factor, the only admissible solution of
(1.1) for a given wave number k. Asymptotically,

p-sin(kr+ rf(k)) (1.4)

where the phase shift tf(k) is determined by

e'pi"' =f(k)/l f(k) l
or e'"«"' '= S(k) =f(k)/f( —k). (1.5)

Since f(k)—+1 as k~ ~, we may set ii( po ) =0. Then the
following de6nition may be shown to be equivalent to
(1.5). Let, for a fixed k, p„(k)be the nth zero of g (cf.
(1.3)) on the interval 0& r& ~, and set

. x(k, r) x(k, o)
f(k r) = e "" f(k) =

x(k, ~) x(k, ~)
(2.2)

We now impose the condition that the x(k, r) be
polynomials in k, and we shall construct the corre-
sponding potentials V(r) By .(2.2), f(k) will be rational,
and it will be possible to 6nd phase equivalent potentials.

Potentials of linear tyPe y(k, r). is assumed to have the
form

2. POTENTIALS OF LINEAR TYPE

The potentials to be considered will be so chosen that
the corresponding functions f(k) are rational. Set
y=e '""g. From (1.1),

x"—»kx'= V(r) x (2.1)

Let x(k, r) be a family of solutions of (2.1) for which
y(k, po ) = lim„„x(k,r) exists and is different from zero.
Then

rf(k) =lim(nm —kp (k)). (1 6) y(k, r) =2k+ ~a(r). (2 3)

The definition of f(k, r) by its asymptotic behavior
may be extended to complex k with negative imaginary
parts (see Jost'), andf(k, r) is a regular analytic function
in the lower half plane. By analytic continuation it may
also be defined in the upper half plane, but will, in
general, have singularities. Consider, in particular, an
imaginary value of k, k= —i~(lr&0). The corresponding
energy (E=k') is negative, and E is a stationary energy
value if and only if the exponentially decreasing solution
f(k, r) vanishes at the origin, i.e., if

Inserting x in (2.1), we find V= a', and Va= a", or

u'u= u"; V= a'. (2.4)

With a„=lim„„a(r),and ap ——u(o), we obtain from (2.2)

2k+ia(r)
f(k, r)=e '"' f(k) =

2k+ '

2k+iap

2k+~a„
(2 5)

It is easily shown that, for a non-vanishing potential V,
the function a(r) must be real. Integrating the first
Eq. (2.4), we 6nd

f(-i')=0, La&0, 8= -lr'j. (1.7)
a' ——,'u'=2c (c=const. ) (2 6)

In addition, there may be a bound state of energy E=O
which is not determined by the equation f(0) =0. Such
a bound state cannot occur, however, if for large r, V(r)
decreases rapidly enough, so that

(, t"
w(r)=c' expl ——', ~

a(r')dr'
l (2.7)

To solve this equation it is convenient to introduce

lv()ld &
0

(1 8)
where c' is an arbitrary positive constant, so that

w(r)&0 for all r. (2.8)

(For a proof, see the appendix. ) If (1.8) holds, we may
therefore conclude that two potentials with the same

f(k) are phase equivalent and have the same bound
states.

The phase shift if(k) determines S(k) l
see (1.5)$ but

not f(k). The vanishing of S(k), on the other hand, does
not imply the vanishing off(k), because it may be due to
an infinity of f(—k). For this reason, two phase equiva-
lent potentials may have bound states of diferent
energy values. The number m of bound states, however,
is determined by the phase shifts if Jp"r'l V(r) l

dr& po.

Then f(k) is a differentiable function of k (including
k=0),' and it can be shown that

rnir if f(o) ~0
(~+-',)~ if f(.)=0.

~ I ow'e this remark to N. Levinson.

Fzo. 1. Yvro phase
equivalent potentials
of the form Vr (p =2,
p = tg with parame-
ters 8=0.5 ( )
and 0=5 (---).
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FrG. 2. Two poten-
tials V2 [p=2, (r=1$
with parameters 9=3
(—) and 8=0
(———). The poten-
tials in Fig, 1 and
Fig. 2 are phase
equivalent.

Fro. 3. Two phase
equivalent potentials
V6 [a= 1, y=2]
(—) and U [)
=0.949, t)= —0.311$
(- --)

It follows from (2.1) that V=a', Va=a" . b—', Vb=b"
Hence

L=b' a—"+a'a=0, L =b"—a'b=O V= a' (3 3)

We first observe that any potential of linear type may
also be considered to be of quadratic type. In fact, if
(2.1) admits a family of solutions x(k, r) =2k+ia(r), it
also admits, of course, the family

)t,(k, r) = (2k+ia(r))(2k+ir)
= 4k'+2ik(a(r)+ r) —ra(r), (3.4)

where r may be any real or complex constant. A simple
discussion of the Eqs. (3.3) shows that, apart from this
trivial case, the functions a(r) and b(r) are real and are
uniquely determined by V(r)

To solve (3.3), we replace the set L=O, Li——0, by the
equivalent set I.=O, M=O, where M=bL+aLi bb'——

ba"+ a—b". These equations have the two first integrals
(ci) cp collstallt)

Clearly, the value of c' is immaterial. It follows that

a= —2w'/w; V= a'=2((w'/w)' —w"/w) (2.9)

Inserting this in (2.6) we finally obtain

w"+ cw =0. (2.10)

(2) c/0. The inequality w) 0 implies that c& 0, and
we set c= —(tpX)P. A solution which leads to a non-
vanishing potential V must have the form m=e'""
+Pc &""(P)—1), so that

e
—),r e—)r

a(r)=); V(r) = —2p), ' . (2.12)
P&

—)v+1 (P& xr+.1)2-

V is an Eckart potential, ' and a(r) equals the function

)i(r) in reference 2 (see (7a)). In particular, by (2.5),

2k+iv P—1
v=ap=)%, . (2.13)

P+1
f(k) =

2k —iX

Every solution of (2.10) which satisfies the inequality
w) 0 leads to a potential V (see (2.9)) of linear type.

(1) c=0. In view of (2.8), and with an appropriate
choice of c', w(r) =r+n(a) 0). Hence

a(r) = —2/(r+ a); V(r) =2/(r+ n)'. (2.11)

b —a+—a =2ci,

', b' ba'+—ab—'= 2cp

(3.5)

(3.6)

and, from (3.5),
b=2(ci —w"/w). (3.8)

Inserting these expressions in (3.6) we finally obtain,
after multiplication with ~~m',

Q=w w —p(w )'—ci(w')'+-,'(cip —c )w'=0. (3.9)

(3.7), (3.8), and (3.9) are equivalent to the original set of
equations.

The derivative of Q has the form

—=w'R; R =w'" 2c&w"+ (—ci' c,)w (3—.]0).

Since the solutions of (3.3) are necessarily analytic, and
since dQ/dr=0, it follows that either w'=0, or R=O.
Discarding the trivial solution w =0 (which implies
V=O) we have, therefore, the linear equation

R =0. (3.11)

Introducing again the function w(r) [see (2.7)], we
find

a= —2w'/w; V= a'= 2((w'/w)' —w"/w) (3.7)

Here

and

3. POTENTIALS OF QUADRATIC TYPE

g(k, r) =4k'+2ika(r)+b(r) (3.1)

Then, by (3.10), Q= const , so that . (3.9) reduces to an
initial condition.

In general, the solutions of 2=0 are linear combina-
tions of exponential functions e"" whose exponents are
obtained from pp' —2cipp'+ (ciP—cp) = 0, i.e.,

4k'+ 2ika(r)+ b (r)—c—Skag

4k'+ 2ika„+b

4k'+ 2ikap+ bp

f(k) =
4k'+2ika +b

8 C. Eckart, Phys. Rev. 35, 1303 (1930).

M'= c,&(cp)~. (3.12)

If multiple roots occur (i.e., if cp or ctP —cp or both
vanish) the solutions of R=O degenerate in the familiar
way.

Without discussing the solutions of (3.9) in detail, we
shall merely select some examples of phase equivalent
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potentials. The computations involved are elementary
and straightforward. It will suKce to state the main
results.

4. EXPONENTIALLY DECREASING POTENTIALS

(a) Assume that the four roots 4o given by (3.12) are
real and distinct, arid denote them by

bi= pu) bs= pP) so that

E

w(r) =g(e'"+nPe ")+p(ne"+Pe '"),
w'(r) = po (e" n—Pe I"+ne'" P—e'")- (4 3)

Using (4.1) and (4.2), one finds from (3.7) and (3.8) that
goo= —2pq boo= tT —p ) and

4k'+2ika„+b„=[2k i—(p a—)]L2k—i(p+ o)]. (4.4)

so that

p, —p, o, g—(p)g&0)

r (p2+ o2) cs t (p2 g2)2

(4.1)

(4.2)

Furthermore, for large r,

t
V(r)~ 2(p/o—)n(p g)'e —tl 'i-' if n/0,
V(r)~—2(p/g )P(p+ g )se (P+&)r if u —0 (4.5)

The solutions of R= 0 are

w(r) = (ate&"+use '")+(bie "+bse "),

and in view of the equation Q=O the coeKcients are
subject to the condition

P +1+2 fT ~1~2~

It is easily shown that w(r) leads to a potential of linear
type of the form (2.12) unless all coeKcients y, 6 are
diiferent from zero. We set, therefore, yt= o, ps= o.uP,

For r=0,

as ———2pg(1+ n) (1—P)/w(0);
b =( —p)L (1+ P) —p( +P)]/w(0), (4.6)

-w(o) = g(1+uP)+ p(u+P).

In what follows we restrict ourselves to those solutions
for which as ——0. Then, by (4.6), either u= —1, or P= 1.

(b) The case n = —1.Here, the inequality w&0 holds
for all r if and only if P&1 (see (4.3)), and we may set

. P=e"(8)0). Then the corresponding potential, which
we denote by Vi(r), is found to be

po. t4po+(p —o)' cosht (p+g)r —20]—(p+o)' cosh(p —o)r}
Vi(r) =

E o sinh(pr —8)—p sinh(gr —8) }
s

(4 7)

By (4.6), be = (p+ o)', and in view of (3.2) and (4.4),

2k+i(p+ g)
fi(k) =

2k —i(p —o)
(4 8)

Since fi(k) does not depend on P (or 8) any more, the
Vi(r) form a continuous family of phase equivalent
potentials, all of which have a bound state of energy

~i= —4(p+ g)' (4.9)

since fi(—i~) =0 if 14=-,'(p+ o). All potentials have the
same asymptotic form (see (4.5)), and the same value
at the origin, eis. , Vi(0) =2po.

(c) The case P=1. Here the remaining parameter
must be restricted to values n) —1 in order that w(r) be
positive. According as —1&n(0, 0.=0, n&0, the
corresponding potentials may be written in the form

po E4po+(p —o)' cosh(p+o)r —(p+o)' coshL(p —a)r+28]}
Vs(r) =

E
o sinh(pr+ 8)—p sinh(o r —8) }

' (4.10)

—2(p/~)(p+o)'e "+'"
Vs(r) =

E 1+(p/o)e '""]' (4.11)

V4(r) =
—po E4pg+ (p —o)' cosh(p+o)r+ (p+ o) s coshL(p —o)r—20]}

E o cosh(pr —8)+p cosh(or+8) }'
(4.12)

By (4.6), bs (p —o)', and hence, from (3.2) and (4.4),In (4.10), n = —e "(8&0), in (4.11),n =0, and in (4.12),
u=e's( —4o &0& 4o). Although it has been found con-
venient to express the potentials in seemingly diferent
forms, they are members of one continuous family for

00 9

2k+i(p —o)
fs(k) =

2k —i(p+ o)
(4.13)

1&n& as is evident from (4.3) and (3.7).
for V2, V3 and V4. Consequently, these potentials are

9 The two phase equivalent potentials discussed in reference 2 phase equivalent& and have one bound state with energy
are members of such a continuous family. Setting p=$X, o =)X,
P=1, one obtains (13a) for O.=i and (13b) for a=0. &=—k(p —o)' (4.14)
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At the origin, they have the common value V(0) = —2pe,
but according to (4.14) they have different asymptotic
forms.

Comparing now fi(k) with fp(k) we find that both
families are phase equivalent (although their bound
states differ) because in both cases the function
S(k) =f(k)/f( k)—has the value.

L2k+i(p —~)X2k+i(py ~))
S(k) =

L2k —i(p —p) jL2k —i(p+ p.)j (4.15)

(Some of the potentials are plotted in Figs. 1 and 2.)
(d) The limiting case a=0 If p. is fixed, but p. con-

verges to zero, the two functions fi(k) and fp(k) converge
to

so that

fp(k) = (2k+ ip)/(2k ip), —

Sp(k) = f(2k+ip)/(2k —ip) j'.

(4.16)

(4.17)

In the theory of the S-matrix the following criterion
has been derived: If kp —— imp(~p—)0) is a zero of the
function S(k) which corresponds to a bound state, then
dS/d~ is negative at the point ap. Jost' has remarked
that this criterion does not necessarily hold if f(k, r) is
singular at k= —ko. In fact, the potentials discussed in
this section provide counter examples. At the stationary
energy value dS/d~ is positive for Ui, negative for Vp, Vp

and V4, and zero for V5.

5. RATIONAL POTENTIALS

If c~ ——c~
——0, the equation E.=O reduces to m&'&=0.

The condition Q= 0 implies that w(r) is a polynomial of
first or of third degree. The 6rst possibility may be dis-
carded, because the associated potential has the form
(2.11).The remaining solutions of Q= 0 are given by

The corresponding function wp(r) may be obtained as
follows: Replace ic(r) in (4.3) by w(r)/2 pand set either
a= —1, P=1+(2or/p), or n=(2or/p) 1, /=1, —where

'

v- is any fixed positive number. As ~—&0, we find the
function

ivp(r) = sinhpr —pr+ r (r) 0)

which is a solution of Q=O for ci= pp, cp=ci'. The
associated family of phase equivalent potentials is given
by

pr sinh pr —2 (cosh pr —1)—r
Vp(r) = 2p' (4.18)

t sinhpr —pr+7- j'

Consequently,

a„=b„=0, Vp(r) 6/r' (as r +—pp ), (5.4)

ap ———6n'/(y' —a'), bp 1——2n/(y' —a'). (5.5)

I. a=O. Here, ap=bp=0, so that in view of (5.4)
f(k) = 1, i.e., all phase shifts g(k) vanish. There exists a
stationary state of energy zero, since b(r) (see (5.2)) is a
square integrable proper function of the Schrodinger
equation.

II. n)0. Here 4k'+2ika, +bp (2——k+iX)(2k+iv),
where

=-,' f oa(—ao'+4b, )l j (5.6)

so thatX). 0, v(0, and
~
v~) li. Then

(2k+iX) (2k+iv)
f4(k) =

(2k+iX) (2k+iv)
$4(k) =

(2k —ili) (2k —iv)

(5.7)

The energy of the stationary state is E= —~X'. Com-
parison with (2.13) shows that, for an appropriate
choice of X and P, the Zckart potential (2.12) is phase
equivalent to Vp(r). The parameter X is given by (5.6),
and P= —L3nP/(4yP —n') jl. (See Fig. 3.) This example
is of interest because, for a negative value of P, the
Eckart potential is repulsive, and has no bound state,
although V6 has the bound state E= —4')'. This is a
somewhat anomalous case, due to the relatively slow
decrease of V6. As we have seen at the end of Section
1; two phase equivalent potentials which fall oG rapidly
enough have the same number of bound states. A simi-
lar remark applies to the case I. Here the potential is
phase equivalent to V=O. A more rapidly decreasing
potential, however, which is phase equivalent to V= 0
has no bound states, and consequently, it must vanish
because, according to I evinson's results, two phase
equivalent potentials are identical if they have no bound
states.

6. CONCLUDING REMARKS

(a) If the function f(k, r) is regular in the whole
complex k-plane the results of the S-matrix theory hold
without restrictions (in particular, two phase equivalent
potentials have then the same stationary energies, be-
cause no "redundant" zeros occur). It can be shown that
f(k, r) is regular if the integrals

ie(r) = (r n) p+ y p. —

We shall assume that y) n~O. By (3.7) and (3.8)

(5 1) J(a) =, e "~ V(r)}dr
"o

a(r) = 6(r a)'/—u (r),—
b(r) = —12(r—a)/zv(r).

V (r}=6(»—)L(r—)'—27'3/(~(r))'

converge for all positive n (see the appendix). While, in
(5 2) this sense, a Gaussian potential decreases rapidly

enough, this is no. longer the case for exponentially de-
(5.3) creasing potentials. It should be. emphasized, however,
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that all Geld theories apparently lead to exponentially
decreasing potentials, so that I(n) diverges for suK-
ciently large 0..

(b) So far we have restricted our discussion to the
angular momentum 0. On the basis of Levinson's results'
it can be shovrn that two potentials which fall off rapidly
enough are dentical if they are phase equivalent for all
angular momenta. Let V~ and V2 be two potentials, and
let q~'(k) and r!i"(k) be the corresponding phase shifts
for angular momentum /. If Js"r~ V;(r) ~dr is finite
(i =1, 2) and if for a certain /

V,(r)+/(/+ 1)/r'~0 (i = 1, 2) (6.1)

then r!i'(k) = r!~"(k) implies that Vi(r) = Vs(r). Clearly,
every potential which is bounded and which, for large r,
is smaller than const/r' satisfies the inequality (6.1) for
suKciently large /. Assume now that Vi(r) and Vs(r) are
potentials of this kind, and assume that they are phase

'equivalent for all /, i.e., that r!&'(k)=r!i"(k) for all /.

Choose a sufliciently large /s so that (6.1) holds for both
Vi(r) and Vs(r). Since r! i,'(k)=pi, "(k) it follows that
Vi(r) = Vs(r). Although this argument settles the ques-
tion stated in the introduction, it does not yet lead to an
effective construction of a potential from its phase shifts.

In conclusion, the writer should like to thank Pro-
fessor E. P. %igner for very interesting discussions on
the subject of this paper.

APPENDIX

We indicate here the proof of some assertions about the function
f(k, r) made in Sections 1 and 6. Set g(k, r)=e'""f(k, r). Then

g"—2ikg'= V(r) g (A1)

and limg(k, r) =1 for every real non-vanishing k. Following Jost,
ace

we replace (A1) by the integral equation
r

g(k, r) =1+J„Dk(p r) V(p)g(k, p)dp—
(A2)

Dq(f) = (1 e""f)/2r'k= —e '+'dr
0

which may be solved in the familiar way by the series

g(k, r) =g g (k, r), where go(k, r) 1,

and

g py(k, r)=f Ds(p —r)U(p)g~(k, p)dp

provided the series converges properly.

(a) Assume that r
~
V(r) ( dr is finite, and set X(r)

0

=J p)V(p))dp. If Im(k)&OM then, by (A2) !Ds(p r)(«p-
r«p-, and it follows by induction that (g (k, r)(«(X(r))"/e!

«( X(o))"/n! Co.nsequently, the series converges to a solution.
Moreover, g(k, r) (and also f(k, r)) is uniformly bounded in r and
k as long as Im(k)«0. This holds in particular for the function
g(0, r) which is a solution of the Schrodinger equation for 8=0.
Since g(0, r)~1 as r~ ~ it has only a finite number of zeros, and
consequently the Schrodinger equation has at most a Gnite number
of discrete proper values. A linearly independent solution of (A1)
(for k= 0) is given by

for a fixed ro. Since limg(0, r)=1, it follows that hmg~(r)/r=1.
r-+m r~m

Therefore no linear combination of g(0, r) and gr(r) is square
integrable, i.e., E=O is not a bound state.

(b) I et n)0, and assume that

Then f(k, r) is regular in k for Im(k) &-',n.
Proof: Assume Im(k)«su~, a~&ex Observ. e that

~ Ds($) ~
«$e &f

~c e & where c is a suitably chosen constant. It follows by
induction that ~g (k, r) ~«LcY(r)]"/I!«LcI(a)]"/I! where Y(r)

e~P ) V(p) ~dp. This proves the uniform convergence of the
r

series Za" g„(k,r). The regular analytic character of g(k, r) (and of
f(k, r)) is established in an analogous fashion.

Consider, for example, the potential V in (2.12). There the
integrals I(o.) are finite if e&). The associated function f(k, r) is
regular for Im(k) (-',), but it has a pole at k =-,'iX.

If I(a) is finite for all a, then f(k, r) is regular in the whole
complex k-plane.

"Im(k) denotes the imaginary part of k.


