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Abstract

The radiative damping force on an electrically charged particle falling freely in a 
static weak gravitational field is computed in the nonrelativistic limit of small velocities. 
It is shown that, in this limit, the force separates naturally into two components, a con- 
servative part which arises from the fact that the mass of the particle is not concentrated 
at a point but is partly distributed as electric field energy in the space surrounding the 
particle, and a nonconservative part which depends linearly on both the velocity and the 
Riemann tensor. The conservative force is shown to correspond to a repulsive inverse 
square potential and to make a retrograde contribution to the perihelion precession. The 
nonconservative part is shown to produce an average energy loss identical with that of 
the traditional formula which is used for accelerations caused by nongravitational forces. 
Because the nonconservative force depends on the velocity rather than its second deriva-
tive, however, the phenomenon of preacceleration does not occur with gravitational forces. 
The questions answered by this investigation are of conceptual interest only, since the 
forces involved are far too small to be detected experimentally.

1. Introduction
THE problem of an electrically charged particle falling in a gravitational field raises some of the most deli-
cate issues in classical particle physics. On the basis of flat space-time intuition one expects that an ac-
celerated charge should emit radiation, and hence suffer a reactive damping force, regardless of the nature 
of the acceleration, whether produced by gravity or by other forces. However, the equivalence principle, as 
dramatized by the falling elevator concept, injects an element of uncertainty and confusion into the picture. 
It is the purpose of this paper to remove the confusion by deriving the detailed law of motion in the simple 
case of a radiating charge moving at nonrelativistic velocities in a weak static (but otherwise arbitrary) 
gravitational field. In the course of the derivation the limits of validity of flat space-time ideas will become 
apparent, and we shall see that, carefully applied, they need not be totally abandoned but, on the contrary, 
agree with the rigorous result in this special case.

♦Work supported in part by the Air Force Office of Scientific Research, Contract No. AFOSR-153-63, and by the Office 
of Naval Research, Grant No. NONR 855(07).

*On leave of absence from the Department of Physics, University of North Carolina, Chapel Hill, North Carolina. Part 
of this work was performed during the tenure of a Senior Postdoctoral Fellowship of the National Science Foundation.

3



In order to proceed in a fundamentally sound manner one must, from the outset, insist upon two things: 
(1) The basic equations must be derived completely within the framework of general relativity. (2) The non-
locality of the physical processes involved, which is responsible for the failure of naive applications of the 
equivalence principle, must be taken into account through a study of the global behavior of the electro-
magnetic field.

Fortunately, most of the requisite work has already been done. DeWitt and Brehme [l], with the aid of 
the theory of covariant Green’ s functions in curved space-time, were able to obtain the following equation of 
motion for a particle of charge e and mass m, moving in a Riemannian space-time of arbitrary (hyperbolic) 
metric and subjected to an incoming (externally imposed) electromagnetic field
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(1.1)

The notation here is the same as in reference 1 [2], except that we have chosen units in which c = 1 . In 
particular,

(1.2)

so that z = 0 , z = 0 , etc., for geodetic motion
The calculation leading to equation (1.1) was patterned directly on Dirac’s Lorentz invariant treatment 

of the classical electron [3], and reduces to it in the limit of flat space-time [4]. Equation (1 . 1 ) differs, 
however, in two important respects from Dirac’s equation. First, it possesses a nonlocal term, involving an 
integral over the past history of the particle, which the Dirac equation does not possess. Second, ordinary 
derivatives with respect to the proper time are replaced by the covariant derivatives (1.2). The latter differ- , 
ence has the consequence that in the absence of an incoming electromagnetic field equation ( 1 . 1 ) would be 
solved by geodetic motion if it were not for the nonlocal term. This is a reflection of the fact that the par-
ticle tries its best to satisfy the naive equivalence principle, and is only prevented from doing so by the 
nonlocal nature of its own electromagnetic field.

When a charged particle is accelerated by means of nongravitational forces, the electric field lines 
which emanate from it bend and redistribute themselves in the vicinity of the particle (i.e., within a distance 
of the order of the classical radius) in such a way as to exert, on the average, a net retarding force, over 
and above the force of inertial reaction [5]. With purely gravitational forces, however, this is not the way 
things happen. The field in the immediate vicinity of the particle tends to fall freely with the particle, and 
although it suffers a local tidal distortion characteristic of an explicit occurrence of the Riemann tensor [as 
equation (5.12) of ref. 1 shows], the net retarding force due to this distortion is zero when integrated over 
solid angle. The deviation of the particle motion from geodetic when F ^ in = 0 is caused not by the local 
field of the particle but by a field which originates well outside the classical radius and which is mani-
fested by the nonlocal term of equation (1.1). This means that, to order e2, the term of equation ( 1 . 1) which 
looks like the usual radiation damping term may be completely ignored [6 ], and hence our job in this paper 
is to analyze the nonlocal term and to derive explicit expressions for it which, in the limiting case of non-
relativistic velocities, permit a comparison of the exact equations of motion with those derived from flat 
space-time concepts.

Physically the nonlocal term arises from a back-scatter process in which the Coulomb field of the par-
ticle, as it sweeps over the “ bumps”  in space-time, receives “ jolts”  which are propagated back to the 
particle. The process has its mathematical origin in the fact that the retarded Green’s functions for fields 
of zero rest mass do not vanish inside the light cone in a curved space-time as they do in a flat one.

Since this process differs conceptually so much from the normal radiation damping process occurring for 
nongravitationally induced accelerations, there is no reason to expect that the precise motion of the particle 
will coincide with that which would be computed by naive application of the instantaneous energy loss
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(1.3)

the dots now denoting ordinary differentiation with respect to the proper time rather than the covariant differ-
entiation of equations (1.2). Indeed we shall discover that there are quite real differences between the two 
motions. Nevertheless, it is not difficult to see that the total energy loss, or the loss averaged over one 
period if the motion is that of a bound orbit, will to order e2, be correctly given by the traditional formula if 
the gravitational field is weak and vanishes asymptotically. This is because a quasi-Minkowskian coordi-
nate system can then be set up, in which the Green’ s functions themselves go over asymptotically to those 
of flat-space time. In such a coordinate system the integrated radiation flux at infinity depends only on the 
“ coordinate motion”  of the particle. Moreover, since the expression for the asymptotic field [e.g., equation 
(3 .4 5 ) of ref. l] is invariant under coordinate transformations which are confined to the orbital region of the 
particle, the computed energy loss cannot depend on which quasi-Minkowskian coordinate system is chosen 
[7].

This suggests that the force exerted on the particle by its self-field can, in the nonrelativistic limit, be 
separated in some natural way into a nonconservative part which corresponds immediately to equation (1.3), 
and a conservative part which gives rise to no net energy loss. We shall find, remarkably enough, that this 
is indeed the case and that the “ anomalous”  conservative part has a very simple physical interpretation. It 
arises from the fact that the total mass of the particle is not concentrated at a point but is partly distributed 
as electric field energy in the space around the particle. The energy of interaction of this distributed mass 
with the gravitational field therefore does not correspond to a simple attractive 1 /r  potential but contains, in 
addition, an “ anomalous”  repulsive 1 / r 2 component [8 ].

What is perhaps more remarkable, however, is that the nonconservative force will be found, in the non-
relativistic limit, to depend neither on the acceleration nor on the derivative of the acceleration but simply 
on the velocity of the particle (relative to the static gravitational field) and on the Riemann tensor, the de-
pendence on each being linear [see equation (3.37)].

It is only the close relation which exists between the Riemann tensor and the particle motion which, in 
the case of free fall, permits the nonconservative force to be recast in the form

(1.4)

giving rise to

(1.5)

which is the nonrelativistic limit of (1.3). Herein lies a significant difference between the rigorous theory 
and the flat space-time theory. Since the primary expression for the nonconservative force involves t  
rather than T, and since equation (1.4) is obtained only by an iteration which approximates the damped mo-
tion by undamped motion, the phenomenon of pre-acceleration does not occur with gravitational forces.

The calculation of the damping integral will be broken down into several steps. In the next section ex-
plicit expressions will be obtained for the function / ° / 3 y ' ,  and attention will be focused on the special case 
in which the gravitational field is produced by a point-like central mass. The integral itself will be com-
puted in section 3  under the assumption of slow motion (i.e., nonrelativistic velocities), and the separation 
of the damping force into a conservative and a nonconservative part will be explicitly given. The results 
will then be generalized to the case of an arbitrary weak static gravitational field, and the possibility of ex-
pressing the nonconservative force in the form (1.4) will be explicitly shown. Finally, the interpretation 
Stated above for the conservative component of the force will be demonstrated in section 4. An appendix 
follows at the end.

2. Computation of the “ Tail Function*’
The function fapy* appearing in the nonlocal term of equation (1.1) is called the “ tail function”  in ref.

1. It is the curl of the nonvanishing component of the retarded vector Green’s function inside the light cone.



Explicitly [9],
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(2. 1)

where

(2 .2)

being the retarded Green’s function, 0 (x,x') the temporal step function, A the scalarized Van Vleck de-
terminant, the parallel displacement bivector, and a one-half the square of the geodetic distance be-
tween x and x#. For points z, z on the world-line of the particle, with z lying to the future of z , equation
(2 .2 ) reduces to

(2.3)

A means of computing vay • in power series in a is given in ref. 1 . This, however, is of no use to us 
here, since we need the values of vay * well inside the light cone (a large and negative). We adopt instead 
an alternative expansion procedure based on our assumption that the gravitational field is weak. We start 
from the basic defining equation [1 0 ],

(2.4)

and consider how G changes as the metric is made to suffer variations about a given arbitrary value.
A general method for treating a wide class of problems of this type consists of first suppressing the 

indices in equation (2.4) and then using a trick due to Schwinger [ l l ]  which expresses the Green’ s function 
as the matrix element of an abstract operator G~ in a fictitious Hilbert space:

(2.5)

The basis vectors |x'> are eigenvectors of a set of commuting Hermitian operators x^:

(2.6)

and equation (2.4) may be rewritten in the form

(2.7)

where the 1 on the right hand side of (2.7) is really the product of the Kronecker delta and the identity 
operator in the Hilbert space, and where

(2.9)

The operators are defined by

(2.10)

where the are Hermitian operators satisfying the commutation relations

(2. 11)

and the S cr are the Lie-algebra generators of the linear group for the representation to which the Green’ s 
function in question corresponds. In the present case the pertinent representation is that of a contravariant 
vector, and when all indices are displayed we have
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(2.12)

Under an infinitesimal variation in the metric the operator F suffers the change [12]

(2.13)

in which use has been made of the well known variational equation

(2.14)

Taking the variation of equation (2.7), we obtain

(2.15)

which, in view of the kinematics of the retarded Green's function, has the solution

(2.16)

Inserting (2.13) into (2.16) and taking the matrix element between the vectors <x| and |x#>, we then obtain

(2.17)

where ^  a is an abbreviation for g ^ x " ) ,  etc.
When the gravitational field is weak a coordinate system may be introduced for which the metric tensor 

takes the form

(2.18)

where -  diag (-1, 1, 1, 1) and the components of h^v are small compared to unity. To first order in h^v 
we may write

(2.19)



where AF is given by equation (2.13) with Sg^v replaced by h^v and g ^  by 7)jiV, and where °G~~ is the re-
tarded Green’s function in a Lorentz frame in flat space-time:
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(2 .20)

(2.21)

Furthermore, if x and x1 lie inside each other’ s light cones [13], with x to the future of x ', then, since °G 
vanishes off the light cone, we may write

(2 .22)

where AG“  is given by equation (2.17) with G“  replaced by °G“  and the other quantities taken as in AF. 
Making use of the fact that °G“ (x,x") depends only on the difference x -  x" we find, upon restoring all in-
dices and integrating by parts in equation (2.17), the following equation, valid to first order:

(2.23)

where

(2.24)

and

(2.25)

the comma denoting ordinary differentiation.
We may record here also the corresponding expression for the scalar Green’s function G~(x,x') which 

satisfies the equation

(2.26)

namely,

(2.27)

This expression may be used as a check on equation (2.23) through the relation

(2.28)

which is a necessary consequence of the more general relation
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(2.29)

[see ref. 1 , equation (2.75)].
Let us now suppose that the gravitational field is produced by a mass M located at the origin of spatial 

coordinates. Then, if harmonic coordinates are employed [14], the gravitational “ potentials”  h^v at a point 
\x = (t,t•) are given, in the weak field approximation, by

(2.30)

and the Ricci tensor takes the form

(2.31)

where G is the gravitation constant. It should be remarked that the singularity of expressions (2.30) and 
(2.31) at r = 0 does not represent a violation of the weak field approximation. The mass M is here under-
stood to have a radius rM which satisfies

(2.32)

and these expressions really hold only for r > rM. Nevertheless, since the internal structure of M is of no 
consequence at the present level of approximation, the mass is adequately represented by a delta function, 
and we shall see that no unwanted divergences are subsequently engendered by this idealization.

Inserting (2.30) and (2.31) into (2.23) we obtain [15]

(2.33)

where

(2.34)

The evaluation of this integral is carried out in the appendix. The result is

(2.35)

which shows an abrupt change in functional form according as the time interval between t and t1 is less than 
or greater than the time it takes a signal to propagate from the point r' to the central mass M and thence to 
the point r. In the next section we shall examine the derivatives of /  which appear in equation (2.33). 

Component by component we find, from (2.33) [15]

(2.36)

(2.37)

(2.38)



in which use has been made of
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(2.39)

and

(2.40)

which hold as long as x and x ' lie inside each other’s light cones. For the scalar function (2.27) we like-
wise find

(2.41)

which may be used as a check on equations (2.36), (2.37) and (2.38) through the relation (2.28).

3. Evaluation of the “ Tail Integral”
Inserting expressions (2.36), (2.37) and (2.38) into the integral of equation (1.1), we obtain for the force 

exerted on the particle by its self-field,

(3.1)

where the dots now denote differentiation with respect to coordinate time. Similarly, we obtain for the rate 
of work done by this force,

(3.2)

The first term in the integrand of the final expression for F, in (3.1) may be expressed as a total time 
derivative:

(3.3)

Since l , io vanishes both when t' = t and when ( ' =-<*> [see equation (3.7) below] this term makes no contri-
bution to the integral and may be dropped. We shall also drop the term in z>zk\  The latter term arises from
the magnetic component of the self-field and not only does no work on the particle but, in the nonrelativistic 
limit
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(3.4)

is also much smaller in order of magnitude than the other terms. In fact, when the particle is in a bound 
orbit it is inconsistent to keep this term. This is because, for a bound orbit,

(3.5)

and the term becomes of the same order as those which arise only in the second order of approximation in 
hfj,v We therefore work, from now on, with the reduced expression

(3.6)

in which the symbols z ’ and z ’ have for convenience been replaced by X/ and x) respectively. 
By straightforward computation starting from equation (2.35), one finds [16]

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

where, in the present section, we define

(3.14)

(3.15)



Expressions (3.7) to (3.13) all have the remarkable property that they vanish for t* > t -  r -  r\ In fact, if 
we start at t and proceed into the past, we see that the integrand of equation (3.6) vanishes until the particle 
reaches that point at which a signal could have emanated from it and travelled to the central mass M and 
thence back again, whereupon the integrand switches on with a bang (delta function and its derivative) and 
then quickly decays according to a 1/t'4 law.

This striking behavior of the integrand illustrates the essential nonlocality of the radiation damping 
process when gravitational accelerations are involved. The damping forces which the particle experiences 
at any instant t are determined by what the particle was doing at times t* < t -  r -  r'. This means that, in 
general, the evaluation of the integral (3.6) and the solution of the equations of motion (1.1) is a rather diffi-
cult business, and that the solution will differ more or less widely from what would be expected according to 
flat space-time ideas [17]. In the nonrelativistic limit, however, the particle is moving so slowly and the 
integrand is “ on”  for such an effectively brief period that we may use
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(3.16)

as an adequate approximation in evaluating the integral [18].
Inserting expressions (3.8) to (3.13) into equation (3.6), and using (3.16) together with its corollaries

(3.17)

(3.18)

(3.19)

(3.20)

and the identity

(3.21)

we find, on keeping terms of no higher than the first degree in the velocity,

(3.22)

Consider now the third term in the above integrand (i.e., the term in r" 1 r). To first order in the velocity the 
argument of the delta function in this term may be replaced by ( 1  + r—1 r • r)(# — t') — 2 r. This gives

(3.23)

The remaining terms are already of first order in the velocity and hence the arguments of the delta and step 
functions in these terms may be replaced simply by t -  t' -  2r. The corresponding integrations are then 
trivial. The first and second terms are found to cancel each other, and we obtain finally

(3.24)



where
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(3.25)

(3.26)

F_n c  *s  the nonconservative force which gives rise to radiation damping [19]. Owing to its dependence 
on velocity it is small in magnitude compared to the force F c which is conservative. The latter force cor-
responds to a repulsive inverse square potential

(3.27)

It is easy to show that this potential makes the following (retrograde) contribution to the perihelion preces-
sion:

(3.28)

where a is the semi-major axis of the orbit, e is its eccentricity and re is the classical radius of the particle:

(3.29)

The total relativistic contribution to the precession of the perihelion of a charged particle is therefore

(3.30)

The above results admit of immediate generalization to arbitrary weak static gravitational fields. Since 
we are working in the linear approximation in the superposition principle holds, and the force F is ex-
pressible as a sum of contributions arising from all the elementary sources of the gravitational field. We 
may therefore write

(3.31)

(3.32)

where

(3.33)

(3.34)

p being the mass density producing the field. The function <f> is the ordinary gravitational potential (di-
vided by m) and is related to h by

(3.35)



and to the Riemann tensor by
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(3.36)

The latter relation permits equation (3.32) to be rewritten in the form

(3.37)

which exhibits the damping effect of the * ‘bumps'9 in space-time in a very direct fashion, and shows that the 
damping vanishes whenever the particle is in a flat region of space-time even though its coordinate accelera-
tion there may be different from zero [2 0 ].

Equation (3.32) may be written in still another form by making use of the undamped equation of motion

(3.38)

as a first approximation [21]. This gives

(3.39)

in agreement with equation (1.4) and the flat space-time theory. From this it is but a step to equation ( 1 .5 ) 
and an integration by parts to obtain

(3.40)

which expresses either the total energy loss for an unbound orbit or the loss in one period for a bound orbit. 
When nongravitational forces are present the particle acceleration is no longer given by (3.38). Neverthe-
less, equations (3.39) and (3.40) continue to hold since the traditional radiation damping term of equation 
(1.1) then makes its own contribution to the damping force. When only gravitational forces are present, how-
ever, it is important to remember that equation (3.39) cannot be used to argue that preacceleration occurs, 
since equation (3.37) shows that it does not.

4. Interpretation of Fc
In this section we shall show that the “ anomalous”  force F c arises from the fact that the total mass 

of the particle is not concentrated at a point but is partly distributed as field energy surrounding the particle. 
To do this we must compute the interaction energy with the gravitational field, namely,

(4.1)

where T^v is the combined stress-energy tensor for the particle and its self-field.
Now the total energy in the electric field is well known to be infinite for a point particle Hence in 

order to avoid divergences we must introduce a cut-off radius f. Here, however, we must be particularly 
careful. In order that the interaction energy be coordinate invariant we must make sure that the stress- 
energy tensor satisfies the conservation law

(4.2)

This requires that we include also the self-stress of the particle, which produces the forces which prevent 
the particle from blowing itself apart. ^



For simplicity we assume the charge of the particle to be distributed uniformly in a spherical shell, and 
we ignore its magnetic field, since the latter contributes a term which is quadratic in the velocity. The 
stress-energy tensor at a point £  is then given by
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(4.3)

(4.4)

(4.5)

where r_ is the position of the particle, 7/yself is its self-stress, mQ is its “ bare”  mass, and the electric 
field E' has the form

(4.6)

In view of the law of motion (3.38) it is readily seen that equation (4.2) reduces (in dyadic notation) to

(4.7)

From equations (4.5), (4.6) and (4.7) it is then a simple matter to infer the structure of _Tself, namely,

(4.8)

which corresponds to an isotropic tension tangential to the surface of the spherical shell.
When the gravitational field is produced by a central mass M we obtain, on substituting equations (2.30), 

(4.3), (4.4), (4.5) and (4.8) into equation (4.1),

(4.9)

where, in the second line, we have replaced the integration variable £  by

(4.10)

The integration of (4.9) is elementary, and we immediately obtain

(4.11)

where m is the “ observed”  mass of the particle,

(4.12)

[cf. equation (5.24) of ref. 1] and Vc is the potential defined in equation (3.27). More generally, for an arbi-
trary static gravitational field, we have

(4.13)



where \[/ and 0  are given by equations (3.33) and (3.34).
We note that the mass renormalization (4.12) is an unavoidable part of the attempt to give the force _FC 

a simple physical interpretation. It is a virtue of the rigorous theory that when equation (1.1) is used the 
mass renormalization is already automatically taken into account, no matter what the motion or how strong 
the gravitational field, and need not be considered a second time.

One should be cautioned not to assume, from the above results, that the Coulomb field surrounding the 
particle is a rigid structure which transmits information on the ambient gravitational field instantaneously 
back to the particle. These results hold only for nonrelativistic velocities, for only in this case is the 
propagation of information so rapid, in comparison to the motion, that it is effectively instantaneous.

We may finally point out that agreement with the rigorous results is obtained only by using the full 
stress-energy tensor in equation (4.1). If the energy density alone is used, a value for Vc is obtained which 
is too small by a factor 2. This is the well known factor by which the electromagnetic field characteristi-
cally differs from ordinary matter in its interaction with gravity.
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Appendix
Evaluation of l

The integrand of equation (2.34) is nonvanishing only on the ellipsoid of intersection of the light cones 
emanating from x and x ' It is evidently convenient to replace x"°, x"1, x"2, x" 3 as integration variables by 
the variables a, a , 6, <j>, where d and 0  are angles defining a point on the surface of the ellipsoid. These 
angles may be related to the direction cosines of a perpendicular dropped from the point x" to the straight 
line joining x and x This perpendicular will meet the line at a point which is a fraction <f say of the 
distance from x to x . We may write ' ’
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(A.1)

where the vector PSl»  describes the perpendicular and the O'* are the direction cosines. More precisely,

(A.2)

where the n /  are a set of three unit vectors satisfying

(A. 3)
and where

(A.4)
We now have

(A.5)

(A.6)
which may be solved to yield

(A .7 )
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(A.8)

From this the Jacobian of the variable transformation may be computed:

(A.9)

Since the Jacobian of a proper Lorentz transformation is +1 we may conveniently evaluate this determinant 
in the special coordinate system in which (n ^ )  = (0 , 1 , 0 , 0 ), = (0 , 0 , 1 , 0 ), (n ^ )  = (0 , 0 , 0 , 1).
Setting

(A. 10)

one then finds

(A. 11)

Because of the delta functions in equation (2.34), this Jacobian need be evaluated only for a = a = 0, 

at which points we have £ = p = -^V-(x “  x ')2 *

(A. 12)

The integral (2.34) therefore takes the form

(A. 13)

where r" is the magnitude of the 3 - vector component of

(A. 14)

namely of

(A. 15)

As 6 and (f> vary the vector _r; describes a prolate ellipsoid of revolution with foci at _r and jr, having

semi-major axis — (t — t1) and semi-minor axis — V—(x -  x ' ) 2 . This ellipsoid is just the projection of the
2 2



light cone intersection on any hypersurface t -  constant, and it is not difficult to see that the evaluation of 
the integral (A. 13) is equivalent to the calculation of the potential which would be produced by this ellip-
soid if it were a perfect conductor carrying a unit charge.

In the general case the points r_ and jr win not be colinear with the origin, and it is then convenient to 
choose the unit vectors in the form
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(A. 16)

In a coordinate system with origin at the center of the ellipsoid and with axes directed along the 3-vectors 
H i, IL2* the coordinates £  77, £ of a point on the surface of the ellipsoid are given by

(A. 17)

where

(A. 18) 

(A. 19)

while the coordinates of the original origin (i.e., of the mass M) are given by

(A. 20)

where

(A.21)

(A. 22) 

(A. 23)
It should be noted that the vector no is not o unit 3 , ,

We now have vec or u the spatial component of a unit 4  - vector.

(A.24)

for - he>q̂ ntlty 1A Can be e*Panded ln spherical harmonics by standard formulas [22], with the result that
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(A. 25)

while for r0 < r,

:A.26)

where Pn and Qn are the Legendre functions of the first and second kinds respectively, and P™ and Qnm are 
the corresponding associated functions. Inserting these expansions into the integral (A. 13), we obtain

(A. 27)

which in virtue of equations (A. 18), (A. 19), (A.21) and the explicit form

(A. 28)

leads to equation (2.35) of the text.
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