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Abstract

The general Ginzburg •Landau equation valid for all temperatures is derived from the 
microscopic theory for superconducting alloys where the electronic mean free path 1 is 
much shorter than the coherence length £0.

Using this equation the magnetic properties of Abrikosov’s mixed state as well as the 
temperature dependence of the upper critical field Hc 2 are discussed . It is shown that the 
Abrikosov structure in the vicinity of the transition point is completely characterized by 
two parameters k i (T) and /<2(T), both of which coincide at the critical temperature with k , 
the Ginzburg-Landau parameter. A peculiar deviation in the thermodynamical behavior at 
lower temperatures from Abrikosov’s theory is found for superconductors with k  ~ l/\/2 .

I. Introduction
AS is well known, the behavior of superconducting alloys in a magnetic field is significantly different from 
that of pure superconductors. Based on the semi-phenomenological Ginzburg-Landau equation Abrikosov [1] 
has investigated the magnetic properties of type II superconductors and shown the existence of mixed states, 
where the superconductivity is partially destroyed and the magnetic field penetrates into the bulk as an array 
of quantized flux lines. It is interesting to see if his theory holds at lower temperatures where the Ginzburg- 
Landau equation is no longer valid [2].

Using a technique similar to that developed by Nambu and Tuan [3] in the study of the field dependence 
of the gap parameter, Tewordt [4] obtained an interesting extension of the Ginzburg-Landau equation, which 
seems, however, applicable only to the weak field case. Werthamer [5] arrived at the same result in a some-
what different way.

In the present paper we derive a general Ginzburg-Landau equation valid at all temperatures on the as-
sumption that the electronic mean free path 1 is very short (//£o  «  1 where £0  is the coherence length), ex-
panding the Gorkov equation [6] in powers of the ordering parameter A(x).

In the case l/£0 «  1 the magnetic field is introduced into the theory by a simple replacement i‘ V
---- ► i y  ± 2eA t where A is the vector potential. The set of equations thus obtained enables us to discuss
the magnetic properties of superconductors in the transition region independently of temperature.

Previously Gor’kov [7] and Shapoval [8] calculated the upper critical field Hc2 from the microscopic 
theory. The latter, especially, considered the case of alloys where the electronic mean free path is short 
0/€ 0 «  1). A detailed experimental study of the temperature dependence of Rc2 has been recently carried 
out by Kinsel, Lynton and Serin [10] on indium based alloys. They pointed out that their results are in good 
agreement with Gor’ kov’ s theory but disagree with Shapoval’ s. The present investigation was initiated to 
solve this apparent discrepancy. The upper critical field differs remarkably from Shapoval’ s at lower tem-
peratures. Since the beginning of this work, Werthamer [9] pointed out that there is a numerical error in 
ShapovaPs calculation which, when corrected, brings it into agreement with Gor’kov’ s. Our result is not 
widely different from Gor’kov’ s,

The Abrikosov structure [l]  in the vicinity of the transition point is determined by the use of a varia-
tional method. It is shown that the structure is characterized by two parameters k i (T) and k 2(T) where
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k i (T) = Hc 2/^2Hc and k 2(T) appears in the expression for the magnetization M as - 4 ttM/(Hc2 -  H0)
= 1/1.18(2*22 -  1) where H0 is the external field. The temperature dependence of both parameters is cal-
culated and we find the following relation: *i(T) k  k 2(T), where the equality holds only at T -  Tc q,

An interesting deviation from Abrikosov’s theory is predicted for superconductors with *i and k 2 satis-
fying k  i > 1/V2 > k 2.

2. The General Ginzburg - Landau Equation
In this section we are concerned with the derivation of equations for the ordering parameter A and the 

current j valid at arbitrary temperatures. We assume here only the smallness of the ordering parameter (i.e., 
A/irrco «  1), since we are interested in the magnetic properties of superconducting alloys close to the 
transition point. The method used in the following is a simple extension of one employed by Gor’kov [2] in 
the microscopic derivation of the Ginzburg-Landau theory.

To begin with we consider an impurity-free superconductor in the absence of magnetic fields. Accord-
ing to Gor’kov [2] we obtain the following equation for the ordering parameter A when A is small:
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(1)

where G&(r,r') is the Green’s function of the electrons in the normal metal, whose Fourier transform is 
(1(0 ~ 1 with £ = P2/ 2® The effect of impurity scattering is most easily included in the theory by the
use of the standard techniques in the theory of metals. In the presence of impurity atoms one has firstly to 
use instead of the Green’s function in a pure metal the modified Green’s function, which is obtained from the

former by simply replying or by a  ,  .  J l  + - M  where .  JU Sl f  Secondly

\  2 M I  (  U - ,
at each proper vertex one has to multiply by a factor where ne0q = |l -  _ L  h  _ Hj l   ̂  ̂ .g ^

external momentum and v the fermi velocity; one has to replace A , (or A ,+) by A , (or rja>qA q+) where 

formal equatTon ^  °  ^  T“  1S the relaxation time for transport. Thus we arrive at the following

(2)

4

where ^  9i = 0 and $, operates only on A(r). Making use of the identity 1 = "Poj*l in w h e r e
2n l ^ ^ c o /

Tc0 is the critical temperature we further simplify equation (2) • '
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(3)

where / 0(z) = ^  + z “  ^  an  ̂ *A(Z) = ^  (z) / r ( z) *s di-gamma function. The first term is

just the equation used by Werthamer [9] in his study of the proximity effect. A similar procedure leads us to 
the following expression for the current density:

(4)

Now we will consider the necessary modifications of both equations (3) and (4) in the presence of a mag-
netic field. As is well known A+ changes into e 2,e  ̂A+ in the usual guage transformation if/-----f/ and
the gauge invariance of both equations (3) and (4) is most easily guaranteed if one replaces q in equations 
(3) and (4) by q -  2eA or q + 2eA depending on whether it operates on A+ or A. The requirement of gauge 
invariance is not sufficient to determine uniquely the field-dependent terms. We can add any terms contain-
ing H = V x A without conflicting with this requirement. In the appendix we show explicitly that any such 
terms are of the order of / /£ o> and they are neglected in the present discussion. The basic equations are 
given as

(5)

and

(6)

where

which correspond to the equations of the Ginzburg-Landau theory. In the vicinity of the critical temperature 
2

where — — (q ± 2eA)2 is small the above equations reduce to those obtained by Gor’ kov [2].
1 2 7 7 T

3. The Upper C ritica l F ie ld
Gor’kov [7] has shown that there is another critical field, besides the usual thermodynamical critical 

field Hct corresponding to the limiting field below which the normal phase becomes unstable against the 
formation of a local superconducting correlation and calculated this field (the upper critical field Hc 2)



using the linearized equation for A. Shapoval [8] extended his treatment to the case of superconducting 
alloys where the electronic mean free path is very short (l/£o «  1). They included the effect of a magnetic 
field in the theory simply by multiplying the integral kernel by a phase factor. As the treatment of magnetic 
fields in the present formulation is considerably different from theirs, it is of interest to derive anew the 
upper critical field. For this purpose it is sufficient to consider the linear part of equation (5). In the fol-
lowing we take the direction of the magnetic field as the z axis. In a uniform magnetic field we obtain
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(7)

where we put A = (0,tfx, 0) and assume A depends only on x. The upper critical field is determined as the 
maximum eigenvalue H of the above equation. It is easy to solve this equation and we find

(8)

and

(9)

Using the asymptotic expression for we obtain

(10)

(11)

where ( 9 = 1 -  T/Tc0.
Or defining a new parameter k x as k x = tfc2(T )/V 2 HC(T),

(12)

(13)

” he'e * 2rr’ e r „  ( Po! 7f<3>) is the Ginzburg. Landau parameter first calculated by Gor’kov [2]

acea^ ril^ Irru fC '^s1. “S t  7 “  T reS" “ S * G° ' W  [?1 -  3W ovu I M . One
tion Item Shapoval's loZ,ZZ,Z' ‘  • „ ' " V va'" e ° f » «  " « »  G o t W .  and the devia-
latter discrepancy has been stated by Werthamer [9] To te m a L l^ th ^  lntroduction’ the origin of this
Shapoval. Y * l9J to •** mainly the result of a calculation^ error by

4. Abrikosov's Mixed State
When the magnetic field is slightly smaller w 0 j  t. ,

pected that one can discuts thVbehavforof the I t e r t n d ^ t  ^  Patametet A is it is ex-
As is shown by Abrikosov [l] the type II sunercond,irfUC mg, phaS® by the use of equations (5) and (6).

state) in a strong magnetic field. This state annears at i™ 1S f° Ught lnto a new state (Abrikosov’ s mixed
appears at a lower critical field Hel smaller than Hc and per-
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_  FIGURE 1
The ratio Hc2/yj2KHc is depicted as a function of the temperature, and compared with

Gorkov's and Shapovals theories.

sists to the upper critical field Hc2 where the superconductive correlation disappears at a second order 
phase transition. Following Abrikosov, we seek the solution of equations (5) and (6) by the use of the fol-
lowing variational function

(14)

where

(15)

and H0 is the external field.



Substituting this expression in equation (6) we obtain

26 THE MAGNETIC PROPERTIES OF SUPERCONDUCTING ALLOYS I Vol. 1, No. 1

(16)

where

Solving the equation rotrot A = 4nj, we have

(17)

We can further carry out similar calculations to those given by Abrikosov and find

(18)

where

The magnetic induction and the free energy are given by

(19)

and

(20)

where

and

(21)

Asymptotic equations for k 2 are:

(22)

(23)



It is interesting to note that Abrikosov’s structure at arbitrary temperatures is described by the use of two 
parameters k i (T) and k 2(T) which appear in the expressions for the upper critical field Hc2 and for the mag-
netization M respectively as
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(24)

and

(25)

The temperature dependence of k 2 has been calculated numerically and is shown in Figure 2 with k \.

FIGURE 2
The temperature dependence of the two parameters Ki (T)  and k 2(T) are given.

We find a relation k i (T) >_ k >. k 2(T) where the equality holds only at T = Tc0. From the general 
theory of the second order phase transition [ l l ]  we know that the order of the transition changes as k 2(T) 
passes the critical value l/\ /2 . We expect a peculiar thermodynamical behavior for superconductors with 
Ki and k 2 satisfying kx > l/\/2 > k 2» For these superconductors (which may be called type III super-
conductors) the mixed state terminates in a first order phase transition and the upper critical field calcu-
lated in § 3 is interpreted as a supercooling critical field. The magnetization curve is rather schematically 
presented in Figure 3. A superconductor having k slightly larger than l/\/2 belongs to the second type at 
the critical temperature. As the temperature decreases the jump in the specific heat at the transition in-
creases and becomes unbounded as (T -  at the critical point ([Hi, Tx) in the (Hc2 -  T diagram)
which is determined from the equation

At lower temperatures (T < Ti) the superconductor behaves as one of the third type.

5. Concluding Remarks
We have seen above that Abrikosov’ s theory is valid in a rather wide temperature range if one uses two 

parameters k \(T) and k 2(T). The temperature dependence of these parameters was numerically calculated^
A peculiar deviation from his theory is predicted for superconductors with Kj and k 2 satisfying Ki > l/\/2 > 
k 2. The superconducting alloys studied by Kinsel et al [10] belong to this type. Therefore, more accurate 
observation of their thermodynamical behavior is desirable. We suggest here that superconductors having a
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FIGURE 3
Magnetization curves for superconductors of the second type and of the third 

type are schematically presented. For the superconductors of the third type Hc2 
given in §3 corresponds to a supercooling critical field.

large Pauli paramagnetism may behave similarly. In the second part of this work Abrikosov’ s structure in 
the vicinity of Hcl as well as the relation between the ordering parameter A and the gap in the energy spec-
trum will be discussed.

In conclusion the author wishes to thank Dr. T. Tsuneto for informative conversations on type II super-
conductors and interesting discussions.

Appendix
In the presence of a magnetic field the Fourier transform of the Green’s function is formally given as

(A - 1)
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where A is the vector potential and v the velocity of the electron.
The correction to the vertex is obtained by summing up ladder type diagrams, or equivalently, by solv-

ing the following integral equation [2]
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( A - 2 )

We assume here the scattering due to impurity atoms is isotropic for simplicity. Putting k  =  G^G_^7/ajq 
where q = pi + p2 we obtain:

(A -3)

where

(A -4)

(A -5)

and

In equation (A — 5) we can show that the third and the fourth terms are of higher order in ( / / f 0) 
and can be neglected. We finally obtain

(A-6)

Using the above expression for rjqCo one can easily see that the magnetic field is introduced into the theory 
by replacing q by q ± 2eA as stated in §2. For pure superconductors we can show that such a simple pro-
cedure is not valid.
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