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) Abstract

A scheme for amplifying cyclotron resonance radiation in InSh is outlined. To obtain
amplification two requirements must be satisfied. The first is that the electron velocity
distribution be monoenergetic. Such distributions can be produced by photoexciting elec-
trons in cold p-type InSbh. Detailed calculations show that, with a reasonable electron
density, the distribution remains monoenergetic throughout the electron lifetime. The
second requirement for amplification is that stimulated absorption of cyclotron radiation
be inhibited as compared to stimulated emission. This criterion is met by producing
the photoelectrons at an energy just below that of the optical phonon in InSb. As a con-
sequence, the stimulated absorption line is broad compared to that for emission, so the
latter predominates. Numerical estimates indicate that there is a reasonable chance of
producing a far infrared amplifier based upon this technique.

1. Introduction

A NUMBER of authors [1] have discussed the possibility of amplifying cyclotron resonance radiation in
plasmas containing free electrons. In general, maser action is difficult to attain because the electronic
energy levels are equally spaced and form a ladder (the Landau ladder) which extends to infinite energy.
As a consequence, it is not possible to achieve a negative electron temperature in such systems. Never-
theless, the authors cited have demonstrated that negative conductivities can occur. To obtain them two
requirements must be met. The first is that the electron velocity distribution be decidedly non-Maxwell-
ian — preferably mono-energetic. The second is that, in some manner, stimulated absorption from a
given level be inhibited, as compared to stimulated emission. This condition can be satisfied in a vari-
ety of ways: by relativistic effects; with an effective mass that is a function of velocity; or with a col-
lision rate that is a sufficiently rapidly increasing function of energy.

That these ideas are not theoretical fictions has been shown by the actual construction [2] of a
cyclotron resonance amplifier based on the use of relativistic electrons. There is also experimental
evidence [3] that amplification is possible in a system in which the electron collision frequency changes
rapidly with velocity. However, both of these experiments were performed on free electrons for which the
cyclotron frequency is limited (by available magnetic fields) to the microwave range. In solids, on the
other hand, effective masses can be quite small compared to that of the free electron and it is then possi-
ble to push the frequency into the near infrared. An obvious candidate for such an application is the
crystal InSb, in which the electron effective mass is about one hundredth of that of a free electron.

Lax [4] has suggested that the non-parabolicity of the conduction band in InSb (which causes unequal

147



148 P. A. WOLFF Vol. 1, No. 3

Landau level spacings) might make possible the construction of a cyclotron resonance maser in this
material. To date, however, such a device has not been made to operate. Even if it can be constructed,
it will require large fields and pumping powers, and be restricted to the near infra-red range. The pur-
pose of this paper is to analyze a different arrangement which might make possible the amplification of
far infrared cyclotron resonance radiation in InSb. The method does not require unequal Landau level
spacings, but instead relies upon an electron collision rate which is a rapidly increasing function of
velocity to inhibit stimulated absorptions.

The scheme to be considered was suggested by recent experiments [5,6] on the intrinsic photocon-
ductivity of InSb. In this work it is observed that, at low temperatures, the photoconductivity is a strongly
oscillating function of photon energy for energies in the range 0.24-0.50 ev. The explanation offered for
this phenomenon involves the optical phonons in InSb, and can be most easily understood by reference to
Figure 1, which shows the energy band structure of the crystal. Here we see that, because of the Ak = 0
optical selection rule, the kinetic energy of the photoelectrons is determined by the photon energy.
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Energy bands of InSb

There are, of course, two groups of photoelectrons — those arising from the heavy hole band, and those
from the light hole band. For a given photon energy, the kinetic energy of the former is very nearly twice
that of the latter — the fractional deviations from this ratio being of order m*/M, where m* is the electron
mass, M ~ 30m* that of the heavy hole. For the time being let us focus our attention on electrons that
are excited from the heavy hole band. They are more numerous — because of a higher joint density of
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states — than those excited from the light hole band, and seem to be primarily responsible for the oscil-
lations. Upon comparing Figure 1 with the experimental data, one finds that the photoconductivity
minima occur at precisely those photon energies for which the electrons have a kinetic energy that is an
integral multiple of the optical phonon energy, fiwo = 0.024 eV. This is the clue which enables one to
understand the photoconductivity results. For, consider the behavior of these electrons when the crystal
is irradiated with an arbitrary photon frequency. The electron kinetic energy may then be written as

E = nﬁ(;)o + AE (1)

where n is an integer, and 0 < AE < #fiw,. Since the electron is very strongly coupled to the optical
phonons, it loses the energy n#w, almost instantaneously (in a time of the order of 10™3 sec [6]) and is
then left in a state of energy A E in which it can no longer emit optical phonons. At this point, the only
way its energy can relax is via acoustic phonon interactions. However, the time constant for this process
is known [7] to be quite long (= 1077 sec) when the InSb lattice is at liquid helium temperatures. Thus,
for all practical purposes the photoelectron is isolated from the lattice and remains at energy AE until it
recombines (in about 107'° sec [5]). Since the mobility, and also possibly the recombination rate, are
rapidly varying functions of AE, it is easy to see how the photoconductivity oscillations arise.

The observation of conductivity oscillations emphasizes an important feature of the photoconduction
process in InSb; namely, that it quite naturally produces a monoenergetic supply of conduction electrons
which preserve their energy for a long time, provided that it is less than fiw,. This statement does not,
unfortunately, imply that the velocity distribution remains monoenergetic, for electron-electron interac-
tions may convert it to a Maxwellian without changing the average energy. Moreover, the statement only
applies to those electrons which are produced from a single one of the hole bands, say the heavy hole
band. There will always be, in addition, another group of photoelectrons, with half as much energy, that
come from the light hole band. Nevertheless, the experiment suggests that monoenergetic distributions
are, at least, a possibility. We shall see presently that, with reasonable electron densities, the electron-
electron interactions are not, in fact, sufficiently rapid to cause conversion. Furthermore, the apparent
difficult due to the existence of two separate velocity distributions is probably not serious. Theory [8]
indicates that the average matrix elements for the two types of transitions should be the same. However,
at a given photon energy, the joint density of states for transitions from the heavy hole band is about
three times greater than that from the light hole band. Thus, on this basis alone, the photoelectrons from
the heavy hole band should be three times more numerous. In addition, electrons from the light hole band
are produced at lower energies, which means a smaller matrix element for the cyclotron resonance transi-
tion, and a less effective contribution to amplification (or absorption). Finally, because they have small
energies, the electrons from the light hole band may recombine more rapidly. The combination of the
three effects makes it very likely that these electrons can be ignored — we will generally do so in the
following. However, it should be mentioned that, if this is not the case, there is a scheme (albeit, a
fairly complicated one) for actually bringing the two distributions to the same energy, and thus producing
a truly monochromatic distribution. It will be described briefly in a later section. In any case, the
important point is that it does seem possible to produce a monoenergetic distribution in InSb. This, as
was indicated earlier, is the primary requirement for obtaining cyclotron resonance amplification.

The second condition for amplification also follows, in a very natural way, from the photoproduction
process. For, consider the collision rate of electrons whose kinetic energy is near that of the optical
phonon. One expects, from mobility and cyclotron resonance measurements, that electrons with energy
less than the optical phonon energy have a relatively small collision rate. On the other hand, the photo-
conductivity results imply that electrons with energy greater than fiw, scatter almost instantaneously.
It follows that the scattering rate (or, equivalently, the line width of the cyclotron resonance transition)
is an exceedingly rapidly increasing function of energy for energies near ##wo. This is one way of inhib-
iting stimulated absorptions, thereby satisfying the second amplification condition.

We see, therefore, that both of the requirements for cyclotron resonance amplification are, at least
potentially, met in InSb. In the remainder of the paper we will analyze these possibilities more closely,
and suggest arrangements for actually achieving amplification.
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2. The Amplification Process

In this section we wish to consider the formula which relates the rate of photon generation (or ab-
sorption) to the electron velocity distribution. Discussion of the factors which determine the velocity
distribution, itself, will be postponed to the next section. We begin by considering the energy levels of
electrons in the conduction band of InSb in a constant magnetic field, B,. To simplify matters the elec-
tron effective mass will be assumed constant and spin splitting (which is a third of the cyclotron fre-
quency) will be ignored. The energy levels are then given by the expression

1 1%k, 2 2
E(ﬂ,k ) = (ﬂ + —)ﬁ + z ,
z 2 Ve 2m*
where n = 0,1,2,..., 0w, = efo is the cyclotron frequency, and #ik, is the electron momentum in the
m*c

direction of the magnetic field, The distribution function for electrons among these levels will be
denoted by F(n,k,). Since elastic scattering processes are generally quite rapid in InSb
(etastic = 10711-107!2 sec), the function F will usually be a function of E(n,k,) alone.

Now let us imagine that an electromagnetic wave, of frequency w, propagates through the InSb crystal
in the direction of the applied magnetic field. This wave will stimulate transitions between the energy
levels of equation (2). The resulting rate of change of photon number (neglecting spontaneous emission)
is given by the equation

dt fi2

2
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Here A is the vector potential of the electromagnetic wave which is assumed to be circularly polarized,

+ 1 e
nt = (""—23> where the operator 7 = (p — — A,), A, is the vector potential of the d.c. magnetic
c

field, and glw;n,n-1,k,) is the line-shape function for optically induced transitions between the energy
levels E(n,k,) and E(n-1,k,). Equation (3) incorporates the standard dipole selection rules; An = %1,
Ak, = 0. The extra factor of 1/# that appears in its coefficient arises because the line-shape function,

& is written in terms of frequency, rather than energy, variables. We will assume that g has the
Lorentzian form

&w;nn-1,k,) = 1 [ y(n,n-Lk;) } , “@

7 | (w-0.)? + yXn,n-1,k,)

where y(n,n-1,k,) is the line width for the transition in question. For our purposes, the important feature
of the function y(n,n-1,k,) is that its value changes very abruptly at that point at which E(n,k,) = fiw,.
When E(n,k,) < #iw, optical phonon emission is not possible and we may expect the line width to be of

1

the order of the elastic collision rate —i.e. y = = 10" - 10" sec™! for E(nk,) < Hw,. For
Telastic
convenience, we will also assume that it has a constant value, y,, in this range. On the other hand, for
electrons with E(n,k,) > #iw, the line width is at least an order of magnitude greater since the lifetime
for optical phonon emission is about 10"13 sec. Here the line broadening is extreme. Therefore, at reso-
nance (w=w.), transitions involving states with E(n,k,) 2 tiw, are severely inhibited. This is particularly
important for the absorption (n-1,k,) — (n,k,), in which E(n-1,k,) < fiwy < E(n,k,). Transitions in
w'hich both the initial and final states have energy greater than #iw, will contribute very little to equa-
tion (3), in any case, since we expect the distribution function F(n,k,) to be small for E(nk,) > flwg.
Thus, to a fairly good approximation, we may say that at resonance no states with energy greater than
fiw, contribute to equation (3), either as initial or final states. The latter is, of course, the vital point.
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Setting w = w. and y(n,n-1,k,) = y, for E(n,k,) < fiw,, we then find that equation (3) takes the form

dt = 7y (m*c) Z | < nk,|n | n-1k, >|? [F(nk,) - F(n- lk)]s
0

(E(n,k,) <ftiwg)

©)

The important feature of this formula is the fact that the summation over states is now restricted to the
finite range, E(n,k,) < fiwo. As a consequence, we may obtain a positive value of

—(:%] (implying amplification) if the requirement
F(n,k,) - F(n-1,k,) > 0 (6)

for E(n,k,) < Hw, is satisfied. Physically, one may say that the extreme broadening of those levels
with E(n,k,) > fiw, truncates the Landau ladder at E(n,k,) = fw,. Thus, we have only a finite series
of energy levels to deal with, and something akin to a negative temperature is possible within this
restricted manifold. The crucial question then becomes that of satisfying the criterion of equation (6).
In general, it is exceedingly difficult in solids to maintain such highly non-Maxwellian velocity distribu-
tions. However, the case of InSb is somewhat special, and the remarkable photonconductivity results
give reason to hope that it may be possible to do so. This is the problem to which we tum our attention
in the next section.

3. Thermalization Rates for the Electron Distribution

In the following we will imagine that electrons are produced photoelectrically in p-type InSb (cooled
to liquid helium temperatures) by a monochromatic light source. Our aim is to produce electrons whose
kinetic energy is just below that of the optical phonon. If, as seems quite probable (see Section 4), the
effects of electrons excited from the light hole band can be ignored, this goal can be achieved relatively
easily. One merely chooses the appropriate frequency and band width for the light, in such a way that
photoelectrons are produced with kinetic energies in the range #llwo-w.) < E < fiw,. (We assume
W < (‘)0')*

On the other hand, if electrons excited from the light hole band cannot be ignored, a somewhat more
involved pumping scheme is necessary. The trick in this case is to use light which excites electrons
from the heavy hole band to kinetic energies very slightly less than that of two optical phonons, say with
energy E, = 2fiwg — 8. Such electrons will immediately radiate an optical phonon and end up with
energy E, = iwg — 8. The same light produces electrons from the light hole band with kinetic energy
E = fiw, — 8/2 (neglecting corrections of order m*/M. Thus, if 6 is small, the two distributions are
superposed to produce a single monoenergetic one with energy just below fiwg.

In any case, we will assume that by some means a distribution satisfying the condition
#i(wg-w.) < E < Hw, has been created. Such a distribution has the property that F(n-1,k,) = 0 for
E(n,k,) < iwy. Thus, equation (6) is satisfied, at least initially. The important question is how long
such a monoenergetic distribution can persist. In particular, we want all thermalization times for the
distribution to be long compared to the recombination time. If this condition is met, the criterion of
equation (6) will be maintained. Thus, we are faced with the problem of examining various thermalization
mechanisms, and comparing their rate with the recombination rate. In the experiments of ref. [5] the
recombination time, 7,, was about 107'° sec. This turns out to be a convenient value so, henceforth, we
will assume that it is typical of the samples we consider. Any thermalization process which takes appre-
ciably longer than 107!° sec will not then perturb the energy distribution.

There appear to be four mechanisms by which the initially monoenergetic electron distribution can
relax to a Maxwellian. They are electron-phonon interactions, electron-electron interactions,

*This condition restricts the device to the wave length range A\ 2 50 .
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electron-hole interactions, and, finally, the possibility that the velocity distribution may break up by the
spontaneous generation of plasma oscillations. We will consider these processes in turmn.

Electron-phonon interactions can be of two sorts — those with optical phonons, and those with
acoustic phonons. However, we have deliberately chosen the initial distribution in such a way that the
electrons have insufficient energy to generate optical phonons. We are left, therefore, with the electron
— acoustic phonon interaction — which is known to be quite weak when the InSb lattice is at 4°K.
Peskett and Rollin [7] have measured a thermalization time of 3 x 1077 sec under these circumstances,
and this number is in fairly good agreement with theoretical estimates [9]. We conclude that the electron-
acoustic phonon interaction is about three orders of magnitude too small to perturb the velocity distribu-
tion. The observation of photoconductivity oscillations also forces one to a similar conclusion.

Another important thermalization mechanism is electron-electron scattering. This process differs
from the phonon interaction in that it does not change the total energy of the electrons, but merely con-
verts a monochromatic distribution into a Maxwellian with the same average energy. From the point of
view of maser operation, however, the two processes are equally undesirable. No measurements of
electron-electron relaxation rates have been made, but there are a number of theoretical estimates in the
literature [10]. In particular, MacDonald, Rosenbluth and Chuck have done a calculation, using the
Fokker-Planck equation, which closely approximates the situation we wish to investigate. They start a
group of electrons in a nearly monoenergetic distribution, and determine the time at which it becomes
Maxwellian. This time is given by 7,.. = 0.73 t. where t. is the ‘‘self-collision time’’ defined by
Spitzer [11]:

(m*)"2(3kT)%2 ¢2

. = . Q)
(8x0.714) mpe* In(A)
where
L T)3 .3
AR A ®
2 npe’
€ = 16 is the dielectric constant of the InSb lattice, p the electron density, and (3kT)/2 the average
electron energy. For the concentrations of interest to us the value of In(A) is about 10, and r,_, is
approximately given by
1 R '
= 1077 p sec™! . 9
Te-e

This thermalization time is to be compared with the recombination time, 7, = 107!° sec. The two become
equal when p = 10" cm™. To be on the safe side we will restrict p to be less than 10’2 em™3. This
insures that the electron-electron relaxation time is about an order of magnitude longer than 7,. Thus,
this process should not appreciably modify the velocity distribution. An electron density of 10'? carrier/
cm? appears to be quite small, but we will see that, because of the large matrix element for the cyclotron
transition, it is adequate to produce amplification.

The third thermalization process to be considered is the interaction of the photoelectrons with holes
in the p-type InSb. At low temperatures these are bound to acceptor centers in the lattice., Here we can
arrange things, by proper choice of the acceptor, so that the electrons do not have sufficient energy to

excite the bound holes, and thus cannot lose energy to them. In particular, it has been found [12] that
the acceptors Ag and Au in InSb have binding energies

1]

E; = 0.023-0.028 eV for Ag

E;

0.032 - 0.043 eV for Au .
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The two values in each case are obtained from different types of measurements, with the upper probably
being most reliable. We see that either of these acceptors has an ionization energy which is sufficiently
large to prevent electrons with energy less than the optical phonon energy (= 0.024 eV) from losing
energy to it. Again, this conclusion is consistent with the observation of photoconductivity oscillations
—no oscillations would be observed if there were appreciable energy interchange between the electrons
and holes. In this regard it is significant that in the one experiment [6] in which the dopant was speci-
fied, it was the acceptor Ag.

Finally, we must consider the possible break-up of the velocity distribution by generation of plasma
oscillations. It is known that in sufficiently non-equilibrium distributions plasma oscillations are spon-
taneously generated and cause extremely rapid thermalization. This problem has been treated by Jackson
[13] who gives a simple criterion for the stability of a velocity distribution. A distribution is stable
towards the generation of a plasma oscillation travelling in the direction i if the one-dimensional veloc-
ity distribution, defined by

F(v,) =ﬁ(v) s-v-v,) d®v, (10)
satisfies the condition
v,F'(v)) <0 (11)

for all v,. A straightforward calculation shows that this criterion is met by the monoenergetic distribu-
*y, 2
tion F(v) « 8<-m v

- E(), which is then stable in the sense discussed by Jackson. Similar conclu-

sions are also obtained by Penrose [14].

To summarize the preceding conclusions we may say that, by working in Ag or Au doped InSb at low
temperatures, and restricting photoelectron densities to the range p < 10'? cm™3, it seems possible to
insure that an initially monoenergetic electron distribution will remain so throughout a recombination time,
7, = 1071° sec. This, as we have seen, is the crucial requirement for obtaining amplification of cyclotron
resonance radiation. Assuming that such a monoenergetic distribution can be maintained, we now tum to
the problem of how much amplification one might expect to obtain in a practical situation.

4. Calculation of Gain

In the preceding section we have shown that it is probable that a non-equilibrium velocity distribu-
tion, of the type required for cyclotron resonance amplification, can be maintained in p-type InSb doped
with Ag or Au. Henceforth, we will assume that this criterion (see equation 6) is fulfilled, and investi-
gate the sort of amplification rates one might expect with reasonable values of the parameters. To be
specific, we will consider a situation such as that shown in Figure 2, in which there are several Landau
sub-hands below the energy fiw,. The light which produces the photoelectrons has a frequency such
that these electrons are produced in the kinetic energy interval (fiwg—fiw.) — fiw, (the banded region in
the figure). If these electrons absorb a photon of frequency w, they arrive in the energy region in which
optical phonon emission is possible. Such absorption processes have a very broad line and contribute
relatively little to (dV)/(dt) (equation 3). They are ignored in the approximation which leads from equa-
tion (3) to equation (5). The important processes are the stimulated emissions which have a narrow line
—and can produce amplification.

With the sort of excitation described above, the distribution function F (n-1,k;) = 0 whenever
E(nk,) < fiwy. Thus, the second term of equation (5) does not contribute, and the formula simplifies to

2
a2 [ed Y < nka o |tk 5|2 F(n,k,)} 12)
dt yofiZ \m*c
n,k,

(E(n,k,) < Hlwg)
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FIGURE 2
Landau sub-bands in the conduction band of InSb

The matrix element of #* may be evaluated using the well-known harmonic oscillator wave functions,
giving the result

242
a__ _ef_f’_ﬁwc ) (13)
dt Hiy m*c?

where

- (_’:) D F (k)] (14)

P n,k,

is the average value of the Landau level quantum number. Finally, we may relate the value of the vector
potential to the photon density through the standard formula for the energy density of the electromagnetic
field. The result is

1 dN 4npe? (ﬁ
— — = AT (7 (15)
N dt m*e yo>
or, as a gain per unit length,
InN 2
G - d(InN) _ 477p;3 (_ n ) . 16)
dx m YoC Ve

The authors of ref. [S] make estimates of electron mobilities in their InSb samples, from which one may
deduce an electron collision rate. For electrons with energy equal to that of the optical phonon one finds
Yo = 2 x 10" sec’’. For p we use the previously estimated upper limit of 10!2 cm™3, and assume

n = 1. The value of G then turns out to be 10 cm™!, which is fairly substantial. As usual in maser
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processes, the value of G is quite sensitive to the line width (y,) for the transition in question. The
value given above is based upon the assumption of ionized impurity scattering, but in the sort of samples
we are considering, with deep-lying acceptor levels, most of the centers would actually be neutral at
liquid helium temperatures. Under these circumstances it might be possible to achieve smaller values of
yo than that quoted above. This is a point of vital importance to the operation of the device, and one on
which it would be helpful to have detailed experimental information.

Until now we have ignored the effect of electrons excited from the light hole band. It is fairly easy
to see, however, that they do not materially alter the gain estimates made above. To investigate this
point we return to equation (5) and include in the velocity distribution a component describing electrons
excited from the light hole band. These electrons are produced at an energy well below finy — in a
region where the line width is slowly varying. As a consequence, both emission and absorption processes
play a role in determining their contribution to equation (16). The calculation is straightforward and
exactly parallels that for the conductivity of an electron gas. One finds that equation (16) should be cor-
4np'e? 1

m* YoC Ve

light hole band. Notice that the factor n does not appear in this expression. It is absent because the
stimulated emission rate nearly cancels that due to stimulated absorption. Numerically, this correction is
considerably smaller than the G of equation (16), and would be even less important if one took account of
any velocity variation in y,.

Finally, it is important to consider whether or not the photoelectron densities we have imagined
(p = 10! cm™3) can be achieved with reasonable pumping powers. At helium temperatures it is possible
to dissipate of the order of 1 W/cm? of sample surface. This is also about the power radiated by a black
body source at a few thousand degrees in an energy interval of 0.0025 eV at 0.25 eV. With photons of
this energy, and an electron lifetime of 107!° sec one finds that the steady state number of electrons in
the sample (with a surface of 1 cm?) is 2x 10°. Thus, one achieves the required electron density if the
sample thickness is 2x 1073 cm. Since this is also about the diffusion length in material with such a low
lifetime, the numbers work out in quite a convenient way. A two-way pass through such a sample gives a
gain of 4 per cent. This is sizable, and should be detectable in an infrared cyclotron resonance experi-
ment. However, one can do even better with a multi-pass geometry such as that shown in Figure 3.* Here

rected by a term — , where p’' = 1/3p is the density of electrons excited from the
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FIGURE 3

Schematic diagram of experiment to observe gain

*] am grateful to L. C. Hebel for suggesting this arrangement.
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the pumping light is incident nomal to the surface of the sample. The infrared signal enters the InSb
wafer at its end, makes several passes through the active region, and emerges to the detector at the op-
posite side. A convenient wave length for such an experiment would be 100 x. Conventional infrared
methods work fairly well in this range and a magnetic field of about 15 kg would be required.

5. Conclusion

In the preceding sections it has been demonstrated that there is a reasonable chance of amplifying
cyclotron resonance radiation in InSb. The scheme envisaged uses the extreme line widths of Landau
levels with energy greater than that of the optical phonon to inhibit induced absorption. Throughout the
calculations it has been assumed, for simplicity, that m* is constant. Any variation of m* with energy
can always be used to assist the amplification process.

The amplification technique depends upon the attainment of a nearly monoenergetic distribution of
photoelectrons, with energy just below that of the optical phonon. Such distributions are naturally pro-
duced in the optical pumping process. Various relaxation mechanisms for such a distribution are consid-
ered and, with conservative values of the parameters, it is concluded that a distribution containing 1012
electrons/cc remains monoenergetic over an electron lifetime of 1071° sec. Such a distribution, in a sam-
ple 2x107% cm thick, produces a gain of 2 per cent per pass. However, it should be realized that this
figure is quite sensitive to the collision rate of the photoelectrons and that a considerable improvement
might be achieved in a suitable sample.

Finally, a few words should be said about the pump. Powers of 1 W/cm? in the narrow frequency
range required may be obtainable from conventional sources with appropriate filtering. In the long run,
however, the elegant way to do the job is with a laser pump — preferably one of InSb itself. Unfortunate-
ly, the InSb junction laser [15] has somewhat too low a frequency for this purpose. However, it might be
possible to make such a laser in a mixed crystal having a slightly larger band gap (GaSb, for example).
If it could be made, such a pump would have the twofold advantage of giving high power in a narrow line,
and being magnetically tunable.
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