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Abstract

The lower critical field Hci *s derived from the microscopic theory for superconduct-
ing alloys. It is shown that Abrikosov's structure in the field just above Hci is described 
by the use of a parameter of which the temperature dependence is obtained. A brief dis-
cussion of the gap in the excitation spectrum and the thermodynamical behavior at lower 
temperatures is given.

Next the effect of the Pauli paramagnetism on the magnetic properties of super-
conducting alloys is investigated in detail. It is shown that Abrikosov's structure is still 
described completely by the use of two parameters k i*(T) and k *(T) in the vicinity of the 
transition point when the phase transition is of the second order. In superconductors hav-

ing a large Pauli term ---- _> 1.475 where p is the Bohr magneton, rtr the transport
er trv

collision time of an electron and v the fermi velocity, the order of the transition is found 
to change from the second to the first as temperature decreases.

1. Introduction

In the first part [l] of this series (which we refer to as I) we have discussed the magnetic properties of 
superconducting alloys in the vicinity of the second transition: in the field close to the upper critical field 
Hc2. It was shown that in this region Abrikosov’s structure is completely characterized by two parameters 
k i (T) and k 2(T), both of which coincide with k at the critical temperature Tco. Here we first concentrate our 
attention on the magnetic properties of superconducting alloys near the first transition point, where the 
penetration of magnetic field into a bulk superconductor begins in the form of quantized flux lines. Since 
the general discussion is involved, we restrict ourselves to the case k > 1, where the transition to the 
mixed state is of the second order. When k  > 1, the flux lines are mutually well separated in fields just 
above the lower critical field Hcx and we may assume: 1) the local variation of A is so gradual that the ex-

T V2pansion in powers of — — o^2) is possible and 2) the local variation of A is so small that the vary-

ing part can be treated as a small perturbation. Insofar as we are interested in the exterior structure of flux 
lines, both assumptions are quite reasonable. We will see below that, in the case k  > 1, the energy of a 
single flux line and the mutual energy between neighbouring lines are almost independent of the core struc-
ture of the line. The above assumptions are similar to those made by Tewordt [2] and by Werthamer [3] in 
the derivation of equations for the ordering parameter A and the current j , where A can vary from place to 
place. In the case of alloys where the electronic mean free path is very short we obtain somewhat different 
expressions for A and j. Using these expressions we discuss Abrikosov’s structure [4] in the vicinity of 
the first transition point as well as the tenrperature dependence of the lower critical field Hci. It is shown 
that the structure in this region is described by a parameter k 3(T) which reduces to k at the critical tem-
perature. Also the field dependence of the gap in the energy spectrum and the specific heat at lower tem-
peratures are discussed.
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Recently Chandrasekhar [5] and Clogston [6] pointed out that the Pauli paramagnetism might play an im-
portant role in the resistive transition of some superconductors, which was revealed subsequently in the ex-
perimental study of high field superconductivity carried out by Hake and Berlincourt [7], Extending the dis-
cussion given by Chandrasekhar and by Glogston to finite temperatures, Maki and Tsuneto [8] showed that 
the order of the phase transition changes from the second to the first as the temperature decreases, if the 
transition is brought about by the energy difference coming from the Pauli susceptibility. A preliminary dis-
cussion on the modification of Abrikosov’s structure was also given based on the generalized Ginzburg- 
Landau equation, containing the Pauli term.

Here we carry out a rather complete study of the effect of Pauli paramagnetism on the magnetic prop-
erties of superconducting alloys. Incorporating the Pauli term in the general Gor’kov equation, we derive a 
set of equations for the ordering parameter A and the current ;(x ) on the assumption A is small 
(A /nTco «  1). Those equations are solved by a similar procedure to that given in I.

We find that the peculiar deviation from Abrikosov’ s theory noted in I is quite common in supercon-

ductors having a large Pauli paramagnetism (—   ̂9 > 1.475 where /z is the Bohr magneton, Ttr the collision
\  \erty

time of an electron and v the fermi velocity ): in those superconductors the order of the transition changes 
from the second to the first as temperature decreases and at a critical point ((7\, Hi) in the T -  Hc diagram) 
the jump of the specific heat at the transition diverges as (T -  7 i)"“1/2.

128 KAZUMI MAKI Vol. 1, No. 2

2. The Equations for A and j

In this section we are concerned with the derivation of the equations for the ordering parameter A and 
the current ; ,  which give the basis of the subsequent discussion. As is shown in I the effect of a magnetic 
field is introduced into the theory by a simple replacement of q by q + 2 eA . When the varying part of A(x) 
is small we obtain the following differential equation [9]

(1)

where a = -  ^  V 2 or in the presence of fields a = -  TtrV (V -  2 i e A ) 2 and A is the vector potential, 
o 6

The above equation is rewritten in a much simpler form

(2)

or expanding in powers of a*

(2')

where Aoo is the gap in the energy spectrum at T = 0°K and H = 0 and K0(z) is the modified Bessel func-
tion. The expression for the current has already been found by Abrikosov and Gor’kov [10]

(3)

where A is the gap at finite temperature [ 11].

♦The coefficient of a is in accordance with Werthamer’ s (Rev. Mod. Phys. 36, 292 (1964)).



3. The Beginning of Field Penetration into a Superconductor

In a detailed study of the solution of the Ginzburg - Landau equation, Abrikosov [4] has found that the 
magnetic field begins to penetrate into a superconductor in the form of vortex lines carrying unit flux, in a 
field smaller than the usual thermodynamical critical field Hc when k  is sufficiently large. This field is 
called the lower critical field Hci. We follow a similar procedure to that given by Abrikosov, since his 
analysis does not depend on the form of the equation for A and seems applicable even when the Ginzburg - 
Landau equation no longer holds. As the generalization to the case of finite temperatures is easy, we first 
consider the case of the absolute zero of temperature for definiteness. In order to determine the lower criti-
cal field Hci we calculate the energy of a flux line. According to Abrikosov we treat the problem in cylindri-
cal coordinates where the axis of symmetry is along the magnetic field. Introducing a new quality Q which 
is equal to the absolute value of A, -  iV<£/2 e and putting A(x) = Aoo e '^ /(f) we reduce the equations to 
one dimensional form
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(4)

and the Maxwell equation to

(5)

The magnetic field H is given by

(6)

Considering the fact that /  -  1 everywhere except in a narrow region around the core of a flux line, we 
solve Equation (5) in term of the modified Bessel function:

(7)

where

Substituting this in Equation (4) we find

for

(8)

Then the energy of a single flux line is given by

(9)
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(10)

/  2 \V2, (  71 T f r V 4 \
where we cut off the lower limit of the integration at ro = — — J -

The free energy difference in the presence of the flux lines is

(11)

where F1 = ne, H is the external field and n the density of flux lines (number of lines in a unit area). B is 
the magnetic induction and is given by

(12)

When AF is negative, the superconductor becomes unstable against the flux invasion and the flux lines 
begin to penetrate. The lower critical field is determined by

or

(13)

This expression is rewritten in a more convenient form by the use of a parameter K3:

(14)

(15)

A similar expression is found by Abrikosov by using the Ginzburg - Landau theory.
This similarity becomes even more salient when we obtain an equation for the magnetic induction. As 

is seen from Equation (13) Hcl is independent of n, which holds generally when the phase transition is of the 
second order. When the external field is larger than Hcl a finite number of flux lines penetrates into the 
bulk and n is determined from the following consideration. As given by Abrikosov the magnetic field H is 
determined from

(16)

where the summation runs over the positions of the flux lines. The solution is found as

(17)

and Fi is calculated as
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(18)

For a triangular lattice we have

(19)

and for a square lattice

(20)

Maximizing the free energy difference Fi -  — B • H we obtain an equation for the magnetic induction
4 77

(21)

where

(22)

for a triangular lattice, and

(23)

for a square lattice.
Thus the structure in the field just above the lower critical field is completely described by 

Abrikosov’s theory for all temperatures if one uses a single appropriate parameter K3.
At finite temperatures by using Equation (2*) and the expression for the free energy [7] at finite 

temperatures

(24)

where

(25)

we find
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(26)

and

(27)

We note here Equation (26) is rewritten as

(28)

The magnetic induction is also given by Equation (21), if one replaces Hc and a by temperature dependent 
values respectively where

(29)

The asymptotic form of K3(T) is given as:

(30)

(31)

FIGURE 1

k $ / k  as a function of the reduced temperature t = T /T co .



where k 3(T) reduces to k at the critical temperature as it should be. The temperature dependence of k 3(T) 
is numerically calculated and depicted in Fig. 1.
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4. The Gap in the Energy Spectrum and the Thermodynamical Behavior at Lower Temperatures

When the external field is much larger than the lower critical field Hcl, a considerable number of flux 
lines is threading the superconductor and a uniform depression of the ordering parameter A becomes ap-
preciable. In order to investigate this situation we assume that the effect of flux lines can be replaced by 
that of an equivalent magnetic field. Using a similar procedure to that employed in the study of the field 
dependence of the gap parameter in thin films [12], we obtain the following expression for A at the absolute 
zero of temperature

(32)

where

and

(33)

We average (Q*)2 over a single cell with flux line at r = 0, after subdividing the bulk into equivalent 
cells (hexagonal in the case of a triangular lattice) each containing a flux line. The current is given as [8]

(34)

From this we find a in Equation 33 to be

Similar calculations to those of Section 3 lead us to the following expression for the free energy

(35)

(36)

and

(37)



In the last term we find the effect of uniform depression of A explicitly. The magnetic induction is obtained 
from
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(38)

The above equation is apparently too difficult to be solved explicitly. When the external field is just 
above Hci and the flux lines are mutually fairly well separated, we find

(39)

for a triangular lattice. We do not describe the derivation of the above equation, which is not very interest-
ing. On the other hand when H is much larger we have

(40)

It is easy to show that the above expression is exact in the limit of vanishing A, as is seen from the 
discussion given in I. We expect that Equation (40) is valid in a much wider range of field, since Equation 
(39) gives a comparable value with Equation (40) when B = 0. I k” 1 Hc.

Using the expression (40), we will give a qualitative discussion on the thermodynamical behavior. In 
the presence of a field the gap in the energy spectrum coo is not always equivalent to the ordering parameter 
A but may be expressed as

(41)

and consequently the specific heat at low temperatures is found to take [13]

(42)

where A and (o0 are calculated from

(43)

and

(44)

If one takes account of the effect of the collective oscillation of the flux lines, a linear term in T appears 
in the expression for the specific heat, which may dominate at extremely low temperatures.

Ion J r v ^ H iC;ni^  ° f ^  ' ' T * ™  P° int Where T"  is the above expression is no
Sion for t i f f  In hlS CaS, l  he SP6C/oflC heat in a fiXed extemal field is calculated by the use of the expres-sion for the free energy (Equation (20) in I); F

(45)

♦The erratum found in the expression of Ref. 9 is corrected here.



we obtain
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(46)

From this we see that in the region |A| 2/nTco «  1 where the magnetism M is almost linear in the 
field, the linear term in T predominates in the expression for the specific heat. As we have already noted 
in I, the expression (45) does not hold when 2 k 22 > 1, where the phase transition at the second transition 
point becomes of the first order.

5. Formulation: Inclusion of Pauli Spin Term

In order to extend our previous formulation so as to include the effect of the Pauli paramagnetism, we 
first consider the impurity free case and begin with the following simple Hamiltonian [8]

(47)

where the last term is the Pauli term. The generalized Gorkov equations which include the Pauli term i 
the following:

(48)

where £ is the chemical potential and GCt)(x,x') and FCl>(x,x#) are the fourier coefficients of Gor'kovk two 
Green's functions defined by

(49)

The ordering parameter A(x) is determined by the following equation

(50)

We are interested in the behavior of A(x) in the vicinity of the transition point where A is small 
(A/ 77 Tco «  1). Expanding the above equations in powers of A(x) we obtain
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where GCt>°Xr,r/) is the spin dependent Green’s function of an electron in a normal metal and the Fourier 
transform is given by

and Sp means the summation over spin states.
The effect of impurity scattering is included into the theory by renormalizing the self-energy and the 

vertex function as described in I. In the following we consider for simplicity the case where the spin- 
dependent part in the scattering amplitude from an impurity atom is inappreciable. In this case we arrive 
at the following equation

where

and if/ (z) is the di-gamma function. 
The current is given as

(51)

(52)

(53)

where

(54)

and q. operates only on A(i).
Strictly speaking, on the right-hand side of Equation (53) we should add a constant term, (independent 

of A) coming from the susceptibility due to normal Pauli paramagnetism. We neglect such a term in the



present discussion, since the results are hardly affected by this term (possibly within 0. 1% in the usual high 
field superconductors).
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6. The Upper Critical Field

Before going into the discussion of Abrikosov’ s structure, let us consider the field corresponding to 
the lower instability limit of the normal state, which is obtained from the linear part of Equation (52)

(55)

In a uniform field H along the Z direction (q -  2 eA ) 2 is rewritten as

The eigenfunction and the eigenvalue are given by

(56)

and

(57)

respectively.
When the phase transition is of the second order the above field is just the upper critical field and we 

denote it by H*2. Employing the asymptotic form of i/r(z) we obtain.

(58)

(59)

where

Hc2 is the usual upper critical field in the absence of the Pauli term and calculated in I and

Hcp = —:_5- as defined by Clogston, corresponding to the field where the energy difference due to the
\ /2n

Pauli susceptibility becomes sufficient to destroy the superconducting correlation.
From the above expressions we see that the effect of the Pauli paramagnetism is appreciable at lower 

temperatures. Especially, at T = 0°K we have

(60)



On the other hand, when the phase transition is of the first order, as is usually the case at lower tempera-
tures with superconductors having a large Pauli term (a > 1.47), the above field is a supercooling field. In

138 KAZUMI MAKI Vol. 1, No. 2

FIGURE 2

The upper critical field H*2 as a function of temperature for a 2 = 0, l/2, 1, and 2.

this case it requires an explicit knowledge of the coefficient of A 6 in Equation (52) to determine the upper
critical field. (See § 8.) The curves of the upper critical field with temperature are depicted in Fie. 2 for 
various a.

7. Abrikosov's Structure

When the magnetic field is close to H*2 and the ordering parameter small, we can discuss the modifies- 
tion of Abrikosov s structure through the Pauli term using Equations (52) and (53).

According to Abrikosov [4] we solve the equation by the use of a variational function of the form

(61)

where H0 is the external field.
Inserting the above expression for A in Equation (53) and combining with the Maxwell equation

(62)
we have

(63)
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where

(64)

and

Substituting Equations (61) and (63) in Equation (52) we obtain

(65)

where

(66)

Putting j8 = |A|4/( [A |2) 2 we calculate the magnetic induction as well as the free energy as

(67)

and

(68)

where

(69)

The asymptotic forms are:

(70)

(71)

where k 2(0) is found in I.
The magnetization M is derived from Equation (67) as

(72)

The change of k* with temperature is plotted in Fig. 3.
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FIGURE 3

K2 as a function of T/Tco  for a 2 = 0, l/i, 1, and 2.

The specific heat in a fixed external field is computed in terms of k * and k * as given in I, where k * is 
defined as k * = H*2/\/ 2HC.

(73)

and asymptotically

(74)

(75)

From the general discussion of the second order phase transition given in I we see immediately that the
order of the phase transition changes from the second to the first when k* becomes smaller than l /V  2. In 
this case the above expression for the specific heat is no longer valid. In superconductors having a large 
Pauli paramagnetism k is usually large (k »  1) and the above situation becomes possible only when

V 3
a2 > 1 +



8. Thermodynamic Behavior in the Vicinity of the Critical Point

It is interesting to see more closely the thermodynamical behavior of the mixed state in the vicinity of

the critical point. For this purpose the explicit evaluation of the coefficient of |A|6 in Equation (65) is 
necessary [14]. We restrict here our consideration to the case k  »  1 where the calculation is rather simple. 
In this case we can neglect the effect of the diamagnetic current which gives a contribution of the order of 
k ~ 2 and find by a slight extension of the calculation given in § 2.
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(76)

where

(77)

The free energy is calculated as

(78)

where

In the present case (k »  1) the critical point (7\, Hi in the T -  H*2 diagram) is determined as the 
root of the following transcendental equations

(79)

Putting

(80)

where Tc is the transition temperature in a given external field and g*(p) = - — &(p)t we solve Equa-
1 + ia

tion (76)

(81)

The free energy and the specific heat are found
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(82)

and

(S3)

respectively. When T is far from Tx we obtain

(84)

which coincides with the expression (28) in the limit k ---- ► <*>. On the other hand at the critical point where
flip) vanishes we have

(85)

which diverges at T = Tc.
When the transition becomes of the first order the upper critical field is determined by the condition 

Fs -  Fn = 0 or

(86)

Substituting this in Equation (76) we obtain

(87)

where Hc 2 is the upper critical field and Hc 2 is defined in Equation (58). Especially at lower temperatures 
we have

(88)

9. Concluding Remarks

We have seen thus far that Abrikosov’s theory is valid in a wider region of both fields and tempera- 
tures if one uses appropriate parameters for k depending generally on the field and the temperature. In the 
present investigation we rely heavily on the fact that in superconducting alloys the magnetic field is intro-
duced into the theory by simply replacing q by $ + 2eA and it is not clear if Abrikosov’s theory is valid in 
the above sense in the case of pure superconductors having large k .



As for the effect of Pauli paramagnetism we have seen that superconducting alloys having a large Pauli 
term are described by two parameters and k * without any difficulty as long as the phase transition is of 
the second order. We emphasize that the peculiar behavior pointed out in I for super conductors with

k  -  —4=r is quite a common feature of superconductors having a large Pauli paramagnetism. In those
V 2

superconductors the order of the transition from the mixed state into the normal state is the second in the 
vicinity of the transition temperature and becomes the first as temperature decreases. In this respect it is 
particularly important to have detailed experimental data on the magnetic as well as the thermodynamic 
properties at lower temperatures of high field superconductors.
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