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Abstract

This paper discusses the critical field of superconducting particles, or films, much 
smaller in size than the coherence length and the penetration depth; it is restricted to 
situations where the order parameter may be taken as constant in space, and where the 
superconducting transition in the presence of the field is of second order. The critical 
field calculation is then reduced to a study of the magnetic flux $  enclosed by all one- 
electron trajectories in the normal state during a prescribed time interval t. We show that
(1) if 3> does not have a completely ergodic behavior at large times, the equation of state 
is of the BCS type, but with a renormalized, field dependent coupling constant N(0)V 77(H).
(2) if 0  has a certain ergodic property, the effect of the field is comparable to the effect of 
paramagnetic impurities, as first pointed out in a particular example by Maki. Among 
other things there is a region of gapless superconductivity in the (HT) plane.

A thin film in a parallel field with diffuse boundary scattering but no volume defects 
belongs to case (1). This surprising result is due to a geometrical cancellation of suc-
cessive contributions to <I>. However, a rather small amount of scattering in the bulk is 
enough to restore case (2). Numerical values of the resulting critical field are discussed 
in detail for various ratios of the bulk mean free path 1 to the film thickness d. In the 
situations of major physical interest the theoretical values are proportional to d~3/2 and 
are in rather good agreement with the experimental data.

I. Introduction

IT is well-known that the critical field Hc of a thin (d «  A) superconducting film parallel to the magnetic 
field is higher than the bulk value Hcb by a factor of order (Ae ff/d), where Ae// is the effective penetration 
depth describing the field penetration and d is the film thickness. This result follows simply from the re-
duced diamagnetic energy density when the film is thin enough to allow substantial penetration of the field. 
For example, if d «  Ae{f, the simple London theory [l] leads to a first-order transition at
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(1.1)

Now, this theory is known to be inadequate, since it takes account neither of the non-linearity nor of the 
non-locality of the electrodynamics of a superconductor. Using the Ginsburg-Landau [2, 3] (G -L ) theory to 
handle the non-linearity, one finds a second- order transition at

(1 .2)
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greater by simply a factor of V2.
To give the requisite careful discussion of the region of validity of this result, we must distinguish two 

characteristic lengths in the superconductor. First, because the G -L  theory is local in its electrodynamics, 
the result will be valid only if the coherence length of Pippard [4] for response to an electromagnetic field, 
which we denote £A, is short on the scale of variation of A. For thin films, this scale is set by d, since 
d «  A. Second, the result is derived under the assumption that the film is thin enough so that the gap 
parameter is uniform over the sample thickness, i.e., that no vortex structure is set up as in a bulk type II 
superconductor, in which case the critical field would be Hc2 [5].

This requires that d < ^ (J ) ,  where ^ (T ) is the characteristic length for variation of the gap param-
eter. In view of these two conditions, we require
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(1.3)

Now, £a  is given by Pippard’s relation [4]

(1.4)

where £o = 0.18HvF/kTQ and 1 is the electronic mean free path. Evidently, £A «  / ,  if 1 <£ £0. On the 
other hand, ^ (T ) is given in the G -L  approximation [6] by

(1.5. a)

or

(I.5.b)

where T0 is the critical temperature when H = 0. In a clean film ( / > £0), the first part of the inequality 
(1.3) can only be satisfied very near T0 since £0 > A(0) (in non-transition metals) and since we require that 
X > d for (1.2) to hold. If one does operate near T0 the second part of the inequality (1.3) is readily satis-
fied. In a dirty film ( l ^  fo) (L3) is easier to satisfy since £A ~ 1 which can be made less than dt while 

~ V /&  still may exceed d, even for T well below T0.
Restricting our attention to the dirty case, the BCS theory [7] leads at T = 0 to:

(1.6)

where AL is the London penetration depth defined in the conventional manner in terms of the properties of 
the pure normal metal. A corresponding relation holds for T > 0 apart from a numerical factor which 
reaches 0.86 at T0 [8]. Combining (1.6) with (1.2) we find for a dirty film

(1.7)

For T > 0 a similar relation holds apart from the numerical factor mentioned above.
If tht J llrn 1S clean' so that 1 »  €o »  X > d the nonlocality of the electrodynamics must be taken into 

amount. The important Fourier components of the field have k ~ 1/d and, since the BCS kernel
K(k) -  V K n  Cj) relating J(*) to A(*) falls as 1 / * &  (for > D, one can see that this will lead to

eS L J ’ Carrying through in detail, in the film thin limit, with diffuse surface scattering, one 
obtains [9, 10]
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(1.8)

which is evidently very similar to (1.7) with / «  d. Again this relation can be extended to T > 0 with the 
same numerical factor as in (1.7).

It should be noted that the results (1.7) and (1.8) have been obtained by assuming that the non-linearity 
could be treated at least approximately by the G -L  theory at low temperature as well as near To, the only 
region in which it is expected to be really reliable. Experimental results are generally in satisfactory 
agreement with these simple predictions. In particular, the measured temperature dependence of HC(T) 
seems quite close to that predicted by (1.2) using the empirical Gorter-Casimir temperature dependences 
Hcb(t) ~ (1 -  t2) and AeS(t) ~ (1 -  f4)~1/2, where t = T/Tc. Use of these dependences in (1.2) leads to 
Hc(t) ~ (1 -  t2/1 + t2) l/2, which certainly gives a semi-quantitative fit to the data. Since the Gorter- 
Casimir dependences are known to be close to those given by the BCS theory [7], it has generally been felt 
that the theory gave a satisfactory account of the critical field data.

Despite the success of this simple approach via the macroscopic magnetic energy, attempts to provide 
a more rigorous theoretical treatment of the critical field of thin films at a low temperature — a treatment 
based directly on the microscopic theory and hence completely independent of the G -L  theory — have en-
countered many difficulties. For example, the variational calculation of Bardeen [ l l ]  leads to a first order 
phase transition at low temperatures, contrary to experimental evidence [12, 13] A completely different ap-
proach is taken by Nambu and Tuan [14], who pair one-electron states as modified by the field. They cor-
rectly obtain a second-order phase transition at all temperatures, but their critical field diverges as
Vln(T0/ r )  as T -----► (), contrary to experiment, which shows HC(T) approaching a constant as T -----►(). A
third approach by di Castro and Valatin [15] is somewhat similar in results to that of Nambu and Tuan, ex-
cept that the critical field at T = 0 is finite, but typically of order 10s -  106 gauss and varying as d 5/2, 
neither of which is in accord with experiment. In ref. [14] and [15] only ideal films are considered (with 
specular reflection at the boundaries and / = <*>). The opposite limit of a very dirty film ( /  «  d) has been 
considered by Maki [16]. He formally solves the equation for the one electron propagator in the presence of 
the field and impurities, then eliminates the impurities by a renormalization procedure, and finally expands 
the resulting self energy in powers of the field. The critical field thus obtained is given by a formula simi-
lar to (1.7) and is thus of the right order of magnitude. A remarkable by-product of the calculation is that in 
a certain part of the ([H,T) diagram one expects gapless superconductivity. The only difficulty of this work 
is that it involves a number of unclear approximations (i.e., the space dependence of the self-energies is 
neglected).

For these reasons it was felt that a unified treatment, applicable as well to the clean limit of Nambu 
and Tuan as to the dirty limit of Maki, and to intermediate cases, would be useful. We have achieved this 
result by a “ method of trajectories”  described in Section II. The calculation of the critical field is reduced 
by a simple transformation to a study of the magnetic flux 0  enclosed by the one-electron trajectories in the 
normal state during a prescribed time interval (0,0* The statistical properties of 0  can be obtained even for 
rather complicated physical situations (in particular for those where both surface and volume scattering are 
important). In section III we show that the theoretical behavior in the superconducting state may differ 
widely, depending on whether O has, or has not, a certain ergodic property at large times. The situation 
considered by Nambu and Tuan is non-ergodic, while the “ dirty superconductor”  case of Maki is ergodic.
The central problem is then to find the behavior of physically more important intermediate cases, such as a 
thin film in a parallel field with diffuse scattering but no defects in the bulk. It is shown in section IV that 
for such a film is not ergodic. (The film does not behave like a Maki dirty superconductor with an effec-
tive mean free path comparable to the thickness.) This surprising result is due to a geometrical cancellation 
of successive contributions to 0 . However, we also show that a rather small amount of impurity scattering 
in the bulk is enough to restore the ergodic properties. When this condition is realized, we in fact obtain a 
critical field very similar in form to (1.8), which is known to be a good approximation to the experimental 
facts.



II. The Method of Trajectories

Our starting point is the observation that, in small samples, the normal superconducting transition is of 
second order, even in the presence of the magnetic field, as shown by a number of experiments [12, 13], 
Then, at the critical temperature, the pair potential A(r) = V < </'|(r) t/^(r) > is ruled by a linear self- 
consistency equation [26]
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(II. 1)

where V is the BCS interaction parameter, 5 ^  is a thermal Green’ s function, Hco = (2 v + 1) n kB 7, and the

sum is extended over all algebraic integers v. 3?^ can be written down explicitly in terms of the one-
a>

electron wave functions <f>n in the normal metal defined by

(II. 2)

(C/(r) is the one-electron potential including the effects of impurities, boundaries, etc........ ) We have

(H.3)

The highest temperature T at which equation (II. 1) has a non-zero solution A(r) is the transition temperature 
TC(H). To discuss equation (II. 1) we shall first transform its kernel and write it in terms of one-electron 
correlation functions in the normal state.

a) In zero field this transformation is very easily achieved [18]. We have explicitly

(II. 4)

The average in equation (II.4) is taken over all one-electron states at the Fermi level in the normal metal. 
r(t) is the time dependent coordinate of the electron when it is submitted to the forces described by U(r). 
Equation (II.4) can be verified by taking matrix elements between states 0 n, <f>m and using the fact that for 
A -  0 the cf>’s can be chosen as real [18].

b) In a non-zero field H the generalization of equation (II.4) is simply:

v is the sample volume and

01.5)

The integral <f> J i n  ^  in equation (II.5) is taken along the classical trajectory linking points rj and



r2 in a time interval t. $>0 is the flux quantum. Equation (II. 5) applies only when the cyclotron radius is 
very large compared with all distances of interest. The proof of (II.5) proceeds as follows:

We first transform the 0  s in terms of real time Green’s functions 0  defined by
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01.6)

(H.7)

01.9)

We now observe that the times of interest are of order co 1 ~ ii/kBT and that the corresponding spatial 
distances are very large compared with the Fermi wavelength. Then we can go to the classical limit, where

(II. 9)

where S(01) = f  drl— mv2 + • v -  C/(rn is the action calculated along the classical trajectory relat-
c /

ing ti to r2 in time * (the instantaneous velocity being v). W is an amplitude factor and is independent of A 
in the limit of very large cyclotron radius. We insert (II.9) in (II.8) and notice that, because of the factor 
eiEF(t-t )/# Qnjy non- Zero contributions to (II.8) will come from t* nearly equal to t. Then the total 
phase of the product 0  0  is simply 'ft~1[S(0t) + S(0, —f)L If the curvature of the trajectories due to the

1 2
field is negligible, the two actions are computed on the same path; the terms — tnv -  U cancel out and 

we are left with a phase <f> given by an integral along the classical trajectory:

(II. 10)

Apart from the factor e 1̂  equation (II.8) has the same structure as in the case A = 0 and referring to (II.4) 
we obtain (II. 5). A phase factor equivalent to (II. 10) has been derived by Gor’kov [19] for electrons in an 
infinite pure metal, where the trajectories are straight lines. The main interest of the present derivation is 
to cover cases where impurity and boundary scattering may be important.

Having now constructed the kernel of our initial equation (II. 1) we further restrict our attention to 
physical situations where A(r) has a constant amplitude over the whole volume of the sample. This ex-
cludes all configurations of the vortex type, and is probably correct for particles of dimensions d «  f  A 
and for thin films with a field strictly parallel to the film plane. Then it is convenient to choose for the 
vector potential A that particular gauge where A is real (and constant) in the whole specimen. This enables 
us to integrate equation (II. 1) over rj. Dividing both sides by vA and inserting (II.5) for the kernel we ob-
tain the condition

(II. ID



The phase cf> is defined by equation (II. 10) and the average in (II. 11) is taken over all initial positions and 
over all initial orientations of the velocity (of length vF) for one electron in the sample. Equation (II. 11) re-
duces the TC(H) calculation to a study of all classical one-electron trajectories in the normal state. The 
main interest of the present method is to show that the (apparently complicated) behavior in the supercon-
ducting phase is in fact controlled by some simple geometrical properties of the trajectories.

Equation (II. 11) is a particular case of a more general formula giving the transition temperature in the 
presence of both orbital magnetic fields and magnetic impurities, namely
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(11.12)

Here K is the time reversal operator (acting on the one-electron states cf>n) and

is the corresponding Heisenberg operator. A formula equivalent to (11.12) is derived in ref. [17] (equation 
II. 2). Equation (11.12) applies when (a) the transition is of second order, (b) the Cooper pairs are in 
s-states, (c) |A| is constant in space. For non-magnetic impurities, in zero field, K commutes J fo , 
K +K(t) = K K + = 1 and (11.12) reduces to the BCS condition (Anderson's Theorem). For magnetic im-
purities K acquires a time dependent phase

where Hex is the exchange field (in frequency units), due to the impurities, acting on the electron spins. 
Here, with orbital fields, the phase of K is given by equation (11.19). This unified formulation gives a some-
what deeper understanding of some analogies between magnetic impurity effects and magnetic field effects 
which we shall encounter later on.

III. The Two Types of Magnetic Behavior

As already pointed out, we are interested mainly in the limiting behavior of the average <ef<̂ (0> at
large times t. It turns out that sometimes < eI(̂ > has a non-zero limit rj for t ---- ► oof while in many other
situations it decays exponentially towards zero.

(III.1)

(HI* 2)

(where rj and tk  are functions of the applied field).
Of course (I) and (II) do not exhaust all possibilities but they cover all the various examples to be dis-

cussed below. The magnetic properties of a given sample will be very different depending on which case is 
obeyed.

Case /: we may write

(HI* 3)

where R(t) decays towards zero for time t > d/vF. Since d/vF «  */kBT we may neglect R(t) completely at 
the times of interest. Then (II. 2) take the usual BCS form [7]

(III-4)



so that:
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(HI-5)

Thus in case I the behavior is close to that of a conventional superconductor except for the fact that the 
coupling constant W(0) V rj is a (decreasing) function of the applied field H. The transition temperature T 
remains finite at all fields, but in fact becomes exponentially small as soon as rj goes below ~ l/2 . A re-
normalization factor of this sort has been encountered by Nambu and Tuan [14] for a thin film with specular 
reflexion at the boundaries — a typical example of case I. We shall see later that even with diffuse scatter-
ing on the boundaries, in an otherwise ideal film, one still obtains case I.

Case II: If the exponential decay law (III.2) is already obeyed at the times t of interest we may write:

(III.6)

By standard transformations this leads to:

(HI-7)

Here T0 is the transition temperature in 0 field, Tc is the transition temperature with the field, and 
T '(z)</r(z) = —---- . Equation (III.7) is an implicit equation for Tc. The field dependence comes through l/rK,
n »

T
which we shall see is proportional to H2 in most cases. A plot of —  as a function of 1 /rK is given in

To
Fig. 1. Tc decreases with increasing 1 /rK and finally vanishes for

(HI-8)

Equation (III.7) is familiar from the problem of paramagnetic impurities in superconductors [20] where (for 
very different reasons) the time reversal operator K also has a Lorentzian power spectrum [17]. (In the lat- 

1 2ter case —  is equal to —  where t s is the lifetime of a one-electron plane wave state due to the exchange
rK rs

interaction with the impurities.)
Because the implicit nature of (III.7) obscures its significance, we have plotted the result in Fig. 1, 

namely, the solution of (III.7) for tc(h) = Tc(h)/T0, where h = H/Hc(0) in this case. To make this plot 
more meaningful, we have also plotted for comparison the function

(HI-9)

which arises from the insertion of the temperature dependences of the Gorter-Casimir two fluid model in 
(1.2) and solving for tc(h) rather than the more usual hc(t). It is apparent that the two functional depend-
ences are quite similar. Since experimental data are known to be well approximated by (III. 9), this com-
parison shows that the temperature dependence of hc given by this theory is at least in reasonable agree-
ment with experiment. We note in particular that hc(t) approaches a constant hc(0) in the present theory, 
rather than displaying the logarithmic divergence at T = 0 characteristic of the theory of Nambu and Tuan. 
Careful measurements of hc(t) on very thin films over a wide range of temperature would be desirable to 
test the theory more precisely. To the extent that a comparison can be made with recent data of Douglass 
and Blumberg [21] near Tc and of Toxen [22] over a wider range of temperature, it appears that the experi-
mental dependence lies roughly midway between the two curves in Fig. 1. This may be related to the fact
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FIGURE I

Comparison of the field dependences of the critical temperature of a thin film as 
given by the present model and by the Gorter-Casimir two-fluid model.

that the BCS theory overestimates the departures from a parabolic (1 -  t2) dependence of Hcb on tempera-
ture. Such an error would be expected to carry over into the present calculation.

A remarkable property associated with a non-singular power spectrum for K, as is obtained in case II, 
is the existence of gapless superconductivity in a small but finite region of the (H, T) plane [20]. (For a 
simple argument showing how gapless superconductivity occurs when case II applies, see ref. [17]). It may 
be in fact that small samples of superconducting metals or non-magnetic alloys, when they belong to case II, 
give us a neater example of gapless superconductivity than the magnetic alloys where many parasitic 
effects related to impurity -  impurity interactions complicate the picture [17].

Finally, for the specific examples to be discussed below, it is important to estimate the order of magni-
tude of the times t which are of interest in an actual calculation of <e* ^ ) > .  When case II is obeyed we 
have t ~ t k . For a qualitative estimate of rK we may write, instead of (11.12):

(IH.9)

and we thus obtain

(III. 10)

The latter model predicts hc = (1 -  t2/ 1  + t2)1^2 or, equivalently, 
tc = (1 — h2/ l  + h2)1^2. Recent experimental data of Douglass and Blumberg and 
of Toxen seem to lie between the curves in the Figure, to the extent that a compari-
son has been made. The gapless region mentioned in the text lies just to the left of 
the curve given by the present model.



The conclusion is that the times of importance are at least of order ------- , and even much longer when
kBTo

the field is small and thus Tc close to T0.
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IV. Discussion of Specific Examples

1) — Dirty superconductor limit. In this section we consider a sample of dimensions d much larger than 
the mean free path /. As indicated in the Introduction, it is important to realize however that there is an 
upper bound on d, related to our assumption |A| = const. At larger d’s, we know in fact that the order pa-
rameter is not constant in space: the superconducting phase nucleates at a field Hc2, the nuclei having a

size ~ 1/ £o I ----- -—  where fo = 0.18---- Thus, to be sure that |A| is constant, we must have
f  T0 -  T kB Tq

d < ] / / __ _Q —  and the inequalities 1 < d < 1/ fo  l — ——  allow only for a rather narrow range
V T0 -  T V T0 -  T

of d values. We discuss this region, however, since it is a simple example of case II. From the point of

view of our trajectories, the condition V£0 f > d means that the diffusion length

is larger than d, and consequently that at time t the electron has explored all regions of the sample. Then 
the phase <f>(t) is a sum of many uncorrelated increments and has a gaussian distribution

(IV. 1)

2eWe write d>(t) = I dt' <o(tf) with co = —— v • A. At times t much larger than the collision time r = l/vF
J0 5 c

we have:

(IV. 2)

For trajectories originating from point r we may write

(IV. 3)

Since at times of order r the change of r along the trajectory is «1  and negligible on the scale of variation 
of Then

(IV. 4)

The average in equation (IV.4) is over all points in the sample. A result nearly equivalent to (IV.4) has 
been obtained by Maki [16] (through an approximate calculation of the one-electron propagators), the main



difference being that, a) the present derivation gives a somewhat clearer insight on the approximations 
made, b) in equation (IV.4) t  is a transport mean free time — while in reference [16] it is the lifetime of an 
electron state. (That the transport time should in fact be the one involved has been noticed by Maki.)

It is very important to realize that the choice of gauge in (IV.4) is imposed by the condition:
A = const.

a) For simple geometries this gauge can be found by inspection

— thin film (of thickness d along Ox) in uniform field (along Oz), carrying no overall current.
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(IV. 5)

— spherical grain of radius R in uniform field

(IV. 6)

b) For more irregular sample shapes, the exact form of A(r) in the gauge of interest cannot be found so 
easily. For very impure specimens, where the bulk mean free path is short, there is a local, linear relation 
between the supercurrent ; s(r) and the vector potential A(r). If the coefficient in this relation is independ-
ent of r (homogeneous system), then A(r) must satisfy the equations

(IV. 7. a) 

(IV. 7. b)

i.e., A must be chosen in the London gauge. The second condition expresses the assumption that no ex-
ternal currents are passing through the specimen [23], 2

2) -  Thin film with diffuse reflection on boundaries but no volume defects. The remarkable result is 
that these films belong to case I

In spite of the numerous collisions which take place, the operator K does not have an ergodic behavior. 
This can be understood in the following way: consider an electron starting at point r0 at time 0 (Fig. 2), 
then suffering collisions alternatively on both sides of the film at times tu  t2, . . . ,  t„ and finally arriving 
at r, at time t. We may write

We shall now show that each of these increments (except A 0Oi and A<£„,) is in fact equal to 0

(IV. 8)

Since for all fields of interest the cyclotron radius is very large when compared to d = 2 a the trajectory 
between two successive collisions is essentially a straight line; y is a linear function of x. Thus the above
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FIGURE 2

A typical trajectory for one electron in a film with diffuse surface 
scattering and no volume defects (the figure shows the projection of the 
trajectory on a plane normal to the field direction z). The increment in 
phase A <f>4 5 between and 15 is proportional to the algebraic area

(hatched area) and vanishes by symmetry. This implies a non-ergodic 
behavior for 0 .

integral, taken between even limits, vanishes and <f> = A<£oi + A F u r t h e r m o r e ,  when t »  d/vF the
number of collisions n is large and the relevant time intervals 0 ---- * tx and tn ---- * t are uncorrelated. We
may thus write

(IV. 9)

To compute rj we consider an electron starting from an arbitrary point r, with a randomly oriented velocity 
vF, the projection of this velocity on the xy plane making an angle ifr with the x axis.

(IV. 10)

where $o = is the flux quantum.
2 e

The dependence of rj on —— d2 is shown in Fig. 3. The limiting values are
$0

(IV. 11. a) 3

3) — Thin film with diffuse surface scattering + small amount of defects in the bulk. We shall now see 
that the presence of a few scattering centers in the bulk (characterized by a mean free path 1 > d) brings a
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FIGURE 3

Field dependent coupling constant for a thin film with diffuse surface 
scattering but no volume defects. 77(H) is the reduced coupling constant.

~ T
transition from case I to case II as soon as 1 < f o -------—

T0 -  T

(  T V /2
a) Region d < 1 < fd£o —— ^~T/

We shall begin by a qualitative discussion, the detailed calculations being given in appendix A. A 

typical electron trajectory between times 0 and t [~1i/kB(T0 -  T)] will involve a number n = of col-

lisions in the bulk material (“ impurity”  collisions) and a number of collisions on the wall; all

the wall-to-wall segments do not contribute to cf>, as explained above. Thus we restrict our attention to 
segments linking an impurity to a wall, or to another impurity. Call A<f> the corresponding increment in

phase. Acf> is at most of order -j— d l , but the directions of the electron velocity allowing for such a large 

A<£ are restricted to a fraction = d/ 1 of all solid Angles. Thus <&<f>2> ~ (— <//) d/ 1 (  i d3 1

/ » Y  ",0and <<f>2(t)> ~ n< AqS2 > ~ vF t ) d3. If the distribution of <f> is gaussian we can apply equation (IV. 1)

and write

(IV. 12) 

(IV. 13)

A more detailed calculation (Appendix B) gives

(IV. 14)



We conclude that such films belong to case II and furthermore that t k  is independent of /. This remark-
able property is very favorable (since it would be hard to measure 1 in the normal state when 1 is larger 
than d). It is very important to realise that the simple result (IV. 14) applies only when some rather stringent 
conditions are satisfied

1) l is larger than d
2) <f> has a gaussian distribution. We may discuss the latter point qualitatively by comparing <cf>4> to 

<<f>2>2. If <f> = A<f>t and the various &<f>*s are very nearly uncorrelated, we have:
i
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(IV. 15)

When the <A0 4> term is negligible in (IV. 15) we may write (for n »  1)

the relation expected for a gaussian distribution. Thus we require

(IV. 16)

Arguing as above we estimate

v t hv
The values of interest for n = ——  are ~ --------------------. Thus the conditions of validity of (IV. 14) are

f kB(Xo -  T)1

(IV. 17. a)

Making use of (IV. 14) and (III.9) the second inequality may also be written

(IV.17.b)

T 1/2 T
b) Region d£0 ~ ^ T  < 1 < ^0— V *

to “  tc lo ~ lc

Here the moment calculation is not appropriate and it is preferable to compute <ef directly. Fur-
thermore, the only segments of importance are from an impurity to a wall and vice versa (the impurity- 
impurity segments become negligible). Then < e f is simply equal to rj1/2 (the factor calculated in equa-
tion (IV. 10). Each impurity collision contributes two segments, and we have

(IV. 18)



However the range of values of l where (IV. 19) applies is severely limited by the following considerations
v f

1) The exponential decay (III.2) is obtained only when n = -y— »  1. (When vFt «  1 we have no

collisions in the time intervals t of interest and we return to case I.) Since t ~  tk  the resulting condition 
may be written in terms of (IV. 19) as
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or according to (IV. 11)

(IV. 20. a)

Another way of expressing this inequality is to use the order of magnitude relation (III.9) between rK and 
the transition temperature TC(H). This yields

(IV.20.b)

2) On the other hand, the major contributions to 771/2 (equation IV. 10) come from trajectories from im-
o 0

purity to surface of length ~ ---- . This must be smaller than 1
Hd

(IV. 21. a)

We can eliminate H in terms of rK by (IV. 19). (Note that since (IV.20.a) must apply we may use (IV. 11.a) 
for -q(H), and express tk  in terms of Tc by (III.9) obtaining

(IV.21.b)

4) Summary of results for thin films obeying case 11. We shall now recapitulate our results for thin

films, assuming that the bulk mean free path / is smaller than A, — —-----. This, as we have seen
T0 — T

ensures that the films belong to case II. For simplicity we restrict our attention to the critical field Hc in 
the limit T = 0 . Hc is defined by the condition (III. 8)

where A<» is the energy gap of the bulk material at T = 0, H = 0. The coherence length £ 0 is related to 

Aoo by £0 = — -E— . The explicit form for rK depends on the value of 1.

WhCn Yo < 1 K d <'The Maki CaSe') Tr  is given fay equations (IV.4) and (IV.5)

(IV. 22)

It is sometimes convenient to rewrite the values of H in terms of the bulk critical field at T = 0,

Hcb = J / y  y  £oAl °(0)~ (where is the London penetration depth at T = 0) Here we have
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(IV. 23)

V̂77which differs from the elementary result (1.7) by only a factor of —— = .89

When d < 1 < V^6T (case (a) of preceding section) equation (IV. 14) applies and

(IV. 24) 

(IV.25)

Note that in this region Hc is independent of / .  Again this result agrees with the simple estimate (1.8) to

within a factor of ^'n ■ .
2

When < 1 < £o* equations (IV.19) and (IV. 11. a) apply:

(IV. 26. a) 

(IV.26.b)

It must be emphasized, however, that (IV. 26) is expected to apply only if the thickness of the film d is 
constant to a rather good approximation. In practice, with films of thickness -500 A there will in general 
be some non-negligible random variations in d from point to point : then the cancellation theorem (IV.8) 
becomes invalid and t k  is modified. Qualitatively, the effect will be similar to a reduction of 1. Thus it 
may well be that in the present state of the art the regime (IV.26) is unobservable.

Finally, we briefly mention for completeness the case of very short mean free paths 1 «  ——
so

(or £ (0) «  d). When £ < d we know both from theory [24] and experiment [25] that the critical field Hc3 
corresponds to the nucleation of a superconducting sheath of thickness £ on both sides of the film, and 
we have

(IV. 27)

(where k  is the Landau Ginsburg parameter).
These results are summarized in Fig. 4.

5) — Spherical grains. We consider a spherical particle of radius R, with no defects in the bulk, but 
with diffuse scattering on the surface. This situation may be of interest for colloids or even for thin films 
of very uneven thickness which may be approximated by a two-dimensional array of such grains. Here there 
is a non-zero, random increment in phase between successive collisions on the surface and the magnetic be-
havior corresponds to case II. We shall now compute the corresponding rK.

The calculation proceeds as follows: consider a segment of trajectory from point Ro on the grain surface 
to point R i, also on the surface (Fig. 5). Let nD be a unit vector normal to the diametral plane ORi R2» and

nz a unit vector along H. The gauge in which A is real is A = — r x H where r is counted from the center 

0 of the grain. The increment in phase A<f> corresponding to the path RqR i is

(IV. 28)
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FIGURE 4

Theoretical critical field of a film of thickness d, as a function of the bulk 
mean free path 1 (H parallel to the field plane, diffuse reflection on the film 
boundaries), d is assumed to be much smaller than the BCS coherence length £ o* 
The different regimes are discussed in section IV.

where \fj is the angle between R0O and RqR\. The average square is

(IV. 29)

Here <(nD *n2)2> = 1/3 and

(IV. 30)

The average transit time is

(IV. 31)

FIGURE 5
Portion of a trajectory for one 

electron in a spherical sample be-
tween two collisions with the sample 
surface at points R q and R i.
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t V p t
In a time interval t »  R/vF, the particle undergoes n = —-----  = ------  collisions and the average

< A t > R
square of <f> is given by

(IV.32)

For n »  1 we may assume that the distribution of <cf>(t)> is gaussian, and write

with

(IV. 33)

From this result we deduce the critical field at T = 0

(IV. 34) 

(IV. 35)

To relate this to our film results, let us define a “ mass thickness”  dm of an equivalent film with the same
2 tt

density per unit area as a close packed array of spheres of radius R. Then dm = — j^ R  = 1.207 R.
3 V 3

Substituting in (IV. 35) we obtain:

(IV. 36)

which differs by only about 10% from (IV.25). Thus, even without volume scattering (IV.25) should be 
reasonably accurate for films of very irregular structure, which can be approximated by a close packed array 
of spheres. Since in fact very thin films are known to often have such a structure, this result considerably 
extends the applicability of our discussion to real films.

V. Conclusions

The method of one-electron trajectories presented here provides a simple but rigorous solution to the 
problem of determining the critical field of thin films or small spheres at all temperatures without resorting 
to such approximations as the Ginsburg-Landau theory. Our results show that provided / < %o(T0/T0 -  T) 
the critical field is finite even at T = 0. Specific numerical results for plane films at T = 0 are derived 
for the cases 1 < d_gv.23), d < l < V&T d (IV.25), V f Q d < 1 < (IV.27). These results for the two 
cases with 1 < V £0 d are in close agreement with the results obtained by simple but non-rigorous methods, 
which are known to be in quite good agreement with experiment. The case V £o d < l < £o gives the novel 
result that Hc increases with increasing 1. Although there seems no experimental data to support this re-
sult, it does lead continuously to # c(0 ) -----► °° as / -----► <» to agree with another feature of the analysis. If
the film does not have completely plane parallel surfaces, these latter results come into question. Qualita-
tively, any roughness of the surface will prevent the approach of tfc(0) to «>, since it will prevent the geo-
metrical cancellation of phase increments along the trajectory. It is difficult to treat this effect for an arbi-
trary surface, but if one approximates a very irregular film by a close-packed array of spheres, one finds that 
Hc(0) is essentially independent of / ,  having a value in agreement with elementary considerations.



In all the present work our attention has been restricted to the case A ► 0, i.e., to the transition 
curve TC(H). However, when <f> has an ergodic behavior, our analysis may be extended to lower tempera-
tures, at least to the region of the (H T) plane where A is non-vanishing, but small (more precisely we re-
quire A < dx /tk). In particular, the density of states for the excitations in the superconducting state 
can be obtained explicitly, and it is found that when A < 'K/t k  there is no energy gap [16]. From an ex-
perimental point of view, we emphasize that all Knight shift experiments and also many measurements of 
the nuclear relaxation time T\ in pure superconductors have been performed on very small samples which 
we expect to be ergodic and intrinsically gapless in a certain range of fields. Hg < H < Hc. However

H — H
from a study of the Maki limit [16], we expect that —----------  ~ 5%. Thus to distinguish the effects of gap-

H c

less superconductivity from spurious ones due to a distribution of Hc values the sample thickness d should 
be controlled with an accuracy significantly better than 5%.
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APPENDIX
Calculation of <<f>2 >  for a film with / larger than d

Let us first consider the increment of cf>, A<f>IS, obtained when an electron goes from an impurity site A 
to an arbitrary point B on the film surface. This is given by

(B .l)

FIGURE 6

Typical trajectory from an initial point A to a surface point B.

where if; and x are defined in Fig. 6. The average square of this phase increment is given by

(B.2)

We consider the limit / »  d. Then the important contributions in (B.2) come from if; close to n/2, the 
integral can be simplified and yields

(B.3)



We also have to consider the increment A<£s/ corresponding to a trajectory from the surface to an impurity: 
clearly <A<£s/2> = < A 0 /S2>. Finally we need to consider the increment A<£j j  corresponding to a segment 
of trajectory relating two impurities. If R is the distance between impurities, 6 and if/ the polar angles of 
the trajectory, and x the abscissa of the first impurity, we have:
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(B.4)

Again in the limit / »  c/ the integral can be simplified and gives

(B.5)

Finally if we consider a complete trajectory between times 0 and t we can write

(B.6)

since all segments from surface to surface do not contribute according to the cancellation theorem (IV.8).
v pt

The number of collisions on impurities is n = -y — and each impurity collision contributes once to each of 

three terms on the right side of (B.6). Thus

(B.7)

If the distribution of cf> is gaussian we may then write

with

(B.8)
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