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We present a 1D repetition code based on the so-called cat qubits as a viable approach toward hardware-
efficient universal and fault-tolerant quantum computation. The cat qubits that are stabilized by a two-
photon driven-dissipative process exhibit a tunable noise bias where the effective bit-flip errors are
exponentially suppressed with the average number of photons. We propose a realization of a set of gates on
the cat qubits that preserve such a noise bias. Combining these base qubit operations, we build, at the level
of the repetition cat qubit, a universal set of fully protected logical gates. This set includes single-qubit
preparations and measurements, NOT, controlled-NOT, and controlled-controlled-NOT (Toffoli) gates.
Remarkably, this construction avoids the costly magic state preparation, distillation, and injection. Finally,
all required operations on the cat qubits could be performed with slight modifications of existing
experimental setups.
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I. INTRODUCTION

Quantum computers are expected to efficiently solve
classically intractable problems. The realization of a large-
scale quantum computer is challenging, because the noise
induced by the uncontrolled interactions of the computer’s
components with the environment destroys the fragile
quantum features responsible for the expected speedup.
Indeed, all algorithms with theoretically proven quantum
speedup require some level of protection against
decoherence. The theory of fault-tolerant quantum compu-
tation [1,2] precisely addresses this issue. Quantum-error-
correcting codes (QECCs) are designed [3,4] such that
errors induced by the environment do not affect the
quantum information. These codes operate by the “fight
entanglement with entanglement” mantra: Natural errors
arising in physical systems being typically local, the
quantum information to be protected is encoded in nonlocal
entangled states such that it becomes unlikely that errors
can corrupt it, the most popular being the surface code
[5–7]. The crux of the theory of quantum fault tolerance is
the threshold theorem: Arbitrarily long quantum compu-
tations can be performed reliably provided the noise
afflicting the computer’s physical components is below a
constant value called the accuracy threshold [8–12].

In theory, QECCs provide, when operated below the
threshold, an arbitrarily good protection against the noise,
thus solving the decoherence problem. However, their
actual implementation comes at the price of tremendous
physical resources to reach a sufficient level of protection.
This trade-off between the degree of protection provided by
a QECC versus the increase in physical components needed
for its implementation is the resource overhead problem.
Realistic approaches to quantum computation must deal
with this issue. In this light, continuous-variable (CV)
systems (such as a harmonic oscillator), in which an
infinite-dimensional Hilbert space is readily available to
protect and process quantum information, seem to have a
head start over discrete-variable (DV) systems that have
only a finite-dimensional Hilbert space. There are many
different CVencodings, usually involving the superposition
of certain specific states of a harmonic oscillator, such as
position and momentum eigenstates [13–15], Fock states
[16–18], or coherent states [19,20].
The latter encoding, known as cat codes, has been the

subject of intensive theoretical and experimental research
throughout the past years. A highlight of this research is the
first realization of quantum error correction for a quantum
memory at the break-even point [21]. Some initial theo-
retical proposals [22–26] and a few experiments [27–29]
indicate that this encoding can be extended to a logical
qubit with the possibility of performing protected logical
gates. However, the protection remains limited to first-order
errors due to photon loss, the major decay channel of a
superconducting cavity. Two major questions are in order.
Can we extend this encoding to a fully fault-tolerant and
universal quantum computation protocol? Can we benefit
from the advantages of the infinite-dimensional Hilbert
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space of the harmonic oscillator to achieve a hardware-
efficient scaling? This paper aims at answering these
questions by putting forward a new direction toward fault
tolerance with a highly economic hardware complexity.
The concatenation of a CV code, such as the single-mode

Gottesman-Kitaev-Preskill code, with a DVone, such as the
surface code, has been recently investigated by various
groups [30–32]. The main idea behind these proposals is
that using CV codes as base qubits leads to important
improvements in the accuracy threshold of the DV encod-
ing. Note, however, that one can expect this improvement
to be less significant in a realistic circuit-based noise model
[2,32]. Our approach is different: By employing a cat code
as the base qubit, the noise structure is modified in such a
way that quantum error correction becomes of similar
complexity as classical error correction and can be per-
formed using a simple repetition code. Importantly, this
specific noise structure can be preserved for a set of
fundamental operations which at the level of the repetition
code lead to a universal set of protected logical gates.
The pumped (stabilized) cat qubits are known to benefit

from a noise bias [22,24]. More precisely, one effective
error channel (the bit flips for the encoding of this paper) is
suppressed exponentially with the “size” (the mean number
of photons) of the Schrödinger cat states. This suppression
is expected to be valid for a large class of physical noise
processes with a local effect on the phase space of a
harmonic oscillator [33]. This class includes, but is not
limited to, photon loss, thermal excitations, photon dephas-
ing, and various nonlinearities induced by a coupling to a
Josephson junction. Recent experiments, in the framework
of quantum superconducting circuits, observe such an
exponential suppression [34].
Previous works show that such a noise asymmetry

increases the accuracy threshold of various encodings
when it is correctly exploited [35,36]. These theoretical
proposals aim at physical qubits (e.g., NV centers in
diamonds [37]) that naturally benefit from such a noise
bias. In the case of pumped cat qubits, the noise bias is
tunable and can reach extremely high values. Even more
remarkably, the extra degree of freedom (d.o.f.) associated
to the complex amplitude of the coherent states defining the
cat qubit can be exploited to overcome some no-go
theorems (see the Appendix) for bias-preserving opera-
tions. In other words, the infinite-dimensional Hilbert space
of the harmonic oscillator that supports the cat qubit state
can be exploited to perform various nontrivial gates (such
as CNOT and Toffoli) while preserving the noise bias. This
ability was first observed for the CNOT gate in Ref. [26] in
the case of nondissipative pumped cats. These features lead
to a change of paradigm that significantly simplifies the
picture toward a universal set of protected logical gates.
First, we obtain a universal set of protected logical gates at
the level of a simple repetition code. Second, the circuits for
implementing the Clifford gates are greatly simplified, and

the overhead requirements are significantly reduced.
Finally, there is no need for magic state preparation and
distillation, even for non-Clifford gates.
In the next section, we overview the basics of encoding

quantum information in two-photon pumped cat states, and
we recall the reasons behind the exponential suppression of
effective bit-flip errors. Next, in Sec. III, we present our
approach toward hardware-efficient and fault-tolerant
quantum computation based on encoding the information
in a simple repetition code of cat qubits. We provide a
detailed comparison with Ref. [35] to point out the new
capabilities granted by the use of cat qubits as base qubits.
In Sec. IV, we explain how to realize key fundamental
operations that preserve the noise bias at the level of cat
qubits. This set of fundamental operations includes non-
trivial operations such as CNOT and Toffoli that are not
achievable in a bias-preserving manner for regular qubits
with biased noise. In Sec. V, we provide the details on how
to combine the fundamental operations to obtain a universal
set of protected logical gates at the level of the repetition
code, thus providing a road map for hardware-efficient
fully protected quantum computation. Next, in Sec. VI, we
analyze the performance of the fundamental operations in
the presence of a realistic noise model and discuss the fault
tolerance. In Sec. VII, we provide a road map toward
experimental realization of various components. We argue
that all components or components of similar complexity
are already implemented separately and with efficiencies or
fidelities at the level of the accuracy threshold for a realistic
circuit-based error model. We conclude in Sec. VIII by
providing further research directions.

II. PUMPED AND STABILIZED CATS
AS QUBITS WITH BIASED NOISE

The proposal in this paper is focused on cat qubits
stabilized by two-photon driven dissipation [22]. All
concepts can also be adapted to the so-called Kerr cats,
where the protection is ensured through a Kerr-type
Hamiltonian and two-photon drives [24].
Driving a nonlinear interaction Hamiltonian between a

harmonic oscillator and its bath, it is possible to engineer a
nonstandard situation where the oscillator dominantly gains
or loses photons in pairs [22,27,28,34]. The master equa-
tion governing the evolution of the oscillator is given by

_ρ ¼ ½ϵ2phâ†2 − ϵ�2phâ
2; ρ� þ κ2phD½â2�ρ ð1Þ

with D½L̂�ρ ¼ L̂ρL̂† − 1
2
L̂†L̂ρ − 1

2
ρL̂†L̂. It has been shown

[38] that this dynamics stabilizes a two-dimensional Hilbert
space spanned by the coherent states fjαi; j − αig, whereα is
a complex number fixed by the ratio of the amplitude of the
drive to the two-photon dissipation rate: α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ2ph=κ2ph
p

.
Equivalently, this manifold is generated by the in-phase
and out-of-phase superpositions of these coherent states,
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known as Schrödinger cat states jCþα i ≔ N þðjαi þ j − αiÞ,
jC−α i ≔ N −ðjαi − j − αiÞ, where N �≔ ½2ð1�e−2jαj2Þ�−1=2.
Expanding the coherent states in the Fock state basis, one can
note that the in-phase (respectively, out-of-phase) super-
position spans even (respectively, odd)Fock states only; thus,
the cat state jCþα i (respectively, jC−α i) is referred to as the even
cat (respectively, odd cat). The steady state of Eq. (1),
denoted ρ∞, can be computed from the initial state ρ0 using
the invariants of the dynamics [22]:

ρ∞ ¼ cþþjCþα ihCþα j þ c−−jC−α ihC−α j
þ cþ−jCþα ihC−α j þ c�þ−jC−α ihCþα j; ð2Þ

where cþþ, c−−, and cþ− are conserved quantities that are
entirely determined by the initial state ρ0.
The cat qubit states are defined as (see Fig. 1) j�ic ¼

jC�α i or, equivalently, as

j0ic ¼
1ffiffiffi
2

p ðjCþα i þ jC−α iÞ ¼ jαi þO½expð−2jαj2Þ�;

j1ic ¼
1ffiffiffi
2

p ðjCþα i − jC−α iÞ ¼ j − αi þO½expð−2jαj2Þ�:

Note that, with respect to our previous publications (e.g.,
Ref. [22]), we change the computational basis to the dual
basis along the X axis. This choice is motivated by the
simplifications in the presentation of the implemented
logical gates.
In terms of quantum information processing, the interest

of this cat qubit lies in the fact that its physical imple-
mentation endows it with a natural protection. As soon as
the action of a noise process is local in the phase space of
the harmonic oscillator, the effective bit-flip errors (jumps
between j0ic and j1ic) are exponentially suppressed with
2jαj2 [22,33]. This protection is illustrated in Fig. 1(b),

where the vector field associated to the semiclassical
dynamics of a coherent state governed by Eq. (1) is plotted
in the phase space of the oscillator. Any noise process that
perturbs the coherent state j � αi locally in the phase space
keeps it in the attraction domain of the departing point
j � αi. Such a protection is similar to the one achieved by
topological qubits such as Majorana fermions, but the
nonlocality of information in the phase space is here
engineered through the particular driven-dissipative proc-
ess of the harmonic oscillator. In particular, the nonlocality
can be tuned by modifying the cat “size,” given by the mean
number of photons jαj2. This mean number is itself
easily modulated by controlling the strength ϵ2ph of the
two-photon drive. The local character of the noise proc-
esses is an omnipresent concept in information protec-
tion, and, in the case of superconducting oscillators, it
includes various mechanisms such as photon loss, thermal
excitations, photon dephasing, and nonlinear interac-
tion Hamiltonians induced by Josephson circuits. Indeed,
the cosine Hamiltonian of a Josephson junction Ĥ ¼
EJ cos½φaðâþ â†Þ� represents a bounded operator in the
phase space of a mode â. In this sense, and over short time
steps, it can lead only to a local shift of the state of the
harmonic oscillator in the phase space. Furthermore, the
rate of diffusion remains bounded when the cat size
increases. The bit flips due to such local shifts are
exponentially suppressed in the presence of the two-photon
process (see Ref. [33] for more details).
Note, however, that phase flips, or, equivalently, jumps

between the even-parity cat state jCþα i and the odd-parity
one jC−α i, can be induced by noise mechanisms such as
photon loss or thermal excitations. As a result, an increase
of the mean photon number (in order to suppress the bit-flip
errors) comes at the expense of higher phase-flip rates. This
rate increase is, however, expected to be only linear with
respect to jαj2. The noise bias expð−2jαj2Þ=jαj2 of cat
qubits is therefore tunable with the cat size. Some exper-
imental indications of such a tunable bias have been
recently observed [34].
This protection can also be achieved through a non-

dissipative process using a strong Kerr-type nonlinearity
and two-photon driving [24]. Indeed, engineering a non-
linear Hamiltonian of the form

Hkerr ¼ −Kâ†2â2 þ ϵ2phâ†2 þ ϵ�2phâ
2

¼ −Kðâ†2 − α�2Þðâ2 − α2Þ;

with α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ph=K

p
, the ground states j � αi are twofold

degenerate. The system can be thought of as a double-well
potential, where the tunneling between the two wells is
exponentially suppressed with jαj2. Note, however, that,
with such a Hamiltonian protection, some type of friction
needs to be added in order to avoid leakage errors (out of
the encoded qubit subspace) due to excursions in each well.

(a) (b)

FIG. 1. (a) Bloch sphere representation of a cat qubit. (b) Vector
field associated to the semiclassical dynamics behind the master
equation (1) represented in the phase space of the harmonic
oscillator. This vector field governs the dynamics of coherent
states. It admits two stable equilibria j � αi and one saddle point
at zero. The exponential suppression of the bit-flip errors can be
understood by the fact that any local perturbation of the state
j0ic ≈ jαi (respectively, j1ic ≈ j − αi) keeps the state in the
domain of attraction of jαi (respectively, j − αi).
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The natural photon loss of the harmonic oscillator, if it is
stronger than the mechanisms leading to such an excursion,
can compensate this leakage. Thus, a promising approach is
a combination of the Kerr-type Hamiltonian and two-
photon dissipation, where the protection against leakage
does not come at the expense of higher phase-flip rates.
In the next section, we show how to extend this

half-protection to a full protection against both phase flips
and bit flips. More precisely, we design an economic
encoding that suppresses the phase flips without reintro-
ducing bit flips.

III. FROM CAT QUBITS TO PROTECTED
LOGICAL QUBITS

We see that cat qubits admit a biased noise where the bit-
flip errors are suppressed exponentially with the cat size. In
this section, we trace out a viable path toward full
protection with minimal hardware overhead.
It is tempting to think that physical qubits suffering only

from phase-flip errors can be protected through a simple
classical-error-correction scheme such as a repetition code.
All that is required is the ability to perform parity-type
measurements between neighboring qubits. Indeed, this
idea can be explored to build a fully protected quantum
memory, but performing protected logical gates comes with
further complications. The main issue is that the execution
of a gate can, in principle, convert a phase-flip error into a
bit-flip one, which is not suppressed by the simple error
correction. One is therefore limited to employ only physical
operations that preserve the noise bias (i.e., do not convert
phase flips into bit flips). Such operations are called bias
preserving.
This idea is employed as a first level of encoding in

Refs. [35,39]. In these papers, the quantum information is
protected by a concatenation of two codes C1⊳C2, where⊳
denotes code concatenation. The code C1 is a length-n
repetition code that protects against phase-flips errors,
producing logical qubits that suffer from an effective
unbiased noise of strength ϵ1. As soon as ϵ1 is below
the threshold of C2, arbitrarily low logical error rates ϵ2 can
be achieved by the concatenated code. This second level of
encoding is required even if the qubits do not suffer from
bit-flip errors at all, that is, in the limit of an infinite noise
bias. Indeed, even if the logical error rate ϵ1 of the repetition
code C1 can be made arbitrarily low, it is not possible to
build a universal gate set for the C1-encoded logical qubits
using only bias-preserving operations. In this paper, we see
that this no-go theorem is broken by using cat qubits
(instead of regular two-level systems) as base qubits of the
repetition code.
As discussed in Refs. [35,39], some operations are

naturally bias preserving. In the case of dominant phase-
flip errors, the preparation of j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

states
Pj�i, and the measurement of the X operator MX, are bias
preserving, because the eigenstates j�i of the X operator

(σx Pauli operator) are fixed points for bit-flip errors. Also,
the controlled phase gates CPHASE ¼ 1

2
ðI1 þ Z1Þ ⊗ I2 þ

1
2
ðI1 − Z1Þ ⊗ Z2 (with Zj being the Pauli σz operator on

qubit j), or, more generally, the two-qubit entangling gate
CZðθÞ ¼ expðiθ=2Z1 ⊗ Z2Þ [39], can be implemented in a
bias-preserving manner. Indeed, it is enough to note that the
Hamiltonians proportional to Z1 ⊗ Z2 − Z1=2 − Z2=2 or
Z1 ⊗ Z2 that generate such unitary operations commute
with phase-flip errors. However, a universal gate set will
necessarily contain gates that do not commute with the
dephasing errors, such as CNOT or Toffoli.
Note that, while these gates do not commute with the

phase-flip errors, their action may still be compatible with
noise bias. Considering the CNOT ¼ 1

2
ðI1 þ Z1Þ ⊗ I2 þ

1
2
ðI1 − Z1Þ ⊗ X2 gate, for instance, Z1 errors commute

with CNOT, and Z2 errors are converted into correlated
phase-flip errors Z1Z2. This overall action does not to
convert phase flips to bit flips and is, therefore, correctable
by the repetition code. However, as correctly noted by
Ref. [35], the same property is not necessarily satisfied
during the execution of the gate. Indeed, we prove in the
Appendix that such a conversion of phase flips to bit flips
necessarily occurs when implementing a CNOT gate with
two-level systems. In other words, the CNOT operation
cannot be performed in a bias-preserving manner with two-
level systems. The same result also holds for a Toffoli gate.
In Ref. [35], the set of bias-preserving operations is

therefore limited to fPjþi;MX;CPHASEg, which is not
enough to build a universal gate set at the level of the
repetition code C1. The concatenation with C2 is therefore
necessary to gain universality. At the C1⊳C2-logical level,
the full set of Clifford gates can be achieved by preparing
the magic state j þ iiL ≔ ð1= ffiffiffi

2
p Þðj0iL þ ij1iLÞ, and this

set becomes universal with the addition of another magic
state jTiL ≔ ð1= ffiffiffi

2
p Þðj0iL þ eiπ=4j1iLÞ. In Ref. [39], with

the addition of CZðθÞ to the set of bias-preserving oper-
ations, the authors construct new gadgets to reduce the
overhead for magic state preparation and distillation. The
construction of Refs. [35,39] to exploit a noise bias in
regular qubits (two-level systems) is summarized in Table I,
in order to clarify the radical simplification due to the use of
cat qubits.
In this paper, we show that the cat qubits have specific

features which allow us to circumvent the aforementioned
obstacles and significantly reduce the complexity of pro-
tected logical gates. These features rely on the infinite-
dimensional Hilbert space of the oscillator in which the
two-dimensional Hilbert space of the cat qubit is
embedded. More precisely, gates are performed by a
continuous distortion of the two-dimensional manifold
defining the cat qubit in such a way that the exponential
suppression of bit flips remains valid during the execution
of the gate. The apparent “magic” comes from the fact that
the Z component of the qubit is transformed continuously,
which would not be possible using a DV system. Following
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this idea, we detail in Sec. IV how a universal set of bias-
preserving gates can be implemented at the cat qubit level.
Even more remarkably, the realization of this set requires
hardware-efficient operations, with no use of functional
ancilla qubits nor magic state preparation, distillation, and
injection.
In order to extend the protection to phase-flip errors, we

propose to embed the cat qubits in a repetition code (Fig. 2).
This repetition code C1 is defined in the dual basis. The
code space is defined as the þ1 common eigenspace of the
n − 1 stabilizers:

Sj ¼ XjXjþ1; j ∈ ⟦1; n − 1⟧:

The logical operators for the repetition cat qubit are

XL ¼ X1; ZL ¼ ⊗
j
Zj; YL ¼ iXLZL:

The logical jþiL and j−iL states are given by
j�iL ≔ j�i⊗n

c ¼ jC�α i⊗n. Note that this definition leads
to the following nontrivial logical computational states:

TABLE I. Construction of a universal set of fault-tolerant gates that exploit the noise bias of the physical qubits.
The middle column represents the case of regular two-level systems [35,39], and the right column represents the
case of cat qubits. For regular qubits, only a few fundamental bias-preserving operations are allowed, leading to a
limited set of C1-logical operations. To achieve universality, it is necessary to concatenate with a second level of
encoding C2, at which magic state preparation and distillation are appended. On the other hand, the set of
fundamental biased-preserving operations for cat qubits contains extra gates. This extended set enables us to build a
universal set of fault-tolerant gates already at the repetition code level and without requiring magic state preparations
and distillations. Furthermore, the circuits for the realization of protected logical gates are significantly simpler than
regular two-level systems.

Physical qubits Two-level systems with biased noise [35,39] Cat qubits
Fundamental bias-preserving
operations

G0 ¼ fPjþi;MX;CPHASE; ZðθÞ;CZðθÞg G0 ∪ fX;CNOT;Toffolig

C1-logical operations G1 ¼ fPj0i;Pjþi;MX;MZ;CNOTg G1 ∪ fX;Toffolig, universal
C1⊳C2-logical operations G2 ¼ G1 ∪ fPjþii;PjTig, universal � � �

FIG. 2. Layout of a repetition cat qubit using high-Q 3D cylindrical postcavities [40]. Each data cat qubit (in blue cavities) is
connected to a pair of ancilla cat qubits (in green cavities) for the joint-parity measurement. The results of the parity measurement are
read out using the low-Q strip-line resonators (in red) coupled to green cavities. Each cat qubit is continuously driven via the two-photon
driven-dissipative scheme (arrows). The couplings between cavity modes are mediated by a Josephson circuit and extra microwave
drives, required for bias-preserving CNOToperations as detailed in Sec. IVand Fig. 11. The choice of cylindrical postcavities is to ensure
high-quality factors, but a similar layout could be thought of in a 2D architecture.

REPETITION CAT QUBITS FOR FAULT-TOLERANT QUANTUM … PHYS. REV. X 9, 041053 (2019)

041053-5



j0iL ¼ 1

ð ffiffiffi
2

p Þn−1
X

j∈f0;1gn;jjj even
jjic;

j1iL ¼ 1

ð ffiffiffi
2

p Þn−1
X

j∈f0;1gn;jjj odd
jjic;

where j is an n-bit string composed of 0’s and 1’s and jjj
denotes the number of 1’s, called the weight, of the string j.
Recalling that j1ic ≈ j − αi, one can note that the logical
information is encoded in the parity of the number of
oscillators in the j − αi state.
This code, with a phase-flip error-correcting capacity of

ðn − 1Þ=2, does not detect or correct physical bit-flip errors.
Here, n is chosen such that the probabilities pZL

of logical
phase-flip and pXL

of logical bit-flip errors are of compa-
rable strength, thus producing a C1-logical qubit suffering
from an effective unbiased noise of strength ϵL ≔
pXL

þ pZL
. It is worth noting that the accuracy that can

be achieved by C1 is set by the size of the cat states. Indeed,
the lower bound for this accuracy is given by pXL

and
decreases exponentially to zero as the cat size increases.
Fixing a reasonable mean photon number of n̄ ¼ 10, this
achievable accuracy could be as low as 10−9 and reduces to
10−13 for n̄ ¼ 15. Cat states of such sizes have been
previously prepared in the context of superconducting
circuits [41]. If, for unforeseeable reasons, the locality
assumption on the noise processes breaks down for larger
cats, one can consider a concatenation with a second code
C2 to achieve even better accuracies. Note, however, that
this second level of concatenation could be done with any
simple low-order code to go from already small error
probabilities (e.g., 10−9) down to the required precision for
a given algorithm.

Let us now briefly present the picture for the construction
of fault-tolerant gates at the level of the repetition cat qubits
(see Fig. 3). As discussed earlier, the set of bias-preserving
fundamental operations at the cat qubit level includes S ¼
fPj�ic ;MX; X; Z;CNOT;Toffolig (see Sec. IV for a
detailed construction). The next step is to build fault-
tolerant encoded operations at the level of the repetition
code, using operations from this fundamental set. The set of
fault-tolerant encoded operations acting on repetition cat
qubits is given by SL ¼fPj�iL ;MXL

;XL;CNOT;Toffolig.
It is worth noting that the logical CNOT can be implemented
transversally from the fundamental CNOT (see Sec. V for
the details), leading to great hardware simplifications when
compared to the logical CNOT construction of Ref. [35]. The
universality of SL is established by the fact that it contains
the Toffoli gate in the computational basis, while state
preparation and measurement are done in the dual basis.
Indeed, we show in Sec. V how a logical Hadamard gate
(single-qubit basis-changing operation) can be built out of
the gates of the set SL, thus achieving universality [42,43].

IV. BIAS-PRESERVING OPERATIONS

In this section, we first explain how the set of operations
S ¼ fPj�ic ;MX; X; Z;CNOT;Toffolig can be realized at
the cat qubit level in a bias-preserving manner. The
operations in S are sufficient to build the universal set
of logical gates for the repetition code (see Sec. V). In
addition, we recall at the end of the section how arbitrary
rotations around the Z axis ZðθÞ (proposal [22] and
experimental realization [28]) and the two-qubit entangling
gate CZðθÞ ¼ expðiθ=2Z1 ⊗ Z2Þ [22] can also be realized.
Even if these operations are not needed for the theoretical
construction of this paper, they may prove useful for an
optimized implementation of quantum algorithms.

FIG. 3. Overall scheme for achieving fault-tolerant universal quantum computation using cat qubits. The fundamental operations (left-
hand side) are performed on the cat qubits, in a bias-preserving manner. Fault-tolerant logical operations acting on the repetition cat
qubits (right-hand side) are built out of these operations, as depicted by the arrows. This construction is detailed in Sec. V.
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A. Preparation of j�ic
First, we note that the states j�ic are eigenstates of the

logical X operator which make their preparation compatible
with the noise bias (suppressed bit flips) [35]. The
preparation of the even cat state jþic ¼ jCþα i is performed
merely by turning on the driven two-photon dissipation (1),
when the system is initialized in the vacuum state ρð0Þ ¼
j0ih0j [22]. Indeed, the conservation of photon-number
parity due to the two-photon driven dissipation ensures that
the steady state of the system is given by the even cat state.
Such a state preparation has already been realized exper-
imentally [27], and the fidelity of the operation is set by the
ratio between the two-photon dissipation rate κ2ph, setting
the rate of convergence to the cat state, and the undesired
single-photon loss rate κ1ph, setting the parity jump rates
(equivalent to phase-flip errors) mixing the even cat with
the odd one. In the latest experiments, a ratio of about
κ1ph=κ2ph ¼ 10−2 has been achieved between these two
rates [28], and further improvements seem to be within the
reach of current experiments.
A systematic way to prepare the odd cat state j−ic ¼

jC−α i is to start with preparing the even cat state and then
performing a Z operation. A bias-preserving rotation
around the Z axis is proposed in Ref. [22] and exper-
imentally realized in Ref. [28]. For the sake of complete-
ness, we recall the idea behind this realization at the end of
this section. While this way proves the feasibility of the
physical preparation of j−ic, at the end of Sec. V, we show
that, in practice, one can replace such a Z operation by a
simple Z operation in classical software [44]. This process
reduces the number of physically implemented logical
gates in an algorithm.
Finally, we also note that such a state preparation can be

performed through other strategies as well. In particular, in
many recent experiments (e.g., Ref. [28]), these states are
generated using optimal control techniques which can
significantly improve the fidelity with respect to a passive
preparation with two-photon driven dissipation.

B. Measurement of X

For the purpose of our scheme, the measurement of X
(photon-number parity measurement) could be either
destructive or quantum nondemolition (QND), as it is
always used on ancilla qubits which can be discarded after
each measurement. However, a QND protocol allows us to
achieve a better fidelity by repeating the measurements.
The QND parity measurement proposed in Ref. [45] and
realized in Refs. [46,47] is a perfectly valid protocol for our
scheme. For the sake of completeness, we recall the main
idea behind this measurement protocol. The cavity whose
parity is to be measured is coupled to an ancilla qubit via
the dispersive interaction Hamiltonian

Ĥdisp ¼ −χjeihejâ†â:

The evolution on a time interval T ¼ π=χ is given by the
unitary

Û ¼ jgihgjI þ jeihejeiπâ†â

entangling the state of the ancilla with the parity of the state
of the cavity. Preparing the ancilla qubit in a superposition
state jþi ¼ ð1= ffiffiffi

2
p Þðjgi þ jeiÞ, the effect of the unitary Û is

to flip the ancilla to the state j−i ¼ ð1= ffiffiffi
2

p Þðjgi − jeiÞ
when the cavity contains an odd number of photons and
to leave it unchanged otherwise. A measurement of
the σ̂x operator of the qubit thus reveals the parity of the
cavity state.
Note that, in order to perform such a parity measurement,

we need to turn off the two-photon driven dissipation on the
measured system. However, as stated earlier, these mea-
surements are performed on ancilla cavities that are thrown
out after each measurement. So the absence of protection
during the measurement affects merely the measurement
fidelity and does not have any consequence on the rest of
the circuit. Rather high parity-measurement fidelities of
about 98.5% have been previously achieved using this
protocol [21].

C. X gate

Our realization of the X gate is based on an adiabatic
deformation of the code space. As discussed in Sec. II, the
effective dissipation channel κ2D½â2 − α2� stabilizes the
two-dimensional subspace spanfj � αig. It is possible to
perform nontrivial operations on the encoded information
by varying the complex number α in time. When the
variations of αðtÞ are sufficiently slow with respect to
κ−12 , the dissipator κ2D½â2 − αðtÞ2� stabilizes spanfjαðtÞi;
j−αðtÞig at all times t. This process should be thought of as
a slow motion of the fixed points of the dynamics in the
phase space.
Remarkably, such a deformation preserves the quantum

information, provided the two states jαðtÞi and j−αðtÞi
remain sufficiently separated in phase space at all times:
The state jψ0i ¼ c0jαi þ c1j − αi at time t ¼ 0 evolves
under the effect of κ2D½â2 − αðtÞ2�, with αð0Þ ¼ α, to
jψ ti ¼ c0jαðtÞi þ c1j−αðtÞi provided j _αðt0Þj=jαðt0Þj ≪ κ2
and jhαðt0Þj−αðt0Þij2 ≪ 1 at all times t0 ∈ ½0; t�.
An X operation can be realized in such a manner by

choosing a “path” function αðtÞ such that jαi and j − αi are
exchanged, e.g., αðtÞ ¼ αeiπt=T , t ∈ ½0; T�, where T ≫ κ−12
is the gate time [48]. Indeed, the swap jαi ↔ j − αi
corresponds to the map jCþα i → jCþα i and jC−α i → −jC−α i,
which is an X operation for the cat qubit. In addition to such
a topological phase, there is a geometric phase accumulated
due to the particular path taken by αðtÞ. However, this phase
is the same for the two states j � αi and corresponds to a
global phase.
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In the ideal case of a lossless harmonic oscillator and in
the limit where the gate time T ¼ þ∞, the fidelity of this
operation with respect to the X operator is 1. This operation
is bias preserving, as the errors caused by the finite gate
time are only of the phase-flip type, but the bit flips remain
exponentially suppressed in the size of the cat n̄. Intuitively,
this result is not surprising, as the two-photon pumping is
never turned off during the gate execution. We depict in
Fig. 4 a schematic representation of this evolution in the
phase space.
To reduce the phase-flip error rate due to the finite gate

time (nonadiabaticity), the Hamiltonian Ĥ ¼ −ðπ=TÞâ†â is
turned on while the pumping is being rotated. This
Hamiltonian generates the unitary R̂ðtÞ ¼ eiðπ=TÞâ†ât, which
rotates deterministically the qubit state R̂ðtÞjψ0i ¼
c0jαðtÞi þ c1j−αðtÞi so that it remains at all times a pointer
state of the time-dependent dissipative channel:

½â2 − αðtÞ2�R̂ðtÞjψ0i ¼ 0:

In the presence of this Hamiltonian, there is no need to
proceed adiabatically; that is, the gate time T can be
arbitrarily short.

D. CNOT gate

The idea described above can be adapted to realize a
CNOT ¼ 1

2
ðI1 þ Z1ÞI2 þ 1

2
ðI1 − Z1ÞX2. The CNOT for the

cat qubits is given by

CNOT ≈ jαihαj ⊗ Iα þ j − αih−αj ⊗ Xα;

where Iα¼jαihαjþj−αih−αj and Xα¼jαih−αjþj−αihαj.
The approximation is exponentially precise in jαj2. Inspired
by the proposal of Ref. [48] for the Kerr cats, this operation
is realized by making the rotation of the pumping of the
target qubit (implementing Xα; see the previous paragraph)
conditional to the state of the control qubit. In our case,
this operation is realized in time T by the two dissipation
channels Lâ ¼ D½L̂â� and Lb̂ ¼ D½L̂b̂ðtÞ�, with

L̂â ¼ â2 − α2;

L̂b̂ðtÞ ¼ b̂2 −
1

2
αðâþ αÞ þ 1

2
αe2iðπ=TÞtðâ − αÞ;

where we denote by â (respectively, b̂) the mode of the
control cat qubit (respectively, target cat qubit). The
dissipation channel on the control qubit Lâ is the two-
photon pumping scheme stabilizing the control cat qubit.
The second dissipation channel, however, acts on the target
cat qubit but also depends on the first mode â. It should be
understood as follows: When the control qubit â is in the
state jαi, the operator L̂b̂ðtÞ acts on the target mode as
b̂2 − α2, stabilizing the idle code space, but when the
control qubit is in the state j − αi, the pumping becomes
b̂2 − ðαeiðπ=TÞtÞ2, thus implementing the time-dependent
two-photon pumping dissipation used for the Xα operation.
Again, the pumping is never turned off, and the bit-flip
errors remain exponentially suppressed at all times, thus
ensuring that the CNOT gate preserves the biased structure
of the noise. In Sec. VII, we explain how the experimental
realization of such a time-dependent dissipation operator is
a straightforward modification of the regular two-photon
driven dissipation [27].
We now explain how to deal with two undesired effects

that limit the fidelity of the operation: the geometric phase
due to the path taken by the states j�αðtÞi in the phase
space and the phase-flip errors induced by the finite gate
time (nonadiabaticity). In the case of the X gate, the
geometric phase corresponded to a physically meaningless
global phase, but here this phase is conditioned on the state
of the control qubit. As a consequence, the geometric phase
induces a deterministic rotation around the Z axis of the
control qubit. The rotation angle is given by

ϑ ¼ −i
Z

T

0

h�αðtÞ
���� ddt

�����αðtÞidt ¼ πjαj2:

This deterministic geometric phase can be compensated by
applying a local ZðθÞ operation (see below). A second
option is to ensure that the rotation angle ϑ is a multiple of
2π, either by setting the number of photons to be an even
integer or by choosing a path αðtÞ such that the result of
the integral is a multiple of 2π. Even in this case, the

FIG. 4. Wigner function of the state of a cat qubit during the
execution of an X operation. The green dots are the Wigner
functions of the instantaneous steady states of the dynamics
_ρ ¼ κ2D½â2 − αðtÞ2�. These attractive points are slowly rotated
from �α to ∓α on the dashed circle, as shown by the green
arrows. When this rotation is performed slowly, the cat follows
the attractors (red arrows).
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fluctuations along the chosen path inevitably lead to a
certain imprecision in the final value of the geometric
phase. This situation is not an issue, as it can lead only to
phase-flip errors, accounted for by the repetition code.
A major part of the phase-flip errors induced by non-

adiabatic effects can be compensated in the sameway as the
X operation, by adding a Hamiltonian evolution of the form

Ĥ ¼ 1

2

π

T
â − α

2α
⊗ ðb̂†b̂ − n̄Þ þ H:c:

while rotating the pumping. In the presence of two-
photon pumping, this Hamiltonian is an approximation
of π=Tj − αih−αj ⊗ ðb̂†b̂ − n̄Þ, rotating the target cat qubit
conditional to the control cat qubit being in the state j − αi.
Such Hamiltonians have been already realized using para-
metric methods [49], similar to those used in driven two-
photon dissipation.

E. Toffoli gate

The Toffoli gate is the three-qubit gate corresponding to
a “controlled-controlled-NOT”:

Toffoli ¼ 1

4
ðI1 þ Z1ÞðI2 þ Z2ÞI3 þ

1

4
ðI1 þ Z1ÞðI2 − Z2ÞI3

þ 1

4
ðI1 − Z1ÞðI2 þ Z2ÞI3

þ 1

4
ðI1 − Z1ÞðI2 − Z2ÞX3:

This unitary does not belong to the Clifford group. In fact,
this gate, together with any set of gates generating the
Clifford group, is universal. In the vast majority of schemes
achieving universality, the non-Clifford operation is by far
the most difficult operation to be realized. A remarkable
feature of our scheme is that the physical implementation of
the Toffoli at the cat qubit level is very much like the CNOT

gate and, thus, of similar complexity. Three dissipation
channels are realized, Lâ ¼ D½L̂â�, Lb̂ ¼ D½L̂b̂�, and
Lĉ ¼ D½L̂ĉðtÞ�:

L̂â ¼ â2 − α2; L̂b̂ ¼ b̂2 − α2

L̂ĉðtÞ ¼ D
�
ĉ2 −

1

4
ðâþ αÞðb̂þ αÞ þ 1

4
ðâþ αÞðb̂ − αÞ

þ 1

4
ðâ − αÞðb̂þ αÞ − 1

4
e2iðπ=TÞtðâ − αÞðb̂ − αÞ

�
:

Here, Lâ and Lb̂ keep stabilizing the two control modes â
and b̂ in manifolds spanned by j � αi, and Lĉ rotates the
two-photon pumping on the target mode ĉ only when the
control cat qubits are in the state j−α;−αi. As for the CNOT

gate, two effects (the geometric phase and the nonadiaba-
ticity) limit the gate fidelity. The deterministic geometric
phase associated to the path taken by the target cat qubit can

also be eliminated by tailoring the path followed in the
phase space by the cat states during the execution of the
gate or by physically applying ZðθÞ and CZðθÞ operations.
To reduce the phase-flip errors induced by nonadiabaticity,
the Hamiltonian

Ĥ ¼ −
1

2

π

T
â − α

2α
⊗

b̂ − α

2α
⊗ ðĉ†ĉ − n̄Þ þ H:c:

is added. We analytically analyze the performance of this
gate in Sec. VI, and, in Sec. VII, we discuss an exper-
imental implementation.
From a theoretical point of view, assuming the required

couplings between any number of modes are available, the
mechanism presented above could be straightforwardly
extended to realize the n-qubit entangling gate Cn−1X,
where Cn−1 denotes the controls on the first n − 1 qubits
(the CNOT being CX and the Toffoli C2X).

F. Rotation around Z of an angle θ

As discussed in Ref. [22] and experimentally realized in
Ref. [28], the quantum Zeno effect can be used to perform a
rotation of an arbitrary angle θ around the Z axis in a bias-
preserving manner:

ZðθÞ ¼ cos
θ

2
Iα þ i sin

θ

2
Zα;

where Iα ¼ jCþα ihCþα j þ jC−α ihC−α j and Zα ¼ jCþα ihC−α jþ
jC−α ihCþα j. To do so, a weak resonant drive Ĥ ¼ ϵZðâþ
â†Þ is applied in the presence of the two-photon driven
dissipation. When the single-photon drive is much weaker
than the two-photon dissipation, ϵZ ≪ κ2ph, it induces
effective oscillations in the equatorial plane of the Bloch
sphere whose frequency is given by ΩZ ¼ 2ϵZjαj.

G. Two-qubit entangling gate CZðθÞ
In the same spirit, a bias-preserving two-qubit entangling

gate

CZðθÞ ¼ cos
θ

2
I1I2 þ i sin

θ

2
Z1Z2

can be implemented using a weak beam-splitter
Hamiltonian Ĥ ¼ ϵZZðâ1â†2 þ â†1â2Þ in the presence of
the two-photon driven dissipation (see Ref. [22] for more
details).

V. UNIVERSAL SET OF LOGICAL GATES

In this section, we construct the fault-tolerant logical
operations of the set SL ¼ fPj�iL ;MXL

; XL;CNOTL;
ToffoliLg for the repetition code, using the fundamental
set of bias-preserving operations S ¼ fPj�ic ;MX; X; Z;
CNOT;Toffolig for individual cat qubits. The universality
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of SL is established by building a Hadamard gate out of
operations in this set, which, together with the Toffoli gate,
is universal [42,43]. We start by explaining how the
quantum error correction of the repetition code is realized.

A. Quantum error correction for repetition code

A prerequisite for using a repetition code is the ability to
measure the value of the n − 1 stabilizers of the code, also
called the parity-check operators. In our setup, these
stabilizers are the joint-parity operators of any two pairs
of neighboring cat qubits XjXjþ1. The measurement of
these operators can be achieved using operations in S, with
the circuit in Fig. 5.
In order to make these measurements fault tolerant, they

are repeated r times, where r is optimized, taking into
account the CNOT and measurement errors. We depict in
Fig. 6 the full circuit for QEC on the repetition cat qubit. An
optimal decoding, based on the outcome of the ðn − 1Þr
ancilla measurements, is then used to correct the effective
phase-flip errors (see Ref. [50] for a practical implementa-
tion of such an optimal decoding).

B. Preparation of j+ iL and measurement of XL

The preparation of j�iL ¼ j�i⊗n
c can be performed

transversally from the preparation of j�ic: Pj�iL ¼
ðPj�icÞ⊗n. A subsequent step of quantum error correction
enables us to reduce the preparation infidelity according to
the distance of the repetition code.
Similarly, the measurement of only one cat qubit from

the repetition cat qubit using MX already implements a
measurement of XL. However, to ensure fault tolerance,
MXL

is implemented by measuring MX on all the cat
qubits and then making a majority vote.

C. Logical CNOT gate

This gate is not required in our set of universal gates and
can be suppressed from the set SL. However, its imple-
mentation is easy and can lead to more economical circuits
for the realization of certain algorithms. Indeed, the logical
CNOT gate is simply obtained from the physical one by
performing n CNOT gates in a transversal manner, as
depicted in Fig. 7.
The fault tolerance of the logical CNOT comes from the

transversal construction of the circuit, which prevents the
forward propagation of errors that could lead to an
uncorrectable logical error. For instance, a phase-flip error
occurring on the kth cat qubit of the logical target qubit ZðkÞ

2

is converted through the circuit to a correlated ZðkÞ
1 ZðkÞ

2 error
on two different blocks, but it cannot induce an error on a
qubit j ≠ k. Such errors are detected and corrected by the
QEC stage performed after the Toffoli gate’s execution.
Furthermore, each CNOT gate at the level of cat qubits is
bias preserving, and, therefore, the bit-flip errors remain
exponentially suppressed at the repetition code level.

FIG. 5. Joint-parity measurement between two neighboring cat
qubits j and jþ 1 of a repetition cat qubit, using one ancilla cat
qubit. Note that the error propagation from ancilla cat qubit to
data ones is exponentially suppressed by the cat size.

FIG. 6. Quantum error correction circuit for a repetition cat qubit. One repetition cat qubit, composed of data cat qubits and ancilla cat
qubits (in green), is protected from errors by performing r rounds of error detection.
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D. Logical Toffoli gate

The transversal application of n physical Toffoli gates in
a similar fashion as Fig. 7 does not yield a Toffoli gate at the
logical level. Instead, the logical Toffoli requires n2

physical Toffoli gates, stacked as shown in Fig. 8.
The circuit can be understood as follows. Since the CNOT

gate is transversal, the group of three physical Toffoli gates
on the left-hand side of the circuit execute a logical CNOT
between the logical qubits 2 and 3 (middle and lower
blocks) conditioned on the first physical cat qubit of the
first logical qubit being in the state j1ic. Similarly, the
group of three Toffoli gates in the middle (respectively, on
the right) of the circuit also execute a CNOTon logical qubits
2 and 3 when the second (respectively, third) physical cat
qubit of the first logical qubit is in the state j1ic. Now, recall
from Sec. II that the logical computational states of the first
block are given by j0iL ¼ ½1=ð ffiffiffi

2
p Þn−1�Pj∈f0;1gn;jjj evenjji

and j1iL¼½1=ð ffiffiffi
2

p Þn−1�Pj∈f0;1gn;jjjoddjji. The circuit works
in this way: When the first logical qubit is in the j0iL state,
an even number of logical CNOTs is performed on the
second and third logical qubits, which amounts to the
identity operation. On the other hand, the input j1iL state
results in an odd number of logical CNOTs being performed,
thus actually performing one logical CNOT. In other words,
this circuit implements a logical “controlled-CNOT,” that is,
a Toffoli gate.

We now discuss the fault tolerance of this circuit. First,
as in the case of the CNOT gate, we note that each Toffoli
gate at the level of the cat qubits is bias preserving, and,
therefore, the bit-flip errors remain exponentially sup-
pressed for the logical gate. Now, a phase-flip error
occurring on any cat qubit of the first two logical qubit
Z1;2 (we omit the superscript for clarity) commutes with the
successive physical Toffoli gates of the circuit:

ToffoliZ1;2 ¼ Z1;2 Toffoli:

As a result, an error acting on any qubit of the first two
logical qubits does not spread through the circuit and is
corrected by the QEC stage performed after the gate’s
execution. Unfortunately, phase-flip errors on cat qubits of
the third logical qubit do not commute with the Toffoli
unitary and produce an extra error Uerr ¼ 1

2
ðI1 þ Z1ÞI2þ

1
2
ðI1 − Z1ÞZ2:

ToffoliZ3 ¼ UerrZ3 Toffoli:

As the circuit is transversal for the second and third blocks
of physical qubits (that is, the kth cat qubit of logical qubit 2
is connected only to the kth cat qubit of logical qubit 3), the
forward propagation of an error from the third block to the
second one cannot cause a logical error. On the other hand,
because of the nontransversality of operations between the
first and third logical qubits, a Z3 error spreads on all qubits
of the first logical qubit, resulting in an uncorrectable
logical ZL error. Though this result means that the full
circuit is not fault tolerant, a logical error can arise only if a
majority of the qubits of the first logical qubit are con-
taminated. To prevent this error, we perform two stages of
QEC during the execution of the circuit, after one-third
and two-thirds of the full circuit are executed, as shown
in Fig. 8.
In this manner, any physical error propagating from the

third logical qubit is corrected before it spreads beyond the
code distance. The exploited idea here is that, while a
nontransversal circuit might not be fault tolerant, pieces of
the circuit could still be; thus, adding extra stages of error
correction at carefully chosen locations in between these
pieces can provide full fault tolerance. This idea is
introduced and studied in Ref. [51], and these circuits
are called pieceable fault tolerant.
Note that, while the above analysis ensures that the errors

do not propagate in an uncontrolled manner, one also needs
to prevent an accumulation of the nonpropagating errors
(above the threshold of the repetition code) between two
rounds of QEC. Indeed, Fig. 8 represents the Toffoli circuit
for a three-qubit repetition code, and, whenever we increase
the code distance, we also need to add new blocks of QEC
at appropriate places to avoid an accumulation of non-
propagating errors on the first repetition cat qubit. There
are various ways to achieve this addition. The most

FIG. 7. Transversal implementation of the logical CNOT. For
clarity, the number of cat qubits per repetition cat qubit is n ¼ 3.
Here, the three upper lines represent the control repetition cat
qubit, and the three bottom ones represent the target one.

FIG. 8. Pieceable fault-tolerant Toffoli circuit. Each block of
n ¼ 3 cat qubits represents one repetition cat qubit.
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straightforward one is inspired by the fact that a concat-
enation of repetition codes is still a repetition code. More
precisely, the measurements of the stabilizers of the lowest-
level repetition code are enough to reconstruct the value of
the stabilizers at any higher level of encoding. One can,
therefore, extend the logical Toffoli circuit in Fig. 8 to
a km-qubit repetition code, where each data qubit meets at
most k gates between two rounds of QEC. A thorough
numerical study and benchmarking of the accuracy thresh-
old for such circuits is a topic of current research and will
appear in a forthcoming paper.

E. Construction of Hadamard gate

In order to establish the universality of the set
fPj�iL ;MXL

; XL;Toffolig, we show in Fig. 9 how a
Hadamard gate can be built out of this set. Its fault
tolerance is trivially derived from the fault tolerance of
each logical gate in the circuit.
We end this section by mentioning that, while we have

the possibility of correcting errors after the realization of
each gate, it is enough to keep the record of errors by
measuring the error syndromes and apply an error correc-
tion only before the Toffoli gates. Indeed, the Clifford
operations map Pauli operators to Pauli operators, and,
therefore, it is needed only to keep track of the errors to
update the Pauli frame in software [44]. On the other hand,
the Toffoli gate is not a Clifford gate and does not map

Pauli operators to Pauli operators. One, therefore, needs to
perform error correction before the application of such a
gate [52].

VI. ERROR ANALYSIS

We now study the performance of the physical gates of
Sec. IV in a realistic setup. We note that, while the bias-
preserving character of the state preparation Pj�ic and the
measurement MX is ensured by their definition, the error
analysis of our implementation of rotations around the Z
axis has been previously discussed in Ref. [22]. Therefore,
we focus our analysis to the case of X, CNOT, and Toffoli
gates. First, we analyze a model with two main sources of
errors: the errors caused by single-photon loss in the cavity,
which is the principal “physical” source of decoherence,
and the errors induced by the finite gate time (non-
adiabaticity). Then, we give numerical evidence that a
similar performance can be expected in the presence of
other sources of errors, such as thermal excitations and
dephasing.
In our implementation of the X, CNOT, and Toffoli gates,

the loss of a single photon in the cavity changes the parity
of the number of photons. As a result, the effect of
photon loss on cat qubits is mostly to induce phase flips
jþic ↔ j−ic, but it rarely causes bit flips j0ic ↔ j1ic.
Mathematically, this difference can be understood by
looking at the matrix elements coupling these states:

(a)

(c) (d)

(b)

FIG. 9. Logical Hadamard circuit (a). The circuits (b)–(d) are equivalent circuits that help to understand why the circuit (a) implements
a logical Hadamard gate. In circuit (b), the CNOT gate between the repetition cat qubits 2 and 3 is replaced by the equivalent circuit where
the control and target roles are switched with the addition of Hadamard gates before and after the gate. It becomes clear in circuit (b) that
the second repetition cat qubit plays no role: It is initialized in j−iL, transformed to j1iL after the first Hadamard, and, thus, always
triggers the corresponding part of the control of the Toffoli, before being converted to j−iL by the second Hadamard. Actually, the
second repetition cat qubit is needed only because we do not readily have a controlled-phase gate available at the repetition cat qubit
level (but here we show that it can be done with the Toffoli gate plus one ancilla repetition cat qubit). The idle role of the second
repetition cat qubit is represented more simply in circuit (c), where again the CNOT between the repetition cat qubits 1 and 3 is replaced
by its equivalent circuit where the control and target roles are exchanged with the addition of Hadamard gates. Finally, in circuit
(d) (where we omit the second repetition cat qubit for clarity), the first Hadamard of the first line and the preparation of jþiL are replaced
by the equivalent preparation of j0iL and the second Hadamard is commuted through the XL, producing a ZL gate. The remaining circuit
in the dashed box is just a teleportation of the state jψiL of the second repetition cat qubit to the first one. After the state is teleported, the
remaining Hadamard gate HL is applied, thus establishing the equivalence between circuit (a) and a logical Hadamard.
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jhCþαðtÞjâjC−αðtÞij2 ¼ jαj2 tanhðjαj2Þ ∼
jαj2→þ∞

jαj2;

jh−αðtÞjâjαðtÞij2 ¼ jαj2e−2jαj2 → 0:

If the only source of phase-flip errors is the photon loss, the
noise bias, defined as the ratio of the phase-flip rate to
the bit-flip rate η ¼ pZ=pX, scales as η ∼ e−2jαj2 for large
values of jαj2. This situation is the case for the X gate:
As explained in Sec. IV, the phase-flip errors due to
the adiabatic approximation disappear as soon as the
Hamiltonian −π=Tâ†â is added. Furthermore, the precision
of the gate is ensured by the fact that the rotation of the cat
states leads to a topological phase jCþα i → jCþα i and
jC−α i → −jC−α i. This phase is not affected by the impreci-
sions in the rotation angle. Indeed, the phase of the coherent
states j � αi is locked to the phase of the pump drives. In
this sense, each cat qubit is defined with respect to its own
pumps. Therefore, even if the rotation angle is not precisely
π, which could happen, e.g., because of the amplitude and
phase fluctuations of the pumping drive, the state still
accumulates a topological π phase with respect to its local
oscillator. The same argument on the gate precision holds
for the CNOT and Toffoli gates and is discussed further in
Sec. VII. In the rest of this section, we analyze the errors
induced by photon loss and nonadiabatic effects on the
CNOT and Toffoli gates.

A. CNOT gate corrupted by photon loss

In order to understand the effect of a loss of photon
during the execution of the CNOT, let us consider the unitary
operation approximately generated by the two dissipation
channelsLâ andLb̂ðtÞ of Sec. IV. Indeed, in the presence of
the above driven dissipations where the dynamics is
confined in the cat qubit subspace, we approximately
implement a unitary operation of the form

UðtÞ ¼ jαihαj ⊗ I þ j − αih−αj ⊗ eiðπ=TÞtb̂
†b̂

with Uð0Þ ¼ I ⊗ I and UðTÞ ¼ CNOT.
First, we investigate the effect of a loss of a photon of the

control mode â. Denote by Eâ the noisy quantum operation
performed instead of the CNOT when the control mode is
lossy and by t ∈ ½0; T� the random time at which such a loss
occurs. We have

Eâ ¼ UðT − tÞ½â ⊗ I�UðtÞ
¼ αjαihαj ⊗ I − αj − αih−αj ⊗ eiπb̂

†b̂

¼ ½â ⊗ I�CNOT;

which can be written in terms of Pauli operators for the cat
qubits as

Eâ ¼ Z1CNOT:

In other words, a photon loss on the control cat qubit causes
a phase flip on that qubit but does not affect the target
cat qubit.
On the other hand, a photon loss occurring on the target

cat qubit b̂ at time t propagates as

UðT− tÞ½I⊗ b̂�UðtÞ
¼ ðI⊗ b̂Þðjαihαj⊗ Iþe−iπ½ðT−tÞ=T�j−αih−αj⊗ eiπb̂

†b̂Þ
¼ ðI⊗ b̂Þðjαihαj⊗ Iþe−iπ½ðT−tÞ=T�j−αih−αj⊗ IÞCNOT:

The resulting error

I ⊗ b̂ðjαihαj ⊗ I þ e−iπ½ðT−tÞ=T�j − αih−αj ⊗ IÞ

induced by the propagation of the photon loss can be
expressed in terms of the Pauli operators of cat qubits as

ÛerrðθÞ ¼
1

2
ð1þ Z1ÞZ2 þ

1

2
eiθð1 − Z1ÞZ2;

where θ ¼ −iπð1 − t=TÞ is a random phase. The time of
the jump being uniformly distributed over the interval
[0; T], the noisy operation Eb̂ can be written

Eb̂ðρÞ ¼ n̄κ1phT
Z

0

−π

dθ
π
ÛerrðθÞρ̃ÛerrðθÞ†

¼ n̄κ1phT

�
1

2
Z2ρ̃Z2 þ

1

2
Z1Z2ρ̃Z1Z2

þ i
π
Z1Z2ρ̃Z2 −

i
π
Z2ρ̃Z1Z2

�
; ð3Þ

where ρ̃ ¼ CNOTρCNOT is the image of ρ by a perfect
CNOT operation and n̄κ1phT is the average number of
photons lost in each mode during the gate’s execution.
Written in this form, it is clear that the operation Eb̂ is a
perfect CNOT gate followed by some noise given by the
operators appearing in the equation above. The first two
terms indicate that the effect of photon loss on the target cat
qubit produces two types of error of the same strength:
phase flips on the target cat qubit 1

2
Z2ρ̃Z2 as well as a

correlated phase flips on both qubits 1
2
Z1Z2ρ̃Z1Z2, with

some degree of coherence between these two errors.
When losses on both modes are taken into account, the

noisy CNOT Eâ;b̂ can be expressed as a Kraus sum:

Eâ;b̂ðρÞ ¼
X

k¼1;2;3

M̂kρ̃M̂
†
k;
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where [r ¼ 1
2
arcsinð2=πÞ]

M̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

p
Z1;

M̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

2

r
ðcos rI1 þ i sin rZ1ÞZ2;

M̂3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

2

r
ðsin rI1 þ i cos rZ1ÞZ2:

B. Errors induced by nonadiabaticity

The Hamiltonian

Ĥ ¼ 1

2

π

T
â − α

2α
⊗ ðb̂†b̂ − n̄Þ þ H:c:

compensates most of the errors induced by the finite gate
time T. Using the adiabatic elimination techniques of
Ref. [53], it is possible to characterize the remaining
error and show that it is composed only of phase flips
on the control cat qubit Z1, with a rate proportional to
ðn̄κ2phT2Þ−1. The exact coefficient of proportionality can be
estimated by a numerical fit and is well approximated by
2π, giving the phase-flip probability:

pZ1
½nonadiabaticity� ¼ ð2πn̄κ2phTÞ−1:

A more thorough study of the errors induced by the
approximate Hamiltonian will be given in a forthcoming
paper.

C. Numerical simulations

In order to check the validity of this error model, we
perform a numerical process tomography of the CNOT gate
[Figs. 10(a)–10(c)]. This process is done by simulating the
full master equation of the system in the presence of photon
loss. The process matrix χ plotted in Fig. 10(a) completely
characterizes the quantum operation E performed via the
relation

EðρÞ ¼
X
mn

χmnPmρP
†
n;

where fPjg is the set of two-qubit Pauli operators. The gate
fidelity F is defined as [54]

F ðU; EÞ ¼ min
jψi

F ½Ujψi; Eðjψihψ jÞ�; ð4Þ

where U ¼ CNOT is the perfect CNOT operation and the
right-hand side represents the minimum over all two-qubit
state fidelities. The unitary of the perfect CNOT is factored

out in order to obtain the process error matrix χerr [real
part in Fig. 10(b) and imaginary part in Fig. 10(c)], which
characterizes the noise alone:

EðρÞ ¼
X
mn

χerrmnPmρ̃P
†
n

with ρ̃ ¼ CNOTρCNOT the image of ρ by a perfect CNOT.
In other words, we decompose the noisy CNOT into a perfect
CNOT followed by some noise process, characterized by the
process error matrix χerr. As can be seen in the real part of
χerr [Fig. 10(b)], photon loss and nonadiabaticity cause only
phase-flip errors Z1, Z2, or Z1Z2.
We further investigate our theoretical model for errors

caused by photon loss by plotting [Figs. 10(g)–10(i)] the
values of the coefficients of the error matrix χerr (marked by
colored squares) as a function of the gate duration. Here,
the blue dots correspond to phase-flip errors on the control
cat qubit Z1 induced by a combination of nonadiabatic
errors and the photon loss. The plain blue line corresponds
to our analytical formula

pZ1
¼ n̄κ1phT þ ð2πn̄κ2phTÞ−1;

which is found through the analysis above together with
second-order perturbation techniques following Ref. [53].
The red dots represent the phase-flip errors on target qubit
Z2 and the correlated phase-flip errors Z1Z2 (red dots).
These values coincide, and, following our analysis, they are
given by

PZ2
¼ PZ1Z2

¼ n̄κ1phT=2:

This result is represented by the plain line in red. The off-
diagonal term representing the coherence between Z2 and
Z1Z2 errors (green dots) also fits very well our expect-
ation from Eq. (3). The pale purple dots correspond to the
off-diagonal term representing the coherence between I
and Z1 errors. In order to capture such a coherence, one
needs to push the nonadiabatic perturbation techniques
[53] up to third order, which will be subject of future
work. Most importantly, the remaining errors (namely, the
ones that contain an X or Y Pauli operator) represented by
the black lines are exponentially suppressed by the cat
size. This result proves the bias-preserving aspect of
the gate.

D. Gate fidelity and optimal gate time

The phase-flip errors occurring on the control mode are
caused by two sources that are very different in essence:
When the gate time is increased, the “environment”-
induced errors, caused by photon loss, are also increased,
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whereas phase-flip errors caused by nonadiabaticity
are reduced. This opposite behavior gives rise to a finite
optimal gate time T� for which the gate infidelity is
minimal.

More precisely, taking into account phase-flip errors
caused by photon loss and by nonadiabaticity, the total
phase-flip error probability on the control cat qubit is
given by

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10. Process tomography of the CNOT gate in the presence of noise. The CNOT process presented in Sec. IV is numerically
simulated for n̄ ¼ 7 photon cat qubits using two different error models. First, we consider photon loss on both modes κ1phD½â� þ
κ1phD½b̂� (a)–(c). Then, we consider a more elaborate error model including photon loss κ1phð1þ nthÞD½â� þ κ1phð1þ nthÞD½b̂�, thermal

excitations κ1phnthD½â†� þ κ1phnthD½b̂†� (nth ¼ 10%) and dephasing on both modes κϕD½â†â� þ κϕD½b̂†b̂� (d)–(f). In both cases, we set
κ1ph=κ2ph ¼ 10−3, and the gate time is chosen optimal T� ¼ ½2n̄ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πκ1phκ2ph
p �−1 ≈ 1.27κ−12ph (see the main text). We plot the real part of the

process matrix χ (a),(d) and the real (b),(e) and imaginary (c),(f) parts of the error matrix χerr. In the lower row (g)–(i), we check the
validity of our theoretical error model for photon loss for various gate times and cat sizes. While the dots illustrate the simulation results
where the full master equation in the presence of loss are considered, the plain lines correspond to the analytical formula provided in the
main text. The blue dots correspond to the diagonal process matrix element corresponding to the Z1, and the red dots correspond to the
coinciding diagonal matrix elements corresponding to Z2 and Z1Z2. The green dots correspond to the off-diagonal elements
corresponding to the coherence betweenZ2 andZ1Z2 errors. The palemagenta dots correspond to the off-diagonal elements corresponding
to coherence between Z1 and I; this coherence is due to high-order nonadiabatic effects and is not included in our theory. The black dots
correspond to all remaining errors, including bit-flip-type ones. It is clear that such errors remain exponentially suppressed.
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pZ1
¼ pZ1

½photon loss� þ pZ1
½nonadiabaticity�

¼ n̄κ1phT þ ð2πn̄κ2phTÞ−1:

The gate fidelity F of the implemented CNOT operation,
defined by Eq. (4), is given by

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðpZ1

þ pZ2
þ pZ1Z2

Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2n̄κ1phT − ð2πn̄κ2phTÞ−1

q
:

The highest value of the fidelity that can be achieved is
set by the ratio κ1ph=κ2ph:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffi
4

π

κ1ph
κ2ph

svuut ;

achieved for the optimal gate time

T� ¼
"
2n̄

ffiffiffiffiffiffiffiffiffiffiffi
π
κ1ph
κ2ph

s #−1

κ−12ph:

For the ratio ðκ1ph=κ2phÞ ¼ 10−3 considered in Fig. 10, this
theoretical formula predicts a gate fidelity of F ¼ 98.2%,
in agreement with the numerical simulation.

E. Addition of new noise processes

As discussed in Ref. [33], in the presence of the two-
photon pumping scheme, any physical noise process with a
local effect in the phase space of the harmonic oscillator
causes bit flips that are exponentially suppressed in the size
of the cat qubits, thus preserving the biased structure of the
noise. We now provide numerical evidence of this fact for a
more elaborate set of physical noise processes for the
superconducting cavity: photon loss â, thermal excitation
â† with a nonzero temperature, and photon dephasing â†â.
In Fig. 10, we characterize the performed operation by

plotting the process matrix χ [Fig. 10(d)] and the real part
[Fig. 10(e)] and imaginary parts [Fig. 10(f)] of the error
matrix. In this simulation, κ1ph=κ2ph ¼ 10−3, the photon
loss is given by κ1phð1þ nthÞD½â� and thermal excitations
by κ1phnthD½â†� with nth ¼ 10%, and the dephasing on the
cavity is given by κϕD½â†â� with κϕ ¼ κ1ph.
Note that the resulting error matrix and gate fidelity are

barely affected by the added thermal excitations and photon
dephasing. The addition of thermal noise and dephasing
slightly decrease the fidelity of the operation, from 98.2%
to 97.8%, but, as expected, this decrease is caused by an
increased rate of phase-flip errors, while all bit-flip errors
remain exponentially suppressed.

F. Numerical considerations

The numerical study of the CNOT gate in the presence of
noise (Fig. 10) requires the simulation over a time T of the
Lindblad master equation

_ρ ¼ −i½Ĥ; ρ� þ κ2phD½L̂â� þ κ2phD½L̂b̂ðtÞ�
þ κ1phD½â� þ κ1phD½b̂�

for 16 different initial states, where Ĥ, L̂â, and L̂b̂ðtÞ are
defined in Sec. IV. The numerical computations are
performed in parallel using the cluster of Inria Paris,
composed of 68 nodes for a total of 1244 cores. The
nodes are divided in a few hardware generations: 28
biprocessors Intel Xeon X5650 of six cores, 12 biproces-
sors E5-2650v4 2.20 of 12 cores, 16 biprocessors XeonE5-
2670 of ten cores, eight biprocessors E5-2695 v4 of 18
cores, and four biprocessors E5-2695 v3 of 14 cores. The
simulation of the CNOT gate for cat qubits of n̄ ¼ 10 and a
gate time of T ¼ 3κ−12ph takes about 13 h on the cluster. The
simulation of the Toffoli gate with the same parameters
would be about 2000 times longer; for this reason, we do
not provide numerical simulations for the Toffoli gate in
this paper. However, the analytical discussion that follows
explains, in a similar manner to the CNOT gate [plain lines in
Figs. 10(g)–10(i)], the expected error mechanisms and
rates.

G. Toffoli gate corrupted by photon loss

The effect induced by photon loss during the execution
of the Toffoli gate can be derived in the same way as for the
CNOT. A photon loss occurring on one of the two control
modes â and b̂ does not propagate to the other modes and
results in a dephasing error Z1 and Z2, respectively. When
the target mode ĉ loses a photon, it gives rise to a correlated
error between the three modes. More precisely, the noisy
Toffoli operation Eâ;b̂;ĉ can be decomposed into a perfect
Toffoli operation, again denoted by

ρ̃ ¼ Toffoli ρ Toffoli

followed by a noise process expressed in Kraus form as

Eâ;b̂;ĉðρÞ ¼
X

k¼1;2;3;4

M̂kρ̃M̂
†
k;

M̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

p
Z1;

M̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

p
Z2;

M̂3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

p ½cos rðI1I2 − Z12Þ − i sin rZ12�Z3;

M̂4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄κ1phT

p ½sin rðI1I2 − Z12Þ − i cos rZ12�Z3;

where Z12 ¼ 1
4
ðI1I2 − Z1 − Z2 − Z1Z2Þ acts on the two

control cat qubits.
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H. Nonadiabatic effects on Toffoli implementation

Because of the analogies in the way the CNOT and the
Toffoli gates are implemented, it is useful to think of the
Toffoli gate as a CNOT where the control state j − αi is
replaced by j−α;−αi. In particular, the methods of
Ref. [53] that we use to characterize the effect of non-
adiabaticity predict similar results for the Toffoli gate. The
analysis of the errors induced by the approximate
Hamiltonians is not the subject of this paper. However,
we anticipate that the effect of the finite gate time is to
dephase the “trigger” state j−α;−αi with respect to the
other three possible states of the pair of control cat qubits.
In terms of Pauli operator, this effect results only in phase-
flip errors Z1, Z2, and Z1Z2 on the two control cat qubits
with equal probability p ¼ ð4πn̄κ2phTÞ−1, but it does not
cause any error on the target cat qubit or bit-flip-type errors.

1. Optimal gate time and gate fidelity

Taking into account phase-flip errors caused by photon
loss and nonadiabaticity, the gate fidelity F of the imple-
mented Toffoli operation is given by

F ¼ ½1 − pZ1
− pZ2

− pZ3

− pZ1Z2
− pZ1Z3

− pZ2Z3
− pZ1Z2Z3

�1=2

¼
�
1 −

3

4n̄πκ2phT
− 3n̄κ1phT

�
1=2

:

This fidelity is maximum for the same gate time T� ¼
½2n̄ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðκ1ph=κ2phÞ
p �−1κ−12ph optimizing the CNOT gate, pro-

ducing a gate fidelity of

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffi
9

π

κ1ph
κ2ph

svuut :

The ratio ðκ1ph=κ2phÞ ¼ 10−3 considered in Fig. 10
corresponds to a gate fidelity F ¼ 97.3% with respect to
a perfect Toffoli. Note that the optimal gate time for the
CNOT and the Toffoli gate decreases with the mean number
of photons n̄.

VII. TOWARD EXPERIMENTAL
IMPLEMENTATION

The ideas behind our proposal could be applied to qubits
possessing an extra d.o.f., for which one type of error (bit
flips or phase flips) is suppressed as soon as the noise
processes are local in this d.o.f. (here, the locality is in the
phase space, but one can also consider the locality in the
actual space as in Majorana fermions). The pumped
(driven-dissipative or Kerr-type) cat qubits are prototypes
of such qubits where the information is encoded and
stabilized in a nonlocal manner in the phase space of
harmonic oscillators. The stabilization of cat qubits can, for
instance, be implemented in the context of the vibrational
d.o.f. of an ion, by engineering two-phonon dissipation and
drive [55]. Throughout the past years, this idea has attracted
a lot of attention in the context of superconducting circuits,
where such a two-photon driven dissipation can be sys-
tematically achieved using the four-wave mixing property
of Josephson junctions and applying parametric methods
[22,27,28,34] (see also Refs. [24,56,57] for the nondissi-
pative approach known as the Kerr cat). We therefore
pursue this trend by proposing a possible implementation

TABLE II. Dissipation operators and Hamiltonians required for universal and fault-tolerant quantum computation with cat qubits. The
mandatory Hamiltonians and dissipators are required to achieve bias-preserving operations at the level of cat qubits which, embedded in
a repetition code, lead to a universal set of fault-tolerant logical gates. The optional Hamiltonians reduce the phase-flip error rate induced
by the nonadiabatic effects of the bias-preserving operations. Such an improvement can lead to a drastic reduction of the number of the
required cat qubits in a repetition code, in order to reach a certain desired error level. While some of the operations in the table have
already been implemented in experiments with superconducting circuits, all the other ones should be simple modifications or extensions
of the current experiments.

Bias-preserving gates
for cat qubits Dissipation operators Hamiltonians Experiments

Identity and Pjþic κ2phD½â2 − α2� (mandatory) None [27,28,34]
MX None −χjeihejâ†â (mandatory) [21,47]
ZðθÞ and Pj−ic κ2phD½â2 − α2� (mandatory) ϵZðâþ â†Þ (mandatory) [28]
X κ2phD½â2 − eð2iπt=TÞα2� (mandatory) −ðπ=TÞâ†â (optional) None
CNOT κ2phD½â2 − α2� and κ2phD½b̂2 − α2 − ðα=2Þ

ð1 − eð2iπt=TÞÞðâ − αÞ� (mandatory)

1
2
ðπ=TÞ½ðâ − αÞ=2α� ⊗ ðb̂†b̂ − jαj2Þþ
H.c. (optional)

None

Toffoli κ2phD½â2 − α2�, κ2phD½b̂2 − α2�, and
κ2phDfĉ2 − α2 þ 1

4
ð1 − eð2iπt=TÞÞ

½â b̂−αðâþ b̂Þ þ α2�g (mandatory)

− 1
2
ðπ=TÞ½ðâ − αÞ=2α� ⊗ ½ðb̂ − αÞ=2α� ⊗
ðĉ†ĉ − jαj2Þþ H.c. (optional)

None

CZðθÞ (optional) κ2phD½â2 − α2� and κ2phD½b̂2 − α2� ϵZZðâb̂† þ b̂â†Þ None
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of various dissipation and Hamiltonian operators involved
in our scheme using parametric methods for superconduct-
ing circuits.
We summarize in Table II the dissipation operators and

Hamiltonians required for the implementation of various
bias-preserving gates at the level of cat qubits. We note that
in this table some of the dissipation operators and
Hamiltonians are crucial, as their realization enables us
to achieve bias-preserving gates where the bit flips remain
exponentially suppressed with the cat size. Some other
Hamiltonians are optional and enable us to reduce
the phase-flip-type errors due to nonadiabatic effects.
The implementation of the optional Hamiltonians can
put the phase-flip error probability of cat qubits well below
the accuracy threshold of the repetition code and, therefore,
reduce the number of required cat qubits in this code.
First, we note that the two-photon driven dissipation

required to stabilize the cat qubits is realized by parametri-
cally coupling a high-Q superconducting cavity mode â
(frequency ωa), called the storage mode, to a low-Q one d̂
(frequency ωd), called the dump mode [27,28,34]. Here, we
recall the approach in these implementations. Coupling the
two modes â and d̂ via a nonlinear element (a Josephson
junction) and driving the system at frequency 2ωa − ωd,
one can engineer a nonlinear interaction of the form

H2ph ¼ ðg2phâ2d̂† þ g�2phâ
2†d̂Þ:

In particular, the amplitude and phase of the coupling,
given by the complex value g2ph, are modulated by the
pump (drive at frequency 2ωa − ωd) amplitude and phase,
and one can turn off such a coupling simply by turning
off the pump. One can, additionally, consider a resonant
drive at frequency ωd, modeled by the Hamiltonian
Hd ¼ ϵdd̂

† þ ϵ�dd̂. Therefore, the total system follows the
master equation

d
dt

ρ ¼ −i½g2phâ2d̂† þ g�2phâ
2†d̂; ρ�

− i½ϵdd̂† þ ϵ�dd̂; ρ� þ κdD½d̂�ρ:

In this master equation, the dump mode d̂ mediates a two-
photon exchange between the storage mode â and its bath.
More precisely, by adiabatically eliminating the dump
mode (assuming κd > jg2phj and jϵdj), the effective dynam-
ics of the storage mode can be modeled by a two-photon
driven dissipation κ2phD½â2 − α2�. Here, κ2ph is roughly
given by 4jg2phj2=κd, and α is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵd=g2ph

p
[22].

The two-photon dissipation rate κ2ph is modulated by the
pump power, and the cat amplitude and phase (given by the
complex number α) are modulated by the resonant drive’s
amplitude and phase. Strong couplings g2ph, leading to
strong two-photon dissipation rates κ2ph, have been
achieved in recent experiments [27,28]. Remarkably, in

Ref. [28], the authors engineer a two-photon dissipation
rate κ2ph of about 100 times larger than the natural single-
photon loss rate, and there seems to be room for extra
improvements. Finally, the latest experiments [34] illustrate
signatures of the promised exponential bit-flip suppression
(with the cat size) for the induced cat qubits.
One important question to answer is whether the bit-flip

suppression induced by the two-photon process is affected
by higher-order terms in this adiabatic elimination approxi-
mation. The answer, fortunately, is not in a significant
manner. In order to see why this is true, one can note that
the states fj � αi ⊗ j0ig are precise steady states of the
two-mode system before adiabatic elimination. Indeed, the
protection of the coherent states j � αi against local shifts is
ensured at all orders because of this stability. The rate of
convergence to these states (which can be seen as the rate
of protection against such excursions in the phase space)
can, however, be modified when considering higher-order
terms. However, if these corrections to the two-photon
dissipation rate are not too large, the associated protection
rate remains larger than the diffusion rate induced by local
error mechanisms, and, therefore, the bit-flip suppression
remains valid.
In parallel to these experiments, the measurement

operation MX, which is equivalent to measuring the
photon-number parity of the cat qubits, is performed in
Refs. [21,47]. Following the approach presented in Sec. IV,
a measurement fidelity of 98.5% is achieved in Ref. [21].
Finally, quantum Zeno dynamics can be applied to perform
bias-preserving rotations around the Z axis of the cat qubit.
As explained in Sec. IV, it is enough to turn on a weak
resonant drive at the frequency of the storage mode ωa in
the presence of the two-photon driven dissipation. This
experiment is performed in Ref. [28].
The realization of the X operation consists in taking the

same approach as the two-photon driven dissipation and
simply varying the phase of the resonant drive ϵd between 0
and 2π in a time T. This approach leads to a dissipation
operator κ2phD½â2 − expð2iπt=TÞα2�, which implements a
bias-preserving X operation. In order to remove the phase-
flip errors induced by the nonadiabaticity of this variation,
one can additionally implement a Hamiltonian of the form
−Δâ†â with Δ ¼ π=T, which is simply done by taking the
pump at frequency 2ωa − ωb − 2Δ instead of 2ωa − ωb
and, furthermore, detuning the drive ϵd from resonance by a
value Δ. These are all simple modifications of the experi-
ments in Refs. [27,28,34] and should be straightforward.
Let us now discuss the realization of the CNOTand Toffoli

gates. For the CNOT gate between two cat qubits encoded in
storage modes â and b̂, further to a two-photon driven
dissipation modeled by the dissipator κ2phD½â2 − α2�,
one requires to also implement a time-dependent dissipator
given by κ2phD½b̂2 − α2 − ðα=2Þð1 − eð2iπt=TÞÞðâ − αÞ�. In
order to implement such a dissipation operator, we propose
to couple the two storage modes â and b̂ to a dump mode d̂,
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using a Y-shape transmon similar to Ref. [58] (see Fig. 11).
Driving the dump mode at three different frequencies
ω1 ¼ 2ωb − ωd, ω2 ¼ ðωa − ωdÞ=2, and ω3 ¼ ωd, one
can engineer an interaction Hamiltonian of the form

HCNOT ¼ ðgbdb̂2d̂† þ g�bdb̂
2†d̂Þ

þ ðgadâd̂† þ g�adâ
†d̂Þ þ ðϵdd̂† þ ϵ�dd̂Þ:

In this interaction Hamiltonian, the first term ðgbdb̂2d̂† þ
g�bdb̂

2†d̂Þ models the exchange of two storage photons at
frequency ωb with one dump photon at frequency ωd via a
pump photon at frequency ω1. The second term ðgadâd̂† þ
g�adâ

†d̂Þ models the exchange of one storage photon at
frequency ωa with one dump photon at frequency ωd via
two pump photons at frequency ω2. The amplitudes and
phases of gbd and gad are modulated by the amplitude and
phase of the corresponding pumps. Finally, the last term
ðϵdd̂† þ ϵ�dd̂Þmodels the resonant interaction of the drive at
frequency ωd with the dump mode. Similarly to the driven
two-photon dissipation, one can adiabatically eliminate the
highly dissipative dump mode to achieve an effective
dissipation operator

κ2phD½b̂2 þ caâþ c�;

where the dissipation rate κ2ph is roughly given by
4jgbdj2=κd (κd being the loss rate of the dump mode),
the complex constant ca is given by gad=gbd, and the
complex constant c is given by ϵd=gbd. Similarly to the X
operation, it is clear that, by varying the amplitudes and
phases of the pump at frequency ω2 and the resonant drive
at frequency ωd, one can engineer a dissipation operator
with time-varying constants ca and c given, respectively, by

caðtÞ ¼ −
α

2
ð1 − eð2iπt=TÞÞ; cðtÞ ¼ −

α2

2
ð1þ eð2iπt=TÞÞ:

This result corresponds to the dissipator required for the
bias-preserving CNOT operation. Importantly, the time-
dependent function ca takes the value 0 at times t ¼ 0
and t ¼ T. For this reason, before and after the gate, the two
cat qubits involved in the CNOT are defined by their own
local oscillators. The fluctuations of the pumps during the
execution of the gate merely result in a slight modification
of the geometric paths taken. This modification can lead
only to small fluctuations of the geometric phase and,
therefore, an effective phase-flip type error. The phase-flip
probability induced by the nonadiabaticity of the evolution
can be reduced by adding the effective Hamiltonian
H̃CNOT¼ 1

2
ðπ=TÞ½ðâ−αÞ=2α�⊗ðb̂†b̂− jαj2Þ þH:c: Such a

Hamiltonian has also been recently implemented using a
detuned parametric pumping method [49].
In order to realize a bias-preserving Toffoli gate between

three cat qubits encoded in storage modes â, b̂, and ĉ,

further to two-photon driven dissipations modeled by
κ2phD½â2 − α2� and κ2phD½b̂2 − α2�, we require to imple-
ment a time-dependent dissipator given by κ2phDfĉ2 − α2þ
1
4
ð1− eð2iπt=TÞÞ½â b̂−αðâþ b̂Þ þ α2�g. Similarly to the CNOT

gate, we propose to couple the three modes to a highly
dissipative dump mode as shown in Fig. 11. By driving the
dump mode at five different frequencies ω1 ¼ 2ωc − ωd,
ω2¼ωaþωb−ωd, ω3 ¼ ðωa − ωdÞ=2, ω4 ¼ ðωb − ωdÞ=2,
and ω5 ¼ ωd, one can engineer an effective interaction
Hamiltonian of the form

HToffoli ¼ ðgcdĉ2d̂† þ g�cdĉ
†2d̂Þ þ ðgabdâ b̂ d̂† þ g�abdâ

†b̂†d̂Þ
þ ðgadâd̂† þ g�adâ

†d̂Þ þ ðgbdb̂d̂† þ g�bdb̂
†d̂Þ

þ ðϵdd̂† þ ϵ�dd̂Þ:

Once again, all these effective terms are achieved in a
parametric manner and using the four-wave mixing prop-
erty of the Josephson junction. The amplitude and phase of
each interaction term can be modulated by the amplitude
and phase of the associated pump. After the adiabatic
elimination of the dump mode, we achieve a dissipation
operator

κ2phD½ĉ2 þ cabâ b̂þcaâþ cbb̂þ c�;

(a) (b)

FIG. 11. Proposal for an experimental implementation of bias-
preserving CNOT and Toffoli gates for cat qubits. (a) Setup for
implementing a bias-preserving CNOT gate. The cat qubits are
encoded in high-Q cylindrical postcavities (in blue, resonance
frequencies ωa and ωb). The two cavities are coupled via a
Y-shape transmon as in Ref. [58] to a low-Q strip-line resonator
(in red, resonance frequency ωd) playing the role of the dump
mode. The system is driven with three microwave pumps at
frequencies ω1 ¼ 2ωb − ωd, ω2 ¼ ðωa − ωdÞ=2, and ω3 ¼ ωd.
(b) A similar setup for implementing a bias-preserving Toffoli
gate with three cat qubits encoded in high-Q postcavities
(frequencies ωa, ωb, and ωc) all coupled to a single strip-line
resonator (frequency ωd). The system is driven with five micro-
wave pumps at frequencies ω1 ¼ 2ωc − ωd, ω2 ¼ ωaþ
ωb − ωd, ω3 ¼ ðωa − ωdÞ=2, ω4¼ðωb−ωdÞ=2, and ω5 ¼ ωd.
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where κ2ph is given by 4g2cd=κd and the complex constants
cab¼gabd=gcd, ca¼gad=gcd, cb ¼ gbd=gcd, and c ¼ ϵd=gcd.
By varying the amplitudes and phases of the pumps in time,
we obtain time-varying constants

cabðtÞ ¼
1

4
ð1 − eð2iπt=TÞÞ; cðtÞ ¼ −

α2

4
ð3þ eð2iπt=TÞÞ;

caðtÞ ¼ cbðtÞ ¼ −
α

4
ð1 − eð2iπt=TÞÞ:

This result implements a bias-preserving Toffoli gate
between the cat qubits encoded in the three modes â, b̂,
and ĉ. Here again, it should be noted that the functions cab,
ca, and cb vanish at the beginning and at the end of the gate
execution, so that each cat qubit gets back to being defined
by its own local oscillators. Similarly to the CNOT gate,
the pump fluctuations during the gate result in only
a slight increase in the rate of phase-flip type errors but
do not lead to unsuppressed bit-flip-type ones. In order to
reduce the phase-flip probability induced by the non-
adiabaticity, we use an additional Hamiltonian H̃Toffoli ¼
− 1

2
ðπ=TÞ½ðâ−αÞ=2α�⊗ ½ðb̂−αÞ=2α�⊗ ðĉ†ĉ− jαj2ÞþH:c:

Such a Hamiltonian can also be implemented in a similar
manner to H̃CNOT. A more detailed discussion of such a
Hamiltonian synthesis together with the error probability
enhancements is out of the scope of the present paper and
will be the subject of a forthcoming paper.
Finally, we note that the bias-preserving gate CZðθÞ is

not required in the fundamental set of bias-preserving
operations but may be useful for optimizing the realization
of certain quantum algorithms. Such an operation can also
be achieved following an approach based on quantum Zeno
dynamics, in a similar manner to ZðθÞ [22]. The required
beam-splitter Hamiltonian ϵZZðâb̂† þ b̂â†Þ can be engi-
neered by applying a pump at frequency ðωb − ωaÞ=2. The
exchange of the photons between the two modes is there-
fore mediated by the four-wave mixing property of the
Josephson junction via two pump photons.
All the above implementations appear to be rather

straightforward extensions of the existing parametric meth-
ods, for instance, for two-photon driven dissipation. We
expect that the experiments with similar devices and similar
parameter regimes as those in the cited references lead to
bias-preserving gates with phase-flip error probabilities
below the threshold of the repetition code. For instance,
following the error analysis in Sec. VI, we anticipate that a
ratio of 1000 between the engineered two-photon decay
rate κ2ph and the natural single-photon loss rate κ1ph will put
us well below the threshold of the repetition code [59] such
that, with a cat size of jαj2 ¼ 10 and with a few tens of
repetition modes per logical qubit, we achieve logical error
probabilities of the order of 10−9 for a universal gate set.
This result appears to be a huge overhead reduction with
respect to state of art quantum error correction approaches.

VIII. CONCLUSIONS

Fault-tolerant computation with protected logical qubits
represents a major experimental challenge. The surface
code provides a viable solution, as it exhibits relatively high
accuracy thresholds. However, this property comes at the
cost of a tremendous experimental overhead. Indeed, in a
realistic implementation of quantum algorithms, the vast
majority of operations serve to protect the information
rather than performing the computation itself. Furthermore,
while certain operations can be performed in a topologi-
cally protected manner, certain others (e.g., non-Clifford
gates) require magic state preparation, distillation, and
injection, adding further complexity. In this paper, we
propose an alternative approach by replacing the 2D surface
code with a 1D repetition code where the physical two-level
systems are replaced by cat qubits. Remarkably, we obtain a
universal set of topologically protected logical gates with no
need for magic states. The apparent trick lies in the fact that
the 2D phase space of the cat qubits is exploited to perform
nontrivial operations. In this sense, a line of cat qubits has the
same properties as an effective 3D system.
Furthermore, we show that this approach is readily

exploitable at an experimental level and requires only
minor modifications of previous realizations. A numerical
analysis indicates that the parameter regimes close to the
ones achieved in the field of superconducting circuits result
in effective error probabilities below the accuracy threshold
of the repetition code. Therefore, this scheme is a prom-
ising candidate for a first demonstration of a universal set of
fully protected logical quantum gates. Encouragingly, we
expect that small logical error rates of 10−9 could be
achieved with a few tens of cat qubits and a mean photon
number of about 10. A more thorough error analysis based
on a mathematical analysis of the effective error mecha-
nisms and the numerical implementation of an optimal
decoding strategy will be subject of a forthcoming paper.
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APPENDIX: A NO-GO THEOREM FOR
BIAS-PRESERVING QUANTUM GATES

As we see in this paper, the extra d.o.f. associated to the
complex amplitude α in the cat qubits enables us to perform
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a set of nontrivial operations such as the CNOTor the Toffoli
gate in a bias-preserving manner. In this Appendix, we
show the crucial role played by this extra d.o.f. Indeed, we
prove that such gates cannot be performed in a bias-
preserving manner with two-level systems. The analysis
of this Appendix should be extendable to the case of qubits
encoded in qudits with a finite number of levels. However,
as the dimension of the space in which the qubit is encoded
increases, the bias could be approximately preserved.
We focus on the case of the CNOT gate, but a similar

analysis can be performed for the Toffoli gate. Throughout
this section, we call Uð4Þ the Lie group of unitary operators
on two two-level systems and suð4Þ the associated Lie
algebra. We also assume that we are dealing with qubits
that are susceptible only to phase-flip errors. We define a
bias-preserving gate to be a gate that does not transform
phase-flip errors to bit-flip ones. Here is a more precise
definition.
Definition 1.—We call a unitary operation U ∈ Uð4Þ

bias preserving if

½UZ1;2U†; Z1;2� ¼ 0:

Indeed, the operators iZ1 and iZ2 and, similarly,
iUZ1;2U† are members of the Lie algebra suð4Þ and,
therefore, can be written in the basis of two-qubit Pauli
operators. It is therefore easy to see that the above condition
is equivalent to saying thatUZ1;2U† is a linear combination
of the three Pauli operators Z1, Z2, and Z1Z2, which, e.g.,
means that

UZ1U† ¼ c1Z1 þ c2Z2 þ c12Z1Z2 ⇒

UZ1 ¼ ðc1Z1 þ c2Z2 þ c12Z1Z2ÞU:

Therefore, a Z1 error before the unitary operation can lead
only to Z1, Z2, and Z1Z2 errors after the operation.
We note that the CNOT or Toffoli gates are members of

this set of bias-preserving operations. We see, however, that
they cannot be realized in a bias-preserving manner. We
have the following lemma.
Lemma 1.—The set

B ¼ fU ∈ Uð2Þj½U†Z1;2U;Z1;2� ¼ 0g

is a Lie subgroup of Uð2Þ.
Proof.—We start by proving that B is a group. It clearly

includes the identity operator. Also, ifU1,U2 ∈ B, we have

U1Z1U
†
1 ¼ c1Z1 þ c2Z2 þ c12Z1Z2:

Therefore,

U2U1Z1U
†
1U

†
2 ¼ c1U2Z1U

†
2 þ c2U2Z2U

†
2 þ c12U2Z1Z2U

†
2

¼ c1U2Z1U
†
2 þ c2U2Z2U

†
2

þ c12U2Z1U
†
2U2Z2U

†
2

¼ c̃1Z1 þ c̃2Z2 þ c̃12Z1Z2:

Therefore, U1U2 ∈ B. We need only to prove that, if
U ∈ B, then U† ∈ B. We have

UZ1U† ¼ r1Z1 þ r2Z2 þ r12Z1Z2;

UZ2U† ¼ s1Z1 þ s2Z2 þ s12Z1Z2:

We note that r1, r2, and r12 cannot simultaneously vanish
(similarly for s1, s2, and s12). Also, we note that the
two vectors ðr1; r2; r12Þ and ðs1; s2; s12Þ are necessarily
orthogonal. In order to see this orthogonality, we note that,
by multiplying the above equations and taking the trace of
both sides, we get

r1s1 þ r2s2 þ r12s12 ¼ 0:

Now we multiply the above equations from left by U† and
from right by U:

Z1 ¼ r1U†Z1U þ r2U†Z2U þ r12U†Z1Z2U;

Z2 ¼ s1U†Z1U þ s2U†Z2U þ s12U†Z1Z2U:

Furthermore, the product of the above equations gives

Z1Z2 ¼ ðr2s12 þ s2r12ÞZ1 þ ðr1s12 þ s1r12ÞZ2

þ ðr1s2 þ s1r2ÞZ1Z2:

We note that this product cannot be a linear combination
of Z1 and Z2, which means that the vector ðr2s12 þ
s2r12; r1s12 þ s1r12; r1s2 þ s1r2Þ is linearly independent
from the orthogonal vectors ðr1; r2; r12Þ and ðs1; s2; s12Þ.
This independence means the matrix provided by these
vectors can be inverted, and, therefore, the operators
U†Z1U and U†Z2U can also be written as a linear
combination of Z1, Z2, and Z1Z2. Thus, U† ∈ B, and
we, therefore, show that B is a subgroup of Uð4Þ.
In order to prove that it is a Lie subgroup, we note that

fðUÞ ¼ ð½U†ZjU; Zk�Þj;k¼1;2 is a continuous function of U.
Furthermore, B is defined as the preimage of the set
fð0; 0; 0; 0Þg, which is a closed set. Therefore, B is
topologically closed. A topologically closed subgroup of
a Lie group is a Lie subgroup (Cartan’s theorem), and,
therefore, the proof is complete. ▪
We now follow ideas that are very similar to the analysis

of Ref. [60]. The Lie group B can be partitioned into cosets
of the connected component of the identity that we call C. C
is itself a Lie subgroup of B. This set of cosets is the
quotient group B=C. The main result of this Appendix can
be resumed in the following theorem.
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Theorem 1.—The unitary operator CNOT is not a member
of C, which means that the CNOT cannot be continuously
obtained from the identity in a bias-preserving process.
Proof.—As C is a connected Lie group, any element

C ∈ C can be written as C ¼ ΠkeiDk , where Dk is in c, the
Lie algebra of C. Now, note that for any ϵ ∈ R and any
D ∈ c, the operator eiϵD is also in C and, therefore, satisfies

½eiϵDZ1;2e−iϵD; Z1;2� ¼ 0:

Taking the derivative with respect to ϵ at ϵ ¼ 0, we get

½½D;Zj�; Zk� ¼ 0; j; k ¼ 1; 2:

Noting that D is necessarily a linear combination to two-
qubit Pauli operators, it is the same for ½D;Zj�, and,
therefore,

½D;Z1� ¼ r1Z1 þ r2Z2 þ r12Z1Z2;

½D;Z2� ¼ s1Z1 þ s2Z2 þ s12Z1Z2:

The only possibility for such a combination is that all
the coefficients vanish. Therefore, ½D;Z1;2� ¼ 0, or,
equivalently,

D ¼ c0I þ c1Z1 þ c2Z2 þ c12Z1Z2:

Therefore, the Lie algebra c is spanned by I, Z1, Z2, and
Z1Z2, which means that the associated Lie group does not
include the CNOT. ▪
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