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When embryonic stem cells differentiate, the mechanical properties of their nuclei evolve en route to
their terminal state. Measurements of the deformability of cell nuclei in the transitional state that intervenes
between the embryonic stem-cell state and the differentiation primed state of mouse stem cells indicate that
such nuclei are auxetic; i.e., they have a negative Poisson’s ratio. We show, using a theoretical model, how
this remarkable mechanical behavior results from the coupling between chromatin compaction states and
nuclear shape. Our biophysical approach, which treats chromatin as an active polymer system whose
mechanics is modulated by nucleosome binding and unbinding, reproduces experimental results. It
provides testable predictions for changes in chromatin compaction as a function of applied force, for the
correlations of chromatin compaction and nuclear shape, and for the in-phase and out-of-phase response of
these quantities to an applied uniaxial oscillatory force. Our model yields a biophysical interpretation of the
epigenetic landscape of stem cells, also suggesting how this landscape might be probed experimentally.
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I. INTRODUCTION

Embryonic stem cells (ES cells) occupy the apex of a
hierarchy of cellular states [1]. They can self-renew,
maintaining their “stemness,” but also differentiate into
varied cellular lineages when supplied with appropriate
biochemical or mechanical cues. This is the property of
pluripotency [2,3]. Cell lineage choice results from shifts in
patterns of gene expression, controlled by the rewiring of
gene regulatory networks. Such rewiring can arise because
the transcription factors that control the production of RNA
are present at different levels in different cell types. But
such shifts can also occur through biochemical changes at
the DNA level, such as the methylation of cytosine
residues, as well as through modifications in histone and
other architectural proteins that bind DNA [4,5]. Such
epigenetic modifications, thus termed because they do not
affect DNA sequence, alter the local structure and bio-
physical properties of chromatin, the term applied to DNA
in its natural state in the nuclei of living cells.

Changes in patterns of gene expression should have
biophysical correlates since they require actively tran-
scribed genes to be more accessible than silenced genes
[6]. Regions of chromatin that see higher levels of
transcriptional activity are typically more loosely packed
(euchromatin) than gene-poor and relatively more com-
pact (heterochromatin) regions. These regions can be
identified through local epigenetic marks [7]. The local
state of chromatin compaction is clearly relevant to the
biophysics of chromatin. It may assume added impor-
tance in the highly dynamic stem-cell state since ES cells
are known to be transcriptionally hyperactive [8,9]. In
addition, ES cell chromatin is “hyperdynamic,” with
histones binding and unbinding locally at an enhanced
rate compared to differentiated cells [10]. This increased
rate of binding and unbinding leads to larger fluctuations
in chromatin packaging. Stem-cell chromatin is thus
more fluidlike than the chromatin of differentiated cells.
Such fluidity likely contributes to the maintenance of
pluripotency [11].
Before lineage commitment, ES cells exhibit decondensed

chromatin and soft nuclei. A slowing down of histone
dynamics, a stiffening of the nuclear envelope, and global
chromatin remodeling all accompany differentiation, result-
ing in a transition from a more open chromatin configuration
to a more compact state [12–16]. The interplay of chromatin
packaging with fluctuations of the relatively pliable chro-
matin-enclosing nuclear envelope might reasonably be
expected to underly the special biophysical properties of
the stem-cell nucleus [17,18]. Purely mechanical cues,
such as substrate stiffness or substrate structure, are sufficient
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to drive stem-cell differentiation into preferred lineages
suggesting a biophysical link between nuclear mechanics,
chromatin packaging, and lineage choice [12,19,20].
Waddington originally visualized the differentiation

of stem cells in terms of a set of branching tracks
representing different cell fate choices [21]. A sub-
sequent, more pictorial version of this idea used the
analogy of a ball rolling along an “epigenetic landscape”
with minima chosen to represent stable differentiated
states [22,23]. Stable positions in this landscape have
been argued to correspond to attractors of a high-
dimensional nonlinear dynamical system controlled by
feedback [24]. This provides a particularly appealing and
pictorial way of understanding how stem-cell differentia-
tion into specific cell lineages can be visualized. Such ideas
naturally connect to other landscape descriptions of bio-
physical states and phenomena [25,26]. However, the exper-
imental corollaries of an epigenetic landscape and how, in
particular, nuclear mechanics might enter its description are
not well understood.
We ask whether recent biophysical measurements of

the mechanical properties of stem-cell nuclei can pro-
vide insights into these broader questions [27–29]. We
first note that almost all materials have a positive
Poisson’s ratio, becoming wider in the transverse direc-
tion when compressed uniaxially along a longitudinal
dimension [30,31]. Materials with a negative Poisson’s
ratio, such as foams, are termed auxetics [32,33].
Pagliara et al. [34] report results from atomic force
microscopy (AFM) measurements of the reduced modu-
lus K ¼ E=ð1 − ν2Þ, with E the uniaxial stiffness and ν
the Poisson’s ratio, of naive mouse embryonic stem-cell
(N-ESC) nuclei exiting the pluripotent state en route to
differentiation via a transitional state (T-ESC) and a
differentiation primed (P) state. In the transitional state,
obtained when specific inhibitors preventing the tran-
sition to a differentiation primed state are removed, the
cell nuclei become smaller by about 5%–10% in cross
section when compressed to the level of about 2 μm
with the AFM probe [34]. Similar results were obtained
by observing changes in nuclear dimensions when cells
in the T-ESC state were set in flow along a micro-
channel. Whereas both the N-ESC and the P states
exhibit a positive Poisson’s ratio, the T-ESC state that
intervenes between them is thus auxetic, with a negative
Poisson’s ratio. Pagliara et al. suggest that the auxetic
phenotype might be connected to chromatin deconden-
sation since chromatin in the transitional state is less
condensed than in either the embryonic stem-cell state
or the differentiation primed state [34]. Disrupting the
actin cytoskeleton through Cytochalasin D treatment did
not remove auxeticity, indicating that it might naturally
originate in the biophysical properties of the nucleus
itself and not of the extranuclear environment.

The model we describe here addresses these experiments,
placing them in a wider context of our understanding of the
epigenetic landscape of stem cells. It uses four biophysical
assumptions. These follow from the experimental observa-
tions. First, the nucleus in the auxetic regime is compress-
ible, a fundamental property of the auxetic state [35,36].
Second, mechanical response to a uniaxial external force in
such a regime must distinguish between directions parallel to
the force and perpendicular to it, although such anisotropy
need not be intrinsic to isolated stem cells in the absence of
an applied force [37]. Third, a number of experiments
indicating chromatin fluidity in all but terminally differ-
entiated states argue that chromatin is best described as a
confined, active polymer fluid in a semidilute regime [38].
(Indeed, the formation of heterochromatin foci has been
discussed in analogy with active phase separation in liquid-
liquid mixtures [39,40].) An alternative view of auxeticity,
which considers the nucleoplasm to be a gel and uses ideas
from phase separation, is described in Ref. [41]. We treat
activity as equivalent to a (higher) effective temperature
[42–44]. Fourth and finally, we assume that auxetic behavior
arises from the form of the coupling of chromatin compac-
tion states to mechanical variables, which we choose as
nuclear dimensions parallel to, as well as perpendicular to,
the applied force. These four assumptions, all reasonable
from a biophysical standpoint, inform our mathematical
model. We use them to derive a model nonlinear dynamical
system describing auxetic behavior in the transitional state of
stem cells.

II. MATERIALS AND METHODS

We first identify relevant variables of interest, in particular,
those that are amenable to measurement. Figure 1(a) shows a
schematic of the experiments of Ref. [34], while Fig. 1(b)
illustrates how the on-off dynamics of nucleosomes in the
stem-cell state might alter chromatin packaging. Figure 1(c)
illustrates the definitions of the fundamental mechanical
variables that enter our model. We use a single variable,
labeled Ψ, to describe nucleosome-induced compaction
of chromatin. The variable Ψ can be thought of as represent-
ing the number of nucleosomes bound to chromatin at a
given time, with the biophysical interpretation that a larger
number of bound nucleosomes yields a more compact
chromatin structure. The structural variables Rk ¼R0þδRk
and R⊥ ¼ R0 þ δR⊥ denote nuclear dimensions parallel and
perpendicular to the direction of the applied force f, as
shown. Figures 1(d)–1(e) illustrate how nuclei deform under
force in both the nonauxetic (d) and the auxetic (e) cases.
Finally, Figs. 1(f) and 1(g) supply schematics of auxetic
and nonauxetic response to a force f, in the variables
Ψ, Rk, and R⊥. How to derive the schematics of Figs. 1(f)
and 1(g), including the behavior ofΨ in both the auxetic and
nonauxetic cases predicted by the theoretical formulation, is
the subject of this paper.
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A. Model description

Our equations are formulated in terms of δΨ, δRk, and
δR⊥ defined as in Fig. 1 and derived below. The equations
describing how these quantities change in time take the
form

dðδΨÞ
dt

¼ −
dVðδΨÞ
dδΨ

þ B

�
1

2
δRk þ δR⊥

�
þ ηΨ; ð1aÞ

dðδRkÞ
dt

¼ −CδRk −DδΨ − fk þ ηR; ð1bÞ

dðδR⊥Þ
dt

¼ −CδR⊥ −DδΨþ f⊥ þ η0R: ð1cÞ

We have used our freedom to choose units suitably to
“de-dimensionalize” the coefficients that appear in these
equations. The first term on the right-hand side of each of
these equations represents the independent relaxation of
fluctuations away from fΨ0; R0g. We assume that the δΨ
variable relaxes subject to an effective potential VðδΨÞ.
The interpretation of this term will become clearer as we
proceed. The second term couples δΨ to the mechanical
variables Rk ¼ R0 þ δRk and R⊥ ¼ R0 þ δR⊥, with coef-
ficient B; the relative factor of 2 accounts for the 3D
geometry. This coupling appears to lowest order in the
fluctuations δRk and δR⊥. This is the simplest form that
these equations could take. Their biophysical content lies in

the estimates of the numerical values associated with the
coefficients. More subtly, the coupling between chromatin
compaction and nuclear dimensions is to be found in the
cross terms in Eq. (1).
In the absence of a force, Rk and R⊥ are equivalent. The

symmetry between them is broken only by fk and f⊥.
These forces represent both external forces and forces that
arise from the remodeling of the extranuclear actin cytos-
keleton, which can be assumed to be uniform if fk ¼ 0. We
can assume that fk couples primarily to δRk, whereas f⊥
couples to δR⊥. In the absence of external forces, the two
equations reduce to a single one. The quantity C represents
a ratio of timescales for the relaxation of the Ψ and the R
variables. If Ψ0 represents a stable state, or at least a state
that evolves slowly on the timescale of the fluctuations δΨ,
we can expand in these fluctuations. At the simplest level
then, these fluctuations are subject to a harmonic potential.
The case where δRk ¼ δR⊥ ≡ δR, with f⊥ ¼ fk ¼ 0 and
the VðδΨÞ term chosen to be bistable, was studied in
Ref. [45], in the context of nuclear-size oscillations in the
ES state of mouse stem cells. We use this more specific
form of these equations when we identify signals of auxetic
behavior in fluctuations within the undeformed steady
state. Our results suggest that signatures of the transition
between auxetic and nonauxetic behavior might be most
easily seen in these fluctuations.
In Ref. [45], in a description of enhanced fluctuations

in mouse N-ESCs, B > 0 was assumed. The physical

(a) (b)

(c) (d) (e)

(f)

(g)

p

FIG. 1. (a) Schematic of the AFM experiment of Ref. [34]. (b) Fluctuations in chromatin compaction arising from the fast on-off
dynamics of nucleosomes in the stem-cell state, where histones are hyperdynamic. (c) Definitions of the variables Ψ, Rk, and R⊥ in the
AFM-based indentation experiment, including the applied force f arising from the indentation. (d) Illustration of normal, i.e.,
nonauxetic behavior in the experiments, showing how the nucleus expands in the direction perpendicular to the applied force f, while
the nuclear dimension in the direction parallel to the force contracts. (e) Illustration of auxetic behavior, showing how the nucleus
contracts both in the direction perpendicular to the applied force and in the direction parallel to it. The schematic plots in (f) for the
nonauxetic case and (g) for the auxetic case show how the variablesΨ, Rk, and R⊥ behave in both limits as f is increased from zero. The
unperturbed nucleus is taken to be spherical.
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interpretation in that work was that increasing the size of
the nucleus would expose binding sites for histones. This
case leads to a concomitant increase in Ψ, which would
then cause the nucleus to shrink [45]. The coupled
dynamics of the fast histone on-off rates in the hyper-
dynamic case with the slower fluctuations in nuclear size
leads to interesting fluctuation behavior. Such a choice of
sign inevitably leads to nonauxetic behavior; see below.
Experiments show that chromatin is most decondensed

in the transitional state, as opposed to either the ES state or
the differentiation primed states between which it intervenes
[34]. A further expansion of nuclear dimensions might then
be expected to result in the expulsion of nucleosomes,
rather than their accumulation, in this intermediate state.
Incorporating this idea into the modeling requires that we
consider the case where B < 0. Indeed, treating the naive
pluripotent ESC state with trichostatin A, a Histone deace-
tylase (HDAC) inhibitor that globally decondenses chroma-
tin makes the N-ESC auxetic, arguing for the connection to
our modeling. We can thus view the transition between the
naive stem cell, the transitional state, and the differentiation
primed state in terms of a reentrant behavior in the sign of B.
This prediction is experimentally testable.
The on-off dynamics of histones is inherently noisy. Our

equations account for such stochastic effects, represented as
additive noise with standard properties, with terms repre-
sented by ηΨ, ηR, and η0R. In general, the effects of the noise
should be most significant for the fast fluctuating Ψ
variable. We thus choose to retain only the Gaussian-
distributed, delta-correlated ηΨ term in our equations,
setting ηR ¼ η0R ¼ 0.

B. Derivation of model equations: R equation

Our equations are motivated in the following way,
illustrated, for simplicity, in the isotropic case: Assume first
that the nucleus is a sphere of radius R, prestressed by
chromatin polymer pressure. Given compressibility, assume
that the dominant modes of fluctuations are breathing
modes, associated with an elastic energyEel ¼ ½Ka=ð2a0Þ�×
½ða − a0Þ2�, which penalizes changes in area a from an
unstressed or even prestressed statewhere the area is a0. This
term also accounts for the contribution of the actin cytoske-
leton, which enters as a modified area expansion modulus
Ka. Fluid flow in and out of the sphere, driven by a pressure
imbalance, leads to volume changes and is resisted by a cost
for deviations in the surface area from its preferred value.
Describing stem-cell chromatin as a polymer solution at

an effective (active) temperature T�, the free energy of the
polymer solution in units of kBT� is of the form fmðϕÞ ¼
ðϕ=NÞ lnϕþ ð1− ϕÞ lnð1− ϕÞ þ χϕð1− ϕÞ þ 1=ð24πξ3Þ,
where ϕ is the volume fraction of the polymer and ξ ∼
ϕ−ν=ð3ν−1Þ is the correlation term arising from monomer
density fluctuations [46,47]. Activity enters as an effective
temperature T�. More subtly, it modifies the effective Flory
term χ.

The polymer osmotic pressure follows from Π ¼
½ðkBT�Þ=νc�½ϕð∂fm=∂ϕÞ − fm�, which yields Π ¼
½ðkBT�Þ=νc�½ðϕ=NÞ − lnð1 − ϕÞ − ϕ − χϕ2�, where kB is
the Boltzmann constant, T� is the effective temperature,
νc is the monomer volume, ϕ is the volume fraction of the
polymer, and N is the degree of polymerization [46].
Physically, χ alters the relative balance of chromatin-
chromatin and chromatin-solvent interactions, as manifest
in the compaction state of chromatin. The effective
Flory parameter χ is then tuned by the fraction of
bound nucleosomes, which controls Ψ∶χ ¼ χðΨÞ. We then
have

ΔΠ ¼ −
kBT�ϕ2

0

νc
χ0δΨ; ð2Þ

where χ0 ¼ dχ=dΨ. Penalizing fluctuations of the nuclear
envelope from its preferred area a0 yields a restoring force
of the form F ¼ −16πKaδR and thus a pressure term

ΔP ¼ 4Ka

R2
0

δR: ð3Þ

Darcy’s law provides an expression for the rate of change of
volume dV=dt ¼ ½ðκAÞ=ðμLÞ�ðΔΠ − ΔPÞ, where κ is the
permeability (m2), A is the area of the nucleus, μ the
viscosity, and L the length over which the pressure drops
[48]. This expression yields, where we use the notation
_R ¼ dR=dt, _Ψ ¼ dΨ=dt,

_R ¼ −
�
4κKa

μLR2
0

�
δR −

�
κkBT�ϕ2

0

μLνc
χ0
�
δΨ;

⇒ _R ¼ −CδR −DδΨ;

where C ¼ ½ð4κKaÞ=ðμLR2
0Þ� and D ¼ ½ðκkBT�ϕ2

0Þ=
ðμLνcÞ� χ0. Note that D > 0 is required by the biophysical
input that the binding of histones must lead to a contraction
in DNA. The larger the polymer-solvent interaction, the
smaller the Flory-Huggins χ parameter, implying that we
can interpret histone binding and the consequent compac-
tion of DNA as an effective decrease of the polymer-solvent
interaction with histone binding. This result then implies
that the effective Flory-Huggins parameter should increase
with Ψ, implying that χ0 > 0. Here, ΔΠ − ΔP provides the
driving force, in this case, the difference between polymer
and Laplace pressures relative to their unperturbed values.
This case holds in the absence of a force f.
This result is easily generalized to the anisotropic case.

C. Derivation of model equations: Ψ equation

We now discuss the dynamics of δΨ. First, ignoring the
coupling to R⊥ and Rk, we model fluctuations in Ψ as
relaxing in an overdamped manner to Ψ0. This dynamics
explores the one-dimensional landscape defined through
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the effective potential VðδΨÞ, with Ψ0 at least a local
minimum. Consider N nucleosome binding sites on a piece
of DNA, in equilibrium with unbound nucleosomes at
chemical potential μ, with the energy gain from
nucleosome binding to DNA being ϵ. The probability of
the nucleosome being bound is the Fermi function p ¼
1=ð1þ eðϵ−μÞ=kBTÞ since this is an effective two-state
problem at each binding site. If the radius of the confining
sphere is changed from R0 to R ¼ R0 þ δR, the DNA will
stretch in place, altering ϵ. Assuming ϵ ¼ ϵðRÞ, ϵðRÞ¼
ϵðR0þδRÞ≈ϵðR0Þþϵ0δR, where ϵ0 ¼ dϵ=dδR. Ex-
panding e−ϵ

0δR=kBT≈1−ϵ0δR=kBT yields δΨ≈fðNx0ϵ0δRÞ=
½kBTð1þx0Þ2�g, where e−μ=kBT ¼ ζ and ϵðR0Þ ¼ ϵ0, x0 ¼
ζe−ϵ0=kBT . Thus, changes in R also drive changes in Ψ,
which evolves to its final value, given the change δR,
through a kinetic coefficient that multiplies the term above.
Adding the term in δΨ coming from the epigenetic
potential, which can be assumed to be quadratic at lowest
order in an expansion about the stable value Ψ0:VðδΨÞ ¼
1
2
AðδΨÞ2, we have our final result: _Ψ ¼ −AδΨþ BδR.

Here, A is simply the inverse of the relaxation time for
compaction fluctuations τΨ, defined below. The sign of B
depends on the sign of ϵ0 since all other quantities that enter
its definition (N; x0, and T) are explicitly positive, reducing
to the question of whether the nucleosome binding energy
is reduced when the nucleus is expanded. In general, as is
known from in vitro single-molecule experiments, extend-
ing DNA expels bound nucleosomes, implying that their
binding energy is reduced upon stretching; thus, the sign of
B should be negative for the auxetic state, given our
interpretation above. More details of the physical argu-
ments are provided in Ref. [49].

D. Estimation of parameters

We now estimate C¼4κKa=μLR2
0 and D ¼ κkBT�ϕ2

0=
μLνcχ0. We take κ ¼ l2p, relating the permeability κ to the
pore size lp. Assuming a nuclear pore complex size of lp ≃
5 nm [50], this yields κ ¼ 2.5 × 10−17 m2. From plate
theory, the area modulus Ka and the Young’s modulus E
are related through Ka ≈ Et [30], where t is the thickness
of the plate. Thus, C ¼ ½ð4κκAÞ=ðμLR2

0Þ� ≈ ½ð4l2p × EtÞ=
ðμtR2

0Þ� ¼ ½ð4l2pEÞ=ðμR2
0Þ�. With E ≈ 200 Pa [51–53], the

radius of the nucleus R0 ¼ 5 × 10−6 m and μ ≈ 2–3
centipoise ≈ 2 × 10−3 Pa- sec [54], C ≈ 0.4 sec−1. To cal-
culateD, we assume that the length over which the pressure
drops is the same as the membrane thickness (65 nm [55]).
With νc ¼ ð10 nmÞ3 [56–58], a polymer volume fraction
of approximately 0.1 [59] (but see also Refs. [60,61]), and
T� ≃ 300 K, we obtain D ≈ 8 × 10−6χ0 m= sec. Our esti-
mate for the polymer volume fraction is discussed further
in the Appendix A.

E. Mapping to the experimental system

In a steady state, δΨ¼½ð−BfÞ=ð2ACþ3BDÞ�;δRk¼
−½ð2ACþ2BDÞ=ð2ACþ3BDÞ�ðf=CÞ, and δR⊥ ¼ ½ðBDÞ=
ð2ACþ 3BDÞ�ðf=CÞ. For finiteness, we require 2ACþ
3BD ≠ 0. From this requirement, the Poisson’s ratio is
ν ¼ −½ðδR⊥Þ=ðδRkÞ� ¼ ½ðBDÞ=ð2CAþ 2BDÞ�. Choosing
the experimental value of ν ¼ −0.25 and rearranging
the above expression, we find that ½ðCAÞ=ðBDÞ� ¼ −3.
Making a reasonable choice for the ratio τΨ=τR ≃ 0.01
yields τΨ, and the value of C obtained above yields τR ¼
2.5 sec and τΨ ¼ 2.5 × 10−2 sec, with A ¼ 40 sec−1. We
obtain B¼−½ðCAÞ=ð3DÞ� ¼−½ð7×105×5×107Þ=ð3χ0Þ�¼
−½ð7×105Þ=ðχ0Þ�m−1sec−1. Our final set of parameter
values is then C ¼ 0.4 sec−1, τR ¼ 2.5 sec, D ¼
8 × 10−6χ0 m-sec−1, A ¼ 40 sec−1, τΨ ¼ 2.5 × 10−2 sec,
B ¼ −½ð7 × 105Þ=χ0� m−1 sec−1. In dimensionless units,
taking τΨ ¼ 2.5 × 10−2 sec and measuring the length in
units of R0 yields A ¼ 1.0; C ¼ 0.01; D ¼ 0.04χ0, and
B ¼ −0.09=χ0. If we assume ðdχ=dδΨÞjΨ¼Ψ0

≃ ðχ=Ψ0Þ,
χ ≈ 0.5, and Ψ0 ¼ 1, we obtain χ0 ¼ 0.5.

F. Numerical simulations

Our numerical simulations implement Langevin dynam-
ics in solving the stochastic equations (1). We use both a
simple Euler discretization and a fourth-order Runge-Kutta
method, checking that both give essentially similar results.

III. RESULTS

A. Auxetic and normal mechanical behavior
in a model description of nuclear indentation

The AFM indentation experiment corresponds to taking
f ¼ fk ≠ 0 and setting f⊥ ¼ 0. The set of model equa-
tions (1) have a number of parameters, which we fix using
experimental and theoretical input. The choice of param-
eters and the range of values they can take are discussed in
Sec. II. The solutions of these equations are provided in
Appendix B.
Figure 2 shows plots of δΨ, δRk, and δR⊥ [Fig. 2,

panels (e)–(h)] for small f, as obtained from our model
equations. The quantities δΨ; δRk, and δR⊥ vary linearly
with f, a consequence of the fact that we assume that
VðδΨÞ increases quadratically about its stable value. This is
across the parameter values shown in Figs. 2(a)–2(d), for
the state points ðB;CÞ marked on the figures with the filled
black circle. These plots are for a choice of parameters
corresponding to nonauxetic, i.e., regular behavior. For the
normal, i.e., nonauxetic state, the slopes of δRk and δR⊥ vs
f should have opposite signs.
Our model predicts that the slope of δΨ vs f is negative;

i.e., the compaction decreases with the applied force in the
nonauxetic state; see Fig. 2, panels (e) and (h).
In Figs. 2(m)–2(p), we also show results for the auxetic

case, where the slopes of δRk and δR⊥ vs f have the same
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sign. Note that δRk and δR⊥ now both decrease with f. This
result indicates auxetic behavior. This behavior is seen
across the parameter values shown in Figs. 2(i)–2(l), for the
state points marked on the figures with the filled black
circle. These parameter values are chosen in the regime
where the fixed point is stable, shown in blue. (The grey
region shows the regime in which the equations have
unstable solutions.) In the auxetic case, the slope of δΨ vs f
is positive.
Thus, the solutions of our model equations yield both

auxetic and nonauxetic behavior, controlled by the sign of
B in Eqs. (1). The results are consistent with the schematics
of Figs. 1(f) and 1(g), which show how chromatin com-
paction varies upon the application of an external force.

The additional information they provide relates to the
behavior of the compaction variable. As shown in Sec. II,
the parameter values we derive are consistent with exper-
imental measures of auxeticity in transitional stem-cell
nuclei.

B. Describing nuclear shape changes
in microchannel flow

Nuclear indentation through the AFM method described
in Ref. [34] provides a direct way of accessing the auxetic
mechanical behavior of the nucleus. Here, a fixed force is
applied along the longitudinal (k) direction, and a trans-
verse ð⊥Þ deformation is measured. An alternative method

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 2. Parameter choices for C and D: (a) B ¼ 10.0, (b) B ¼ 2.0, (c) B ¼ 0.17, (d) B ¼ 0.1, all in the regime of nonauxetic (regular)
behavior. We show the behavior of the dynamical variable with the increase in force for the parameter values (e) C ¼
0.01; D ¼ 0.02; B ¼ 10.0; (f) C ¼ 0.01; D ¼ 0.02; B ¼ 2.0; (g) C ¼ 0.01; D ¼ 0.02; B ¼ 0.17; (h) C ¼ 0.01; D ¼ 0.02; B ¼ 0.1.
Parameter choices for C andD are shown in the auxetic regime with (i) B ¼ −0.1, (j) B ¼ −0.17, (k) B ¼ −2.0, (l) B ¼ −10.0. The line
separating the blue and gray regions marks the stable-unstable boundary. We show the behavior of the dynamical variable with the
increase in force for the parameter values (m) C ¼ 0.01; D ¼ 0.02; B ¼ −0.1; (n) C ¼ 0.01; D ¼ 0.02; B ¼ −0.17; (o)
C ¼ 0.01; D ¼ 0.002; B ¼ −2.0; (p) C ¼ 0.1; D ¼ 0.002; B ¼ −10.0. [Red and blue show the regions where a stable solution is
obtained (red ¼ normal, blue ¼ auxetic), while grey shows where solutions become unstable].
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involves an optofluidic assay, in which cells are passed
through narrow microchannels of controlled width. These
cells are then imaged through fluorescence microscopy of
Syto13 labeled cells. When the width of the channel is
comparable to the cell size, cell dimensions are constrained.
A further complication is the role of stretching stresses
caused by cytoskeletal strain acting when cells are confined
to the microchannel. Given our model assumptions, we
may model the confined case by accounting for both fk and
f⊥ in the governing equations, Eqs. (1). Whereas fk is
primarily controlled by the size of the constriction through
which these cells pass, f⊥ derives from the anisotropic
remodeling of the actin cytoskeleton.
The geometry of the microchannel experiments is shown

in Fig. 3(a), where we show a cell confined to a channel
whose width is comparable to cell dimensions. In the
experiments, the channel width is 12 μm, while cell sizes
range from 6 μm to 14 μm. Figure 3(b) shows a schematic
of the effects of the combination of longitudinal and
transverse forces applied to cells of different sizes, as
obtained in our calculations; see below. For small cells in
the auxetic case, if they have unconfined dimensions much
smaller than the channel width, their longitudinal and
transverse dimensions increase when they are confined
to the channel. For larger cells in the same limit, both
dimensions decrease. These results are consistent with
expectations from auxetic behavior. On the other hand,
irrespective of cell sizes in the nonauxetic case, the
longitudinal dimension decreases while the transverse
dimension increases. These results are consistent with
the behavior shown in Fig. 3(b). These schematic results
recapitulate the results of Ref. [34].
To extend this case to the mechanical response of stem

cells of various sizes in a microchannel, our modeling
strategy is the following. The experiments, performed on a
range of cell sizes at a fixed microchannel width, obtain
longitudinal and transverse strains for an ensemble of cells
of different sizes. At the extreme limits of cell sizes,
Fig. S10 of Ref. [34] shows averaged strains in the parallel
and perpendicular directions. These strains are proportional
to Rk and R⊥ in our definitions in Eq. (1), and using R0 as
our unit of length converts this proportionality to an
equality. We label these strains as Sk and S⊥ and display
them in Fig. 3(c), (I)–(III), for the transitional, primed, and
naive ES cell states. Starting with these results, we can
invert the relationship between strains and forces, finding
the effective fk and f⊥ that produce these strains.
We can now explore the space of values of ðfk; f⊥Þ,

constructing contour plots of δΨ, δR⊥, and δRk, as shown
in Fig. 3(d), (I)–(III). The parameters chosen are for
the smallest and the largest cells, using the data shown
in Fig. 3(c), (I). The solid lines in Fig. 3(d), (II) and (III),
represent a choice of a few lines of constant strain in each
case, as a function of fk and f⊥. These lines then predict

the forces ðfk; f⊥Þ required to create a fixed strain across
cells of different sizes.
The extremal points of Fig. 3(b), (I)–(III), are now

associated to points on the ðfk; f⊥Þ surface. We can
now model the data for cells of intermediate sizes by
supposing that fk and f⊥ vary independently and linearly
between their terminal values. We ask if these results can fit
data for intermediate cell sizes, shown in the scatter plot
illustrated in Fig. 3 of Ref. [34]. These results are shown in
Fig. 3(e), (I)–(III), for transitional, primed, and naive ES
cell states. The experimental data are shown as points,
while the theoretical prediction that follows from our
analysis is shown as the green line. In all three cases,
there is an approximate linear relationship between Sk
and S⊥ that our calculation captures. The magnitude of the
strains at intermediate values of cell size is correctly
rendered.
Thus, our model, despite its simplicity, captures all

essential features of the data of Ref. [34]. As we have
pointed out, the model can then be used to provide specific
predictions for mechanical response in cells of different
sizes. Also, even though the chromatin compaction variable
δΨ was not measured in those experiments, our model
provides specific predictions for how this quantity varies
across different cell sizes in comparison to the width of the
microchannel. This prediction is experimentally testable,
and we discuss possible ways of doing so in the concluding
section.

C. Autocorrelations and cross-correlations of
chromatin compaction and nuclear dimensions

in the auxetic regime

The previous sections explored the use of an external
force, either applied directly using an AFM tip or indirectly
by confining cells to a narrow microchannel, in under-
standing auxetic and nonauxetic behavior. However, our
general model formulation suggests how less-invasive ways
of probing the coupled mechanical response of chromatin
compaction and nuclear dimensions might provide useful
information. Let us assume that we can measure both
chromatin compaction and the dimensions of the nucleus
simultaneously as a function of time—possible ways of
doing this are discussed later. Assuming an initially
spherical nucleus, Rk and R⊥ coincide since now there
is no externally imposed direction that leads to an aniso-
tropic mechanical response. The only relevant mechanical
variable is then RðtÞ, the radius of the spherical nucleus as a
function of time. Our equations are now simpler since they
involve only the two variables Ψ and R. The solution to
the full set of equations is provided in Supplementary
Information.
Given measurements ofΨðtÞ and RðtÞ ¼ R0 þ δRðtÞ, we

can ask whether signatures of auxetic and nonauxetic
behavior might be visible in such measurements. Since
such measurements provide data in time, we can compute
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autocorrelations of these variables as well as their cross-
correlations. The solutions to these equations can be
computed explicitly and are provided in Supplementary
Material. Figure 4 shows our computation (lines show

exact calculations; points are numerical solutions of
the Langevin equation) of autocorrelations and cross-
correlations in the model, with parameters chosen within
the auxetic regime.

(a) (b)

(c)

(d)

(e)

(I) (II) (III)

(I) (II) (III)

(I) (II) (III)

Small
nuclei

Large
nuclei

Auxetic Nonauxetic

FIG. 3. (a) Schematic of a cell confined to a microchannel with width comparable to cell dimensions. (b) Schematic of the effects of
the combination of longitudinal and transverse forces applied to cells of different sizes. These effects follow from our calculations and
are consistent with the results of Ref. [34]. (c) Plots of Sk and S⊥ extracted from experiments, for the transitional, primed, and naive ES
cell states. The arrow connects the two terminal points. (d) Contour plots for δΨ, δRk, and δR⊥, against ðfk; f⊥Þ, with solid lines
showing loci of constant strain. (e) Predictions for transitional, primed, and naive ES cell states, of Sk and S⊥. The straight line represents
experimental predictions for intermediate cell sizes. Experimental data are digitized from the scatter plot of Fig. S10 of Ref. [34] and
shown on the same figure.
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The autocorrelations hδΨð0ÞδΨðtÞi and hδRð0ÞδRðtÞi
are shown in Figs. 4(a) and 4(b), whereas the cross-
correlations hδΨð0ÞδRðtÞi and hδΨð0ÞδRðtÞi are shown
in Figs. 4(c) and 4(d), respectively. The insets expand
the behavior of the cross-correlation functions close to the
origin, where two timescales for relaxation compete.
The timescale for the relaxation of autocorrelations in the
Ψ variable is substantially smaller than for the R variable.
The cross-correlations hδΨð0ÞδRðtÞi and hδΨð0ÞδRðtÞi
both relax to zero in an interesting two-step process, with
a sharp initial step reflecting the relaxation of the fast
variable Ψ followed by a slower relaxation, primarily
driven by the R variable.
We can further investigate (see Supplementary Informa-

tion) model predictions for the case in which a weak force
is applied and allowed to vary in time in a sinusoidal
fashion. For our linear system of equations, this then
implies that quantities such as Ψ; Rk, and R⊥ should also
oscillate at the same frequency, but with a phase lag
between them. This phase lag predicts the relative impor-
tance of what is termed reactive and dissipative response,
with the first largely located in the elastic properties of the
nuclear envelope and the second associated to dissipation
connected to the flow of fluid across the nuclear envelope
as well as of the friction encountered by chromatin as its
fluctuations relax. These can be predicted from the theo-
retical formulation and indeed are the focus of standard

experiments in the physics literature that studies soft
materials, but whether their experimental analogue can
be probed in biophysical measurements on stem cells is an
open question.
Extracting behavior as shown in Fig. 4 would constitute

a powerful test of model predictions.

D. Correlations across the auxetic-nonauxetic
boundary as probes of the transition

Our model describes chromatin compaction states using
a single variable Ψ, with larger values of Ψ representing
overall more compact states of chromatin packing. We
propose that Ψ fluctuates in time about an approximately
constant value but that these fluctuations are constrained by
a chromatin compaction potential defined as VðδΨ), which
controls how large they can be. These fluctuations are
also constrained by their coupling to nuclear dimensions
through the variables δRk and δR⊥. They are influenced, as
well, by the inherent noisiness of nucleosome on-off
dynamics in a hyperdynamic state. All these effects are
included in our model.
This choice of a “chromatin compaction potential”

identifies the relevant biophysical distinction between more
open, gene-rich euchromatin and more tightly bound, gene-
poor heterochromatin as broadly being one of local
compaction. We project the multidimensional landscape of
potential chromatin states thatWaddington envisaged,which
should be more generally describable through a spatially
varying and sequence-dependent compaction field, onto a
single scalar compaction variable. Our equations then pro-
vide a way of understanding how such a compactionvariable
couples to mechanical variables describing nuclear shape
and size.
Our results suggest a simple method for determining the

location of the auxetic-to-nonauxetic transition. We work in
the limit described in the previous section, where we infer
the transition by monitoring the system noninvasively,
measuring only the variables Ψ and R as functions of time
in a steady state. From these measurements, we can
calculate their autocorrelations and cross-correlations.
In Fig. 5, we show plots of the correlation functions

hδRð0ÞδΨðtÞi and hδΨð0ÞδRðtÞi. These plots illustrate that
hδRð0ÞδΨðtÞi is a good indicator of the transition from
auxetic-to-nonauxetic behavior, with hδRð0ÞδΨðtÞi chang-
ing the sign of its slope upon approaching its asymptotic
value across the auxetic-to-nonauxetic boundary. On the
boundary, there is no correlation at all, to this order,
between fluctuations in the nuclear dimension and fluctua-
tions in chromatin compaction. Since the change from
auxetic-to-nonauxetic behavior is marked by the parameter
B changing sign, it must cross zero at least at one point.
(Since the experimental sequence encountered as ES
cells differentiate is nonauxetic → auxetic → nonauxetic,
this suggests that B should change sign at least twice.

(a) (b)

(c) (d)

FIG. 4. Computations of autocorrelations and cross-correla-
tions in the simplified two-component model, in the auxetic
regime, with C ¼ 0.01, D ¼ 0.02, and B ¼ −0.17. We illustrate
the calculation of the following correlation functions: (a) the
autocorrelation of the δΨ variable, hδΨð0ÞδΨðtÞi, (b) the auto-
correlation of the δR variable, hδRð0ÞδRðtÞi, (c) The cross-
correlation between δΨ and δR, hδΨð0ÞδRðtÞi, and (d) the cross-
correlation of δR and δΨ, hδRð0ÞδΨðtÞi. The insets show the
behavior close to the origin in two special cases where there is a
competition between the two timescales for relaxation. Points
represent the numerical solution of the Langevin equations, while
lines represent the analytic formulas.
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This specific prediction can be addressed in experiments, as
we discuss below.)
Now, note that at this special point, fluctuations in Ψ

decouple from fluctuations in the nuclear-size variable to
linear order; fluctuations in Ψ influence fluctuations in δR
but not vice versa. As we show below, this case provides a
practical way of accessing VðδΨÞ.

E. Inferring VðδΨÞ from experimental data

We can describe the transition between ESC, T-ESC, and
differentiation-primed states in terms of a trajectory in the
space of the variables C, D, and B. As is standard, we can
assume that the parameters controlling these variables must

vary smoothly since they reflect continuous shifts in the
transcriptome; indeed, the assumption of smooth variation is
central to landscape ideas. As the stem cell transits between
these states, it encounters auxetic (B < 0) [Figs. 6(g)–6(i)]
and nonauxetic (B > 0) [Figs. 6(d)–6(f)] states, with an
intervening B ¼ 0 state [Figs. 6(a)–6(c)].
For each of these chosen values of B, we illustrate the

choice of a specific chromatin compaction potential that we
can model as a smooth function, shown via the solid lines in
each subplot. We choose these functions to be (1) a simple
quadratic potential, (2) a quartic potential with a shallow
minimum at the origin and two symmetrically placed
deeper minima on either side, and (3) the more complex
case of a quadratic potential with a superposed sinusoidal

10-3
10-2

10-1

100

10-2

10-1

100

10-3

D

C

B

(a) (b) (c)

FIG. 5. (a) Our choice of parameters in ðB;C;DÞ space, with B, shown on the vertical axis, varied so as to cross the auxetic-to-
nonauxetic boundary. Columns (b) and (c) illustrate the correlation functions hδRð0ÞδΨðtÞi and hδΨð0ÞδRðtÞi. Across the auxetic-to-
nonauxetic boundary, where the sign of B changes, the Ψ variable decouples, at lowest order, from the δR variable, leading to a flat
behavior of the correlation hδRð0ÞδΨðtÞi. In contrast, while Ψ is not influenced by δR, fluctuations in Ψ do couple to δR, leading to a
nontrivial relaxation of the correlation function hδΨð0ÞδRðtÞi. This change of sign of dhδRð0ÞδΨðtÞi=dt indicates that the auxetic to
nonauxetic boundary has been crossed.
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modulation that provides more intricate structure. We do
not yet know what form such a potential takes in the
experiments, but we intend to illustrate a method by which
information from the measurement of fluctuations could
help in its extraction.
For B ¼ 0, as shown in Figs. 6(a)–6(c) (blue filled

circles), given that δΨðtÞ reflects its relaxation in the
chromatin compaction potential, we form a histogram of
δΨ values. Since the governing equation for the δΨ variable
can be interpreted as a Langevin equation for a particle
moving in the specified potential, the steady-state proba-
bility distribution of δΨ can be inferred from this histogram
in a straightforward manner, as discussed in Appendix C.
Figures 6(a)–6(c) show results from a numerical and
analytic reconstruction of the assumed potential VðδΨÞ
using such a method. In this way, we thus proceed from the
histogram of measured values to the potential that controls
such fluctuations. While the data used in these figures are
“synthetic,” the procedure for extracting the potential from
them is robust.
Provided jBj ≠ 0 is not too large and for parameter

values comparable to the ones we use, this procedure
reconstructs VðδΨÞ reasonably well, a consequence of the
fact that fluctuations in δR couple relatively weakly to
fluctuations in δΨ. Figures 6(a)–6(c) show VðδΨÞ, obtained
from histograms of δΨ values for B ¼ −1 (red filled
circles) and B ¼ 1 (green filled circles). These diagrams
suggest that one need not precisely locate the region where
B vanishes for this approach to be of use.

IV. DISCUSSION

An “epigenetic landscape,”whose lowest points represent
gene-expression patterns encoding specific differentiated
states, is often pictorially represented in the following way
[24,62]: Imagine projecting all possible gene-expression
states onto a two-dimensional (XY) plane. This projection
is constrained by the requirement that two nearby state points
represent closely related expression patterns. (Naively, the
rewiring of gene-regulatory networks required to convert

expression programs from one cell type to another should be
smaller themore similar these cell types are [24].) The height
of a surface (the landscape) above a point on this plane can
thenbe assigned to the relative “energy”of the state described
by that point. The shape of the surface can then be used as a
qualitative way of describing barriers to accessing different
gene-expression patterns starting from a given initial state.
The plasticity required of gene-regulatory networks in

the stem-cell states implies, in this pictorial analogy, that
the shape of the landscape should determine which states
will become unstable—and to which other states—as
biochemical and mechanical parameters are changed.
Biochemical parameters here could refer to levels of protein
factors that modulate stemness, while mechanical param-
eters could represent the stiffness and anisotropy of the
substrate on which these cells are cultured [63]. If one
imagines, as Waddington did, a ball rolling on this land-
scape as representing the stem-cell state choosing between
terminally differentiated states, the motion of the ball
should be biased by the underlying shape of the landscape,
including its peaks, ridges, and valleys. The resulting
energy surface can be depicted as a geographical landscape,
along the lines of Waddington’s original picture.
Such a qualitative picture also suggests that this land-

scape might also be thought of as dynamic, tilting and
deforming to favor one set of states over others. This would
then describe how an initial state might be guided to a
specific cell fate as the cell integrates external environ-
mental signals when driven to differentiate.
The description of the previous paragraph proceeds

along conventional lines. Our view here emphasizes bio-
physical aspects of this argument. Instead of projecting
states depending on their proximity in gene-expression
space, we imagine them to be projected according to their
level of chromatin compaction; arguments concerning the
proximity of closely related cell types in such a “chromatin
compaction” space should parallel those in the case of the
“gene-expression” space. To motivate this case, we note
that the relative ratio of heterochromatin to euchromatin
varies across differentiated cell types [64]. It has been
suggested that chromatin density might itself act to regulate
gene expression in a stem-cell population [65]. While the
embryonic stem-cell state has a chromatin organization
that is best described as a highly correlated fluid, the
differentiated state fluctuates far less, with condensed
heterochromatin foci forming during the differentiation
of pluripotent embryonic stem cells [66]. The formation
of heterochromatin domains has recently been argued to be
mediated by phase separation [39,40]. Together with the
accumulation of silencing histone marks, this results in
differential expression [67]. Classifying the epigenetic
states underlying these cell types through their levels of
local chromatin compaction should provide one approxi-
mate way of connecting the theoretical ideas presented here
to experimental data.

(a) (b) (c)

p
p

p

p

FIG. 6. Reconstruction of the potential landscape VðδΨÞ in
the simplified two-component model: (a) assuming a quadratic
potential, (b) assuming a sixth-order potential, and (c) assuming
a quadratic potential with a superimposed sinusoid—VðδΨÞ ¼
aδΨ2 þ b2Sin2ðcδΨÞ, for B ¼ 0.0 (blue), B ¼ 1.0 (red), and
B ¼ −1.0 (green).
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This idea is illustrated in Fig. 7, which shows a schematic
of such a landscape. The colored balls towards the front of
the figure represent stable, differentiated states. The ball at
the back represents the ES cell state. As the cell differ-
entiates, one imagines that the landscape is tilted forward so
as to allow the ball to fall towards these stable states. All
possible accessible intermediate states can be represented,
again pictorially, in terms of a plan that intersects this
landscape. The curve that defines where these two curves
intersect provides a one-dimensional surface, to be iden-
tified with the VðδΨÞ of our discussion.
We stress that all projections from a high-dimensional

space to a low-dimensional one involve a loss of informa-
tion. The question is whether the reduced information that
results from projecting the complexity of epigenetic control
into the reduced space of overall compaction suffices for a
biophysical description. Expanding the potential VðδΨÞ
about a local minimum led to the results described in this
paper. However, we should ideally think of this potential
itself as evolving over some timescale and the choice of the
initial point as reflecting a cell-specific initial condition,
such as cellular levels of Lamin A [68].

V. CONCLUSIONS

In this paper, we presented a theory of auxetic behavior
in the nuclei of stem cells in the transitional state. We began

by pointing out that the unusual mechanical properties of
the stem-cell nucleus, as well as its fluctuations, should
provide a window into the packaging and dynamic char-
acter of the chromatin states contained within it. We
proposed that fluctuations in chromatin compaction should
couple to fluctuations in the dimensions of the relatively
soft nucleus that characterizes stem cells. We used these
observations to argue that these coupled fluctuations, in
chromatin packaging and nuclear shape, were most easily
described in terms of a coupled, in general, nonlinear,
dynamical system in three variables. We exploited the
experimental observation that chromatin is least compact in
the transitional state as compared to the pluripotent state
and the differentiation primed state, to argue for a specific
sign of the coupling term that connected size fluctuations
to chromatin density fluctuations. We then showed how
auxeticity resulted as a consequence, providing a simple
and intuitive explanation for this puzzling observation. We
then went on to suggest that we could map out the normal-
to-auxetic transition using ideas from the model. We further
suggested experiments that could implement and test
these ideas.
Our model could be generalized in several ways. The

chromatin compaction variable is central to our discussion.
Neglecting spatial variations in Ψ, as we do in this paper,
should be a valid first approximation in the relatively fluid
stem-cell state. However, chromatin compaction is cer-
tainly inhomogeneous in the differentiated state, while
fluctuations about even the uniform state should, in
principle, also be allowed for. Replacing Ψ by the field
variable Ψðr; tÞ, thus allowing it to vary both in space and
in time, would be the logical next step in generalizing our
model. Our simple parametrization of nuclear shape and
mechanics could certainly be improved upon. Finally,
simulations of a suitably coarse-grained model for active
confined polymers, coupled to a flexible confining nuclear
envelope, are feasible. It would be interesting to see how
the arguments we supply here might be tested in such
simulations. In all, however, we would not expect these
technical improvements to alter our basic intuition quali-
tatively, and we would argue that the simplicity of our
model makes it especially attractive.
We have proposed that projecting the complex spatial-

temporal distribution of chromatin compaction onto an
overall compaction variable and interpreting the time
dependence of this variable in terms of motion within a
simplified one-dimensional potential should provide a
particularly useful biophysical way of formalizing
Waddington’s intuitive picture of an “epigenetic landscape”
[22]. This way of understanding landscape ideas in the
differentiation of stem cells is novel. Implementing the
related analysis experimentally seems feasible. In particu-
lar, the fluorescence anisotropy measurements of labeled
histones in the embryonic stem-cell state presented in
Ref. [45], coupled to confocal microscopy measurements

FIG. 7. Schematic of an epigenetic landscape in the compaction
variable. A pictorial representation of the epigenetic landscape,
projected onto a single variable describing overall compaction.
Points towards the back of the figure represent the ES cell state,
while points in the valleys towards the foreground represent
differentiated states. As one moves from back to front, the figure
describes how the effective potential governing overall compac-
tion can be described via a cut through the landscape as shown.
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of the nuclear dimensions, should provide a noninvasive
way of determining the coupling of chromatin compaction
to mechanical variables describing the nucleus and its
shape. Examining other possibilities for simultaneously
characterizing chromatin compaction in addition to nuclear
size and shape in a noninvasive way would be especially
valuable.
Connecting microscopic, molecular-scale biochemical

views of how stem-cell transcriptional programs are modu-
lated, with the averaged, larger-scale biophysical approach
that we describe in this paper, should lead to an improved
understanding of the communication between stem-cell
nuclear mechanics and chromatin states. This improved
understanding would also help to illuminate the role of the
mechanical environment in biasing lineage choice.
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APPENDIX A: VALUE OF CHROMATIN
VOLUME FRACTION

To calculate the chromatin volume fraction, we approxi-
mateDNA as a cylinder and the histone octamer as a disc and
calculate the volume of all the components. The number of
base pairs in the mouse genome is approximately 3 × 109.
The average size of a base pair is approximately 3.4 Å [69].
Thus, the length ofDNA is ð3.4 × 10−10Þ × ð3 × 109Þ ∼ 1 m
for the haploid case. In the case of diploid nuclei, the length
of DNA is about 2 m. Now, the thickness of the DNA
is 20 Å [70]. Approximating DNA as a cylinder, the
volume of DNA is about πR2L ∼ 3.14 × ð400 × 10−20Þ×
2 ∼ 25 × 10−18 m3 ¼ 25 μm3. As the number of base pairs
per nucleosome is about 200 [71], the number of histone
octamer cores will be about ð3 × 109Þ=200 ¼ 1.5 × 107.
The histone octamer can be approximated by a disc of 110 ×
110 × 57 Å [57,69,72], 5.41 × 105 Å3. Thus, the volume
of all the histones would be ð1.5 × 107Þ × ð5.41×
105 × 10−30Þ m3 ∼ 81.15 × 10−19 m3 ∼ 8 μm3. The total
volume of chromatin is ∼ volume of DNA þ volume of
histones octamers þ linker proteins (which we ignore for
simplicity) ∼25þ 8 ∼ 33 μm3. Considering the nucleus to
be of radius 5 μm, the volume of the nucleus is about

523 μm3. Using this value, the volume fraction of the
chromatin is about 33=523 ∼ 0.06. A reasonable value to
consider is then 0.1, which we have used in our calculations.
This calculation is similar to that for Arabidopsis cell nuclei
in Ref. [73].

APPENDIX B: EXACT SOLUTION OF
THE ANISOTROPIC CASE FOR

A HARMONIC EPIGENETIC POTENTIAL
IN THE ABSENCE OF NOISE

Our governing equations represent a three-dimensional,
coupled and, in general, nonlinear dynamical system. The
choice of a harmonic epigenetic potential δΨ2=2 and a
constant force f yields a linear system of equations that can
be written as

_δΨ ¼ −AδΨþ B

�
1

2
δRk þ δR⊥

�
;

_δRk ¼ −CδRk −DδΨ − f;

_δR⊥ ¼ −CδR⊥ −DδΨ: ðB1Þ

We define the Laplace transform and its inverse as

XðsÞ ¼
Z

∞

0

xðtÞe−stdt;

xðtÞ ¼ 1

2πi
lim
T→∞

Z
γþiT

γ−iT
XðsÞestds; ðB2Þ

where the integration is done along the vertical line
ReðsÞ ¼ γ in the complex plane so that γ is greater than
the real part of all singularities of XðsÞ. Using the definition
in Eq. (B2), we take the Laplace transform of Eqs. (B1),

sδΨðsÞ − δΨð0Þ ¼ −AδΨðsÞ þ B
2
δRkðsÞ þ BδR⊥ðsÞ;

sδRkðsÞ − δRkðð0Þ ¼ −CδRkðsÞ −DδΨðsÞ − f
s
;

sδR⊥ðsÞ − δR⊥ð0Þ ¼ −CδR⊥ðsÞ −DδΨðsÞ: ðB3Þ

For the simplest initial condition, with δΨð0Þ ¼ δRkð0Þ ¼
δR⊥ð0Þ ¼ 0, taking the inverse Laplace transform yields
the solution

δΨðtÞ ¼ −
Bf
2

ðaþ bec11t þ cec22tÞ;

δRkðtÞ ¼
BDf
2

ða1 − b1e−Ct þ c1ec11t þ d1ec22tÞ − f;

δR⊥ðtÞ ¼
BDf
2

ða1 − b1e−Ct þ c1ec11t þ d1ec22tÞ;

where the constants are given by the following,
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a ¼ 1

c11c22
;

b ¼ 1

c11ðc11 − c22Þ
;

c ¼ 1

c22ðc22 − c11Þ
;

a1 ¼
a
C
;

b1 ¼
1

CðCþ c11ÞðCþ c22Þ
;

c1 ¼
b

ðCþ c11Þ
;

d1 ¼
c

ðCþ c22Þ
;

and

c11;22 ¼
−ðAþ CÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC − AÞ2 − 6BD

p
2

:

At long times, these solutions attain steady-state values that
vary linearly with the applied force f.

APPENDIX C: RECONSTRUCTION
OF THE POTENTIAL LANDSCAPE

A simpler 2D analog of the dynamical system (1) can be
written as follows:

_δΨ ¼ −
∂VðδΨÞ
∂δΨ þ BδRþ ηðtÞ; ðC1Þ

_δR ¼ −CδR −DδΨ: ðC2Þ

Assuming that the dynamics of δR is much slower than that
of δΨ, we can consider δR as a constant in the _δΨ equation.
This results in

_δΨ ¼ −
∂

∂δΨ ½VðδΨÞ − BδRδΨ� þ ηðtÞ: ðC3Þ

The corresponding Fokker-Planck equation can be
written as

∂PðδΨ; tÞ
∂t ¼ ∂

∂δΨ
�∂VeffðδΨÞ

∂δΨ PðδΨ; tÞ
�
þ1

2

∂2

∂2δΨ
PðδΨ; tÞ;

ðC4Þ

where VeffðδΨÞ ¼ VðδΨÞ − BδRδΨ.
For the steady-state solution ∂P=∂t ¼ 0,

∂
∂δΨ

�∂VeffðδΨÞ
∂δΨ PðδΨ; tÞ

�
þ 1

2

∂2

∂2δΨ
PðδΨ; tÞ ¼ 0; ðC5Þ

or

∂
∂δΨ

�∂VeffðδΨÞ
∂δΨ PsðδΨÞþ

1

2

∂
∂δΨPsðδΨÞ

�
¼0¼ ∂

∂δΨjðδΨÞ:

ðC6Þ

In a steady state, the flux jðδΨÞ vanishes; thus,
�

d
dδΨ

þ 2
dVeffðδΨÞ

dδΨ

�
PsðδΨÞ ¼ 0: ðC7Þ

The above equation can be solved for the values of δΨ for a
constant value of δR. Once we have those values, we can
obtain the distribution PðδΨÞ. Taking the negative log of
this result yields the effective potential Veff , as

PsðδΨÞ ∼ expð−2VeffðδΨÞÞ;
PsðδΨÞ ∼ expð−2ðVðδΨÞÞ − BδRδΨÞ;
VðδΨÞ ∼ −0.5 ln½PsðδΨÞ� þ BδRδΨ: ðC8Þ

For the parameter value B ¼ 0, this expression relates the
probability distribution PðδΨÞ to the potential landscape
VðδΨÞ. This strategy is used in the reconstruction of the
potential landscape in Fig. 6 of the main text.
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