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In the context of quantum theories of spacetime, one overarching question is how quantum information
in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly
interesting to understand the correspondence between bulk subregions and boundary subregions in order to
address the emergence of locality in the bulk quantum spacetime. For the AdS/CFT correspondence, it is
known that this bulk information is encoded redundantly on the boundary in the form of an error-correcting
code. Having access only to a subregion of the boundary is as if part of the holographic code has been
damaged by noise and rendered inaccessible. In quantum-information science, the problem of recovering
information from a damaged code is addressed by the theory of universal recovery channels. We apply and
extend this theory to address the problem of relating bulk and boundary subregions in AdS/CFT, focusing
on a conjecture known as entanglement wedge reconstruction. Existing work relies on the exact
equivalence between bulk and boundary relative entropies, but these are only approximately equal in
bulk effective field theory, and in similar situations it is known that predictions from exact entropic
equalities can be qualitatively incorrect. We show that the framework of universal recovery channels
provides a robust demonstration of the entanglement wedge reconstruction conjecture as well as new
physical insights. Most notably, we find that a bulk operator acting in a given boundary region’s
entanglement wedge can be expressed as the response of the boundary region’s modular Hamiltonian to a
perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as
a noncommutative version of Bayes’s rule that attempts to undo the noise induced by restricting to only a
portion of the boundary. To reach these conclusions, we extend the theory of universal recovery channels to
finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the
multiplicative structure of the operator algebra.
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String Theory

I. INTRODUCTION

The AdS/CFT correspondence is a duality or equiva-
lence between a gravitational theory in (dþ 1)-dimensional
asymptotically AdS spacetime and a conformal field theory
with one less spatial dimension [1–5]. Roughly speaking,
the CFT lives on the boundary of the bulk AdS spacetime,
and the quantum state of the boundary CFT is dual to the
state of the quantum-gravity theory in the bulk. In the limit
of a large number N of degrees of freedom (d.o.f.) and
strong coupling in the CFT, the gravity side of the

correspondence can be approximately described by
classical Einstein gravity. Hence, AdS/CFT provides a
theoretical laboratory to understand how classical space-
time emerges from microscopic d.o.f. and how quantum
effects alter the physics, at least in a toy model of quantum
gravity. Only certain CFT states correspond to classical
geometries in the bulk, and this important class of states
occupies much of our attention. For such states, there is an
emergent spatial direction in the bulk theory, and under-
standing how locality in the bulk geometry arises in the
boundary theory is a longstanding problem. One way to
approach the problem is to ask which regions of the bulk
are completely described by a given region of the boundary.
The question above has been phrased in various

forms over the years [6,7], and a particularly natural
approach is to think operationally. Physical observables
are described by Hermitian operators, so the goal becomes
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the identification of all local bulk operators that can be
expressed in terms of boundary operators with support
only on the boundary subregion. Such operators correspond
to those observables in the bulk subregion whose physics
can be completely reproduced using boundary observables
in a boundary subregion. Significant progress has been
made on this problem, starting with the so-called HKLL
prescription [2], so named in honor of its authors Hamilton,
Kabat, Lifschytz, and Lowe. The method works in certain
cases but falls short in general; there are bulk operators that
should be expressible on a particular boundary subregion
that are inaccessible to the HKLL technique. An example is
the operator corresponding to the area of the minimal
surface in the bulk that calculates the entropy of the
boundary subregion, the so-called Ryu-Takayanagi surface
[8,9]. For a single hemispherical region in empty AdS,
HKLL and related techniques suffice to reconstruct bulk
operators in terms of a boundary spherical region, but
almost any more-complex scenario falls outside of the
purview of HKLL.
The problem of finding the dual to a boundary subregion

is at the heart of the subject of bulk reconstruction: Given
an operator in the bulk, can one find a representation of this
operator acting on a subregion of the boundary? Recently, it
has been proposed that for a given subregion A of the
conformal boundary, any low-energy bulk operator acting
on a spacetime region called the entanglement wedge of A
can be reconstructed using only information in A [6,10,11].
Roughly speaking, the entanglement wedge of a boundary
subregion is the bulk spacetime region between the
boundary subregion and its corresponding bulk minimal
surface, the aforementioned Ryu-Takayanagi (RT) surface.
More precisely, for time-symmetric situations, the entan-
glement wedge is the set of bulk spacetime points that, due
to the bulk light-cone restriction, can be influenced only by
the bulk spatial region between the RT surface and the
boundary subregion (see below for a fully general defi-
nition). The entanglement wedge reconstruction conjecture
was strengthened in Ref. [12] and established in tensor
network toy models of holography [12–14]. Very recently,
it was proved in Refs. [15,16] under the condition that the
bulk and boundary relative entropies are exactly equal.
At large but finite N, within the framework of bulk

effective field theory, one expects only approximate equal-
ity of the bulk and boundary relative entropies. When
similar situations were studied in the quantum-information
theory literature, it was found that algebraic consequences
of exact entropic equalities often do not provide qualita-
tively correct predictions in the approximate case. An
important and, in fact, closely related example is the exact
saturation of strong subadditivity of the von Neumann
entropy, which is known to imply that the underlying state
is a quantum Markov chain [17]. Such states have an
orderly pattern of correlation in which different subsystems
are independent of each other given an appropriate buffer

between them. The associated algebraic structure slightly
generalizes operator algebra quantum-error correction and
is precisely the structure relevant in AdS/CFT [15]. Near
saturation of strong subadditivity, however, fails to imply
that the state is nearly a quantum Markov chain state for
systems of large Hilbert space dimension [18,19]. As we
discuss above, a large number of local d.o.f. is essential in
AdS/CFT, so the failure of the approximate version of the
implication in large Hilbert spaces represents a potentially
serious issue for AdS/CFT.
Indeed, the most direct generalization of the reconstruc-

tion theorem from Ref. [15] to approximate relative
entropy equalities does not lead to the goal of full
approximate quantum-error correction but rather to a
significantly weaker structure known as a zero-bit code
[20,21]. Ignoring this distinction can lead to qualitatively
wrong conclusions for code spaces whose dimension grows
too fast in the large-N limit (e.g., code spaces containing a
large number of black-hole microstates) [22]. For mixed
states in such code spaces, the entanglement wedge of a
boundary region A may be strictly smaller than the bulk
complement of the entanglement wedge of the comple-
mentary boundary region Ā even in the limit N → ∞. A
naive application of Ref. [15] would incorrectly suggest
that any operator in the larger latter region can be
reconstructed in region A; in fact, only operators in the
entanglement wedge of A can be reconstructed in a state-
independent way.
In this article, we demonstrate the entanglement wedge

reconstruction conjecture without assuming exact equality
of bulk and boundary relative entropies. In doing so, we
also provide an explicit formula for entanglement wedge
reconstruction. Our analysis builds on recent results in
quantum-information theory giving sufficient conditions to
approximately reverse the effects of noise. We show that
having access only to a subregion of the boundary is
equivalent to throwing away or damaging a known part of
the error-correcting code describing the bulk spacetime,
and it is this correspondence which opens the door to the
methods of universal recovery channels. A general quan-
tummap known as a quantum channelN (i.e., a completely
positive, trace-preserving map) is said to be reversible
if there exists another quantum channel R known as
the recovery channel, such that the composition R ∘N
acts as the identity on all states in the domain of N (i.e.,
R ∘N ½ρ� ¼ ρ). For example, all unitary operations are
reversible, with the adjoint of the unitary acting as a
recovery channel (since U†U ¼ 1), and quantum-error-
correcting codes are designed around noise processes such
that the noise can be reversed on the code subspace.
When a channel N is reversible, it has been known for

some time how to construct a recovery channel R [23].
Exact reversibility will almost never be satisfied in practice,
however, and for many applications one may require only
that a channel be approximately reversible. For example, in
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approximate quantum-error correction, one requires only
that the recovered state R ∘N ½ρ� be close to the input ρ up
to some small tolerance. For a channel that is not exactly
reversible, it is natural to ask whether or not there exists a
recovery channel that works approximately in the above
sense [24]. This question has spurred a flurry of research
and was answered only recently in Ref. [25], wherein it
was shown that for any quantum channel N , there indeed
exists an approximate recovery channel R such that
R ∘N ½ρ� ≈ ρ; ∀ ρ, with the quality of the approximation
controlled by the behavior of the relative entropy under the
action of the channel N . We review these recent results in
the next section. In the context of AdS/CFT, there is a map
from the bulk to the boundary, and a noisy quantum
channel arises from tracing over a subregion of the
boundary. Our ultimate goal is to recover from that noise
process (i.e., recover from the loss of part of the boundary).
The paper is organized as follows. We begin with a

review of recent results on universal recovery channels,
as well as a few basics of AdS/CFT and recent results
in holography. We then apply the theory of universal
recovery channels to the problem of entanglement wedge
reconstruction in AdS/CFT, and we arrive at an explicit
expression for a bulk operator recovered on the boundary.
After discussing its salient structural properties, we sketch
how our formula applies to AdS3-Rindler reconstruction,
and we conclude with possible avenues for future research.
In the Appendixes, we prove our entanglement wedge
reconstruction result for arbitrary finite-dimensional alge-
bras of observables, thereby obviating simplifying assump-
tions used in the main body of the paper. To do this, we
extend the universal recovery results of Ref. [25] to finite-
dimensional von Neumann algebras. Importantly, we also
prove that approximate recovery channels automatically
approximately preserve the multiplicative structure of the
original bulk algebra, which ensures that correlation
functions of boundary reconstructions of the individual
operators, even if each operator is reconstructed using a
different entanglement wedge.

II. BACKGROUND AND PRELIMINARIES

In this section, we review the theory of recovery channels
and basics of AdS/CFT, as well as recent developments in
each that we later use to establish our results.

A. Universal recovery channels

To develop intuition of quantum recovery channels, it is
helpful to first set aside quantum mechanics and consider
good old probability theory. Our goal is to reverse the
effects of applying a stochastic map. In particular, given a
stochastic map pðyjxÞ and an observation of y, try to infer
x. One way to do this is to introduce a new stochastic map
pðxjyÞ via Bayes’s rule

pðxjyÞ ¼ pðxÞpðyjxÞ
pðyÞ ; ð1Þ

which has the property that
P

y pðx0jyÞpðyjxÞ ¼ δxx0 if the
noise can be reversed. In situations where the noise cannot
be perfectly reversed, Bayes’s rule provides an excellent
(and in many ways optimal) estimate of the input. Since it
will prove useful in solving the quantum version of the
problem, it is worth noting that we can trivially rewrite
Eq. (1) as

pðxjyÞ ¼ d
dt

����
t¼0

log

�
pðyÞ
pðxÞ þ tpðyjxÞ

�
: ð2Þ

In other words, the recovery channel pðxjyÞ can be
expressed as the logarithmic directional derivative of the
matrix pðyÞpðxÞ−1 in the direction of the channel pðyjxÞ.
Let us now consider a noncommutative generalization of

Bayes’s rule. We want to find a quantum channel (i.e., a
completely positive, trace-preserving map) that reverses the
action of some input channel. Instead of a classical
stochastic map, our goal is to reverse the action of a noisy
quantum channel. To make the problem precise, consider
two Hilbert spaces HA and HB. Let SðHAÞ and SðHBÞ
represent the sets of density operators on systems A and B,
respectively. A quantum channel N ∶SðHAÞ → SðHBÞ is
said to be reversible if there exists a quantum channel
R∶SðHBÞ → SðHAÞ called the recovery channel, such that

ðR ∘N Þ½ρ� ¼ ρ for all ρ ∈ SðHAÞ: ð3Þ

A simple example in which reversible channels play a
starring role is quantum-error correction. In this case, N is
the composition of encoding some d.o.f. in a code spaceHA
into a potentially larger Hilbert space, followed by a noise
channel (wherein we lose certain d.o.f. or otherwise corrupt
the encoded state). R is then a decoding map, and Eq. (3)
corresponds to perfect quantum-error correction.
One way to quantify the noisiness of a quantum channel

is by comparing the distinguishability of input states and
output states using the relative entropy. Under the action of
a quantum channel N , the relative entropy between two
states can never increase. This fact is known as the
monotonicity of relative entropy or the data processing
inequality:

DðρkσÞ ≥ DðN ½ρ�kN ½σ�Þ; ð4Þ

where DðρkσÞ ≔ Trρ log ρ − Trρ log σ is the relative
entropy between ρ, σ. If there were a recovery channel
R such that ðR ∘N ÞðρÞ ¼ ρ and ðR ∘N ÞðσÞ ¼ σ, monot-
onicity applied a second time to R would imply saturation
of Eq. (4). In fact, the converse is also true. Equality in
Eq. (4) holds if and only if there exists a recovery channel
R, such that ðR ∘N ÞðρÞ ¼ ρ and ðR ∘N ÞðσÞ ¼ σ. In this
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case, Petz and co-worker [26] identified an exact recovery
channel R ¼ Pσ;N given by

Pσ;N ¼ σ1=2N �
�
N ½σ�−1=2ð·ÞN ½σ�−1=2

�
σ1=2; ð5Þ

where N � denotes the adjoint of the channel N . Because
Pσ;N does not depend on ρ, it can be used for all ρ
saturating Eq. (4) [provided that σ is chosen to be full rank
to ensure that the relative entropies in Eq. (4) are finite for
all states ρ]. P is an exact recovery channel often referred to
as the Petz map.
Since the condition is necessary and sufficient, failure to

saturate Eq. (4) means that an exact recovery mapR cannot
exist. But what if N almost saturates Eq. (4)? In this case,
does there exist an approximate recovery map, which
would behave well in cases of near saturation, as does
Bayes’s rule in the stochastic case? Indeed, an approximate
version of the recovery channel was developed by Junge
et al. [25], who show that, for any ρ; σ ∈ SðHAÞ and any
quantum channel N , there exists a recovery channel Rσ;N ,
such that

DðρkσÞ−DðN ½ρ�kN ½σ�Þ≥−2 logFðρ;Rσ;N ∘N ½ρ�Þ; ð6Þ

where Fðρ; σÞ ≔ k ffiffiffi
ρ

p ffiffiffi
σ

p k1 is the fidelity. The inequality
says that the fidelity between the recovered state and the
original is controlled by the extent to which the channel
saturates monotonicity of relative entropy [Eq. (4)], with
perfect fidelity in the case of saturation. Importantly, there
is no dependence on the dimension of the Hilbert space.
Moreover, Junge et al. [25] gave a concrete expression for
the channel Rσ;N called the twirled Petz map and given by

Rσ;N ≔
Z
R
dtβ0ðtÞσ−½ðitÞ=2�

× Pσ;N

�
N ½σ�½ðitÞ=2�ð·ÞN ½σ�−½ðitÞ=2�

�
σ½ðitÞ=2�; ð7Þ

where Pσ;N is the Petz map of Eq. (5), and β0 is the
probability density β0ðtÞ ≔ ðπ=2Þ½coshðπtÞ þ 1�−1. The
twirled Petz map is an example of a universal recovery
channel, since Eq. (6) holds for any channel N . When σ is
full rank, both the Petz map and the twirled Petz map are
trace-preserving completely positive maps (i.e., quantum
channels).
For a completely positive map N , the Choi operator is

defined by ΦN ≔ ðid ⊗ N Þ½Φ�, where jΦi ¼ P
j jjijji is

an un-normalized maximally entangled state. By working
with the Choi operator, we can rewrite the recovery channel
Rσ;N in a form similar to Eq. (2). In the case of the recovery
channel Rσ;N , the Choi operator can be expressed as

ΦRσ;N
¼ d

dt

����
t¼0

logðN ½σ� ⊗ σ−1 þ tΦN � Þ; ð8Þ

where N ½σ� is the complex conjugate of N ½σ�, and σ−1 is
the inverse of σ on its support. A proof can be found in the
Appendix B. This is the appropriate generalization of
Bayes’s rule to the noncommutative case. When the
channel is reversible, the twirled Petz map Rσ;N reduces
to the Petz map Pσ;N . In the classical case, both the Petz
map and the twirled Petz map reduce to Bayes’s rule.

B. AdS/CFT background

The AdS/CFT correspondence states that quantum grav-
ity in dþ 1 spatial dimensions is dual to a CFT in d spatial
dimensions. There are two main dictionaries that describe
the mapping between bulk and boundary quantities in the
AdS/CFT correspondence: the differentiate dictionary
[27,28] and the extrapolate dictionary [29]. The differentiate
dictionary relies on the equivalence between the partition
functions of the bulk and boundary theories (ZCFT ¼ Zgrav).
On the other hand, the extrapolate dictionary relies on the
fact that local CFT operators living in the boundary theory
can be expressed as the limit of appropriately weighted bulk
fields as they are taken to the conformal boundary of theAdS
spacetime. In particular,

OðxÞ ¼ lim
z→∞

z−Δϕðx; zÞ;

whereO is a boundary field,Δ is the scaling dimension ofO,
and ϕ is a bulk field. With this equivalence, boundary
correlation functions can be expressed as

hOðx1Þ;…;OðxnÞiCFT¼ lim
z→∞

z−nΔhϕðx1;zÞ;…;ϕðxn;zÞibulk:

The HKLL procedure [2] uses the extrapolate dictionary
and the bulk equations of motion to write a local bulk field
operator ϕðx; zÞ as a smearing of boundary operators O
acting on the “strip” of boundary points that are spacelike
separated from ðx; zÞ, as shown in Fig. 1. In particular,

(a) (b)

FIG. 1. (a) The HKLL procedure provides a way of writing bulk
operators in terms of boundary operators living on a strip in the
boundary consisting of all points that are spacelike separated
from the bulk point. (b) The causal wedge HKLL procedure
provides a way of expressing bulk operators in terms of boundary
operators living only in the domain of dependence of a boundary
region whose associated causal wedge contains the bulk point.
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ϕðx; zÞ ¼
Z
strip

dx0Kðx; z; x0ÞOðx0Þ;

where the smearing function K can be computed using a
mode-sum expansion. The choice of smearing functionK is
not unique, and there are different choices of K that will
reproduce the same bulk field ϕ. For instance, bulk field
operators ϕðx; zÞ can be written using a smearing function
that is supported only on a subset of the boundary, namely,
the domain of dependence of a boundary subregion whose
causal wedge contains the bulk point, as shown in Fig. 1.
Using the HKLL procedure, one can find representations

of a given bulk operator on different regions in the
boundary. As observed in Ref. [30], this redundancy is a
reflection of the quantum-error-correcting properties of
AdS/CFTİf we fix a boundary region A, the entanglement
wedge of A is defined to be the bulk domain of dependence
of any achronal bulk surface bounded by A and the
covariant RT minimal surface associated to A. For readers
unfamiliar with the entanglement wedge, it is easily
visualized on a fixed time slice: The entanglement wedge
is the region in the bulk bounded by A and the RT surface of
A. The full spacetime picture of the entanglement wedge is
then the bulk domain of dependence of the region on a fixed
time slice. The entanglement wedge reconstruction pro-
posal asserts that any local bulk operator acting on the
entanglement wedge of A has a representation with support
only on A.
The key input from holography is a result by Jafferis,

Lewkowycz, Maldacena, and Suh (JLMS for short) in
which they show that bulk and boundary relative entropies
are approximately equal [16]. The relative entropy between
two “nice” states in the bulk and their associated states on
the boundary are equal to leading order in 1=N. To be
precise, let ρ and σ be two bulk states with the same
semiclassical geometry, ρa and σa be their reduced density
matrices on the entanglement wedge of A, ρ̃ and σ̃ be the
corresponding boundary states, and ρ̃A and σ̃A be their
reduced density matrices on region A. Jafferis et al. [16]
then showed that

Dðρ̃Akσ̃AÞ ¼ DðρakσaÞ þOð1=NÞ: ð9Þ

At higher orders in 1=N, the equivalence in Eq. (9) is no
longer well defined, since the choice of minimal surface
used to define the entanglement wedge becomes state
dependent. Crucially, AdS/CFT provides only a global
map from bulk to boundary states (ρ ↦ ρ̃). Our approach to
entanglement wedge reconstruction will be to construct a
suitable local quantum channel mapping states in the
entanglement wedge to states in the boundary region
(ρa ↦ ρ̃A). Only then can we interpret Eq. (9) as an
approximate saturation of the monotonicity of the relative
entropy for a quantum channel, so that Eq. (6) guarantees
the existence of an approximate recovery map. It is the

adjoint of this recovery map that we ultimately use for
reconstruction.

III. ENTANGLEMENT WEDGE
RECONSTRUCTION

We make the following assumptions:
(1) The bulk Hilbert space contains a code subspace that

is mapped via a quantum channel into the CFT
Hilbert space.

(2) The JLMS relative entropy condition holds to
leading order in 1=N.

In fact, the first condition is slightly relaxed in the most
general version of our result (Theorem 4). Just for the
purposes of illustration, we also pretend that the bulk and
boundary Hilbert spaces admit simple tensor factorizations,
since this is a familiar convention in the community.
However, the reader is cautioned that this convention is
not actually correct—even for free theories, the Hilbert
space does not factorize, and the problem is only com-
pounded for gauge theories. The proper approach is to work
at the level of algebras of observables, without ever making
a tensor product assumption. As such, we adopt the more
general algebraic approach in the Appendix, proving all
claims made in this paper rigorously at the level of finite-
dimensional von Neumann algebras.
With these assumptions, let us formalize the problem.

Let Hcode be a code space with density operators SðHcodeÞ,
and let HCFT be the Hilbert space of a CFT with density
operators SðHCFTÞ. There are many valid definitions of
what it means to be a code space in AdS/CFT, but our
results hold for any suitable definition. For instance, one
can define the code space to be the set of all states formed
by acting with a finite number of low-energy local bulk
operators on the vacuum [15,30]. In this context, low
energy means the action of the operator does not change the
bulk geometry appreciably. The AdS/CFT correspondence
relates states in SðHcodeÞ to states in SðHCFTÞ. We model
this relationship by an isometry J∶Hcode → HCFT embed-
ding the code space into the CFT Hilbert space. Note that
Hcode can be identified with its image under the isometry J,
resulting in the code subspace of previous works [15,31]. In
general, one could consider an arbitrary quantum channel
mapping states on the code space to states on the CFT
Hilbert space. We prove our general result in Theorem 4
without requiring the mapping between code and CFT
states to be an isometry.
We now partition the CFT into two regions A and Ā, and

we partition the bulk into a and ā, where a is supported
only on the entanglement wedge of A, as shown in Fig. 2.
As discussed earlier, we assume that HCFT ¼ HA ⊗ HĀ
and that Hcode ¼ Ha ⊗ Hā. The problem of entanglement
wedge reconstruction then amounts to constructing a
boundary observable OA supported only on A, such that,
for any bulk operator ϕa supported in the entanglement
wedge a of A,
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jhOAiJρJ† − hϕaiρj ≤ δkϕak ð10Þ

for all ρ ∈ SðHcodeÞ and for some small δ > 0. Using our
new notation, Eq. (9) says that, for all ρ; σ ∈ SðHcodeÞ,����DðρakσaÞ −D

�
ðJρJ†ÞAkðJσJ†ÞA

����� ≤ ϵ; ð11Þ

where ϵ is controlled by 1=N, and the notation ð·ÞA ≔
TrĀð·Þ is shorthand we use throughout.
Note that in this paper, we use the approximate equality

of relative entropies in a and A in order to prove that
operators in region a can be reconstructed in A. In contrast,
the starting assumption in Ref. [15] was an exact equality
between relative entropies in ā and Ā. As we discuss in the
Introduction, an approximate version of this latter condition
implies only that the zero bits of region a are encoded in
region A, which is a significantly weaker condition than full
entanglement wedge reconstruction [20–22].
Since the relative entropies approximately agree, one

might expect that we can find a universal recovery channel
that would undo the effect of the partial trace over Ā.
However, there is an obstacle: A priori, ðJρJ†ÞA depends on
the state ρ defined on the whole bulk not just on the reduced
state on the entanglement wedge ρa. In this form, the theory
of recovery channels is not applicable. To overcome this
challenge, we first restrict the recovery problem to special
code states of the form ρ ¼ ρa ⊗ σā, where σā is some
fixed fiducial state. We thus obtain a quantum channel
ρa ↦ ðJρJ†ÞA mapping states on the entanglement wedge
to states on the boundary region. We then verify that the
recovery map R obtained for this channel works in fact for
all code states ρ, only increasing the error by a small
amount, since Eq. (11) also implies that the CFT states
corresponding to any ρ and its factorized version ρa ⊗ σā
are approximately indistinguishable on the boundary
region A. The adjoint R� of the recovery channel then

maps bulk operators ϕa supported in the entanglement
wedge to boundary operators OA supported on A and
satisfying Eq. (10), thereby achieving entanglement wedge
reconstruction.
In more mathematical detail, we first define the local

channel N ∶SðHaÞ → SðHAÞ by

N ½ρa� ≔ TrĀ½Jðρa ⊗ σāÞJ†� ¼ ðJðρa ⊗ σāÞJ†ÞA ð12Þ

for all states ρa ∈ SðHaÞ, where σā is some fixed full-rank
state. If we also choose a full-rank σa ∈ SðHaÞ, then we can
use Eq. (7) to obtain a recovery channel R ¼ Rσa;N such
that, for all ρa ∈ SðHaÞ,

−2 logFðρa;R∘N ½ρa�Þ≤ jDðρakσaÞ−DðN ½ρa�kN ½σa�Þj:

However, by Eq. (11), we have

jDðρakσaÞ −DðN ½ρa�kN ½σa�Þj ≤ ϵ;

and therefore, we conclude that the recovery channel R
works with high fidelity (cf. Ref. [25] Corollary 6.1). By
one of the Fuchs–van de Graaf inequalities [32], we have
that

kρa −RðN ½ρa�Þk1 ≤ 2
ffiffiffi
ϵ

p
≔ δ1

for all ρa ∈ SðHaÞ. We now show that the channel R
recovers the reduced state on the entanglement wedge for
arbitrary code states ρ, not just for those of the form
ρ ¼ ρa ⊗ σā:

kN ½ρa�− ðJρJ†ÞAk21¼k½Jðρa ⊗ σāÞJ†�A− ðJρJ†ÞAk21
≤ 2 ln2DððJðρa ⊗ σāÞJ†ÞAkðJρJ†ÞAÞ
≤ ð2 ln2Þϵ≕δ22;

where the first inequality is Pinsker’s inequality, and the
second inequality is Eq. (11), with one state set to ρ and the
other set to ρa ⊗ σā. Therefore, we obtain that, for all
ρ ∈ SðHcodeÞ,

kρa −R½ðJρJ†ÞA�k1
≤ kρa −RðN ½ρa�Þk1 þ kRðN ½ρa�Þ −R½ðJρJ†ÞA�k1
≤ kρa −RðN ½ρa�Þk1 þ kN ½ρa� − ðJρJ†ÞAk1
≤ δ1 þ δ2≕ δ: ð13Þ

Thus, we conclude that R recovers arbitrary bulk states
in the entanglement wedge with high fidelity, as desired.
We now show that the adjoint of the map R solves the
entanglement wedge reconstruction problem in the form of
Eq. (10). Given a bulk operator ϕa supported in entangle-
ment wedge a of A, define OA ¼ R�½ϕa�. Then we have
that, for all ρ ∈ SðHcodeÞ,

(a) (b)

FIG. 2. (a) A bipartition of the boundary into a connected piece
A and its complement Ā. In this case, the entanglement wedge of
A coincides with the causal wedge of A labeled by a in the figure.
ā is then the complement of a. (b) A bipartition of the boundary
into A and Ā such that A consists of two disconnected compo-
nents. In the figure above, A spans just more than half of the
boundary, and in this case, the entanglement wedge of A is not
simply the union of the causal wedges of each piece of A. In the
bulk, a represents the entanglement wedge of A and ā is the
complement of a.
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jhOAiJρJ† − hϕaiρj ¼ jTrR�½ϕa�ðJρJ†ÞA − Trϕaρaj
¼ jTrϕaR½ðJρJ†ÞA� − Trϕaρaj

¼
����Trϕa

�
R½ðJρJ†ÞA� − ρa

�����
≤ kR½ðJρJ†ÞA� − ρak1kϕak ≤ δkϕak;

where the first inequality is Hölder’s inequality and the
second is Eq. (13). Thus, we have arrived at the desired
approximate equality of one-point functions.

IV. CORRELATION FUNCTIONS

Given a set of n bulk operators fϕðiÞ
a g acting on the

entanglement wedge a of A, our result implies that we can
calculate their n-point correlation function as the expectation

value of the boundary operator OA ¼ R�½Qiϕ
ðiÞ
a � obtained

by reconstructing the composite bulk operator
Q

iϕ
ðiÞ
a .

However, one might hope that the reconstructed operators
approximately reproduce the bulk algebra in the sense that�Y

i

ϕðiÞ
a

�
ρ

≈
�Y

i

OðiÞ
A

�
JρJ†

; ð14Þ

where OðiÞ
A ¼ R�ðϕðiÞ

a Þ. When the bulk and boundary
relative entropies are exactly equal, it is known that R� is
an algebra homomorphism (Ref. [26] Proposition 8.4), so
that Eq. (14) holds with equality. We prove in Theorem 4 in
the Appendix that when the bulk and boundary relative
entropies are only approximately equal, as in Eq. (11), then
Eq. (14) still holds approximately, although the size of the
error may grow quadratically with n.
Furthermore, we show in Corollary 5 that the above

result continues to be true even when different operators are
reconstructed using the entanglement wedges ai of differ-
ent boundary regions Ai:�Y

i

ϕðiÞ
ai

�
ρ

≈
�Y

i

OðiÞ
Ai

�
JρJ†

; ð15Þ

where OðiÞ
Ai

¼ R�
Ai
½ϕðiÞ

ai �, and RAi
is the recovery map for

boundary region Ai. This result is illustrated in Fig. 3.

V. AN EXPLICIT FORMULA

Our ultimate goal is an explicit formula for approximate
entanglement wedge reconstruction. Thus, we want to
calculate OA ¼ R�½ϕa� explicitly by using Eq. (7).
Recall that the recovery channel R depends on our choice
of σa and, through the channelN from Eq. (12), also on the
choice of σā. The result is particularly satisfying when
both σa and σā are chosen to be maximally mixed. It is
important to emphasize that this is just a convenient choice
that we make in order to simplify our expressions. For an
infinite-dimensional code space, such a choice would
not be well defined, and instead another choice of average

code state can be used. With this simplification, we find
that, for all bulk operators ϕa with support in the entangle-
ment wedge a,

OA ≔R�½ϕa�

¼ 1

dcode

Z
R
dtβ0ðtÞe1

2
ð1−itÞHATrĀ½Jðϕa ⊗ 1āÞJ†�e1

2
ð1þitÞHA;

ð16Þ
where HA ¼ − log ðJτJ†ÞA is the boundary modular
Hamiltonian on subregion A associated with the maximally
mixed state τ on the code subspace. The above expression
makes it clear that the natural basis one should use for
entanglement wedge reconstruction is the eigenbasis of the
modular Hamiltonian. What is more, the recovery channel
can be expressed in the form of a logarithmic directional
derivative, as in Eq. (8):

OA ¼R�½ϕa� ¼−
1

dcode

d
dt

����
t¼0

HA½τcodeþ tϕa ⊗ 1ā�; ð17Þ

where we write HA½ρ� ≔ − log ðJρJ†ÞA for the boundary
modular Hamiltonian on subregionA associated with a bulk
state ρ. In other words, the boundary operator corresponding
to ϕa can be computed as the response in the boundary
modular HamiltonianHA to a perturbation of the maximally
mixed code state in the direction of the operator ϕa.
Equations (16) and (17) are explicit expressions for

entanglement wedge reconstruction that are meaningful
even when the bulk and boundary relative entropies are not
exactly equal. When the relative entropies are exactly equal
for all ρ, they reduce to the simple Petz map, which is
equivalent to existing notions of operator algebra quantum-
error correction, as applied to bulk reconstruction.

FIG. 3. We show in Eq. (15) that correlation functions of bulk
operators can be computed by pushing each bulk operator to the
boundary separately and computing the expectation value in the
boundary theory. The bulk operators need not live in the same
entanglement wedge. In this figure, the boundary is decomposed
into four regions: A, B, C, and D. Regions AB and BC have a
nontrivial intersection, and the bulk operators ϕ are localized to
the regions as shown. We can use the recovery maps R�

AB and
R�

BC to push the operators to AB and BC, respectively.
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In Eq. (16), we first map our bulk operator ϕa to the
entire boundary via ϕa ↦ Jðϕa ⊗ 1āÞJ†. One might won-
der what the connection is between this mapping and the
global HKLL reconstruction procedure [2] discussed in
the preliminaries, which likewise produces an operator
OHKLL supported on the full CFT Hilbert space and
satisfying hϕaiρ ¼ hOHKLLiJρJ† . The latter condition means
that J†OHKLLJ ¼ ϕa ⊗ 1ā. Hence,

Jðϕa ⊗ 1āÞJ† ¼ JJ†OHKLLJJ†:

The map JJ† is precisely the projection onto the code
subspace. This means that, in order to compute the term
Jðϕa ⊗ 1āÞJ† in our formula (16), we can leverage the
global HKLL procedure to map out the bulk operator to a
global boundary operator if we make sure to subsequently
project the result onto the code subspace. Such a projection
onto the code subspace is not necessarily complicated.
In the Appendix, we work through an explicit calculation

involving our reconstruction formula. The example is
analogous to Rindler wedge reconstruction, although it
is only strictly true for free fields. We consider a bulk
operatorϕa inAdS3 localized in the entanglementwedge of a
boundary interval, and we choose a two-dimensional code
space spanned by states j0̃i and ϕaj0̃i, where j0̃i is the
vacuum state. Using only our recovery formula and global
HKLL, we find an expression for reconstructed bulk oper-
ators as a mode expansion supported on the Rindler wedge.

VI. DISCUSSION

The mapping of bulk operators to boundary subregions
was recognized as a problem in operator algebra quantum-
error correction in Ref. [30]. This important conceptual
advance, along with the insight that bulk and boundary
relative entropies agree [16], imply that any low-energy
bulk operator in the entanglement wedge of a boundary
region should be representable as an operator acting on that
boundary region [15,16]. In this sense, a boundary region is
dual to its entanglement wedge.
In this article, we use recent advances in quantum-

information theory to provide a robust demonstration of
this result that does not assume that the bulk and boundary
relative entropies are exactly equal. In addition, we find a
satisfyingly simple explicit formula for the boundary
operator, namely, that it can be computed as the response
of the boundary modular Hamiltonian of the subregion to a

perturbation of the average code state in the direction of the
bulk operator.
Our argument does not rely on the structural conse-

quences implied by exact equality of relative entropies
assumed in the proof of the entanglement wedge
reconstruction conjecture in Ref. [15]. That said, the
argument that we present here still assumes the finite
dimensionality of the associated von Neumann algebras.
Most of our expressions can be applied formally even in the
infinite-dimensional setting, but it would be a worthwhile
project to try to rigorously extend our results to the infinite-
dimensional case. It seems likely that additional hypotheses
will be required in order to ensure the existence of the local
channel that is instrumental in our argument.
In independent work [33], Faulkner and Lewkowycz

arrived at a formula for entanglement wedge reconstruc-
tion which also involves modular flow. Their approach
builds on the insights of Ref. [16] and uses the free-field
physics of the bulk to argue that entanglement wedge
reconstruction involves integrating the modular flow against
a certain (generally unknown) kernel. It would interesting to
understand their results from the perspective of our frame-
work; most likely, this requires further exploration of the
consequences of the free-field assumption in the bulk which
we do not a priori need to assume in our approach.
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Note added in proof.—In follow-up work to this paper, it
has also recently been shown that one can perform
entanglement wedge reconstruction using only the Petz
map as opposed to the twirled Petz map [34].

APPENDIX A: FINITE-DIMENSIONAL VON NEUMANN ALGEBRAS

A finite-dimensional von Neumann algebra is a (unital) subalgebra A ⊆ BðHÞ of the linear operators on some finite-
dimensional Hilbert spaceH. We define the set of states as the intersection SðAÞ ¼ A ∩ SðHÞ of the algebra with the set of
all density operators on the Hilbert spaceH denoted by SðHÞ. We denote the larger space of positive linear functionals (with
no normalization condition) on A by PðAÞ. We write hϕiρ ≔ Trρϕ for the expectation value of an operator ϕ ∈ A in state
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ρ ∈ SðAÞ. [To any state ρ ∈ SðAÞ, we may assign the positive normalized linear functional ϕ ↦ hϕρi, thereby connecting
SðAÞ with the standard definition of states on a von Neumann algebra.]
In this way, we may lift standard definitions in quantum-information theory to finite-dimensional von Neumann algebras.

For example, the trace norm difference kρ − σk1, the relative entropy DðρkσÞ, and the fidelity Fðρ; σÞ for ρ; σ ∈ SðAÞ can
be defined in the usual way by kρ − σk1 ≔ Trjρ − σj, DðρkσÞ ≔ Tr½ρ log ρ − ρ log σ�, and Fðρ; σÞ ≔ k ffiffiffi

ρ
p ffiffiffi

σ
p k1,

respectively, in agreement with their abstract definitions for von Neumann algebras. For a completely positive map
N ∶PðAÞ → PðBÞ, the adjoint or dual channel N �∶B → A is defined by demanding that hϕiN ½ρ� ¼ hN �½ϕ�iρ for all
ρ ∈ SðAÞ and ϕ ∈ B. IfN is trace preserving, then it is called a quantum channel (equivalently, the dual map is unital, i.e.,
N �½1� ¼ 1). It is called a quantum operation if N is merely trace nonincreasing (equivalently, N �½1� ≤ 1).
Consider a (unital) subalgebraA ⊆ B. For any state ρ ∈ SðBÞ, we define its restriction ρjA as the unique element in SðAÞ

such that hϕiρjA ¼ hϕρi for all ϕ ∈ A; the assignment ρ ↦ ρjA defines a quantum channel. The inclusion map EA∶SðAÞ ⊆
SðBÞ is likewise a quantum channel sometimes referred to as a state extension. (In the language of von Neumann algebras, it
is the predual of a conditional expectation onto A.) Importantly,

EA½ρ�jA ¼ ρ ðA1Þ

for all ρ ∈ SðAÞ. Since EA is just the inclusion map, it is immediate that

DðρkσÞ ¼ DðEA½ρ�kEA½σ�Þ and

Fðρ; σÞ ¼ FðEA½ρ�; EA½σ�Þ ðA2Þ

for all ρ; σ ∈ SðAÞ.
Lastly, we show that there is a natural generalization of Stinespring’s dilation theorem to quantum operations on finite-

dimensional von Neumann algebras.
Lemma 1. Let N ∶PðAÞ → PðBÞ be a quantum operation on finite-dimensional von Neumann algebras with A ⊆

BðHAÞ and B ⊆ BðHBÞ. Then,

N ðρÞ ¼ ½VEAðρÞV†�jB; ðA3Þ

where V∶HA → HB ⊗ HE (for some auxiliary Hilbert space HE) and V†V ≤ 1.
Proof.—We define

Ñ ∶PðHAÞ → PðHBÞ; ω → EBðN ½ωjA�Þ:

This is a quantum operation between states on Hilbert spaces and hence has a Stinespring dilation V∶HA → HB ⊗ HE such
that Ñ ¼ TrEVð·ÞV†. However, it follows from Eq. (A1) that

N ¼ ½Ñ ∘ EAð·Þ�jB; ðA4Þ

and thus, we obtain Lemma 1. ▪
We refer to Refs. [26,31,35] for more detailed expositions of the theory of finite-dimensional von Neumann algebras.

APPENDIX B: APPROXIMATE RECOVERY MAPS FOR VON NEUMANN ALGEBRAS

We now extend the universal recovery result of Ref. [25] to finite-dimensional von Neumann algebras [cf. Eq. (6) herein].
Lemma 2. Let N ∶SðAÞ → SðBÞ be a quantum channel of finite-dimensional von Neumann algebras and ρ; σ ∈ SðAÞ

states such that suppρ ⊆ suppσ. Then,

DðρkσÞ −DðN ½ρ�kN ½σ�Þ ≥ −2 logF
�
ρ; ðRσ;N ∘N Þ½ρ�

�
;

where
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Rσ;N ½γ� ≔
Z

dtβ0ðtÞσ−it=2Pσ;N ðN ½σ�it=2γN ½σ�−it=2Þσit=2

ðB1Þ
is a quantum operation defined in terms of the Petz recovery map

Pσ;N ½γ� ¼ σ1=2N �ðN½σ�−1=2γN ½σ�−1=2Þσ1=2;
and the probability distribution β0ðtÞ ¼ ðπ=2Þ½coshðπtÞ þ 1�−1.
Proof.—By assumption, A ⊆ BðHAÞ and B ⊆ BðHBÞ for finite-dimensional Hilbert spaces HA, HB. We denote by EA

and EB the corresponding state extension maps defined above. As in Lemma 1, we now consider

Ñ ∶ SðHAÞ → SðHBÞ; ω ↦ EBðN ½ωjAÞ:
This is a quantum channel between density operators on Hilbert spaces, and hence, Ref. [25] Theorem 2.1 is applicable. It
states that

DðωkχÞ −DðÑ ½ω�kÑ ½χ�Þ ≥ −2 logF
�
ω; ðRχ;Ñ ∘ Ñ Þ½ω�

�

for any pair of density operators ω; χ ∈ SðHÞ, such that suppω ⊆ suppχ. We now make the choice ω ¼ EA½ρ�
and χ ¼ EA½σ�. Then, using Eqs. (A1) and (A2), it follows that DðωkχÞ¼DðρkσÞ, DðÑ ½ω�kÑ ½χ�Þ ¼
DðN ½ρ�kN ½σ�Þ, Rχ;Ñ ∘ EB ¼ EA ∘Rσ;N , and hence, Fðω; ðRχ;Ñ ∘ Ñ Þ½ω�Þ ¼ Fðρ; ðRσ;N ∘N Þ½ρ�Þ. The lemma follows
immediately. ▪
If a quantum channelN ∶SðAÞ → SðBÞ is exactly reversible, then it can be reversed by the Petz recovery map P ¼ Pσ;N

for any faithful state σ. In this case, P� ismultiplicative in the sense that P�½ϕ0ϕ� ¼ P�½ϕ0�P�½ϕ� (e.g., Ref. [26] Proposition
8.4). If R is an arbitrary quantum operation that reverses N [i.e., ðR ∘N Þ½ρ� ¼ ρ for all ρ], then it is still
true that hR�½ϕ1�R�½ϕ2�…iN ½ρ� ¼ hR�½ϕ1ϕ2…�iN ½ρ� ¼ hϕ1ϕ2…iρ for all ρ ∈ SðAÞ, or, equivalently, that
N �ðR�½ϕ1�R�½ϕ2�…Þ ¼ N �ðR�½ϕ1ϕ2…�Þ. In fact, this is true even when a different (exact) recovery map is used for
each operator ϕi. We now prove that approximate reversibility implies approximate multiplicativity. Correlation functions
are reconstructed up to an error that grows at most quadratically with n, even when different recovery maps Ri correcting
different subalgebras Ai of the original algebra A are used for each operator ϕi.
Theorem 3. LetN ∶PðAÞ → PðBÞ andRi∶PðBÞ → PðAiÞ be quantum operations on finite-dimensional von Neumann

algebras, with Ai ⊆ A, and ϵ > 0 such that, for each recovery channel Ri, we have kRi ∘N ½ρ� − ρjAi
k1 ≤ ϵ for all

ρ ∈ SðAÞ. Then, �����N �
�Yn

i¼1

R�
i ½ϕi�

�
−
Yn
i¼1

ϕi

�����≤1

2
ϵnð3n−1Þ

Yn
i¼1

kϕik ðB2Þ

for all ϕi ∈ Ai.
Proof.—LetA ⊆ BðHAÞ and B ⊆ BðHBÞ. We define the operators V∶HA → HB ⊗ HE andWi∶HB → HA ⊗ HE0 to be

Stinespring dilations (as in Lemma 1) of N ¼ ½V(EAð·Þ)V†�jB and Ri ¼ ½Wi(EBð·Þ)W†
i �jAi

, respectively. Since N and Ri

are quantum operations,

kVk; kWik ≤ 1:

Let Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VV†

p
W†

iϕiWiV. Then,

0≤T†
i Ti ≤V†W†

iϕ
†
i ð1−WiVV†W†

i ÞϕiWiV

¼N �ðR�
i ½ϕ†

iϕi�Þ−N �ðR�
i ½ϕi�Þ†N �ðR�½ϕi�Þ ¼Δ1þΔ2;

where Δ1 ≔ N �ðR�
i ½ϕ†

iϕi�Þ − ϕ†
iϕi and Δ2 ≔ ϕ†

iϕi −N �ðR�
i ½ϕi�Þ†N �ðR�

i ½ϕi�Þ. By assumption,

kN �ðR�
i ½χ�Þ − χk ≤ ϵkχk
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for all operators χ ∈ Ai. Hence, we can bound kΔ1k ≤ ϵkϕk2 and kΔ2k ≤ 2ϵkϕk2, and it follows that

kTik ≤
ffiffiffiffiffi
3ϵ

p
kϕik: ðB3Þ

As a result, we see that����V†
	Yk
i¼1

W†
iϕiWi


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − VV†Þ

q ����
≤
����V†

	Yk−1
i¼1

W†
iϕiWi



VV†W†

kϕkWk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VV†

p ����þ
����V†

	Yk−1
i¼1

W†
iϕiWi



ð1 − VV†ÞW†

kϕkWk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VV†

p ����
≤ kT†

kk
Yk−1
i¼1

kϕik þ
����V†

	Yk−1
i¼1

W†
iϕiWi


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VV†

p ����kϕkk ≤
ffiffiffiffiffi
3ϵ

p
k
Yk
i¼1

kϕik;

where the first inequality is the triangle inequality, the second follows from the submultiplicativity of the operator norm, and
the last inequality uses induction and Eq. (B3). Hence,

����V†
	Yk
i¼1

W†
iϕiWi



ð1 − VV†ÞW†

ðkþ1Þϕðkþ1ÞWðkþ1ÞV
Yn

i¼kþ2

V†W†
iϕiWiV

����
≤
����V†

	Yk
i¼1

W†
iϕiWi


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − VV†Þ

q ����kTkþ1k
Yn

i¼kþ2

kϕik ≤ 3kϵ
Yn
i¼1

kϕik

and

����N �
�Yn

i¼1

R�
i ½ϕi�

�
−
Yn
i¼1

N �ðR�
i ½ϕi�Þ

����
¼
����V†

	Yn
i¼1

W†
iϕiWi



V−

Yn
i¼1

V†W†
iϕiWiV

����≤Xn−1
k¼1

����V†
	Yk
i¼1

W†
iϕiWi



ð1−VV†ÞW†

ðkþ1Þϕkþ1Wkþ1V

	 Yn
j¼kþ2

V†W†
jϕjWjV


����
≤
3

2
ϵnðn−1Þ: ðB4Þ

Finally, ����Yn
i¼1

N �ðR�
i ½ϕi�Þ−

Y
i

ϕi

����
≤
Xn
i¼1

kN �ðR�
i ½ϕi�Þ−ϕik

Y
j≠i

kϕjk≤ nϵ
Yn
i¼1

kϕik: ðB5Þ

From Eqs. (B4) and (B5), we see that Eq. (B2) follows immediately by the triangle inequality. ▪
Although we prove this result for general quantum operations on finite-dimensional von Neumann algebras, the

special case of ordinary quantum channels between density matrices of finite-dimensional Hilbert spaces follows immediately
by considering Ai¼A¼BðHAÞ and B¼BðHBÞ. Perhaps surprisingly, the result does not appear to have been previously
known, even for a single recovery channel and for ordinary subspace quantum-error correction.
To conclude this section, we provide a differential formula for the Choi operator of the recovery mapR, which is given in

Eq. (8) above,

ΦR ¼ d
dt

����
t¼0

logðN ½σ� ⊗ σ−1 þ tΦN �Þ;

where N � denotes the adjoint of the channel N , and N ½σ� is the complex conjugate of N ½σ�. First, recall the integral
formula (see, e.g., Ref. [36] Lemma 3.4)
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d
dt

����
t¼0

logðAþ tBÞ¼
Z∞
−∞

dtβ0ðtÞA−1
2
þit

2BA−1
2
−it

2 :

ðB6Þ

Then we have by direct computation

d
dt

����
t¼0

logðN ½σ� ⊗ σ−1 þ tΦN � Þ

¼
Z∞
−∞

dtβ0ðtÞ
�
N ½σ� ⊗ σ−1

�
−1
2
þit

2

ΦN �

�
N ½σ� ⊗ σ−1

�
−1
2
−it

2

¼
Z∞
−∞

dtβ0ðtÞðI ⊗ σ
1
2
−it

2Þ
��

N ½σ� ⊗ I

�
−1
2
þit

2ðI ⊗ N �Þ½Φ�
�
N ½σ� ⊗ I

�
−1
2
−it

2

�
ðI ⊗ σ

1
2
þit

2Þ

¼
Z∞
−∞

dtβ0ðtÞðI ⊗ σ
1
2
−it

2ÞðI ⊗ N �Þ
	
ðI ⊗ N ½σ�−1

2
þit

2ÞΦðI ⊗ N ½σ�−1
2
−it

2Þ


ðI ⊗ σ

1
2
þit

2Þ;

which, comparing to Eq. (B1), is indeed ΦR.

APPENDIX C: ENTANGLEMENT WEDGE RECONSTRUCTION FOR ALGEBRAS

We are interested in reconstructing bulk operators acting on the entanglement wedge of a subregion of the boundary CFT
using only boundary data supported in that subregion. A simplified picture of our setup includes the following data: a
boundary CFT modeled by an algebra of observablesMCFT, a subalgebraMA ⊆ MCFT of operators acting on a boundary
subregion A of the CFT, a code space modeled by an algebra of bulk observablesMcode, and a subalgebraMa ⊆ Mcode of
operators acting inside the entanglement wedge of A. We also have a bulk-to-boundary map J ∶SðMcodeÞ → SðMCFTÞ
taking code states in the bulk to states on the boundary. The setup is as follows:

The mapR� (dashed) is the desired map implementing entanglement wedge reconstruction that we construct in Theorem 4
below. A fully general treatment of the problem includes infinite-dimensional algebras of observables. However, there are
many technical difficulties in infinite dimensions, and as such, we restrict ourselves to finite-dimensional algebras as in
Ref. [31]. Our setup and analysis closely resemble the one used in the main body of this paper, with appropriate changes
made to account for the more general algebraic structure.
The following theorem generalizes our main results to the setup above, showing that approximate equality of

relative entropies implies approximate entanglement wedge reconstruction even at the level of algebras.
Theorem 4. Let Ma ⊆ Mcode and MA ⊆ MCFT be finite-dimensional von Neumann algebras, J ∶SðMcodeÞ →

SðMCFTÞ a quantum channel, and ϵ > 0, such that

jDðρakσaÞ −DðJ ½ρ�AkJ ½σ�AÞ ≤ ϵ ðC1Þ

for all ρ; σ ∈ SðMcodeÞ, where we denote by ρX the restriction ρjMX
of a state ρ to some subalgebraMX. Then, there exists a

map R∶SðMAÞ → SðMaÞ, such that for all ρ ∈ SðMcodeÞ and ϕa;ϕ0
a ∈ Ma,

(i) kρa −RðJ ½ρ�AÞk1 ≤ δ,
(ii) jhR�½ϕa�iJ ½ρ� − hϕaiρj ≤ δkϕak,
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(iii) jhQn
i¼1 R�½ϕi�iJ ½ρ� − hQn

i¼1 ϕiiρj ≤ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p þ ð3n − 1Þn� ffiffiffi
ϵ

p Q
i kϕik,

where δ ≔ ð2þ ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p Þ ffiffiffi
ϵ

p
. Explicitly,

R�½ϕa� ¼
Z

dtβ0ðtÞe1−it
2
HAJ

	
Ea

�
e−

1−it
2
Haϕae−

1þit
2
Ha

�

A
e
1þit
2
HA; ðC2Þ

where Ha ¼ − log σa and HA ¼ − logJ ðEa½σa�ÞA for some arbitrary fixed full-rank state σa ∈ SðMaÞ, with Ea the state
extension map SðMaÞ ⊆ SðMcodeÞ from Eq. (A1).
Proof.—We consider the “local” quantum channel

N ∶SðMaÞ → SðMAÞ; ωa ↦ J ðEa½ωa�ÞA:

A crucial property of N is that, for any state ρ ∈ SðMcodeÞ,

kN ½ρa� − J ½ρ�Ak1 ¼ kJ ðEa½ρa�ÞA − J ½ρ�Ak1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2D

�
J
	
Ea

�
ρa

�

A
kJ ½ρ�A

�s

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

�
D

	
Ea

�
ρa

�
a
kρa



þ ϵ

�s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2ϵ

p
; ðC3Þ

where the first inequality is the familiar relation between trace norm and relative entropy, the second inequality is our
assumption Eq. (C1), and the last identity is Eq. (A1).
We now letR ¼ Rσa;N denote the recovery map (B1) associated with some full-rank state σa ∈ SðMaÞ. With this choice

of R, Eq. (C2) holds true. Moreover, Lemma 2 shows that, for all ρ ∈ SðMcodeÞ,

−2 logF
�
ρa; ðR ∘N Þ½ρa�

�
≤ DðρakσaÞ −DðN ½ρa�kN ½σa�Þ ¼ DðEa½ρa�akEa½σa�aÞ −D

�
J ðEa½ρa�ÞAkJ ðEa½σa�ÞA

�
≤ ϵ

by using our assumption Eqs. (C1) and (A1) a second time. Thus,F

�
ρa; ðR ∘N Þ½ρa�

�
≥ 1 − ϵ=2, and using the Fuchs–van

de Graaf inequality,

kρa −RðN ½ρa�Þk1 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

�
ρa; ðR ∘N Þ½ρa�

�
2

s
≤ 2

ffiffiffi
ϵ

p
: ðC4Þ

We obtain (i) from Eqs. (C3) and (C4) and the triangle inequality. This readily implies (ii), since

jhR�½ϕa�iJ ½ρ� − hϕaiρj ¼ jhR�½ϕa�iJ ½ρ�A − hϕaiρa j ¼ jhϕaiR½J ½ρ�A� − hϕaiρa j ≤ δkϕak:

For (iii), we observe that����
�Y

i

R�½ϕi�
�

J ½ρ�
−
�Y

i

ϕi

�
ρ

����¼
����
�Y

i

R�½ϕi�
�

J ½ρ�A
−
�Y

i

ϕi

�
ρa

����≤
����
�Y

i

R�½ϕi�iN ½ρa�−
�Y

i

ϕi

�
ρa

����þ ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln2ϵ

p Y
i

kϕik

¼
����
�
N �

�Y
i

R�½ϕi�
��

ρa

−
�Y

i

ϕi

�
ρa

����þ ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln2ϵ

p Y
i

kϕik

≤ ½
ffiffiffiffiffiffiffiffiffiffi
2 ln2

p
þð3n−1Þn� ffiffiffi

ϵ
p Y

i

kϕik;

where the first inequality is Eq. (C3), and the second inequality is Theorem 3. ▪
When the fiducial state σa ∈ SðMaÞ is chosen to be the maximally mixed state, then the map (C2) takes a particularly

simple form. In this case, Ea½σa� ¼ 1code=dcode ≕ τcode, where dcode ≔ Tr½1code�. We obtain
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R�½ϕa� ¼
1

dcode

Z
dtβ0ðtÞe½ð1−itÞ=2�HAJ ½ϕa�Ae½ð1þitÞ=2�HA;

ðC5Þ

where we recall that HA ¼ − logJ ½τcode�A is the modular Hamiltonian of the boundary region A associated with the
maximally mixed code state. Equation (C5) can be rewritten as follows (Ref. [36] Lemma 3.4):

R�½ϕa� ¼
1

dcode

d
dt

����
t¼0

logJ ½τcode þ tϕa�A

¼ −
1

dcode

d
dt

����
t¼0

HA½τcode þ tϕa�; ðC6Þ

wherewe introduce the notationHA½ρ� ≔ − logJ ½ρ�A for the boundarymodular Hamiltonian on subregionA associatedwith
a bulk state ρ ∈ SðMcodeÞ. That is, the boundary operator R�½ϕa� can be found as the response of the boundary modular
Hamiltonian to a perturbation of the fiducial bulk state in the direction of the bulk operator ϕa.
If σa is not the maximally mixed state but is instead some arbitrary state, Eq. (C6) forR�½ϕa� no longer holds. However,

using Eq. (B6) we can write a similar equation for the Choi operator of R� itself:

ΦR� ¼ d
dt

����
t¼0

log

	
σ̄−1a ⊗ J

�
Ea

�
σa

��
A
þ tΦJ ðEa½·�ÞA



;

where ΦJ ðEa½·�ÞA is the Choi operator of J ðEa½·�ÞA.
Finally, we show that correlation functions of bulk operators are preserved even when each operator is reconstructed

using a different entanglement wedge.
Corollary 5. Let Mai ⊆ Mcode and MAi

⊆ MCFT be sets of finite-dimensional von Neumann algebras,
J ∶SðMcodeÞ → SðMCFTÞ a quantum channel such that, for each pair of algebras Mai and MAi

, the JLMS condition
(C1) holds for some ϵ > 0. Then,

����
�Yn

i¼1

R�
Ai
½ϕi�

�
J ½ρ�

−
�Yn

i¼1

ϕi

�
ρ

����
≤
1

2
nð3n − 1Þð2þ

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
Þ ffiffiffi

ϵ
p Yn

i¼1

kϕik; ðC7Þ

where the recovery mapsRAi
are defined by applying the explicit construction (C2) to the pairs of algebrasMai andMAi

.
Proof.—The proof is a simple consequence of applying Theorem 3 to condition (i) of Theorem 4. If we take J to be the

encoding map (denoted as N in Theorem 3) and include the restriction onto each boundary subalgebra MAi
as part of the

corresponding recovery map RAi
, then Eq. (C7) follows immediately. ▪

APPENDIX D: RINDLER WEDGE RECONSTRUCTION
FROM GLOBAL RECONSTRUCTION FOR FREE FIELDS

In thisAppendix,wework through an illustrative example by applying our entanglementwedge reconstruction formula in a
problemmotivated byAdS-Rindler reconstruction using only globalHKLL [2] as input. This example is strictly valid only for
free-field theories, but we nevertheless use the language of AdS/CFT for familiarity; in short, we pretend both bulk and
boundary fields are free, andwe comment on the difficulties that arisewhen the boundary field is only a generalized free field.
LetA be the boundary region corresponding to a singleRindlerwedge,a be the entanglementwedge ofA,DA be the boundary
domain of dependence ofA, and Ā be the complement ofA.We show that local bulk operators in a can be represented as linear
combinations of field operators for Rindlermodes confined to regionA. The subtlety for a trueAdS/CFT calculation lies in the
Rindler decomposition; in general, no such decomposition exists for generalized free fields.
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For simplicity, we consider the case of AdS3. We use Poincaré patch coordinates,

ds2 ¼ l2

z2
ð−dt2 þ dx2 þ dz2Þ;

and we label bulk points by Y ¼ ðt; x; zÞ and boundary points by y ¼ ðt; xÞ.
Suppose that we want to reconstruct a bulk operator ϕðYÞ for Y ∈ a on the boundary of the Rindler wedge A. Let us

denote the vacuum state by j0̃i and an excitation of the ground state by j1̃i ¼ ϕðYÞj0̃i, which we take to be normalized. We
consider a two-dimensional code spaceHcode ¼ spanfj0̃i; j1̃ig. Our goal is to reconstruct the action of the operator ϕðYÞ on
the code space restricted to the boundary interval A. The maximally mixed state on the code is simply
τ ¼ 1

2
ðj0̃ih0̃j þ j1̃ih1̃jÞ. Note that in this simple example Ha ¼ Hcode, since we do not consider any d.o.f. living in ā.

As an operator on the code space, ϕðYÞ acts as X ≔ j1̃ih0̃j þ H:c:, mapping the vacuum state to the excited state and vice
versa. With our chosen operator, code space, and maximally mixed state, we can rewrite Eq. (16) as

R�½X� ¼ 1

2

Z
dtβ0ðtÞN ½τ�½ð−1þitÞ=2�N ½j1̃ih0̃j þ j0̃ih1̃j�

×N ½τ�−½ð1þitÞ=2�; ðD1Þ

where we introduce N ½ρa� ¼ TrĀ½JρaJ†� as shorthand.
In order to evaluate Eq. (D1), we need to compute terms of the form

N ðjx̃ihỹjÞ ¼ TrĀ½jxihyj�;

where x; y ∈ f0; 1g, and the states jxi ≔ Jjx̃i. The empty AdS state j0̃i is mapped to the CFT ground state Jj0̃i ¼ j0i. The
excited state j1̃i is mapped via global HKLL to

Jj1̃i≕ j1i ¼
Z
y0∈D

dy0KgðY; y0ÞΦðy0Þj0i;

where Kg is a bulk-to-boundary kernel (g denotes “global”), ΦðyÞ is a boundary operator, and D is a boundary spacetime
domain.
To leading order in 1=N, ΦðyÞ behaves like a generalized free field [37]. Unfortunately, generalized free fields do not, in

general, admit a decomposition into Rindler modes. Thus, we now pretend the boundary field is instead a true free field, and
we expand it in terms of Rindler modes fal; blg adapted to A and B ¼ Ā:

ΦðyÞ¼
X
l

fa;lðyÞalþf�a;lðyÞa†lþfb;lðyÞblþf�b;lðyÞb†l: ðD2Þ

In order to upgrade this calculation to a true AdS/CFT computation, some care needs to be taken with respect to this
decomposition for generalized free fields, but we nevertheless forge ahead in the name of pedagogy. Note that the modes al
and bl are entangled in the state j0i since there is entanglement between A and B.
With the HKLL prescription of j0i ¼ Jj0̃i and j1i ¼ Jj1̃i in hand, we can now compute the partial trace of the various

matrix elements appearing in Eq. (D1) with respect to the region Ā. We begin with TrB½j0ih0j þ j1ih1j�. Since j0i and j1i are
approximately distinguishable on A, the result of tracing out Ā (i.e., tracing out the B modes) will be approximately block
diagonal. On the upper block of the reduced density matrix, we have the ground-state density matrix ρA;0 ¼ TrB½j0ih0j� for
A, and on the lower block, we have

ρA;1 ¼ TrĀ½j1ih1j� ¼ TrĀ

	Z
y1∈D

Z
y2∈D

KgðY; y1ÞKgðY; y2ÞΦðy1Þj0ih0jΦðy2Þ


:
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To simplify the form of ρA;1, a crucial fact is that the ground state j0i is comprised of entangled al and bl modes. More
precisely, focusing on a single mode, there is a modular energy El such that the ground state is of the form

j0i ∝
X
n

e−πElnjnial jnibl :

In such a state, the reduced density matrix of A has the form ρA;0 ∝
P

n e
−2πElnjnihnjal , so that

j0i ∝ ρ1=2A;0

X
n

jnial jnibl :

Using the “transpose trick,” it follows that mode operators on Ā can be written in terms of operators on A:

blj0i ¼ ρ1=2A;0a
†
lρ

−1=2
A;0 j0i;

b†lj0i ¼ ρ1=2A;0alρ
−1=2
A;0 j0i; ðD3Þ

and vice versa. We also note the following helpful identities:

ρ1=2A;0alρ
−1=2
A;0 ¼ aleπEl ;

ρ−1=2A;0 alρ
1=2
A;0 ¼ ale−πEl ;

ρ1=2A;0a
†
lρ

−1=2
A;0 ¼ a†le

−πEl ;

ρ−1=2A;0 a†lρ
1=2
A;0 ¼ a†le

πEl : ðD4Þ

Using Eq. (D2), we now evaluate N ½j1̃ih0̃j� ¼ TrĀ½j1ih0j�:

N ½j1̃ih0̃j� ¼
Z
y∈D

KgðY;yÞTrĀ
	�X

l

fa;lðyÞalþf�a;lðyÞa†lþfb;lðyÞblþf�b;lðyÞb†l
�
j0ih0j



:

For brevity, let

f̌a;l ¼
Z
y∈D

KgðY; yÞfl;aðyÞ;

f̌b;l ¼
Z
y∈D

KgðY; yÞfl;bðyÞ:

Using Eq. (D3), we can rewrite N ½j1̃ih0̃j� ¼ R
KgΦj0ih0j ¼ QAj0ih0j, where

QA ¼
X
l

f̌a;lal þ f̌�a;la
†
l þ f̌b;lρ

1=2
A;0a

†
lρ

−1=2
A;0 þ f̌�b;lρ

1=2
A;0alρ

−1=2
A;0 :

Finally, using the identities (D4), we write QA as

QA ¼
X
l

f̌a;lal þ f̌�a;la
†
l þ f̌b;la

†
le

−πEl þ f̌�b;laleπEl ;

taking note that this operator is only guaranteed to reproduce the action of
R
KgΦ when acting on j0i.
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Using QA, we can write N ½jx̃ihỹj� ¼ ðQAÞxρA;0ðQ†
AÞy, where x; y ∈ f0; 1g. In particular, we have that ρA;1 ¼ QAρA;0Q

†
A

and N ½j1̃ih0̃j� ¼ QAρA;0. We then rewrite QAρA;0 ¼ ρ1=2A;0ðρ−1=2A;0 QAρ
1=2
A;0Þρ1=2A;0 , where the term in the parentheses is still a

simple sum of al and a†l with various weights. Explicitly, it is

ρ−1=2A;0 QAρ
1=2
A;0 ¼

X
l

f̌a;lale−πEl þ f̌�a;la
†
le

πEl

þ f̌b;la
†
l þ f̌�b;lal:

Using the approximate block diagonality of N ½τ�, we can write

N ½τ�½ð−1þitÞ=2� ≈
�
1

2

�½ð1−itÞ=2��
ρ
−1þit

2

A;0 þ ρ
−1þit

2

A;1

�
;

although the reader is cautioned that we have not analyzed the quality of this approximation. The approximate block
diagonality also implies that

N ½τ�½ð−1þitÞ=2�ρ1=2A;0 ≈
�
1

2

�½ð1−itÞ=2�
ρ

−1þit
2

A;0 ρ
1=2
A;0

¼
�
1

2

�½ð1−itÞ=2�
ρit=2A;0 ;

and a similar argument shows that

ρ1=2A;0N ½τ�½ð−1−itÞ=2� ≈
�
1

2

�½ð1þitÞ=2�
ρ−it=2A;0 :

Thus, the recovery channel is proportional to

R�½j1̃ih0̃j� ¼
Z

dtβ0ðtÞρit=2A;0 ðρ−1=2A;0 QAρ
1=2
A;0Þρit=2A;0 ;

and we note that the factors of 1=2 cancel out. The combined object ρit=2A;0 ðρ−1=2A;0 QAρ
1=2
A;0Þρ−it=2A;0 is then

X
l

f̌a;lale−πElþiπElt þ f̌�a;la
†
le

πEl−iπElt

þ f̌b;la
†
le

−iπElt þ f̌�b;laleiπElt:

Defining β̂0ðωÞ ≔
R
dtβ0ðtÞeiωt and noting that β̂0ð−ωÞ ¼ β̂0ðωÞ by symmetry of β0ðtÞ, the recovery map acting on our

operator is

R�½j1̃ih0̃j� ¼
X
l

f̌a;lale−πEl β̂0ðπElÞ

þ f̌�a;la
†
le

πEl β̂0ðπElÞ þ f̌b;la
†
lβ̂0ðπElÞ

þ f̌�b;lalβ̂0ðπElÞ; ðD5Þ

and there is an analogous expression for R�½j0̃ih1̃j�.
Equation (D5) is our desired result. The bulk operator X ¼ j1̃ih0̃j þ H:c: can be reconstructed on the Rindler wedge

using only Rindler mode operators. Moreover, only single-mode operators appear.
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