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Prethermalization has been extensively studied in systems close to integrability. We propose a more
general, yet conceptually simpler, setup for this phenomenon. We consider a—possibly nonintegrable—
reference dynamics, weakly perturbed so that the perturbation breaks at least one conservation law of the
reference dynamics. We argue then that the evolution of the system proceeds via intermediate (generalized)
equilibrium states of the reference dynamics. The motion on the manifold of equilibrium states is governed
by an autonomous equation, flowing towards global equilibrium in a time of order g−2, where g is the
perturbation strength. We also describe the leading correction to the time-dependent reference equilibrium
state, which is, in general, of order g. The theory is well confirmed in numerical calculations of model
Hamiltonians, for which we use a numerical linked cluster expansion and full exact diagonalization.
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I. INTRODUCTION

Prethermalization [1] has emerged over the past decade
as an interesting and ubiquitous phenomenon in the
dynamics of ultracold quantum gases in one-dimensional
geometries [2–6]. In general, it refers to a separation of
timescales: Some systems far from equilibrium quickly
relax to long-lived (non)thermal states (not true thermal
equilibrium states) on short timescales, before eventually
relaxing to the expected true thermal equilibrium states on
much longer timescales.
There are some general instances of this phenomenon that

are well understood, analytically and numerically. A first
example is quenches in isolated noninteracting (integrable)
systems, in which interactions (integrability-breaking per-
turbations) of strength g are turned on [7–15]. By dephasing,
observables quickly settle to quasisteady states that are well
described by generalized Gibbs ensembles (GGEs) [16–20]
of the noninteracting systems. The observables then relax
to the thermal equilibrium values (thermalize) in a much
longer timescale ∝ g−2, as predicted by kinetic Boltzmann-
like equations. The latter can be derived applying time-
dependent perturbation theory to the GGEs [21,22] and,
physically, describe the effects of collisions between (quasi)

particles. It was recently shown numerically that weakly
breaking integrability in strongly interacting integrable
systems also results in thermalization rates ∝ g2 [23].
A second example is isolated weakly interacting driven
systems, for which GGEs and kinetic Boltzmann-like equa-
tions are also relevant [24,25].A third example is periodically
driven systems at high frequency. In general, they quickly
reach a time-periodic state that can be identified as a Gibbs
state corresponding to an effective Hamiltonian, before
relaxing to the thermal (infinite-temperature [26,27]) state
in a timescale that is exponentially long in the frequency of
the drive [28–33].
In thiswork,we argue that the first two examples above are

instances of a more universal phenomenon, a phenomenon
that occurs whenever an equilibrating dynamics (to a
thermal- or GGE-like state) is weakly perturbed so that, at
least, one of the conserved quantities in the original dynamics
is no longer conserved in the weakly perturbed dynamics. A
similar point of view was put forward in Refs. [34,35] for
open quantum systems. We first present this conclusion in a
loose manner in Sec. II, and then, in Secs. III and IV, we
develop a systematic treatment of weakly perturbed systems
in which a conservation law is broken. The remainder of
the paper is dedicated to demonstrating, in the context of
numerical experiments, the validity and accuracy of this
systematic treatment. Section V, in which we introduce the
models, quenches, observables, etc., is the preamble to
the numerical experiments, which are reported in Sec. VI.
A summary and discussion of our results is presented in
Sec. VII, while the Appendixes report details of our
analytical and numerical calculations.
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II. PREAMBLE

Setup.—We consider isolated extended quantum systems
that are translationally invariant. For the sake of concrete-
ness, one can think of chains with L ≫ 1 sites. We have a
pair of Hamiltonians Ĥ0 and Ĥ, in which the latter includes
the former plus a weak perturbation,

Ĥ ¼ Ĥ0 þ gV̂; ð1Þ

where g is small. We assume that the (reference)
Hamiltonian Ĥ0 has a conservation law, say Q̂, which is
not shared by Ĥ, namely, ½Ĥ0; Q̂� ¼ 0 but ½V̂; Q̂� ≠ 0. We
are interested in cases in which Ĥ0, Q̂, Ĥ, and V̂ are
extensive operators. In order to take the thermodynamic
limit, it is helpful to deal with the intensive counterparts
of those operators: ĥ0 ¼ Ĥ0=L, q̂ ¼ Q̂=L, ĥ ¼ Ĥ=L, etc.
In our numerical calculations, Q̂ (q̂) is the total number of
particles (the filling), or, in the spin language, the total
magnetization (the site magnetization).
Assumption of fast equilibration.—We consider cases in

which the dynamics generated by Ĥ0, even when the
system is far from equilibrium, results in fast equilibration.
Namely, we assume that, for experimentally relevant trans-
lational-invariant initial states ρ̂I , observables converge
within a time τ� to the predictions of an ensemble (e.g.,
microcanonical) of statisticalmechanics ρ̂e0;q, with ðe0; qÞ ¼
ðhĥ0iρ̂I ; hq̂iρ̂IÞ. The restriction “experimentally relevant” is
put to avoid cases in which the initial state is a macroscopic
superposition of states at different densities ðe0; qÞ (see
Ref. [36] for a discussion of this issue in the context of
quantum quenches). The restriction to translation-invariant
states is used to avoid having leading effects in the equili-
bration dynamics that are L dependent, e.g., particle or
energy transport, which would complicate the picture.
Initial prethermalization.—Even though there is no

standard perturbation theory around a genuinely interacting
Ĥ0, it is reasonable to assume that the effect of the
perturbation is small at times τ ≪ 1=g, in the sense that,
for such times, one can meaningfully approximate the
dynamics under Ĥ by the reference dynamics generated by
Ĥ0. Therefore, by the assumption of fast equilibration, one
should observe a fast initial relaxation of observables
toward the predictions of ρ̂e0;q. The latter state can be very
different from the thermal equilibrium ensemble ρ̂e asso-
ciated to Ĥ. ρ̂e0;q differs from ρ̂e by the fact that q is an
additional constraint [of course, it also differs because e0 is
the energy density of Ĥ0 and not that of Ĥ, but that
difference is only OðgÞ].
Thermalization rate.—To determine how fast the true

equilibrium is approached, let us start from ρ̂e0;q and look at
the change in hQ̂ðτÞie0;q. We do this perturbatively:

hQ̂ðτÞie0;q ¼ hQ̂ie0;q þ igτh½V̂; Q̂�ie0;q þOðg2ττ�LÞ; ð2Þ

where we use that ½Ĥ0; Q̂� ¼ ½Ĥ0; ρ̂e0;q� ¼ 0. The precise
error estimate Oð·Þ will only be argued for later. The
important point to be highlighted from Eq. (2) is that
the leading order correction to hQ̂ie0;q vanishes because

h½V̂; Q̂�ie0;q ¼ 0, by the cyclic property of the trace and the

fact that ½Q̂; ρ̂e0;q� ¼ 0. This suggests that the thermal-
ization rate is ∝ g2. Indeed, carrying out the expansion one
order further, we recognize Fermi’s golden rule. Finally, if
we had replaced Q̂ by a general observable Ô, the first
order term does not vanish. It results in a universal
deviation of hÔi in the instantaneous state from that of
ρ̂e0;q.

III. SLOW DYNAMICS OF APPROXIMATELY
CONSERVED QUANTITIES

In this section, we present a derivation of an approximate
autonomous equation governing the dynamics of the den-
sities ðe0; qÞ. This is Eq. (23), or, at a more abstract level,
Eq. (21). Our derivation is not mathematically rigorous, it
uses physical assumptions and goes substantially beyond
the heuristics presented above. Its validity and accuracy are
confirmed by numerical calculations in Sec. VI.

A. Slow variables

We identify the densities ðe0; qÞ as slow variables. To set
up a controlled derivation, we need a projection map from
states ρ̂ to ðe0; qÞ. It turns out, however, that it is more
natural to start with a projection P from ρ̂ to a probability
distribution p on ðe0; qÞ. Indeed, each such p can be lifted
to a ρ̂ by

ρ̂p ¼
Z

de0dqpðe0; qÞρ̂e0;q; ð3Þ

and the physically most natural case is, of course, when
pðe0; qÞ is a Dirac delta distribution δðe0 − e�0Þδðq − q�Þ;
cf. the discussion on “experimentally relevant states” in
Sec. II. To construct the map P, a natural approach is to
measure Ĥ0 and Q̂:

pρ̂ðe0; qÞ ∝ Tr½ρ̂PðĤ0 ≈ e0LÞPðQ̂ ≈ qLÞ�; ð4Þ

where PðĤ0 ≈ e0LÞ is a spectral projection of Ĥ0 on the
interval ½e0L − δE; e0Lþ δE� with a resolution δE that is
much larger than the level spacing, but smaller than any
relevant energy scale (like, e.g., the energy per site). For
PðQ̂ ≈ qLÞ, we can simply take the projection of Q̂ on the
eigenvalue closest to qL. Then we can set

Pρ̂ ¼
Z

de0dqpρ̂ðe0; qÞρ̂e0;q; ð5Þ

MALLAYYA, RIGOL, and DE ROECK PHYS. REV. X 9, 021027 (2019)

021027-2



where
R
de0dq represents a sum with the aforementioned

resolution. We define P̄ ¼ 1 − P, and note that both P, P̄
are projectors, namely, P2 ¼ P and P̄2 ¼ P̄. A warning is
in order, despite the fact that Pρ̂ and P̄ ρ̂ encode all the
information about the microscopic distributions of E0 and
Q (whose widths are expected to be subextensive in E0 and
Q [36]), all that information is not needed and our analysis
does not allow one to keep track of it in time. Our results
only depend on, and keep track of, the distribution of
densities pðe0; qÞ.
The above definition of the projection P is motivated by

ensembles of statistical mechanics, which are expected to
describe many-body quantum systems after equilibration.
An equivalent definition can be motivated purely from
quantum mechanics. If one takes ρ̂ and evolves it under the
unitary evolution dictated by Ĥ0, observables equilibrate to
the predictions of the so-called diagonal ensemble ρ̂DE [22]:

ρ̂DE ¼
X
E0

ðhE0jρ̂jE0iÞjE0ihE0j; ð6Þ

where jE0i are the eigenkets Ĥ0 and Q̂, and we have
assumed that either there are no degeneracies in the
many-body energy spectrum or that, if present, they are
unimportant. This is generically the case in interacting
many-body quantum systems [22].
The map ρ̂ → ρ̂DE is a projection as well; let us call it

PDE. It provides an alternative path to identifying the slow
variables. This is the case because, in recent years, we have
come to realize that the ensembles defined by Pρ̂ and PDEρ̂
are equivalent when it comes to their predictions for
observables (few-body or local operators) in large systems.
This is a consequence of eigenstate thermalization for
nonintegrable (quantum chaotic) systems [36–38], and
generalized eigenstate thermalization for integrable sys-
tems [17,20,39–41]. Hence, it does not really matter
whether one uses the projection P or PDE, so we do not
actively distinguish between them in most of our analytical
derivations. In our numerical calculations we use PDE, as
ρ̂DE can be calculated exactly in the same way for non-
integrable and integrable systems. P, on the other hand,
demands that one identifies beforehand the relevant con-
served quantities (not necessary for PDE). Keeping all this
is mind, in what follows we do not actively distinguish
between nonintegrable systems, for which the number of
conserved quantities in the thermodynamic limit is Oð1Þ,
from integrable systems, for which the number of con-
served quantities in the thermodynamic limit is infinite.

B. Mori-Zwanzig approach

Let us introduce the Liouville superoperatorL ¼ −i½Ĥ; ·�.
Then, followingMori-Zwanzig [42,43], see Appendix A, the
theory of linear ordinary differential equations gives us the
following rewriting of the P-projected Liouville equation

∂τρ̂ðτÞ ¼ Lρ̂ðτÞ:

∂τPρ̂ðτÞ ¼ PLPρ̂ðτÞ

þ
Zτ

0

dsPLesP̄LLPρ̂ðτ − sÞ þ PLeτP̄LP̄ρ̂I;

ð7Þ

where ρ̂I ≡ ρ̂ðτ ¼ 0Þ, and we use that the projectorP is time
independent. To bring some structure to this equation, we
now split

L ¼ L0 þ L1; with L0 ¼ −i½Ĥ0; ·�;L1 ¼ −ig½V̂; ·�;
ð8Þ

and note the properties

L0P ¼ PL0 ¼ 0; PL1P ¼ 0: ð9Þ

They follow from elementary considerations. This allows
one to recast the above equation of motion as

∂τPρ̂ðτÞ ¼
Zτ

0

dsAsPρ̂ðτ − sÞ þ YτP̄ρ̂I; ð10Þ

where we introduce

As ¼ PL1esðL0þP̄L1ÞL1P and Yτ ¼ PL1eτðL0þP̄L1ÞP̄:

ð11Þ

The object As represents a memory kernel. For complete-
ness, we also report the expression for P̄ ρ̂ðτÞ (see
Appendix A):

P̄ ρ̂ðτÞ ¼ eτP̄LP̄ρ̂I þ
Zτ

0

dsP̄esP̄LLPρ̂ðτ − sÞ: ð12Þ

It should be stressed that all the previous equations are exact,
and, hence, they are not particularly useful. In the next
section, we make some motivated approximations.

C. Equilibration

Our only assumption is that the dynamics generated
by Ĥ0 results in fast equilibration of observables to the
equilibrium state that is characterized by the expectation
value of Ĥ0, E0 ¼ Trðρ̂IĤ0Þ, and of Q̂,Q ¼ Trðρ̂IQ̂Þ. Once
again, we stress that we do not distinguish between non-
integrable reference Hamiltonians Ĥ0, for which observables
equilibrate to the thermal predictions (thermalize [22]), from
integrable reference Hamiltonians, for which observables
equilibrate to the GGE predictions (exhibit generalized
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thermalization [17]). For our purposes, it does not matter
whether equilibration is towards a traditional ensemble of
statistical mechanics or towards a GGE: in both cases it
means that, for generic (few-body) observables Ô and initial
states ρ̂I ,

jTr½ρ̂IÔ0ðτÞ� − Tr½ρ̂e0;qÔ�j
jTr½ρ̂e0;qÔ�j ≕ fðτÞ → 0; ð13Þ

where Ô0ðτÞ ¼ eiτĤ0Ôe−iτĤ0 . We define an equilibration
timescale τ�ðϵÞ, which is understood as the time τ at which
fðτÞ ≈ ϵ for some small dimensionless ϵ. By fast equilibra-
tion, we mean that τ�ðϵÞ ∼Oð1Þ in the relevant time units of
the problem. In Sec. VI, numerical simulations of a trans-
lationally invariant one-dimensional Hamiltonian indeed
show that, in times that are Oð1Þ in the relevant timescale,
observables reach values that are very close to the predictions
of ρ̂e0;q.
We do not expect ϵ to be arbitrarily small because, even

if the Hamiltonian and the initial state are translational
invariant, the unavoidable coupling to hydrodynamic
modes in interacting systems renders the approach of local
observables to equilibrium polynomial, fðτÞ ∝ τ−d=2, as
argued in Ref. [44] on the basis of fluctuating hydro-
dynamics. In such a case, one expects

τ�ðϵÞ ≈ ϵ−2=d: ð14Þ

Our numerical results suggest that, for the models and
observables studied, hydrodynamics tails may set in when ϵ
is very small, at times that are beyond the reach of our
numerical calculations.
The way τ� enters our analysis is that we approximate,

for any ρ̂,

eτL0 ρ̂ ≈ PeτL0 ρ̂; whenever τ > τ�; ð15Þ
accepting an error OðϵÞ. This approximation amounts to
assuming that the system has equilibrated after a time τ�

with respect to the dynamics generated by Ĥ0. Hence, at
time τ�, we replace the density matrix of the system by
ρ̂e0;q. Of course, the usual caveats typical of irreversibility
apply: this replacement can only be correct when dealing
with local or few-body observables Ô, or sums thereof, not
for (special) many-body operators such as the spectral
projectors of Ĥ0 [22].

D. Born approximation

We can now state our main assumption as a weak
coupling condition, namely,

gτ� ≪ 1: ð16Þ
To see this assumption at work, let us expand the
exponential esðL0þP̄L1Þ in the definition of As in Eq. (11):

As ¼ PL1esL0L1P

þ
Zs

0

ds1PL1eðs−s1ÞL0P̄L1es1L0L1P þ � � � : ð17Þ

Note that, for example, the first term on the rhs could also
be written as PL1P̄esL0P̄L1P or even PL1P̄esP̄L0P̄P̄L1P,
which makes apparent that the intermediate evolution acts
on the fast degrees of freedom. In order for this expansion
in powers of g to be meaningful, one needs to make sure
that the series above can be resummed such that it is linear
in L. For example, since every L1 carries a factor L, it
appears that the first and second terms in the equation
above are of order L2 and L3, respectively. However,
one can write these terms as sums of [and integrals
over ðe0; qÞ] truncated correlation functions hV̂0ðsÞV̂ice0;q
and hV̂0ðsÞV̂0ðs1ÞV̂ice0;q; see, e.g., the remark following
Eq. (B4). These truncated correlation functions are of
order L due to clustering properties of the ðe0; qÞ equi-
librium ensembles. In higher orders, such considerations
become more complicated and we refer the interested
reader to mathematical work establishing a meaningful
expansion [45,46]. Assuming that one recovers the lin-
earity in L to all orders, for any τ ≥ τ�,

Zτ

0

dsAs ¼
Zτ

0

dsPL1esL0L1P þOðg3τ�2LÞ; ð18Þ

where the first term is Oðg2Lτ�Þ. One then sees that the
expansion is meaningful if

g3τ�2L ≪ g2τ�L; ð19Þ

which is, of course, equivalent to Eq. (16).

E. Markov approximation

The discussion above has shown that the lowest order
approximation to

R∞
0 dsAs, namely,

K ¼
Z∞

0

dsPL1esL0L1P; ð20Þ

is Oðg2τ�LÞ, with the factor L originating from the spatial
sum in L1. The physical meaning of this factor is that the
quantities that change smoothly in time are the densities
ðe0; qÞ rather than ðE0; QÞ themselves, or, alternatively,
local observables. We then see that the superoperator K is
Oðg2τ�Þ, and this is the rate at which ρ̂ changes. Recalling
that the time integral defining K reaches its τ ¼ ∞ value
at τ ≈ τ� leads to the conclusion that, in Eq. (10), we can
approximate Pρ̂ðτ − sÞ by Pρ̂ðτÞ, making an errorOðg2τ�2Þ
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(which is small by our weak-coupling assumption gτ� ≪ 1).
A further simplification occurs by observing that Yτ is
proportional to g, and vanishes fast as τ ≥ τ�, so one might
set Yτ ¼ 0 for times τ ≥ τ�. If we make these two
approximations, then the equation of motion [Eq. (10)] reads

∂τPρ̂ðτÞ ¼ KPρ̂ðτÞ; τ ≫ τ�: ð21Þ

A conservative look at the validity of Eq. (21), in particular
to the approximation Yτ ¼ 0, shows that one should trust
Eq. (21) only for times τ ≫ τtr (where the subindex tr stands
for transient) and τtr is determined by g2τ� ≫ gfðτtrÞ, as
follows by comparing the magnitude of the two terms in
Eq. (10).

F. Autonomous equation

The meaning of Eq. (21), in which K is a superoperator
acting on density matrices, is simplified by the presence of
P. As mentioned before, P projects onto distributions of
densities pðe0; qÞ, and so Eq. (21) is actually an evolution
equation on such p. It is easier, and more natural, to guess
the form of this evolution equation than to derive it from the
formula above, so we will do the former here and relegate
the latter to Appendix B.
Given ρ̂e0;q, we need to find the rate of change of ðe0; qÞ.

The natural path is to use Fermi’s golden rule, within which
e0 does not change in time. Having a single eigenket jE0i in
mind, the rate of change of q, called the “drift” d, is given
by

dðE0Þ ¼ 2πg2
Z

dĒ0δðE0 − Ē0ÞQĒ0 −QE0

L
jhE0jV̂jĒ0ij2;

ð22Þ

where QE0 ¼ hE0jQ̂jE0i, the integral is understood as a
sum, and the delta function δðE0 − Ē0Þ selects an interval
of energies with a width smaller than any relevant energy
scale but much larger than the level spacing. In principle,
one should average dðE0Þ over E0, with the distribution
provided by statistical mechanics ρ̂e0;q, or by quantum
mechanics, i.e., the diagonal ensemble ρ̂DE. However, once
again, because of eigenstate thermalization (or its gener-
alized version for integrable systems), we expect the
average to be unnecessary for large L. Hence, the drift d ¼
dðe0; qÞ does not depend on jE0i but only on ðe0; qÞ. Even
though V̂ ¼ OðLÞ, the drift dðe0; qÞ is Oð1Þ because of
decay of spatial correlations; see Appendix B. We then
obtain the autonomous equation

∂τqðτÞ ¼ d½e0ðτÞ; qðτÞ�; ∂τe0ðτÞ ¼ 0: ð23Þ

The corresponding evolution equation for the distributions
pτðe0; qÞ is then

∂τpτðe0; qÞ ¼ −d½e0; q�∂qpτðe0; qÞ; ð24Þ

which lifts naturally to an evolution on Pρ̂. The stationary
solution of Eq. (23) as τ → ∞ is denoted by ðe0; q�Þ, where
q� ¼ q�ðe0Þ is determined by

d½e0; q�ðe0Þ� ¼ 0: ð25Þ

Within Fermi’s golden rule [Eq. (22)], this is recognized
as a detailed balance condition, indicating that q�ðe0Þ is
the equilibrium value of q given e0. In other words, q� is
determined by maximizing the entropy at fixed e0 and,
hence, the resulting ensemble ρ̂e0;q� is equivalent to one in
which no constraint on q̂ is imposed:

ρ̂e0;q� ≈ ρ̂e0 : ð26Þ

This also shows that the asymptotic state ρ̂e0;q� is close to
the global equilibrium state ρ̂e for which hĥi ¼ e ¼ e0þ
OðgÞ. In Sec. IV, we quantify the OðgÞ difference between
ρ̂e0;q� and ρ̂e.

G. Corrections

In principle, our scheme allows one to compute higher-
order corrections in g to the autonomous Eqs. (21) and (23).
In particular, one can expand As in a power series in terms
of order ðgτ�ÞnL, n ≥ 1, with the terms for n ¼ 1 and 2
given in Sec. III D. Integrating over s, one then gets a series
for K, and hence for the drift coefficient d½e0; q�. It is,
however, far from obvious that such corrections are useful,
as (i) we have made approximations at several points, not
only in truncatingAs, but also, e.g., replacingPρ̂ðτ − sÞ for
s ≤ τ� by Pρ̂ðτÞ, and (ii) a not-so-fast decay of fðτÞ would
imply that the Yτ term in Eq. (10) remains potentially
important at long times, obscuring any precise corrections
to the Markovian part.
Rigorous work in the context of open quantum systems

[45–47] implies that one can meaningfully compute cor-
rections, but only if the condition

R
∞
0 dτjfðτÞj < ∞ is

satisfied.

IV. DYNAMICS OF LOCAL OBSERVABLES

So far, we have focused on the evolution of the
quasiconserved quantity Q̂, which we found to be described
by the autonomous Eq. (23). We now turn our attention to
more general observables. Our main finding is that their
time-dependent expectation values are described by a
“deformed equilibrium ensemble,” with an OðgÞ difference
from ρ̂e0;qðτÞ. This deviation has a universal form.

A. Correction to Pρ̂ðτÞ
At first sight, the evolution of generic observables is

slaved by the evolution of the slow variables ðe0; qÞ.
Indeed, the general picture is that the evolution of the
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density matrix ρ̂ðτÞ takes place in the space of equilibrium
density matrices ρ̂e0;qðτÞ, leading to the prediction

Tr½ρ̂ðτÞÔ� ≈ Tr½ÔPρ̂ðτÞ� ¼ hÔie0;qðτÞ: ð27Þ
In the last equality, we assumed that pðe0; qÞ is concen-
trated at a single value. Yet, strictly speaking, the previous
section dealt with Pρ̂ðτÞ, rather than with ρ̂ðτÞ, so Eq. (27)
is in need of a justification. To provide it, we return to the
formalism in Sec. III B, and write [see Eq. (12)]

ρ̂ðτÞ¼Pρ̂ðτÞþ P̄ ρ̂ðτÞ

¼Pρ̂ðτÞþeτP̄LP̄ρ̂I þ
Zτ

0

dsP̄esP̄LLPρ̂ðτ− sÞ: ð28Þ

The first term in Eq. (28) is dominant for large τ ≥ τtr.
It amounts to the approximation resulting in Eq. (27).
The second term in the last line of Eq. (28) is transient,
decaying as gfðτÞ, as discussed also in Sec. III E. The third
term is the correction we are interested in. Let us write
it explicitly, when paired with an observable Ô, namely,R
τ
0 dsTr½ÔP̄esP̄LLPρ̂ðτ−sÞ�. By expanding esP̄L in powers
of g, we get the leading contribution:

Zτ

0

dsTr½Ô P̄ esL0LPρ̂ðτ − sÞ�

¼ ig
Zτ

0

dsTrf½V̂0ð−sÞ; Ô�Pρ̂ðτ − sÞg: ð29Þ

One can further simplify this expression by approximating
Pρ̂ðτ − sÞ by Pρ̂ðτÞ, justified by the reasoning in
Sec. III E, and by again assuming that the distribution
pðe0; qÞ, corresponding to Pρ̂ðτÞ, is concentrated at a
single density ½e0; qðτÞ�. Then the last line in Eq. (29) reads

ig
Z∞

0

dsh½V̂0ð−sÞ; Ô�ie0;qðτÞ: ð30Þ

By the assumption of fast equilibration at s ≈ τ�, this
expression is Oðgτ�Þ; i.e., it is a small correction to
hÔie0;qðτÞ. Even though it is subleading, this correction
has a universal form, as we explain in the next section.
Finally, note that Eq. (30), obtained following a naive first-
order perturbation theory, was already written in Sec. II for
Q̂ [see Eq. (2)]. In that case, the s-independent integrand
vanishes identically.

B. Susceptibility

To understand the correction in Eq. (30), consider the
equilibrium ensemble ρ̂e0;q� with ðe0; q�Þ the τ → ∞
solution of Eq. (23), or, alternatively, with q� determined

by maximizing the entropy at fixed e0. The ensemble ρ̂e0;q�
is a small perturbation of the real equilibrium ensemble ρ̂e
corresponding to Ĥ, with hĥiρ̂e ¼ hĥiρ̂e0 ;q� þOðgÞ. We can

relate these two ensembles by linear response theory.
Indeed, we can imagine starting with ρ̂e0;q� at τ ¼ 0, and
switching on the perturbation gV̂. The system will then
evolve precisely to ρ̂e, and the change in the expectation
value of observables Ô should be described by linear
response theory. In particular, the stationary change is
described by the zero-frequency response coefficient (also
known as the susceptibility), which is exactly Eq. (30).
This discussion should also clarify how thermalization

with respect to Ĥ is reconciled with our treatment, which is
based on equilibration with respect to Ĥ0. The global
equilibrium state ρ̂e is obtained as a universal correction to
the state ρ̂e0;q� .

C. Deformed equilibrium ensembles from
Fermi’s golden rule

In Sec. IVA, we use the last term in Eq. (28) to derive the
OðgÞ correction to observables in ρ̂ðτÞ from their expect-
ation values in ρ̂e0;qðτÞ. Here, we point out that this is also
what the autonomous Eq. (23) dictates.
Let us compute the time derivative of qðτÞ:

∂τqðτÞ ¼ Tr½q̂Lρ̂ðτÞ� ¼ Tr½q̂L1ρ̂ðτÞ�; ð31Þ
where, in the last equality, we use that ½Ĥ0; Q̂� ¼ 0.
Previously, we evaluated this time derivative in a different
way: we approximated ρ̂ðτÞ by ρ̂e0;qðτÞ [assuming, again,
that pðe0; qÞ is a Dirac delta function] and we arrived at

∂τqðτÞ ¼ Tr½q̂Kρ̂e0;qðτÞ�: ð32Þ
This is a more abstract rendering of the autonomous
Eq. (23). At this point, one can ask which form of ρ̂ðτÞ
would reconcile Eqs. (31) and (32). By the cyclic property
of the trace, and using that ½q̂; ρ̂e0;qðτÞ� ¼ 0, we note that
Eq. (31) does not depend on the leading contribution ρ̂e0;qðτÞ
to ρ̂ðτÞ. It depends only on the correction term. We then see
that Eq. (31) reduces to Eq. (32) if we choose the correction
term to be

Z∞

0

dsP̄esL0L1ρ̂e0;qðτÞ; ð33Þ

which is the correction we used in Sec. IVA to derive
Eq. (30). A spectacular corollary of this reasoning is the
observation that, if ρ̂ðτÞ were exactly commuting with q̂,
then the rate of change vanishes, i.e., ∂τqðτÞ ¼ 0.

V. MODELS, QUENCHES, AND OBSERVABLES

In the rest of the paper, we test the previous ideas and
analytical results in numerical experiments. We focus on
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the dynamics of nonintegrable models of strongly interact-
ing hard-core bosons in one-dimensional lattices (which
can be mapped onto spin-1=2 Hamiltonians). We study the
effects of breaking particle-number conservation [the U(1)
symmetry in the corresponding spin models].

A. Models

Quantum dynamics are studied under time-independent
Hamiltonians Ĥα of the form

Ĥα ¼ Ĥ0 þ gαV̂α; ð34Þ
where the reference Hamiltonian Ĥ0, which we take to be
nonintegrable, commutes with the total particle-number
operator N̂, ½Ĥ0; N̂� ¼ 0. The perturbations, gαV̂α, do not
commute with N̂, ½V̂α; N̂� ≠ 0.
We take Ĥ0 to be the t-V-t0-V 0 Hamiltonian for hard-core

bosons in 1D lattices [48,49], with nearest (next-nearest)
neighbor hopping t (t0) and interaction V (V 0):

Ĥ0¼
X
i

�
−tðb̂†i b̂iþ1þH:c:Þ− t0ðb̂†i b̂iþ2þH:c:Þ

þV

�
n̂i−

1

2

��
n̂iþ1−

1

2

�
þV 0

�
n̂i−

1

2

��
n̂iþ2−

1

2

��
;

ð35Þ

where b̂†i ðb̂iÞ is the hard-core boson creation (annihilation)
operator and n̂i ¼ b̂†i b̂i is the number operator at site i.
When t0 ¼ V 0 ¼ 0, Ĥ0 is integrable (in the spin language, it
is the Hamiltonian of the spin-1=2 XXZ chain) [50]. Here,
we focus on cases in which t0 ¼ V 0 ≠ 0, so that Ĥ0 is
nonintegrable [48,49].
We consider two perturbations gαV̂α, with α ¼ 1, 2.

The first one is

g1V̂1 ¼ g1
X
i

�
b̂i þ

1

2
ðb̂ib̂iþ1 − b̂†i b̂iþ1Þ þ H:c:

�
: ð36Þ

It will be important later that the presence of nearest
neighbor hopping terms in V̂1 make hE0

i jV̂1jE0
i i ≠ 0 for

typical eigenkets jE0
i i of Ĥ0.

The second perturbation we consider is

g2V̂2 ¼ g2
X
i

�
b̂i þ

1

2
b̂ib̂iþ1 þ H:c:

�
: ð37Þ

This perturbation only contains terms that change the
particle number. Hence, hE0

i jV̂2jE0
i i ¼ 0 for all eigenkets

jE0
i i of Ĥ0 and N̂.

B. Initial states and description after equilibration

We study the quantum dynamics of initial states ρ̂I that
are far from equilibrium with respect to both Ĥ0 and Ĥα.
This is achieved by choosing ρ̂I to be thermal equilibrium

states of initial Hamiltonians ĤI , such that ½ĤI; Ĥα� ≠ 0

and ½ĤI; Ĥ0� ≠ 0. Dynamics are generated by quantum
quenches in which, at time τ ¼ 0, one suddenly changes
ĤI → Ĥα and lets the system evolve unitarily. We consider
systems that are translationally invariant before and after
the quench.
The time-evolving density matrix after the quench can be

written as ρ̂ðτÞ ¼ e−iĤατρ̂IeiĤατ. We are interested in the
dynamics of observables Ô, whose expectation values are
given by OðτÞ ¼ Tr½ρ̂ðτÞÔ�. At long times, one expects
observables to equilibrate at the values predicted by the
diagonal ensemble (DE), ODE ¼ Tr½ρ̂DEÔ�, where ρ̂DE ¼
limτ0→∞ð1=τ0Þ

R
τ0
0 dτρ̂ðτÞ is the density matrix of the diago-

nal ensemble [36]. When written in the basis of eigenkets
jEα

i i of Ĥα, ρ̂DE takes the form

ρ̂DE ¼
X
i

ðhEα
i jρ̂IjEα

i iÞjEα
i ihEα

i j: ð38Þ

For nonintegrable (quantum chaotic) systems, because of
eigenstate thermalization [36–38], one expects the predic-
tions of the diagonal ensemble to match those of traditional
statistical mechanics ensembles; namely, we expect observ-
ables to thermalize [22]. For the t-V-t0-V 0 Hamiltonian for
hard-core bosons in 1D lattices, eigenstate thermalization
and thermalization were studied in Ref. [48], while quan-
tum chaos was studied in Ref. [49]. This means that, in our
systems, we can also describe observables after equilibra-
tion by means of the grand canonical ensemble (GE)
characterized by a temperature T, and, when particle
number is a conserved quantity, by a chemical potential
μ. The grand canonical ensemble density matrices have the
form

ρ̂GE ¼
8<
:

e−Ĥα=T

Tr½e−Ĥα=T � when gα ≠ 0

e−ðĤαþμN̂Þ=T

Tr½e−ðĤαþμN̂Þ=T � when gα ¼ 0:
ð39Þ

When gα ≠ 0, T is fixed by the (conserved) energy of
the time-evolving state,

Tr½ρ̂GEĤα� ¼ Tr½ρ̂IĤα�: ð40Þ
When gα ¼ 0, T and μ are determined by the (conserved)
energy [Eq. (40)] and by the (conserved) particle number in
the time-evolving state,

Tr½ρ̂GEN̂� ¼ Tr½ρ̂IN̂�: ð41Þ
Because of particle-hole symmetry in the Hamiltonians

Ĥα, when gα ≠ 0 (namely, in the absence of particle-
number conservation), our systems after equilibration are
always at half filling irrespective of the initial filling nI .
We consider initial fillings nI ≠ 1=2, which means that the
filling must change during the dynamics when gα ≠ 0.
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From our analysis in the previous sections, we expect that,
for small values of gα, the dynamics of generic observables
follow a two-step process towards thermalization: (i) fast
relaxation driven by Ĥ0 (prethermal dynamics) and
(ii) slower, nearly exponential, relaxation to the thermal
equilibrium predictions (thermalization dynamics). At long
times, close to thermal equilibrium, hydrodynamics may
become dominant and algebraic relaxation is expected to
take place [44]. That regime is not resolved in this work.
As discussed in Sec. IV, the near-exponential dynamics

following prethermalization can be described by projecting
ρ̂ðτÞ in the basis of the eigenkets of Ĥ0, up to an OðgÞ
correction. This projected state is a diagonal ensemble of
Ĥ0, whose density matrix [see Eq. (6)] we denote as

ρ̂0ðτÞ≡ PDEρ̂ðτÞ ¼
X
i

ðhE0
i jρ̂ðτÞjE0

i iÞjE0
i ihE0

i j; ð42Þ

where jE0
i i are the eigenkets of Ĥ0.

C. Numerical linked cluster expansion (NLCE)

In what follows, we use the numerical linked cluster
expansion (NLCE) approach introduced in Ref. [23] (see
Refs. [51,52] for NLCE studies in two dimensions) to study
the quantum dynamics of various observables in our
translationally invariant 1D systems in the thermodynamic
limit.
NLCEs were originally introduced to study systems

in thermal equilibrium [53], and allow one to obtain
the expectation value of extensive observables per site
(O ¼ O=L), in the thermodynamic limit (L → ∞), as sums
over the contributions of the connected clusters that can be
embedded in the lattice. Given the connected clusters c,
which can be embedded in the lattice inMðcÞ ways per site
and have weights WOðcÞ, one obtains O in the following
way

O ¼
X
c

MðcÞ ×WOðcÞ: ð43Þ

WOðcÞ is computed, for each cluster c, from the expectation
value of the observable Ô in the cluster (Oc) using the
inclusion exclusion principle:

WOðcÞ ¼ Oc −
X
s⊂c

WOðsÞ; ð44Þ

where the sum is over all connected subclusters of c.
For the smallest cluster, WOðcÞ ¼ Oc. For each cluster,
Oc ¼ Tr½ρ̂cÔ�, where ρ̂c is the density matrix of the
relevant ensemble in the cluster. In NLCEs,Oc is calculated
exactly numerically using full exact diagonalization.
In our calculations, the density matrix of the initial state

in each cluster ρ̂cI is taken to be the grand canonical density
matrix set by the initial Hamiltonian in each cluster Ĥc

I

(our initial states are in thermal equilibrium with respect to
ĤI). In all quenches, we take ĤI to be the t-t0-V-V 0 model
in Eq. (35). Since ½Ĥc

I ; N̂
c� ¼ 0, where N̂c is the total

particle number operator in the cluster,

ρ̂cI ¼
e−ðĤ

c
IþμI N̂

cÞ=TI

Tr½e−ðĤc
IþμI N̂

cÞ=TI � : ð45Þ

Also, since Ĥc
I is particle-hole symmetric, we need μI ≠ 0

in order to have initial states with filling nI ≠ 1=2.
To calculate the time evolution of the expectation values

of the observables OðτÞ, where τ denotes the time after the
quench, the density matrix of each cluster is evolved with
the Hamiltonian after the quench Ĥc

α,

ρ̂cðτÞ ¼ ðe−iĤc
ατÞρ̂cI ðeiĤ

c
ατÞ; ð46Þ

and the NLCE calculation is carried out as usual [23]. Our
Hamiltonians after the quench have the form in Eq. (34).
Similarly, in order to obtain NLCE results after the quench
for the diagonal ensemble, the grand canonical ensemble,
and in the projected basis of Ĥ0, we use ρ̂cDE, ρ̂

c
GE, and

ρ̂c0ðτÞ from Eqs. (38), (39), and (42), respectively, for each
cluster c.
NLCEs have been used to study quenches in the

t-t0-V-V 0 model [Eq. (35)] to understand the dynamics
[23], and the description of observables after equilibration
[54], at the integrable point t0 ¼ V 0 ¼ 0 and away from it
t0 ¼ V 0 ≠ 0. The presence of next-nearest neighbor hop-
pings and interactions makes it possible to have different
building blocks to construct the clusters in the NLCE.
In Ref. [55], it was shown that maximally connected
clusters—built adding contiguous sites and all possible
bonds, starting from one site—are optimal for studying
quenches in this model. Here, as in Refs. [23,54], we use
that NLCE in our calculations (there is only one maximally
connected cluster with a given number of sites). The
number of sites in the largest cluster considered defines
the order of NLCE, and we denote the value of an
observable OðτÞ evaluated with NLCE to order l as OlðτÞ.

D. Observables

We study three observables which have properties that
make them qualitatively distinct in the context of dynamics
and description after equilibration.
The first observable is the total particle number,

NðτÞ ¼ Tr½ρ̂ðτÞN̂�; ð47Þ

whose value per site, the particle filling, is denoted as nðτÞ.
This is a conserved quantity with respect to the reference
Hamiltonian Ĥ0; i.e., it only changes during dynamics
under Ĥα after the quench if gα ≠ 0.
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The second observable is the one-body nearest neighbor
correlation,

KðτÞ ¼ Tr½ρ̂ðτÞK̂�; ð48Þ

whose value per site is denoted as kðτÞ, where

K̂ ¼
X
i

ðb̂†i b̂iþ1 þ b̂†iþ1b̂iÞ: ð49Þ

kðτÞ is a local observable, closely related to the kinetic
energy per site. It changes during the dynamics independ-
ently of whether N̂ is conserved or not.
The third observable is the distribution function,

MkðτÞ ¼ Tr½ρ̂ðτÞM̂k�; ð50Þ

whose value per site is the momentum distribution function,
denoted as mkðτÞ. M̂k is the unnormalized (to make each k
component extensive) Fourier transform of the one-body
density matrix, given by

M̂k ¼
X
j;j0

eikðj−j0Þb̂†j b̂j0 : ð51Þ

mkðτÞ is a nonlocal one-body observable that changes
during the dynamics independently of whether N̂ is
conserved or not. This observable is of particular interest
because it is regularly measured (using time-of-flight
expansion) in experiments with ultracold quantum gases
[56]. mkðτÞ was the observable used in Ref. [2] to show
lack of thermalization in 1D Bose gases with contact
interactions, and in Ref. [6] to study prethermalization
and thermalization 1D Bose gases with dipolar interactions.

E. Parameters used in the calculations

The initial state is taken to be a thermal equilibrium state
at temperature TI ¼ 10 and chemical potential μI ¼ 2

(similar results are obtained for other values of TI, not
too low, and μI), for an initial Hamiltonian ĤI with nearest
and next-nearest neighbor coupling parameters tI ¼ 0.5,
VI ¼ 1.5, and t0I ¼ V 0

I ¼ 0.7. After the quench, Ĥα has
coupling parameters t ¼ V ¼ 1 (these set the energy scale
in our calculations), t0 ¼ V 0 ¼ 0.7, and gα ∈ ð0; 0.12Þ. For
these parameters after the quench, Ĥ0 [48,49] and Ĥα are
quantum chaotic and the system thermalizes for all values
of gα (see Ref. [23] for a NLCE study of the quench
dynamics when gα ¼ 0).
For nðτÞ and kðτÞ, we carry out the NLCE up to the 17th

order for quenches with gα ≠ 0 (the largest Hamiltonian
sector that needs to be diagonalized has 65 792 states after
exploiting reflection symmetry), and, thanks to particle
number conservation, up to the 19th order for quenches
with gα ¼ 0 (the dimension of the largest Hamiltonian

sector that needs to be diagonalized is 46 252). For mkðτÞ,
the NLCE is carried out to one order lower than for nðτÞ
and kðτÞ, namely, up to the 16th order for gα ≠ 0 and up to
the 18th order for gα ¼ 0. This is because of the overhead
generated by the calculation of the dynamics of all the
matrix elements of the one-body density matrix [see
Eqs. (50) and (51)].

VI. NUMERICAL RESULTS

A. Dynamics of the particle filling

In Fig. 1(a), we show the evolution of the particle filling
under Ĥ1 for three values of g1. Results are shown for the
last two orders of the NLCE up to τ ¼ 100. In those
quenches, we expect the convergence errors for nðτÞ to be
below 0.01% for times τ ≲ 4, and to remain low (below
1%) up to times τ ≈ 16 (see Appendix C). For τ ≳ 16, the
results for the last two orders of the NLCE can be seen to
(slightly) deviate from each other in Fig. 1(a). In all the
plots in Fig. 1(a), nðτÞ can be seen to approach nDE ¼ 1=2.
For g1 ¼ 0.12, nðτ ¼ 100Þ ≈ nDE.
The approach of nðτÞ to nDE ¼ 0.5 is exponential. This is

apparent in Fig. 1(b), where we plot the normalized
“distance” to equilibrium:

δDEl ½nðτÞ� ¼
���� nlðτÞ − nDE

nDE

����: ð52Þ

We fit δDEl ½nðτÞ� to an exponential function ∝
exp½−ΓNLCE

l ðg1Þτ� to obtain the thermalization rate
ΓNLCE
l ðg1Þ. In order to gain an understanding of the

accuracy of the obtained rates, we carry out fits in the
time interval τ ∈ ½1; 16� for l ¼ 17 [the corresponding fits
are shown in Fig. 1(b) as thin continuous lines], and in
the interval τ ∈ ½1; 6� for l ¼ 16. The rates obtained in those
calculations are shown in Fig. 1(c), as NLCE-17 and
NLCE-16, respectively. They agree with each other within
the errors of the fits. This suggests that our calculation
of ΓNLCEðg1Þ is robust. A power-law fit to the rates obtained
for l ¼ 17 is also shown in Fig. 1(c). We find that
ΓNLCE
17 ðg1Þ ∝ gβ1 with β ¼ 1.99, in agreement with the

analytical results in Sec. III.
In closing Sec. IV C, we argued that the rate _qðτÞ ¼ 0

whenever the state ρ̂ðτÞ commutes exactly with Q̂. The rate
also vanishes if ρ̂ðτÞ is time-reversal invariant about τ.
Both conditions apply to our initial states ρ̂I . As a result,
there is a narrow plateau in nðτÞ for τ ≤ 1. This plateau is
best seen in Fig. 9. This is why, to obtain the rates reported
in Fig. 1(c), we fit nðτÞ at times τ ≥ 1.
Next, we show that the values obtained for ΓNLCEðg1Þ are

in agreement with the ones predicted by Fermi’s golden
rule. From Eq. (22), changing Q̂ → N̂ and V̂ → V̂α, one
can write for _nðτÞ ¼ dn=dτ0jτ0¼τ:
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_nðτÞ ¼ 2πg2α
L

X
i;j

δðE0
j − E0

i ÞðNj − NiÞP0
i ðτÞ

× jhE0
j jV̂αjE0

i ij2; ð53Þ

where jE0
i i are the eigenkets of Ĥ0 with energies E0

i ,
Ni ¼ hE0

i jN̂jE0
i i, and we average over the diagonal ensem-

ble distribution, P0
i ðτÞ ¼ hE0

i jρ̂ðτÞjE0
i i. To evaluate

Eq. (53) numerically, we replace
P

jδðE0
j − E0

i Þ by a sum
over energies E0

j that lie within a small energy window
½E0

i − ΔE=2; E0
i þ ΔE=2� (see Appendix D).

The thermalization rates are estimated by computing

ΓFermiðgαÞ ¼ −
_nðτÞ

nðτÞ − nDE
: ð54Þ

When jnðτÞ − nDEj ≪ nDE, ΓFermiðgαÞ becomes indepen-
dent of τ and nðτÞ relaxes exponentially. This condition is,
to a good degree, satisfied for our choice of initial state, for
which δDEl ½nðτÞ� < 0.09 [see Fig. 1(b)]. Our calculations of
ΓFermiðgαÞ are done using full exact diagonalization in
chains with L ¼ 17 and 18 sites, and periodic boundary
conditions. We identify a range of values for ΔE and τ for
which the results for ΓFermiðgαÞ are robust against the choice
of ΔE, τ, and L (see Appendix D).
In Fig. 1(c), we report our results for ΓFermiðg1Þ. They are

in excellent agreement with ΓNLCEðg1Þ. We should add that,
for quenches ĤI → Ĥ2, Eq. (53) predicts the same leading
Oðg2αÞ dynamics as under Ĥ1. This is the case because the

terms that change the total particles number are the same in
V̂1 and V̂2. Hence, nðτÞ is the same for both Hamiltonians
up to corrections Oðg3αÞ.

B. Dynamics of the one-body nearest neighbor
correlation

Next, we study the dynamics of the one-body nearest
neighbor correlation, kðτÞ [see Eq. (49)]. In contrast to the
particle filling studied in Sec. VI A, the nearest neighbor
correlation kðτÞ exhibits dynamics even if gα ¼ 0 after the
quench.
Figure 2 shows the 18th (NLCE-18) and 19th (NLCE-19)

orders of the NLCE for kðτÞ after a quench in which gα ¼ 0.
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FIG. 1. Dynamics of the particle filling after quantum quenches ĤI → Ĥ1. (a) Dynamics of the particle filling nðτÞ and (b) dynamics
of the “distance” to equilibrium δDEl ½nðτÞ�; see Eq. (52). NLCE results are shown for l ¼ 17 [NLCE-17, see legend in (a)] and l ¼ 16

(NLCE-16, dotted lines). Straight lines in (b) depict fits to the results for l ¼ 17 in the interval τ ∈ ½1; 16� and to exponential functions
∝ exp½−ΓNLCE

17 ðg1Þτ�. (c) Thermalization rates ΓNLCEðg1Þ (filled symbols) obtained from fits as the ones in (b), for l ¼ 17 in the interval
τ ∈ ½1; 16� (NLCE-17), and for l ¼ 16 in the interval τ ∈ ½1; 6� (NLCE-16), reported for g1 ∈ ½0.03; 0.12�. Error bars show
95% confidence bounds for the fits. The straight line is the result of a fit to ΓNLCE

17 ðg1Þ ∝ gβ1 for g1 ∈ ½0.03; 0.06�. The open symbols
show the rates ΓFermiðg1Þ obtained evaluating Fermi’s golden rule [see Eqs. (53) and (54)] using full exact diagonalization in chains with
L ¼ 18 (Fermi-18) and L ¼ 17 (Fermi-17), and periodic boundary conditions. The error bars show the standard deviation from averages
over different choices of ΔE and τ (see Appendix D).
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FIG. 2. Dynamics of the one-body nearest neighbor correlation
kðτÞwhen gα ¼ 0 after the quench. Results are shown for the 18th
(NLCE-18) and 19th (NLCE-19) orders of the NLCE. We also
report, as horizontal lines, the results for the 19th order of the
diagonal ensemble (DE19) and for the 19th order of the grand
canonical ensemble (GE19).
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The results of both orders are in excellent agreement with
each other, and equilibrate rapidly to the prediction of
the diagonal ensemble (horizontal dashed line). The
predictions of the diagonal and grand canonical (horizon-
tal contiguous line) ensembles are very close to each other,
indicating thermalization. This is expected because Ĥ0

after the quench is nonintegrable. The small difference
between the diagonal and the grand canonical ensemble
results is due to the lack of convergence of the NLCE
for the former (the latter is fully converged) [54]. Those
differences decrease with increasing the order of the
NLCE. In what follows, we use the grand canonical
ensemble predictions to probe thermalization.
In Fig. 3, we show kðτÞ after quenches ĤI → Ĥ1 (left-

hand panels) and ĤI → Ĥ2 (right-hand panels). The dynam-
ics are qualitatively similar in both cases. They can be split
in two regimes: (i) fast (prethermal) dynamics driven by Ĥ0

(note that, at times τ ≲ 10, dynamics in Fig. 3 are nearly
identical to those in Fig. 2) and (ii) a slower (thermalization)
dynamics controlled by the strength of the perturbation.
During the latter regime, the system approaches [and reaches
for g1 ¼ g2 ¼ 0.12 and τ ¼ 100, see Figs. 3(b) and 3(d)] the
prediction of the grand canonical ensemble ρ̂GE correspond-
ing to Ĥα after the quench (with the temperature set by the
initial state).

The slow approach to thermal equilibrium can be well
described using the projected state ρ̂0ðτÞ from Eq. (42).
In Fig. 3, we show the results for the projected dynamics
along with those for the actual dynamics. As follows from
the discussion in Sec. IV, the results for the projected
dynamics approach those of a thermal equilibrium state of
Ĥ0, which we denote as ρ̂GE0

. We compute the temperature
T0 in ρ̂GE0

using the expectation value of Ĥ0 in the thermal
equilibrium state ρ̂GE of Ĥα:

Tr½ρ̂GE0
Ĥ0� ¼ Tr½ρ̂GEĤ0�: ð55Þ

The chemical potential in ρ̂GE0
is μ0 ¼ 0 because, for

gα ≠ 0, the systems after equilibration are at half filling.
In the left-hand panels in Fig. 3, for quenches ĤI → Ĥ1,

one can see the advanced offsets (see Sec. IV) between the
dynamics and the projected dynamics. The offsets are much
smaller for quenches ĤI → Ĥ2, whose results are shown in
the right-hand panels in Fig. 3. The offsets between the
actual and projected dynamics remain constant at long
times and are, essentially, the difference between the
predictions of ρ̂GE and ρ̂GE0

.
The difference in the offsets generated by quenches

ĤI → Ĥ1 and ĤI → Ĥ2 can be understood using Eq. (30),
replacing Ô → K̂ [K̂ is defined in Eq. (49)] and V̂ → V̂α.
Since K̂ and ρ̂0ðτÞ [ρ̂0ðτÞ is defined in Eq. (42)] are block
diagonal in the particle number basis, only the presence of
terms in V̂α that do not change the particle number can
produce an OðgÞ correction. Such terms are present in V̂1

(the hopping terms), see Eq. (36), but are absent in V̂2, see
Eq. (37). This means that, to leading order, Δk1ðτÞ ∝ g1
while Δk2ðτÞ ∝ gβ2 with β ≥ 2.
In Fig. 4, we show the long-time offsets between the

actual and projected dynamics as functions of gα (for
positive and negative values of gα) in the quenches
ĤI → Ĥ1 [Fig. 4(a)] and ĤI → Ĥ2 [Fig. 4(b)]. The offsets
are computed as the difference between the predictions of
ρ̂GE and ρ̂GE0

for the equilibrated results (see the horizontal
lines in Fig. 3). Those predictions are converged to machine
precision in the 17th order of the NLCE shown in Fig. 4.
Figure 4(a), for quenches ĤI → Ĥ1, makes apparent the
presence of a leading linear correction and of a subleading
quadratic one. Figure 4(b) shows the absence of the linear
correction for quenches ĤI → Ĥ2. There, the leading
correction is quadratic, and our numerical results allow
us to identify a subleading cubic correction, which leads to
a weak asymmetry about g2 ¼ 0.
Comparing the results reported in Fig. 1(a), and in

Figs. 3(a) and 3(b), for g1 ¼ 0.06 and 0.12, it becomes
apparent that kðτÞ equilibrates (reaches the long-time
horizontal line prediction) faster than nðτÞ. This can be
understood to be the result of the one-body nearest
neighbor correlation being particle-hole symmetric
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FIG. 3. Dynamics of the one-body nearest neighbor correlation
kðτÞ for (a) g1 ¼ 0.06, (b) g1 ¼ 0.12, (c) g2 ¼ 0.06, and
(d) g2 ¼ 0.12. Results are shown for the 16th (NLCE-16) and
17th (NLCE-17) orders of the NLCE, both for the dynamics [see
legends in (a)] and for the dynamics in the projected basis of Ĥ0

[see legends in (c)]. The horizontal lines show the results for the
grand canonical ensemble corresponding to the original dynamics
(GE) and to the projected dynamics (GE0), both evaluated at the
17th order of the NLCE.
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(as the Hamiltonians Ĥα are). This means that, close to
equilibrium, the difference between kðτÞ and kGE can only
be a function of even powers of the difference between
nðτÞ and n ¼ 1=2. Say the leading even power in the
difference between nðτÞ and n ¼ 1=2 entering in kðτÞ −
kGE is 2, then _kðτÞ ≃ 2ΓFermiðgαÞ½kðτÞ − kGE�. Our numeri-
cal results for the thermalization rates of kðτÞ, not shown,
support the correctness of this simple analysis.

C. Dynamics of the momentum distribution

Here, we study the dynamics of the momentum distri-
bution function mkðτÞ [Eq. (50)] for quenches ĤI → Ĥ1.
Similar to the dynamics of kðτÞ, the evolution of mkðτÞ can
be split into a fast prethermalization dynamics and a slower
relaxation to the thermal equilibrium prediction at a rate
controlled by the strength of the perturbation.
In Fig. 5, we show results for the 15th (NLCE-15) and

16th (NLCE-16) orders of the NLCE for mkðτÞ at four
times (τ ¼ 0, 2, 10, and 100) after quenches in which g1 ¼
0.03 (left-hand panels in Fig. 5) and g1 ¼ 0.12 (right-hand
panels in Fig. 5). In all panels in Fig. 5, we also show
results for the 15th (NLCE-15) and 16th (NLCE-16) orders
of the NLCE for the projected dynamics of mkðτÞ in the
basis of Ĥ0 [the dynamics dictated by ρ̂0ðτÞ, see Eq. (42)].
Figures 5(b) and 5(f) show that the momentum distribution
in the original and projected dynamics become nearly
indistinguishable from each other after short times (τ ≳ 2),

and remain so at long times [see Figs. 5(c), 5(d), 5(g),
and 5(h)].
In Figs. 5(d) and 5(h), we also show the 16th order

NLCE prediction of the diagonal and the grand canonical
ensembles for the long-time dynamics, and of the grand
canonical ensemble for the long-time projected dynamics
[see Eq. (55) and the discussion surrounding this equation].
For g1 ¼ 0.03 [Fig. 5(d)], the results of the three equilib-
rium ensembles are nearly indistinguishable from each
other. They differ from those of the dynamics at τ ¼ 100
(they all become nearly indistinguishable from each other
at later times). For g1 ¼ 0.12 [Fig. 5(h)], the results for the
three equilibrium ensembles and for the dynamics at τ ¼
100 agree with each other. This, in contrast to the results
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legends in (b)]. The predictions of the diagonal ensemble (DE)
and the grand canonical ensemble (GE) for the dynamics, and of
the grand canonical ensemble for the projected dynamics (GE0),
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(h) [see the legends in (d)]. The inset in (h) shows the predictions
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for g1 ¼ 0.03, makes apparent thatmkðτÞ thermalizes faster
with increasing the magnitude of g1 (as expected). Also, as
expected from our discussion in Sec. IV and for kðτÞ in
Sec. VI B (see Fig. 3), there is an Oðg1Þ offset between the
results for mkðτÞ in the dynamics and in the projected
dynamics. The magnitude of this offset is momentum
dependent, as made apparent by the inset in Fig. 5(d),
and is too small to be resolved at the scales used in the main
panels of Fig. 5.
The operator corresponding to the momentum distribu-

tion function, unlike the one for the one-body nearest
neighbor correlation, is not particle-hole symmetric. This
implies that, as mkðτÞ approaches its equilibrium value in
the diagonal ensemble mDE

k , to leading order

mkðτÞ −mDE
k ∝

�
nðτÞ − 1

2

�
: ð56Þ

Thus, we expect mk to thermalize with the same rate
ΓFermiðg1Þ given by Eq. (54). To quantify the “distance” to
equilibrium for mkðτÞ, we compute

δDEl ½mðτÞ� ¼
P

kjml
kðτÞ −ml;DE

k jP
km

l;DE
k

: ð57Þ

In Fig. 6(a), we show δDEl ½mðτÞ� evaluated at the 15th
(NLCE-15) and 16th (NLCE-16) orders of the NLCE.
δDE15 ½mðτÞ� and δDE16 ½mðτÞ� can be seen to decay close to
exponentially, although the convergence of the results for
δDEl ½mðτÞ� in Fig. 6(a) is not as good as for δDEl ½nðτÞ� in

Fig. 1(b). This is understandable because (i) we are able to
calculate one order lower for mkðτÞ than for nðτÞ and
(ii) mkðτÞ probes correlations at all distances, while nðτÞ is
local and is a thermodynamic quantity.
We fit δDEl ½mðτÞ� to an exponential function ∝

exp½−ΓNLCE
l ðg1Þτ� to obtain the thermalization rates

ΓNLCE
l ðg1Þ for the momentum distribution function. The

fits are carried out in the interval τ ∈ ½2; 6� for NLCE-16
[shown as thin continuous lines in Fig. 6(a)], and in the
interval τ ∈ ½2; 5� for NLCE-15. The rates ΓNLCE

l ðg1Þ are
reported in Fig. 6(b) for g1 ∈ ½0.03; 0.12�. In Fig. 6(b), we
also plot the rates ΓFermiðg1Þ obtained by evaluating Fermi’s
golden rule [see Eqs. (53) and (54)] using full exact
diagonalization in chains with L ¼ 18 sites and periodic
boundary conditions (see Sec. VI A and Appendix D). [The
rates ΓFermiðg1Þ were also reported in Fig. 1(c).] Figure 6(b)
shows that, as advanced, the thermalization rates for the
momentum distribution function are the same (within our
computational errors) as the ones for the particle filling.
A power-law fit to the rates ΓNLCE

16 ðg1Þ is also shown in
Fig. 6(b). We find that ΓNLCE

16 ðg1Þ ∝ gβ1 with β ¼ 2.00, in
agreement with the numerical results in Sec. VI A, and with
the analytical ones in Secs. III and IV.

VII. SUMMARY AND DISCUSSION

We put forward a conceptually simple scenario for
prethermalization and thermalization in isolated quantum
systems with a weakly broken conservation law. This
scenario applies equally to noninteracting and strongly
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FIG. 6. Dynamics of the momentum distribution functionmkðτÞ [Eq. (50)] after quenches ĤI → Ĥ1. (a) Dynamics of the “distance” to
equilibrium δDE½mðτÞ�; see Eq. (57). NLCE results are shown for l ¼ 16 [NLCE-16] and l ¼ 15 (NLCE-15, dotted lines). Straight lines
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interacting integrable systems in which integrability is
weakly broken, as well as to nonintegrable systems in
which a conservation law is weakly broken. The weak
perturbation allows the system to equilibrate to a state that
is a (generalized) thermal equilibrium state of the unper-
turbed system. The properties of such a state are determined
by the slowly changing value of the quasiconserved
quantity (or quantities). The separation of timescales leads
to a universal description, two aspects of which stand out.

(i) The dynamics of the (or each) quasiconserved quan-
tity is described by an autonomous equation that can
be constructed from Fermi’s golden rule in unper-
turbed equilibrium ensembles. This equation is the
generalization of the nonlinear Boltzmann equation
appearing in weakly interacting quantum systems.

(ii) The deviation of observables in the instantaneous
state from the prediction of the unperturbed equi-
librium ensemble is described by first-order pertur-
bation theory. This generalizes the concept of
“deformed GGE” that was described in Ref. [12]
for integrable systems in the presence of a weak
integrability-breaking perturbation.

Our theoretical results, as well as several special behav-
iors related to the initial state selected, properties of the
perturbations that break the conservation law, and proper-
ties of the observables studied, were validated by numerical
experiments in systems for which both the reference and
the perturbed dynamics are nonintegrable.
A systematic study of integrable systems in which

integrability is weakly broken is beyond the scope of this
work. As mentioned in the Introduction, noninteracting
systems in the presence of weak integrability-breaking
interactions were studied in Refs. [7–15]. There have also
been studies of integrable systems mappable onto non-
interacting ones in the presence of an integrability-breaking
perturbation [57]. For a strongly interacting integrable
system, Ĥ0 in Eq. (35) with t ¼ V ¼ 1 and t0 ¼ V 0 ¼ 0
(which is not mappable onto a noninteracting model), in
Ref. [23] it was shown numerically that weakly breaking
integrability by making g≡ t0 ¼ V 0 ≠ 0 results in thermal-
ization rates ∝ g2.
To check the applicability of our theory to strongly

interacting integrable reference dynamics, in Fig. 7 we
show results for dynamics under the same reference
Hamiltonian as in Ref. [23] when one breaks integrability
with the perturbation g2V̂2 in Eq. (37). Those results are the
equivalent of results reported in Figs. 1 and 3, for quenches
ĤI → Ĥ2 in which t0I ¼ V 0

I ¼ 0 in ĤI and t0 ¼ V 0 ¼ 0 in
Ĥ2. The main panel in Fig. 7 shows that the thermalization
rate for the particle filling is ∝ g22, and that it agrees with the
Fermi golden rule prediction [see Eqs. (53) and (54)] for
small values of g2. The upper inset in Fig. 7 shows that the
particle filling approaches exponentially its thermal equi-
librium value, as seen in Fig. 1(b) for the nonintegrable
reference dynamics. The lower inset in Fig. 7 shows the

dynamics, and the projected dynamics in the basis of Ĥ0,
of kðτÞ for g2 ¼ 0.12. They are in excellent agreement with
each other, like in Fig. 3(d) for the nonintegrable reference
dynamics. In short, there are no qualitative differences
between the results reported in Figs. 1 and 3 for the
nonintegrable reference dynamics and in Fig. 7 for the
integrable reference dynamics.
We should stress that all our numerical results for the

projected dynamics were obtained within the diagonal
ensemble, which allowed us to study indistinctively quantum
chaotic reference dynamics in Sec. VI, and strongly inter-
acting integrable reference dynamics in Fig. 7. However,
because of eigenstate thermalization in quantum chaotic
systems, and its generalized version in integrable systems,
one can equally well use traditional ensembles of statistical
mechanics for the projected dynamics when the reference
dynamics is quantum chaotic [22] and generalized Gibbs
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intervals as in Fig. 1. Lower inset: Dynamics, and projected
dynamics in the basis of Ĥ0, of kðτÞ for g2 ¼ 0.12. The horizontal
line shows the result for the grand canonical ensemble corre-
sponding to the original dynamics. The legends are identical to
those in Fig. 3.

MALLAYYA, RIGOL, and DE ROECK PHYS. REV. X 9, 021027 (2019)

021027-14



ensembles when the reference dynamics is integrable [17].
As an example, in Fig. 8 we compare the results for the
projected dynamics in the diagonal ensemble reported in
Fig. 5 for g1 ¼ 0.12 at times τ ¼ 2, 10, and 100 with those
obtained replacing the diagonal ensemble by the grand
canonical ensemble with the same energy density e0 and
particle filling n. As expected, the results obtained within
both ensembles are indistinguishable from each other.

ACKNOWLEDGMENTS

M. R. and W. D. R. are grateful to Fabian Essler for
insightful discussions over the years about this topic, which
motivated this work. We are also grateful to Achim Rosch
for valuable comments. We acknowledge support from
the National Science Foundation, under Grant No. PHY-
1707482 (K. M. and M. R.), and in part under Grant
No. PHY-1748958. The computations were carried out
at the Institute for CyberScience at Penn State.

APPENDIX A: MORI-ZWANZIG FORMALISM

To stress the algebra of the problem, we use a notation
different from that in the main text. We consider a linear
space V with a projector P∶V → V, P2 ¼ P, and a linear
evolution equation,

_aðτÞ ¼ MaðτÞ; aðτÞ ∈ V; M∶ V → V: ðA1Þ

Then, we write P1 ¼ P, P2 ¼ ð1 − PÞ, ai ¼ Pia, and
Mij ¼ PiMPj. As the projector is time independent, the
evolution equation can be cast as a system of two coupled
equations:

_a1ðτÞ ¼ M11a1ðτÞ þM12a2ðτÞ; ðA2Þ

_a2ðτÞ ¼ M21a1ðτÞ þM22a2ðτÞ: ðA3Þ

We first formally solve the second of these equations,

a2ðτÞ ¼ eτM22a2ð0Þ þ
Zτ

0

dsesM22M21a1ðτ − sÞ; ðA4Þ

and insert Eq. (A4) into Eq. (A2), yielding

_a1ðτÞ ¼ M11a1ðτÞ þM12eτM22a2ð0Þ

þ
Zτ

0

dsM12esM22M21a1ðτ − sÞ: ðA5Þ

See Eqs. (7) and (12) in the main text. The relevance of this
framework to irreversible phenomena was noticed in
Refs. [42,43].

APPENDIX B: FROM K TO THE
AUTONOMOUS EQUATION

Here we look into the superoperator K [see Eq. (20)],

K ¼
Zþ∞

0

dsPL1esL0L1P; ðB1Þ

in more detail. Each L1 contains a commutator −ig½V̂; ·�, so
in total there are four terms, depending on whether gV̂ in
each L1 term acts on the left or on the right. We decompose

K ¼ Kgain þKloss; ðB2Þ
where the “gain” operator contains the two cases in which
the V̂’s act on different sides, and the “loss” operator
contains the two cases in which they act on the same side.
For both operators, we can recast the two cases into a

single formula by extending the integration range of s from
½0;∞Þ to ð−∞;∞Þ. One then has that

Kgainρ̂ ¼ g2
Z∞

0

de0dqρ̂e0;q

Z∞

−∞

dsTr½P̂e0;qV̂0ðsÞPρ̂ V̂�;

ðB3Þ
while for Kloss acting on ρ̂ one has

Klossρ̂ ¼ −g2
Z

dedqρ̂e0;q

Z∞

−∞

dsTr½P̂e0;qV̂0ðsÞV̂Pρ̂�;

ðB4Þ
where we abbreviate P̂e0;q ¼ PðĤ0 ≈ e0LÞPðQ̂ ≈ qLÞ (see
Sec. III A), and we use the invariance of Pρ̂ and P̂e0;q under
the evolution generated by Ĥ0. Note that we can assume,
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results for the projected dynamics within the diagonal ensemble
(Projected DE), also reported in Fig. 5, with those obtained within
the grand canonical ensemble (Projected GE). The temperature
and the chemical potential of the grand canonical ensemble are
set so that the energy density e0 and the particle filling n in this
ensemble match those in the diagonal ensemble. The results
reported are for the 16th order of the NLCE.
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without loss of generality, that V̂ satisfies hV̂ie0;q ¼ 0 for all
ðe0; qÞ, because a term with nonzero mean would have
canceled out in the commutators [alternatively, it would
cancel between Eqs. (B3) and (B4)]. For this reason, we can
replace all correlation functions below by truncated corre-
lation functions.
Recall that we identified the space of Pρ̂ with distribu-

tions p on ðe0; qÞ. Indeed, any Pρ̂ is of the form ρ̂p with
distribution p; see Eq. (3). Therefore, we can now abuse
notation and interpret K as a kernel on the space of
distributions p. We then have

Kpðe00; q0Þ ¼
Z

de0dqKðe0; q; e00; q0Þpðe0; qÞ; ðB5Þ

and, from the above formulas, we identify

Kðe0; q; e00; q0Þ ¼ g2
Z∞

−∞

dsTr½P̂e0
0
;q0 V̂0ðsÞρ̂e0;qV̂�

− g2
Z∞

−∞

dsTr½P̂e0
0
;q0V̂0ðsÞV̂ρ̂e0;q�: ðB6Þ

To unravel this further, we introduce

V̂δQ ¼
X
Q;Q0

δQ0;QþδQP̂Q0V̂P̂Q; ðB7Þ

where P̂Q are spectral projections of Q̂ and the sum runs
over the eigenvalues of Q̂. Note that the admissible values
of δQ areOð1Þ because V̂ is a sum ofOð1Þ local terms. For
natural examples of Q̂, such as the total particle number
operator, we see that also V̂δQ is a sum of local terms. In
that case Eq. (B7) is manifestly of order OðLÞ, as a
truncated correlation function in equilibrium. The first
term in Eq. (B6) can be written as

re0;qðδQÞ ¼ g2
Z∞

−∞

dsTr½V̂δQ
0 ðsÞρ̂e0;qV̂−δQ�; ðB8Þ

with e00 ¼ e0 and q0 − q ¼ δQ=L. Indeed, the condition
e00 ¼ e0 is enforced by the integral over s. The second term
in Eq. (B6) has a contribution at e0 ¼ e00, q ¼ q0 only (by
the cyclic property of the trace, the projector P̂e0

0
;q0 is put

next to the density matrix ρ̂e0;q), and its value is

X
δQ

re0;qðδQÞ: ðB9Þ

One could also have guessed this value because the process
generated by K conserves probability, which translates to

Z
dqde00Kðe0; q; e00; q0Þ ¼ 0: ðB10Þ

We have now explicitly interpreted the process generated
by K as a jump process, with jump rates re0;qðδQÞ ≥ 0 for
jumps in the density q of order 1=L. The link to the “drift”
computed in Sec. III F is by

dðe0; qÞ ¼
X
δQ

δQ
1

L
re0;qðδQÞ: ðB11Þ

The expressions in Sec. III F are recovered by writing
Eq. (B8) in terms of eigenkets of Ĥ0, and this eventually
yields Eq. (24).

APPENDIX C: CONVERGENCE OF NLCE AND
EXACT DIAGONALIZATION

All the numerical results reported in the main text, but the
relaxation rates ΓFermi computed using Fermi’s golden rule
and full exact diagonalization, were obtained using NLCE
calculations. The basics of NLCEs was summarized in
Sec. V C, and relevant parameters for the NLCE calculations
(orders, largest Hilbert spaces involved, etc.) were men-
tioned in Sec. V E. Here we discuss the convergence of the
NLCE calculations and finite-size effects in the full exact
diagonalization calculations.
All our full exact diagonalization calculations are

carried out in chains with periodic boundary conditions.
We use translational symmetry to block diagonalize the
Hamiltonian, which allows us to study larger chains than
within the NLCE calculations. In the exact diagonaliza-
tion calculations when gα ≠ 0, in the absence of particle-
number conservation, the largest Hamiltonian sector
diagonalized has 14 602 states (for L ¼ 18). When
gα ¼ 0, in the presence of particle-number conservation,
the largest Hamiltonian sector diagonalized has 9252
states (for L ¼ 20). We only report exact diagonalization
results for gα ¼ 0 in Fig. 11(a). The matrices involved
in our full exact diagonalization calculations are complex
for sectors with total quasimomentum k ≠ 0 and π, and
the results reported contain the contribution from all L
quasimomentum sectors.
In Fig. 9, we show the evolution of the particle filling

nðτÞ for g1 ¼ 0.12 (the fastest changing case studied) as
obtained in the last four orders of the NLCE, and in the
three largest chains solved using full exact diagonalization.
In the scale of the figure, all the results are nearly
indistinguishable from each other up to τ ≈ 10. Beyond
that time, but not too far from it, the NLCE results can be
seen to oscillate in the order of the expansion, even orders
of the NLCE are above the odd orders (see the inset in
Fig. 9). With increasing the order of the NLCE, one finds
that the amplitude of the oscillation decreases and the
results converge at longer times. This is similar to what
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happens in thermal equilibrium calculations, in which the
NLCEs converge at lower temperatures as one increases
the order of the expansion [53]. The exact diagonalization
results, on the other hand, can be seen to approach the
NLCE ones monotonically with increasing the chain size.
In Fig. 9, the nðτÞ results in the last order of the NLCE and
in the largest periodic chain diagonalized are nearly
indistinguishable up to τ ≈ 20.
To gain a more quantitative understanding of the con-

vergence of the particle filling nlðτÞ calculations within
NLCE, where l is the order of the expansion, and of finite-
size effects in the exact diagonalization (ED) calculations
of nLðτÞ, where L is the chain size, we compute the relative
differences,

ΔNLCE
l ½nðτÞ� ¼ jnl¼17ðτÞ − nlðτÞj

jnI − 1=2j ; ðC1Þ

between the NLCE results at order l and the last order
calculated l ¼ 17, and

ΔED
L ½nðτÞ� ¼ jnL¼18ðτÞ − nLðτÞj

jnI − 1=2j ðC2Þ

between the results for chains with L sites and the largest
chain L ¼ 18 diagonalized. We also compute the relative
differences between the last order of the NLCE and the
largest periodic chain diagonalized:

ΔNLCE-ED½nðτÞ� ¼ jnl¼17ðτÞ − nL¼18ðτÞj
jnI − 1=2j : ðC3Þ

In Eqs. (C1)–(C3), nI is the initial particle filling, which is
obtained within machine precision at the 17th order of the
NLCE, and 1=2 is the filling in the diagonal ensemble.

In Fig. 10, we plot the relative differences defined in
Eqs. (C1) and (C2) for l ¼ 15 and 16 of the NLCE, and for
L ¼ 16 and 17 in the exact diagonalization calculations,
also for g1 ¼ 0.12 as in Fig. 9. Some points to be high-
lighted from the plots in Fig. 10 are the following: (i) the
NLCE results for l ¼ 16 are likely converged within
machine precision up to τ ≈ 2, while the exact diagonal-
ization ones for L ¼ 17 are likely converged within
machine precision only up to about one half of that time
(τ ≈ 1); (ii) the relative differences between the various
orders of the NLCE and between the various exact
diagonalization calculations are below 0.01% for τ ≲ 4;
(iii) at times τ ≈ 16, the relative differences are in all cases
below 2% (they are smaller between the exact diagonal-
ization results than between the NLCE ones).
The results for the relative difference ΔNLCE-ED½nðτÞ� are

qualitatively similar to those forΔNLCE
l ½nðτÞ� and ΔED

L ½nðτÞ�.
We find that ΔNLCE-ED½nðτÞ� ≤ 0.01% for times τ ≤ 5. We
use times τ ≤ 5 for the exact diagonalization calculation of
the rates from Fermi’s golden rule in Appendix D. We also
find that ΔNLCE-ED½nðτÞ� ≲ 0.5% for times τ ≤ 16. We use
times τ ≤ 16 in the fits to obtain the rates from the 17th order
of the NLCE dynamics in Sec. VI B.
Next, for the one-body nearest neighbor correlations

kðτÞ, we discuss the convergence of the NLCE calculations
klðτÞ and finite-size effects in the full exact diagonalization
calculations kLðτÞ. kðτÞ, being a correlation function, is
more challenging to obtain accurately than nðτÞ, which is a
thermodynamic quantity.
In Fig. 11(a), we show dynamics after the quench

ĤI → Ĥ0 for klðτÞ with l ¼ 17, 18, and 19 (the latter two
are also reported in Fig. 2) and for kLðτÞ with L ¼ 18, 19,
and 20. klðτÞ and kLðτÞ are almost indistinguishable from
each other up to times τ ≈ 5 (the earliest times are not
shown to gain dynamical range in the y axis). For τ ≳ 5,

0 10 20 30 40
τ

0.46

0.47

0.48

0.49
NLCE-14

NLCE-15
NLCE-16
NLCE-17
ED-16
ED-17
ED-18

7.5 10 12.5 15

0.47

0.475

g
1
 = 0.12

n (τ )

NLCE

FIG. 9. Time evolution of the filling nðτÞ, for g1 ¼ 0.12,
obtained in the last four orders l of the NLCE (NLCE-l in the
legends), and in the three largest chains with L sites and periodic
boundary conditions solved using full exact diagonalization
(ED-L in the legends). The inset shows an enlargement of the
NLCE results between τ ¼ 7.5 and 15.
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FIG. 10. Relative differences, defined in Eqs. (C1)–(C3), for
g1 ¼ 0.12. The exact diagonalization results are obtained in
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the NLCE and exact diagonalization results split and each
equilibrate to the prediction of the corresponding diagonal
ensemble, kDEl¼19 (DENLCE−19) and kDEL¼20 (DEED−20),
respectively. As in Ref. [23], the NLCE results for the
diagonal ensemble (DENLCE−19) are closer to the grand
canonical ensemble ones, kGEl¼19 (GENLCE-19), than the
exact diagonalization results for the diagonal ensemble

(DEED-20). The differences between them are due to lack
of convergence of the diagonal ensemble within NLCEs
and finite-size effects for the diagonal ensemble within
exact diagonalization. The NLCE results for the grand
canonical ensemble are converged within machine pre-
cision. Consequently, at long times, the NLCE is expected
to be more accurate than exact diagonalization. At
intermediate times 5≲ τ ≲ 15, kl¼16ðτÞ and kl¼17ðτÞ are
almost indistinguishable from each other, while kLðτÞ
shifts upward with increasing L, toward the NLCE
predictions. This suggests that NLCE is also more
accurate than exact diagonalization at intermediate times.
In Fig. 11(b), we show dynamics after the quench

ĤI → Ĥ1 (g1 ¼ 0.12) for klðτÞ with l ¼ 15, 16, and 17
(the latter two are also reported in Fig. 3) and for kLðτÞwith
L ¼ 16, 17, and 18. klðτÞ and kLðτÞ are almost indistin-
guishable from each other up to times τ ≈ 4 (again, the
earliest times are not shown to gain dynamical range in the
y axis). For τ ≳ 4, the NLCE and exact diagonalization
results again split, as for the quench ĤI → Ĥ0, despite the
fact that both equilibrate to diagonal ensemble results that
are very close to each other. kDEl¼17 (DENLCE-17) and kDEL¼18

(DEED-18) in Fig. 11(b) are almost indistinguishable from
each other and from the grand canonical ensemble result
kGEl¼17 (GENLCE-17). At times 5≲ τ ≲ 15, kl¼16ðτÞ and
kl¼17ðτÞ are almost indistinguishable, while kLðτÞ shifts
upward toward the NLCE predictions with increasing L.
As for the quenches ĤI → Ĥ0, these results suggest that
NLCE is more accurate than exact diagonalization at
intermediate times in quenches ĤI → Ĥ1.
The discrepancy between the NLCE and exact diago-

nalization results at intermediate times after quenches
ĤI → Ĥ1 is likely a manifestation of finite-size effects
in kLðτÞ that result from the “prethermal” dynamics seen in
Fig. 11(a), which equilibrates to a diagonal ensemble value
(kDEL¼20) that is lower than the expected grand canonical
ensemble one. The results in Fig. 11(b) also make apparent
that, because of finite-size effects, the thermalization rates
for kðτÞ are smaller in exact diagonalization, and increasing
with increasing L, than in NLCE.

APPENDIX D: THERMALIZATION RATES
FROM FERMI’S GOLDEN RULE

We use full exact diagonalization in chains with L sites
and periodic boundary conditions to evaluate Eq. (53).
For the numerical calculation, the delta function is replaced
by a coarse-graining procedure leading to the following
modified version of Eq. (53):

fΔEðτÞ ¼
2πg2α
LΔE

X
i

PiðτÞ

×
X

jEj−Eij≤ΔE=2
jhE0

j jV̂αjE0
i ij2ðNj − NiÞ; ðD1Þ
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FIG. 11. Time evolution of the one-body nearest neighbor
correlation kðτÞ obtained in the last three orders l of the NLCE
(NLCE-l in the legends), and in the three largest chains with L
sites and periodic boundary conditions diagonalized (ED-L in the
legends). Results for the diagonal ensemble are shown for the last
order of the NLCE (DENLCE-l) and the largest chain diagonalized
(DEED-L), while results for the grand canonical ensemble are
shown for the last order of the NLCE (GENLCE-l), which are
converged to machine precision. (a) Quenches ĤI → Ĥ0, for
l ¼ 17, 18, and 19 (NLCE-17, NLCE-18, and NLCE-19), and
for L ¼ 18, 19, and 20 (ED-18, ED-19, and ED-20), along
with the diagonal ensembles for l ¼ 19 (DENLCE-19) and L ¼ 20
(DEED-20), and the grand canonical ensemble for l ¼ 19

(GENLCE-19). (b) Quenches ĤI → Ĥ1, in which g1 ¼ 0.12, for
l ¼ 15, 16, 17 (NLCE-15, NLCE-16, NLCE-17), and for L ¼ 17,
18, 19 (ED-17, ED-18, ED-19), along with the diagonal ensem-
bles for l ¼ 17 (DENLCE-17) and L ¼ 18 (DEED-18), and the grand
canonical ensemble for l ¼ 17 (GENLCE-17). Higher orders in the
NLCE, and larger chains in exact diagonalization, are calculated
in (a) than in (b) thanks to particle-number conservation in the
former.
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where jE0
i i ðjE0

jiÞ are the eigenkets of Ĥ0 with energy E0
i

(E0
j ), Ni ¼ hE0

i jN̂jE0
i i, and PiðτÞ ¼ hE0

i jρ̂ðτÞjE0
i i.

In Fig. 12, we plot fΔEðτÞ, evaluated in chains with L ¼
17 and L ¼ 18 for quenches ĤI → Ĥ1 [see Eq. (36)], as a
function of ΔE. We show results at two times, τ ¼ 1 in
Fig. 12(a) and τ ¼ 5 in Fig. 12(b), and for three values of g1
at each time. Our main finding in Fig. 12 is that, in the
interval ΔE=L ∈ ½0.03; 0.09�, fΔEðτÞ is nearly independent
ofΔE, and is approximately the same in chains with L ¼ 17
andL ¼ 18. Similar results were obtained at times τ ∈ ½0; 5�,
for which we showed in Appendix C that our best NLCE
and exact diagonalization results for nðτÞ differ by less
than 0.01%.
Having identified an appropriate range of values of ΔE,

we compute the rate

ΓΔE;τðgαÞ ¼ −
fΔEðτÞ

nðτÞ − nDE
; ðD2Þ

which is defined following Eq. (54).
Figure 13 shows ΓΔE;τðg1Þ versus τ for three values of g1,

and for three values of ΔE=L for each value of g1. The rates
for each value of g1 decrease slowly with increasing τ, and
are very close to each other for the three values of ΔE=L
shown. Given the results for nðτÞ at times τ ≤ 1 in Fig. 11,
which exhibit a plateaulike behavior discussed in Sec. VI A,
the rates ΓFermiðgαÞ for τ ≤ 1 are not meaningful. Hence, the
rates ΓFermiðgαÞ reported in Sec. VI Awere obtained averag-
ing ΓΔE;τðgαÞ over the results for τ ¼ 1; 1.5;…; 5 (nine
values), and for ΔE=L ¼ 0.03; 0.032;…; 0.09 (31 values),

for a total of 279 values entering each average. In Fig. 13, we
report the averages as horizontal lines. For each average, we
also compute the standard deviation. In Fig. 1(c), we report
the averages, and the standard deviations (as error bars), for
different values of g1 and for L ¼ 17 and L ¼ 18.
The rates ΓFermiðg2Þ reported in Fig. 7 were obtained

averaging ΓΔE;τðg2Þ over the results for τ ¼ 1; 1.5;…; 5
(nine values), and for ΔE=L ¼ 0.100; 0.102;…; 0.15;
0.16;…; 0.20 (31 values), for a total of 279 values entering
each average.
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