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We consider a Brownian particle which, in addition to being in contact with a thermal bath, is driven
by fluctuating forces which stem from active processes in the system, such as self-propulsion or collisions
with other active particles. These active fluctuations do not fulfill a fluctuation-dissipation relation and
therefore play the role of a nonequilibrium environment, which keeps the system permanently out of
thermal equilibrium even in the absence of external forces. We investigate how the out-of-equilibrium
character of the active matter system and the associated irreversibility is reflected in the trajectories of the
Brownian particle. Specifically, we analyze the log ratio of path probabilities for observing a certain
particle trajectory forward in time versus observing its time-reversed twin trajectory. For passive
Brownian motion, it is well known that this path probability ratio quantifies irreversibility in terms of
entropy production. For active Brownian motion, we show that in addition to the usual entropy produced
in the thermal environment, the path probability ratio contains a contribution to irreversibility from
mutual information “production” between the particle trajectory and the history of the nonequilibrium
environment. The resulting irreversibility measure fulfills an integral fluctuation theorem and a second-
law-like relation. When deriving and discussing these relations, we keep in mind that the active
fluctuations can occur either due to a suspension of active particles pushing around a passive colloid or
due to active self-propulsion of the particle itself; we point out the similarities and differences between
these two situations. We obtain explicit expressions for active fluctuations modeled by an Ornstein-
Uhlenbeck process. Finally, we illustrate our general results by analyzing a Brownian particle which is
trapped in a static or moving harmonic potential.

DOI: 10.1103/PhysRevX.9.021009 Subject Areas: Statistical Physics

I. INTRODUCTION AND MAIN RESULTS

A. Introduction

Active particle systems consist of individual entities
(“particles”) which have the ability to perform motion by
consuming energy from the environment and converting it
into a self-propulsion drive [1–7]. Prototypical examples
are collections of macroorganisms, such as animal herds,
schools of fish, flocks of birds, or ant colonies [8–10], and
suspensions of biological microorganisms or artificial
microswimmers, such as bacteria and colloidal particles
with catalytic surfaces [2,3,5,11,12]. Systems of this kind
exhibit a variety of intriguing properties, e.g., clustering

and swarming [13–18], bacterial turbulence [19], or motil-
ity-induced phase separation [20,21] to name but a few.
Microorganisms and mircoswimmers are usually dis-

persed in an aqueous solution at room temperature and
therefore experience thermal fluctuations which give rise to
a diffusive component in their self-propelled swimming
motion. In addition, the self-propulsion mechanism is
typically noisy in itself [2], for instance, due to environ-
mental factors or intrinsic stochasticity of the mechanisms
creating self-propulsion. These “active fluctuations”
exhibit two essential features. First, a certain persistence
in the direction of driving over length- and timescales
comparable to observational scales. Second, an inherent
nonequilibrium character as a consequence of permanently
converting and dissipating energy in order to fuel self-
propulsion. Interestingly, similar active fluctuations with
the same characteristics can be observed in a complemen-
tary class of active matter systems, namely, a passive
colloidal “tracer” particle which is suspended in an aqueous
solution of active swimmers. The collisions with the active
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particles in the environment entail directional persistence
and nonequilibrium features in the motion of the passive
tracer particle [22–24]. The sketch in Fig. 1 illustrates these
two types of active particle systems.
Despite the inherent nonequilibrium properties of active

matter systems, they appear to bear striking similarities to
equilibrium systems [21,25–27], for instance, the dynamics
of individual active particles at large scales often looks like
passive Brownian diffusion [3] (i.e., at scales beyond at
least the “persistence length” of the particle motion). In
connection with the ongoing attempts to describe active
matter systems by thermodynamic (-like) theories, this
observation raises the important question, “How far from
equilibrium is active matter?” [28,29]. More specifically,
the questions are (i) in which respects do emergent proper-
ties of active systems resemble the thermodynamics of
thermal equilibrium systems, (ii) in which respects do they
not, and (iii) how do these deviations manifest themselves
in observables describing the thermodynamic character of
the active matter system, like, e.g., the entropy production?
Such questions should be answered independently of the

specific microscopic processes creating the active driving
because, while these processes maintain the active particle
system out of equilibrium, they contain little or no
information on whether the emergent system behavior
appears equilibriumlike or not. It is, for instance, of little
relevance for the system properties emerging on the coarse-
grained scale of particle trajectories (e.g., the “diffusion” of
active particles) and their similarities or dissimilarities to
thermal equilibrium, if an active particle is self-propelled
by chemical processes occurring at its surface or by a
beating flagellum. In this spirit, here we address the above
questions from a fundamental nonequilibrium statistical

mechanics viewpoint by developing a trajectorywise
thermodynamic description of active particle systems as
a natural generalization of stochastic energetics [30,31] and
thermodynamics [32–36] of passive particles in a purely
thermal environment. In particular, we study the breakdown
of time-reversal symmetry in the motion of particles which
are driven by thermal and active fluctuations. We quantify
the associated irreversibility of individual particle trajecto-
ries as a measure for nonequilibrium by comparing the
probability of a specific particle trajectory to occur forward
in time to that of observing its time-reversed counterpart.
We link the corresponding probability ratio to functionals
over the forward trajectory and provide a thermodynamic
interpretation of the resulting extensive quantities in terms
of entropy production and mutual information.
In the case of passive particles in contact with a single

purely thermal bath, the path probability ratio is a well-
established fundamental concept in stochastic thermody-
namics for assessing irreversibility [32–35]. It is known to
provide relations between thermodynamic quantities, such
as entropy production, work, or heat, and dynamical
properties encoded in path probability ratios. Many such
relations have been found over the last two decades
[33,34,37–39], which, in their integrated forms, typically
yield refinements of the second law of thermodynamics
[33,38,40]. In particular, the fluctuation theorem for the
total entropy production of a passive particle in a thermal
environment reinforces the fundamental interpretation of
entropy as a measure of irreversibility (we give a brief
summary of the results most relevant to our present work in
Sec. III). In the presence of active fluctuations, however, the
identification of dissipated heat and entropy production is
less straightforward and is connected to the problem of how
to calculate and interpret the path probability ratio in a
physically meaningful way [41,42].
In the present work, we analyze the path probability ratio

based on particle trajectories, i.e., from the evolution of the
particle positions in time, without explicitly modeling the
(system-specific) microscopic processes behind the active
fluctuations. This approach allows for deriving general
results on the nonequilibrium character and thermodynamic
content of the dynamical behavior emerging in active
matter systems independent of the specific processes
generating the active fluctuations but with the caveat that
dissipation and irreversibility occurring in these processes
cannot be assessed [41]. The derived quantitative irrevers-
ibility and thermodynamic measures are easily accessible in
standard experiments, e.g., from recording particle trajec-
tories using video microscopy. In order to account for the
active fluctuations, which either stem from an active bath
the (passive) particle is dispersed in or from active self-
propulsion (see Fig. 1 and Sec. IVA for specific examples
of both cases), without resolving the microscopic processes
that govern the interactions between active and passive
particles or drive self-propulsion, we follow the common

FIG. 1. Illustration of the two different kinds of active matter
systems. Left: Passive Brownian particle (red) in a thermal bath
(blue) with a suspension of active self-propelled particles
(yellow); collisions of the active particles with the passive one
are modeled by a fluctuating force ηðtÞ. Right: Self-propelled
particle (yellow) in a thermal bath (blue); the fluctuating self-
propulsion velocity is modeled to result from a fluctuation force
ηðtÞ. In both cases, thermal fluctuations are described by unbiased
δ-correlated Gaussian white-noise sources ξðtÞ, and the position
of the particle of interest is denoted by xðtÞ; see Eqs. (5)–(7) in the
main text.
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approach to include stochastic “active forces” in the
equations of motion of the individual particle of interest
(see, e.g., Refs. [2,5] and references therein). When
calculating the path probabilities, we treat these active
nonequilibrium forces in the same way as thermal equi-
librium noise, namely, as a “bath” the particle is exposed to
with unknown microscopic details but known statistical
properties (which are correlated in time and break detailed
balance [43]). Our main results following this approach
and their implications are briefly summarized in the next
section.

B. Brief summary of the main results

Our central findings are the following:
(i) Using a path-integral approach, we calculate the

probability density p½xjx0� of particle trajectories
x̄ ¼ fxðtÞgτt¼0 ¼ x0 ∪ fxðtÞgτt>0 ¼ x0 ∪ x as a re-
sult of the statistical properties of thermal and active
fluctuations simultaneously affecting the dynamics
of the particle [Sec. IV B, Eqs. (38) and (40)]. Here,
the coordinate xðtÞmay either refer to the position of
a passive tracer particle in an active bath or to the
position of an active self-propelled particle. When
calculating these path weights, we consider the
general situation in which the particle is also subject
to deterministic external (or interaction) forces
f t ¼ fðxðtÞ; tÞ, which may explicitly depend on
time via externally controlled driving protocols. We
summarize the mathematical details of the derivation
as well as various known limiting cases in Appen-
dixes A–C.

(ii) We then find [Sec. IV C, Eqs. (42)] that the log ratio
of the probabilities for particle trajectories to occur
forward in time versus backward in time (time-
backward trajectories are marked by a tilde symbol)
can be expressed as a functional along the forward
path with a nonlocal “memory kernel” Γτðt; t0Þ:

p̃½x̃jx̃0�
p½xjx0�

¼ e−ΔΣ½x̄�=kB ; ð1aÞ

with

ΔΣ½x̄� ¼ 1

T

Z
τ

0

dt
Z

τ

0

dt0 _xTt f t0

�
δðt− t0Þ−Da

D
Γτðt; t0Þ

�
:

ð1bÞ

The functionalΔΣ therefore quantifies irreversibility
in our active matter systems. With the explicit form
of Γτðt; t0Þ given in Eq. (40), it can be calculated
for any particle trajectory xðtÞ. Information on the
thermal and active baths enters into ΔΣ and Γτðt; t0Þ
only via their statistical parameters, like the thermal
diffusion coefficient D, thermal bath temperature T,

active diffusion coefficient Da, and active correla-
tion time τa (implicit in Γτ). It is, in particular, not
necessary to make any assumptions on the behavior
of the active fluctuations under time reversal to
arrive at the above result for ΔΣ.

Combined with the change in system entropy
ΔSsys ¼ −kB ln½pðxτ; τÞ=pðx0; 0Þ�, which compares
system probabilities at the beginning (t ¼ 0) and end
(t ¼ τ) of the trajectory [34,38], ΔΣþ ΔSsys fulfills
an integral fluctuation theorem [Sec. IV C, Eq. (44)]
valid for any duration τ of the particle trajectory,

he−ðΔΣþΔSsysÞ=kBi ¼ 1; ð2Þ

the average h·i is over all possible trajectories
advancing from t ¼ 0 to t ¼ τ. As a consequence,
they obey a second-law-like relation [Eq. (45)],

hΔΣ½x̄� þ ΔSsysðx0; xτÞi ≥ 0: ð3Þ

In case of the equal sign, the active matter system
appears reversible on the level of particle trajectories
xðtÞ. From Eq. (1b), we see that in the stationary
state (with ΔSsys ¼ 0), the trajectories for “free
active diffusion” without external force (f t ≡ 0)
always look reversible and thus equilibriumlike.
In the presence of external forces, we have
hΔΣþ ΔSsysi > 0 in general, where hΔΣþ ΔSsysi
becomes larger for more irreversible particle dy-
namics, indicating that the system appears to be
further away from an equilibriumlike behavior.

The path probability ratio p̃½x̃jx̃0�=p½xjx0� is an
important fundamental concept in stochastic thermo-
dynamics because it contains information on the
thermodynamics of the system, such as second-law-
like bounds on entropy production as a consequence
of the fluctuation theorems, features of heat, work,
and efficiency distributions in systems that represent
heat engines, or violations of the fluctuation-
response relation due to nonequilibrium drivings.
In the present work, we derive its most immediate
implications, namely, fluctuation theorems and sec-
ond-law-like relations. Further insights into our
active matter system that may be derived in future
work from the explicit knowledge of the path
probability ratio are briefly discussed in the Con-
clusions, Sec. VII.

(iii) By keeping track of the specific realization of the
active fluctuations which participated in generating
the particle trajectory, we can identify the two
individual contributions to ΔΣ stemming from the
thermal environment and the active bath. The
thermal part is the usual entropy ΔStot½x̄jη̄� produced
in the thermal environment and in the system along
the particle trajectory (for the given active noise
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realization, which we denote η̄ ¼ fηðtÞgτt¼0).
The part associated with the active bath is given
by the difference ΔI ½x̄; η̄� in the amount of corre-
lations (measured in terms of pathwise mutual
information) that are built up between the particle
trajectory and the active noise in the time-forward
direction as compared to the time-backward direc-
tion (Sec. V). This splitting provides the thermody-
namic interpretation

ΔΣ½x̄� þ ΔSsysðx0; xτÞ ¼ ΔStot½x̄jη̄� − kBΔI ½x̄; η̄�
ð4Þ

for our irreversibility measure ΔΣ derived from the
path probability ratio of particle trajectories; see
Eq. (1). It is valid for any active matter model which
includes the active fluctuations as forces in the
particle equations of motion, no matter if we assume
the active fluctuations to be even [Eq. (58)] or odd
[Eq. (64)] under time reversal (denoted later in the
text by� sub- or superscripts). The interpretation (4)
generalizes the trajectorywise stochastic thermody-
namics of passive Brownian particles to active
matter systems. It shows that entropy production
in the thermal bath, which fully quantifies the path
probability ratio for passive Brownian motion, is
complemented by the difference in mutual informa-
tion accumulated with the active (nonequilibrium)
bath in the time-forward versus the time-backward
direction. From the fluctuation theorem for ΔΣ, we
directly obtain an integral fluctuation theorem and a
second-law relation for the mutual information
difference ΔI [Eqs. (59), (65) and (60), (66)].

We illustrate all these findings in Sec. VI by discussing
the example of a colloidal particle subject to thermal and
active fluctuations, which is trapped in a (static or moving)
harmonic potential. For this simple linear system, all
relevant quantities can be calculated explicitly. We give
the most important mathematical details in Appendix D.
We finally remark that the explicit expression obtained

under (i) and (ii) for Γτðt; t0Þ [see Eq. (40)] is valid for a
Gaussian Ornstein-Uhlenbeck process [47,48] as a model
for the active fluctuations, while result (iii) is valid
for general types of active fluctuating forces η with
arbitrary (but well-defined) statistical properties. The
Ornstein-Uhlenbeck process has become quite popular
and successful in describing active fluctuations [7,15–
18,21–24,28,42,49–61] because it constitutes a minimal
model for persistency in the active forcings due to its
exponentially decaying correlations with finite correlation
time, and it can easily be set up to break detailed balance by
a “mismatched” damping term which does not validate the
fluctuation-dissipation relation [62,63]. Moreover, it is able
to describe both situations of interest mentioned above,
namely, passive motion in a bath of active swimmers

[22–24,49] and active motion driven by self-propulsion
[7,15–18,21,28,42,50–61]. The details of the model class
we consider are given in the next section.

II. MODEL

We consider a colloidal particle at position x in
d ¼ 1, 2, or 3 dimensions, which is suspended in an
aqueous solution at thermal equilibrium with temperature
T. The particle diffuses under the influence of deterministic
external forces, in general consisting of potential forces
−∇Uðx; tÞ [with the potential Uðx; tÞ] and nonconservative
force components Fðx; tÞ. In addition, it experiences
fluctuating driving forces due to permanent energy con-
version from active processes in the environment or the
particle itself. The specific examples we have in mind are a
passive tracer in an active nonthermal bath (composed, e.g.,
of bacteria in aqueous solution; see left panel of Fig. 1)
[22–24,49] or a self-propelled particle (e.g., a colloidal
microswimmer or bacterium; see right panel of Fig. 1)
[7,15–18,21,28,42,50–61].
Neglecting inertia effects [64], we model the over-

damped Brownian motion of the colloidal particle by the
Langevin equation [47,48,65,66]

_xðtÞ ¼ vðxðtÞ; tÞ þ
ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ þ

ffiffiffiffiffiffiffi
2D

p
ξðtÞ: ð5Þ

The deterministic forces are collected in

vðx; tÞ ¼ 1

γ
fðx; tÞ; ð6aÞ

where γ is the hydrodynamic friction coefficient of the
particle and

fðx; tÞ ¼ −∇Uðx; tÞ þ Fðx; tÞ: ð6bÞ

Thermal fluctuations are described by unbiased Gaussian
white-noise sources ξðtÞ with mutually independent
δ-correlated components ξiðtÞ, i.e., hξiðtÞξjðt0Þi ¼
δijδðt − t0Þ, where the angular brackets denote the average
over many realizations of the noise and i; j ∈ f1;…; dg.
The strength of the thermal fluctuations is given by the
particle’s diffusion coefficient D, which is connected
to the temperature T and the friction γ by the fluctuation-
dissipation relation D ¼ kBT=γ [62,67–69] (kB is
Boltzmann’s constant), as a consequence of the equilibrium
properties of the thermal bath.
The term

ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ in Eq. (5) represents the active force

components with ηðtÞ ¼ ½η1ðtÞ;…; ηdðtÞ� being unbiased
mutually independent noise processes, and Da being an
effective “active diffusion” characterizing the strength of
the active fluctuations. The model (5) does not contain
“active friction,” i.e., an integral term over _xðtÞ with a
friction kernel modeling the damping effects associated
with the active forcing. It thus represents the situation of
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low activity or particle density, where active fluctuations
do not dominate over thermal ones and such friction effects
are negligibly small [24,70]. Despite this approxi-
mation, the model (5) has been applied successfully to
describe various active particle systems [15,17,21–
24,49,61] and has become quite popular in an even more
simplified variant which neglects thermal fluctuations
(D ¼ 0) [7,16,18,28,42,50–59]. However, for thermody-
namic consistency, it is necessary to consider both noise
sources [42], especially when assessing the flow of heat and
entropy, which is in general produced in the thermal
environment as well as in the processes fueling the active
fluctuations [41,71,72].
As active fluctuations are the result of perpetual energy

conversion (e.g., by the bacteria in the bath or by the
propulsion mechanism of the particle), their salient feature
is that they do not fulfill a fluctuation-dissipation relation.
In our model (5), this violation is particularly obvious, as
active friction effects are absent by the assumption of being
negligibly small; in general, the active friction kernel would
not match the active noise correlations [73,74]. In that
sense, the active fluctuations ηðtÞ characterize a nonthermal
environment or bath for the Brownian particle with intrinsic
nonequilibrium properties. We emphasize that ηðtÞ is not a
quantity directly measurable, but rather it embodies the net
effects of the active components in the environment or the
self-propulsion mechanism of the particle, similar to the
white noise ξðtÞ representing an effective description of
the innumerable collisions with the fluid molecules in the
aqueous solution.
Although several results in the present paper are gen-

erally valid for any noise process ηðtÞ (with finite
moments), our main aim is to study the specific situation
of exponentially correlated Gaussian nonequilibrium fluc-
tuations [28,42,50–53,55,75] generated from an explicitly
solvable Ornstein-Uhlenbeck process,

_ηðtÞ ¼ −
1

τa
ηðtÞ þ 1

τa
ζðtÞ; ð7Þ

i.e., the so-called Gaussian colored noise [76]. Here,
ζðtÞ¼½ζ1ðtÞ;…;ζdðtÞ� are mutually independent, unbiased,
δ-correlated Gaussian noise sources, just like ξðtÞ,
but completely unrelated to them. The characteristic
time τa quantifies the correlation time of the process
(i; j ∈ f1;…; dg),

hηiðtÞηjðt0Þi ¼
δij
2τa

e−jt−t0j=τa ; ð8Þ

as can be verified easily from the explicit steady-state
solution of Eq. (7). It is thus a measure for the persistence of
the active fluctuations.
The model (5), (6) describes a single Brownian particle

in simultaneous contact with a thermal bath and an active

environment as a source of nonequilibrium fluctuations
ηðtÞ. Our main aim in this paper is to investigate in detail
the role these nonequilibrium fluctuations play for the
stochastic energetics [31] and thermodynamics [34] of the
Brownian particle. While we adopt the single-particle
picture for simplicity, all our results hold for multiple
interacting Brownian particles as well. In this case, the
symbol x in Eqs. (5) and (6) denotes a supervector
collecting the positions xi (i ¼ 1; 2;…; N) of all N par-
ticles, i.e., x ¼ ðx1; x2;…; xNÞ, and similar for the forces,
velocities, and so on. The only requirement is that the
particles are identical in the sense that they have the same
coupling coefficients D and Da, and that the active
fluctuations ηiðtÞ of the individual constituents are inde-
pendent but share identical statistical properties.

III. THE IDEAL THERMAL BATH: Da = 0

In order to set up the framework and further establish
notation, we start with briefly recalling the well-known
case of a Brownian particle in sole contact with a thermal
equilibrium reservoir,

_xðtÞ ¼ vðxðtÞ; tÞ þ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ; ð9Þ

where the deterministic driving vðxðtÞ; tÞ is defined as in
Eq. (6). The Brownian particle can be prevented from
equilibrating with the thermal bath by time variations in
the potential Uðx; tÞ or by nonconservative external
forces Fðx; tÞ.

A. Energetics

Following Sekimoto [30,31], the heat δQ that the particle
exchanges with the thermal bath while moving over an
infinitesimal distance dxðtÞ during a time step dt from t to
tþ dt is quantified as the energy the thermal bath transfers
to the particle along this displacement due to friction
−γ _xðtÞ and fluctuations

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p
ξðtÞ, i.e.,

δQðtÞ ¼ ð−γ _xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p
ξðtÞÞ · dxðtÞ; ð10Þ

where the product needs to be interpreted in the
Stratonovich sense [77]. With the definition (10), heat is
counted as positive if received by the particle and as
negative when dumped into the environment (this sign
convention is thus the same as Sekimoto’s original one
[30,31]). From the equation of motion (9), we immediately
see that the heat exchange can be equivalently written as

δQðtÞ ¼ −f−∇UðxðtÞ; tÞ þ FðxðtÞ; tÞg · dxðtÞ: ð11Þ

The change of the particle’s “internal” energy dUðtÞ
over the same displacement dxðtÞ is given by the total
differential
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dUðtÞ ¼ ∇UðxðtÞ; tÞ · dxðtÞ þ ∂UðxðtÞ; tÞ
∂t dt: ð12Þ

Hence, if the potential does not vary over time, the only
contribution to dUðtÞ comes from the change in the
potential energy associated with the displacement dx.
On the other hand, even if the particle does not move

within dt, its internal energy can still change due to
variations of the potential landscape by an externally
applied time-dependent protocol. Prototype examples are
intensity or position variations of optical tweezers, which
serve as a trap for the colloidal particle [23,78–81]. Being
imposed and controlled externally, these contributions are
interpreted as work performed on the particle. A second
source of external forces which may contribute to such
work are the nonconservative componentsFðx; tÞ in Eq. (9)
(originally not considered by Sekimoto [30] but system-
atically analyzed later by Speck et al. [82]). The total
work applied on the particle by external forces is therefore
given by

δWðtÞ ¼ ∂UðxðtÞ; tÞ
∂t dtþ FðxðtÞ; tÞ · dxðtÞ: ð13Þ

Combining Eqs. (11)–(13), we obtain the first law

dU ¼ δQþ δW ð14Þ

for the energy balance over infinitesimal displacements
dxðtÞ valid at any point in time t. After integration along a
specific trajectory fxðtÞgτt¼0 of duration τ, which starts at
xð0Þ ¼ x0 and ends at some xðτÞ ¼ xτ [which is different
for every realization of the thermal noise ξðtÞ in Eq. (9),
even if xð0Þ ¼ x0 is kept fixed], we find the first law at the
trajectory level [35]

ΔU½x̄� ¼ Uðxτ; τÞ −Uðx0; 0Þ ¼ Q½x̄� þW½x̄�: ð15Þ

Here, ΔU½x̄�, Q½x̄�, and W½x̄� denote the integrals of the
expressions (11) [or, equivalently, Eq. (10)], (12), and (13),
respectively, along the trajectory x̄ ¼ fxðtÞgτt¼0; the nota-
tion ½x̄� explicitly indicates the dependence on that
trajectory.

B. Path probability and entropy

The next step towards a thermodynamics characteriza-
tion of the Brownian motion (9) is to introduce an entropy
change or entropy production associated with individual
trajectories [38]. From the viewpoint of irreversibility, such
an entropy concept has been defined as the log ratio of the
probability densities for observing a certain particle tra-
jectory and its time-reversed twin [83]. We express the
probability density of a particle trajectory by the standard
Onsager-Machlup path integral [84–87],

p½xjx0� ∝ exp

�
−
Z

τ

0

dt

�ð _xt − vtÞ2
4D

þ ∇ · vt
2

��
; ð16Þ

where we condition on a fixed starting position x0, and,
accordingly, introduce the notation x ¼ fxðtÞgτt>0 to denote
a trajectory which starts at fixed position xð0Þ ¼ x0. In
contrast to x̄ from above, the set of points x does therefore
not contain the initial point x0 (i.e., x̄ ¼ x0 ∪ x). The path
probability (16) is to be understood as a product of
transition probabilities in the limit of infinitesimal time-
step size using a midpoint discretization rule. The diver-
gence of v in the second term represents the path-dependent
part of normalization [86,87], while all remaining normali-
zation factors are path-independent constants and thus
omitted. For convenience, we introduce the shorthand
notation xt ¼ xðtÞ and vt ¼ vðxðtÞ; tÞ.
We now consider the time-reversed version x̃ðtÞ of this

trajectory, which is traced out backward from the final point
xðτÞ ¼ xτ to the initial point x0 when advancing time,

x̃ðtÞ ¼ xðτ − tÞ; ð17Þ

and ask how likely it is that x̃ ¼ fx̃ðtÞgτt>0 is generated by
the same Langevin equation (9) as x, with the same
deterministic forces v acting at identical positions along
the path. The latter requirement implies that in case of
explicitly time-dependent external forces, the force proto-
col has to be time inverted; i.e., vðx; tÞ is replaced by
vðx; τ − tÞ in Eq. (9) to construct the Langevin equation for
the time-reserved path [88]. From that Langevin equation,
we can deduce the probability p̃½x̃jx̃0� for observing the
backward trajectory x̃ conditioned on its initial position
x̃0 ¼ xðτÞ ¼ xτ, in analogy to Eq. (16). Using Eq. (17), we
can then express p̃½x̃jx̃0� in terms of the forward path x so
that we find for the path probability ratio

p̃½x̃jx̃0�
p½xjx0�

¼ e−ΔS½x̄�=kB ; ð18Þ

with the quantity ΔS½x̄� being a functional of the forward
path only,

ΔS½x̄� ¼ 1

T

Z
τ

0

dt _xðtÞ · fðxðtÞ; tÞ

¼ 1

T

Z
τ

0

fðxðtÞ; tÞ · dxðtÞ: ð19Þ

As a quantitative measure of irreversibility, ΔS½x̄� is
identified with the entropy production along the path x
with given initial position x0.
For an infinitesimal displacement dxðtÞ, the correspond-

ing entropy change reads

δSðtÞ ¼ 1

T
fðxðtÞ; tÞ · dxðtÞ ¼ −

δQðtÞ
T

: ð20Þ
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The last equality follows from comparison with Eq. (11)
[see also Eq. (6)] and states that the entropy production
along dxðtÞ is given by the heat −δQðtÞ dissipated into the
environment during that step divided by the bath temper-
ature. For that reason, δSðtÞ and ΔS½x̄� are more accurately
called entropy production in the environment.
The entropy of the Brownian particle itself (i.e., the

entropy associated with the system degrees of freedom
(d.o.f.) x) is defined as the state function [34,38]

Ssysðx; tÞ ¼ −kB lnpðx; tÞ; ð21Þ

where pðx; tÞ is the time-dependent solution of the Fokker-
Planck equation [47,48,66] associated with Eq. (9), for the
same initial distribution p0ðx0Þ ¼ pðx0; 0Þ from which the
initial value x0 for the path x is drawn. The change in
system entropy along the trajectory is therefore given by

ΔSsysðx0; xτÞ ¼ −kB lnpðxτ; τÞ þ kB lnpðx0; 0Þ: ð22Þ

Combining ΔS½x̄� and ΔSsysðx0; xτÞ, we define the total
entropy production along a trajectory x̄ [38],

ΔStot½x̄� ¼ ΔS½x̄� þ ΔSsysðx0; xτÞ: ð23Þ

It fulfills the integral fluctuation theorem [32,34]

he−ΔStot=kBi ¼ 1 ð24Þ

as a direct consequence of Eq. (18) [see also Eq. (22)]. The
average in Eq. (24) is over all trajectories with a given but
arbitrary distribution p0ðx0Þ of initial values x0 [38].

IV. THE NONEQUILIBRIUM ENVIRONMENT

We now focus on the full model (5)–(7) for Brownian
motion subject to active fluctuations ηðtÞ. Our main goal is
to develop a trajectorywise thermodynamic description as a
natural generalization of stochastic energetics and thermo-
dynamics in a purely thermal environment (see previous
section). We thus treat the active forces ηðtÞ in the same
way as the thermal noise ξðtÞ, namely, as a source of
fluctuations whose specific realizations are not accessible
but whose statistical properties determine the probability
p½xjx0� for observing a certain particle trajectory x. We are
interested in how the nonequilibrium characteristics of
the active fluctuations affect the irreversibility measure
encoded in the ratio between forward and backward path
probabilities and how this measure is connected to the
energetics of the active Brownian motion.

A. Energetics and entropy

Comparing Eq. (5) with Eq. (9), we may conclude that
the stochastic energetics associated with Eq. (5) can be
obtained from the energetics for Eq. (9) by adjusting the

total forces acting on the Brownian particle, i.e., by
replacing vðx; tÞ with vðx; tÞ þ ffiffiffiffiffiffiffiffiffi

2Da
p

ηðtÞ. However, there
is another, maybe less obvious way of turning Eq. (9) into
the model (5) with active fluctuations, namely, by sub-
stituting _x with _x −

ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ. In the following, we argue

that these two approaches correspond to two different
physical situations (depicted in Fig. 1) with different
trajectorywise energy balances.

1. Active bath

Examples for an “active bath” are the intracellular matrix
of a living cell [89–95] or an aqueous suspension contain-
ing swimming bacteria [5,23]. These active environments
then drive a passive Brownian particle, e.g., a colloid, via
interactions or “collisions,” which are included in the
equation of motion for the passive tracer as effective
nonequilibrium fluctuations ηðtÞ. In this case, the fluctua-
tions ηðtÞ can indeed be interpreted as additional time-
dependent forces from sources external to the Brownian
particle. Hence, the total external force acting on the
Brownian particle at time t is given by γfvðxðtÞ; tÞþffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞg. This modification of the external force obvi-

ously does not affect the basic definition (10) of heat
exchanged with the thermal bath. Using the force balance
expressed in the Langevin equation (5) to replace
−γ _xðtÞ þ γ

ffiffiffiffiffiffiffi
2D

p
ξðtÞ, we obtain

δQþðtÞ ¼ −½fðxðtÞ; tÞ þ
ffiffiffiffiffiffiffiffiffi
2Da

p
γηðtÞ� · dxðtÞ: ð25Þ

The active fluctuations ηðtÞ formally play the role of
additional nonconservative force components and thus
affect the heat which is dissipated into the thermal
environment in order to balance all acting external forces.
However, they cannot be controlled to perform work on the
particle due to their inherent fluctuating character as an
active bath, such that the definition (13) of the work
remains unchanged. Indeed, this standard definition of
work from stochastic thermodynamics has been used to
analyze a microscopic heat engine operating between two
active baths [96]. Finally, the change of internal energy (12)
over a time interval dt is determined by the potentialUðx; tÞ
only and thus is not altered by the presence of the active
fluctuations ηðtÞ either.
Combining Eqs. (12), (13), and (25), we find the energy

balance (first law)

dU ¼ δQþ þ δW þ δAþ ð26Þ

for Brownian motion in an active bath. Here, we introduce
the energy exchanged with the active bath,

δAþ ¼
ffiffiffiffiffiffiffiffiffi
2Da

p
γηðtÞ · dxðtÞ: ð27Þ

It might be best interpreted as “heat” in the sense of
Sekimoto’s general definition, that any energy exchange
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with unknown or inaccessible d.o.f. may be identified as
heat [31]. In our setup, the active fluctuations ηðtÞ represent
an effective description of the forces from the active
environment and are thus in general not directly measurable
in an experiment.
Based on the heat the Brownian particle exchanges with

the thermal environment, we can identify the entropy
production in the thermal environment as

δSþðtÞ ¼ −
δQþðtÞ

T

¼ 1

T
½fðxðtÞ; tÞ þ

ffiffiffiffiffiffiffiffiffi
2Da

p
γηðtÞ� · dxðtÞ; ð28Þ

in analogy to Eq. (20). We refrain, however, from defining
an entropy production in the active bath. Such an envi-
ronment, itself being in a nonequilibrium state due to
continuous dissipation of energy, does not possess a well-
defined entropy so that the heat dissipated into the active
bath cannot be associated with a change of bath entropy.

2. Self-propulsion

Self-propulsion occurs if a particle is able to locally
convert external fuel on its own into directed motion; such a
fuel may, e.g., be nutrients for a bacterium or some kind of
chemical components like hydrogen peroxide for a colloi-
dal Janus particle; see Fig. 1 in the review [5] for an
extensive collection of self-propelled (Brownian) particles.
This self-propulsion entails that incessant particle motion
can occur already without any external forces being
applied. It is represented by the active fluctuations ηðtÞ
in the equations of motion (5) for the self-propelled
Brownian particle. For fðx; tÞ≡ 0 and without thermal
fluctuations

ffiffiffiffiffiffiffi
2D

p
ξðtÞ≡ 0, the momentary particle velocity

_xðtÞ is exactly equal to the active velocity ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ. In that

sense, self-propulsion is force-free. More precisely, the
driving force, which is created locally by the particle for
self-propulsion, is compensated according to actio est
reactio, such that the total force acting on a fluid volume
comprising the particle and its active self-propulsion
mechanism is zero. The corresponding dissipation (and
entropy production) inside such a fluid volume which
results from the conversion of energy or fuel to generate
the self-propulsion drive cannot be quantified by our
effective description of the active propulsion as fluctuating
forces η because it does not contain any information on the
underlying microscopic processes. In order to quantify such
an entropy production, a specific model for the self-
propulsion mechanism is required [41,71,72]. In other
words, our “coarse-grained” description (7) does not allow
us to assess how much energy the conversion process
behind the self-propulsion drive dissipates.
On the other hand, if the force-free motion of the self-

propelled particle is disturbed by the presence of external
forces fðx; tÞ ≠ 0 or thermal fluctuations

ffiffiffiffiffiffiffi
2D

p
γξðtÞ, its

actual velocity deviates from the self-propulsion velocityffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ, resulting in hydrodynamic friction −γ½ _xðtÞ−ffiffiffiffiffiffiffiffiffi

2Da
p

ηðtÞ� between the fluid volume comprising the
particle and its active self-propulsion mechanism on
the one hand and the surrounding fluid environment on
the other hand. Together with the thermal fluctuationsffiffiffiffiffiffiffi
2D

p
γξðtÞ, these friction forces are the forces exchanged

with the thermal environment, entailing an energy transfer
between particle and thermal bath. It is this dissipation
associated with the deviations of the particle trajectory from
the self-propulsion path which we can quantify. The
corresponding heat exchange with the thermal bath for a
displacement dxðtÞ taking place over a time interval dt
at time t is given by ð−γ½ _xðtÞ− ffiffiffiffiffiffiffiffiffi

2Da
p

ηðtÞ�þ ffiffiffiffiffiffiffi
2D

p
γξðtÞÞ ·

½dxðtÞ− ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞdt�, or, using that hydrodynamic friction

and thermal fluctuations are exactly balanced by the
external force f [see Eq. (5)],

δQ−ðtÞ ¼ −fðxðtÞ; tÞ · ðdxðtÞ −
ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞdtÞ: ð29Þ

This definition of heat is equivalent to the one suggested in
Ref. [72] for active particles which are self-propelled by
chemical conversions.
The work δWðtÞ, on the other hand, performed on or by

the particle during the time step dt, which can be controlled
or harvested by an external agent, is exactly the same as
without active propulsion given in Eq. (13) because from the
operational viewpoint of the external agent, it is irrelevant
what kind ofmechanisms propel the particle. Accordingly, it
has been used in Ref. [97] for connecting work in active
particle systems to pressure and in Ref. [98] for measuring
thework performed by a colloidal heat enginewith an active
particle as the working medium. Finally, the definition (12)
for the change in internal energy dUðtÞ is independent of
how particle motion is driven as well and thus remains
unaffected by our interpretation of

ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ as active

propulsion.
Combining Eqs. (12), (13), and (29), we find the first-

law-like relation

dU ¼ δQ− þ δW þ δA− ð30Þ

for active self-propelled Brownian motion described by the
Langevin equation (5). Here, we balance the different
energetic contributions by introducing

δA−ðtÞ ¼ −fðxðtÞ; tÞ ·
ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞdt: ð31Þ

This quantity represents those contributions to the heat
exchange which are contained only in the active componentffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞdt of the full particle displacement dxðtÞ; see

Eq. (29). We can therefore interpret it as the heat transferred
from the active fluctuations to the thermal bath via the
Brownian particle. Again, δA−ðtÞ is a quantity which, in
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general, cannot be measured in an experiment, since it is
produced by the inaccessible active fluctuations ηðtÞ.
Finally, we can relate the heat exchange δQ− with the

thermal bath to dissipation and define a corresponding
entropy production in the environment,

δS−ðtÞ ¼ −
δQ−ðtÞ

T

¼ 1

T
fðxðtÞ; tÞ · ðdxðtÞ −

ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞdtÞ: ð32Þ

B. Path probability

We now calculate the probability p½xjx0� for observing a
certain path x ¼ fxðtÞgτt>0 starting at x0 generated under
the combined influence of thermal and active fluctuations.
We treat these two noise sources on equal terms, namely, as
fluctuating forces with unknown specific realizations but
known statistical properties. Because of the memory of the
active noise ηðtÞ, the system (5) is non-Markovian.
Therefore, the standard Onsager-Machlup path integral
[84–86] cannot be applied directly to obtain p½xjx0�.
However, for the Ornstein-Uhlenbeck model (7) of ηðtÞ,
the combined set of variables ðx; ηÞ is Markovian, and we
can easily write down the path probability p½x; ηjx0; η0� for
the joint trajectory ðx; ηÞ ¼ f½xðtÞ; ηðtÞ�gτt>0 conditioned on
an initial configuration ðx0; η0Þ:

p½x; ηjx0; η0� ∝ exp

�
−
Z

τ

0

dt

�ð _xt − vt −
ffiffiffiffiffiffiffiffiffi
2Da

p
ηtÞ2

4D

þ ðτa _ηt þ ηtÞ2
2

þ ∇ · vt
2

��
: ð33Þ

To calculate the path weight for the particle trajectories
p½xjx0�, we have to integrate out the active noise history,

p½xjx0� ¼
Z

Dη dη0 p½x; ηjx0; η0�p0ðη0jx0Þ; ð34Þ

where p0ðη0jx0Þ characterizes the initial distribution of the
active fluctuations at t ¼ 0.
Since the variables ηðtÞ represent an effective description

of the active fluctuations which are not experimentally
accessible, in general it is not possible to set up a specific
initial state for ηðtÞ. As a consequence, there are basically
two physically reasonable choices for p0ðη0jx0Þ.
On the one hand, we can assume that the active bath

has reached its stationary state before we immerse the
Brownian particle, such that the bath’s initial distribution
is independent of x0 and given by the stationary distribu-
tion of ηðtÞ, i.e., p0ðη0jx0Þ ¼ psðη0Þ. For the Ornstein-
Uhlenbeck process (7), the stationary distribution reads
[47,99]

psðη0Þ ¼
ffiffiffiffiffi
τa
π

r
e−τaη

2
0 : ð35Þ

At t ¼ 0, we place the Brownian particle into the fluid with
an initial distribution p0ðx0Þ of particle positions which can
be prepared arbitrarily and start measuring immediately.
On the other hand,wemay let the Brownian particle adapt

to the active and thermal environments before performing
measurements and assume that the system ðx0; η0Þ is in a
joint steady state psðx0; η0Þ ¼ p0ðη0jx0Þp0ðx0Þ at t ¼ 0. In
that case, control over the distribution p0ðx0Þ of initial
particle positions is limited, as it is influenced by the active
fluctuations. The form of psðx0; η0Þ depends on the par-
ticular setup, i.e., the specific choices forUðx; tÞ andFðx; tÞ
in Eq. (6).
In the following, we perform the path integration (34) for

the first option, starting from independent initial conditions
p0ðη0jx0Þ ¼ psðη0Þ; the calculation for the second option
can be carried out along the same lines if the joint steady
state psðx0; η0Þ is Gaussian in the active noise η0 [100].
Plugging Eqs. (33) and (35) into Eq. (34) and performing a
partial integration of the term proportional to _η2t in the
exponent, we obtain

p½xjx0� ∝ exp

�Z
τ

0

dt

�
−
ð_xt − vtÞ2

4D
−
∇ · vt
2

��

×
Z

Dη̄ exp

�Z
τ

0

dt

ffiffiffiffiffiffiffiffiffi
2Da

p
2D

ηTt ð _xt − vtÞ

−
1

2

Z
τ

0

dt
Z

τ

0

dt0ηTt V̂τðt; t0Þηt0
�
; ð36Þ

where we use the abbreviation η̄ ¼ η0 ∪ η for the full path
including the initial point η0 in order to write Dηdη0 ¼ Dη̄.
The differential operator

V̂τðt; t0Þ ¼ δðt − t0Þ½V̂ðtÞ þ V̂0ðtÞ þ V̂τðtÞ� ð37aÞ

consists of an ordinary component

V̂ðtÞ ¼ −τ2a∂2
t þ ð1þDa=DÞ ð37bÞ

and two boundary components

V̂0ðtÞ ¼ δðtÞðτa − τ2a∂tÞ; ð37cÞ

V̂τðtÞ ¼ δðt − τÞðτa þ τ2a∂tÞ; ð37dÞ

which include the boundary terms picked up by the partial
integration of _η2t and from the initial distribution (35) of η0.
The subscript τ in Eq. (37a) indicates that the operator V̂τ is
acting on trajectories of duration τ.
Since the path integral over the active noise histories ηðtÞ

is Gaussian, we can perform it exactly [102]. We find
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p½xjx0� ∝ exp

�
−

1

4D

Z
τ

0

dt
Z

τ

0

dt0ð _xt − vtÞT

×

�
δðt − t0Þ −Da

D
Γτðt; t0Þ

�
ð _xt0 − vt0 Þ

−
1

2

Z
τ

0

dt∇ · vt

�
; ð38Þ

where Γτðt; t0Þ denotes the operator inverse or Green’s
function of V̂τðt; t0Þ in the sense thatZ

τ

0

dt0V̂τðt; t0ÞΓτðt0; t00Þ ¼ δðt − t00Þ: ð39Þ
Roughly speaking, this Gaussian integration can be under-
stood by thinking of V̂τ and Γτ as matrices with continuous

indices t, t0. The path integral (36) is then a continuum
generalization of an ordinary Gaussian integral for finite-
dimensional matrices and can be performed by “completing
the square.” We provide a rigorous derivation of Eqs. (38)
and (39) in Appendix A.
In order to obtain the explicit form of the Green’s

function Γτðt; t0Þ, we need to solve the integrodifferential
equation (39). In our case, the operator V̂τðt; t0Þ is propor-
tional to δðt − t0Þ [see Eq. (37)] and thus has a “diagonal”
structure, such that Eq. (39) turns into an ordinary linear
differential equation. We can solve it by following standard
methods [103,104]; details are given in Appendix B. We
obtain

Γτðt; t0Þ ¼
�

1

2τ2aλ

�
κ2þe−λjt−t

0j þ κ2−e−λð2τ−jt−t
0jÞ − κþκ−½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

κ2þ − κ2−e−2λτ
; ð40aÞ

with

λ ¼ 1

τa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDa=D

p
; ð40bÞ

and

κ� ¼ 1� λτa ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDa=D

p
: ð40cÞ

With this expression for Γτðt; t0Þ, Eq. (38) represents the
exact path probability density for the dynamics of the
Brownian particle (5) under the influence of active
Ornstein-Uhlenbeck fluctuations (7). This is our first main
result. We see that the active fluctuations with their colored
noise character lead to correlations in the path weight via
the memory kernel Γτðt; t0Þ. They relate trajectory points at
different times by an exponential weight factor similar to
the active noise correlation function (8) but with a corre-
lation timewhich is a factor of ð1þDa=DÞ−1=2 smaller. We
emphasize again that we assumed independent initial
conditions for the particle’s position x0 and the active bath
variables η0, p0ðη0jx0Þ ¼ psðη0Þ [see also the discussion
around Eq. (35)]. A different choice for the initial distri-
bution, for instance, the joint stationary state for x0 and η0,
would result in a modified Γτðt; t0Þ, whose precise form in
general depends on the specific implementation of the
deterministic forces f . The correlations in the path weight
we measure via the memory kernel Γτðt; t0Þ are thus
influenced by our choice of the time instance at which
we start observing the particle trajectory. In that sense, the
system “remembers its past” even prior to the initial time
point t ¼ 0 because of the finite correlation time in the
active fluctuations.

We finally remark that our general expression (38) with
(40a) reduces to known results in the three limiting cases
Da → 0 (passive particle), τa → 0 (white active noise), and
D → 0 (no thermal bath); details of the calculations can be
found in Appendix C. Without active fluctuations
(Da → 0), we trivially recover the standard Onsager-
Machlup expression (16) for passive Brownian motion.
In the white-noise limit for ηðtÞ (τa → 0), the equation of
motion (5) involves two independent Gaussian white-noise
processes with vanishing means and variances 2D and 2Da,
respectively. Their sum is itself a white-noise source with
zero mean but variance 2ðDþDaÞ. Accordingly, as
τa → 0, we obtain from Eq. (38) an Onsager-Machlup
path weight of the form (16) but with the diffusion
coefficient D being replaced by DþDa. In the third
limiting case of vanishing thermal fluctuations, we are left
with a pure colored noise path weight [105,106],

p½xjx0�D→0 ∝ exp

�
−
Z

τ

0

dt
½ð1þ τa∂tÞð _xt − vtÞ�2

4Da
−
∇ · vt
2

�

×ps

�
_x0 − v0ffiffiffiffiffiffiffiffiffi
2Da

p
�
; ð41Þ

where ps denotes the steady-state distribution (35) of the
colored noise.

C. Fluctuation theorem

With the explicit form (38) of the path probability, we
can now derive an exact expression for the log ratio of path
probabilities which relates time-forward and -backward
paths. Following exactly the same line of reasoning as
described in Sec. III B for the case of a passive Brownian
particle, we consider the ratio of probabilities for observing
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a specific trajectory x and its time-reversed twin x̃ created
under a time-reversed protocol vðx; τ − tÞ [88]. With the
definition (17) of the time-reversed trajectory, we can
express its probability in terms of the forward path.
Using the property Γτðτ − t; τ − t0Þ ¼ Γτðt; t0Þ of the
memory kernel [see Eq. (40a)], we then obtain the path
probability ratio

p̃½x̃jx̃0�
p½xjx0�

¼ e−ΔΣ½x̄�=kB ; ð42aÞ

with

ΔΣ½x̄� ¼ 1

T

Z
τ

0

dt
Z

τ

0

dt0 _xTt f t0

�
δðt − t0Þ −Da

D
Γτðt; t0Þ

�
:

ð42bÞ

As a stochastic integral, this expression is to be understood
in the Stratonovich sense. Note that the procedure of time
inversion does not involve the active fluctuations ηðtÞ in
any way, and thus does not require any assumptions on
their properties under time reversal. In fact, the probability
density p½xjx0� for the trajectories of the Brownian particle
is a result of integrating over all possible realizations ηðtÞ of
the active fluctuations containing any pair of conceivable
time-forward and time-backward twins with their natural
weight of occurrence [see also Eq. (33)]. Hence, for the
probability ratio of particle trajectories (38), the behavior of
the active fluctuations ηðtÞ under time inversion is
irrelevant.
As we describe in Sec. III B, a relation like Eq. (42)

based on path probability ratios entails an integral
fluctuation theorem if the entropy production in the
system ΔSsysðx0;xτÞ¼−kB lnpðxτ;τÞþkB lnpðx0;0Þ [see
Eq. (22)] is taken into consideration. Explicitly, we find

p̃½ ¯̃x�
p½x̄� ¼ e−½ΔΣ½x̄�þΔSsysðx0;xτÞ�=kB ; ð43Þ

and therefore,

he−ðΔΣþΔSsysÞ=kBi ¼ 1: ð44Þ

By Jensen’s inequality, we conclude

hΔΣþ ΔSsysi ≥ 0: ð45Þ

The fluctuation theorem (44) and the bound (45) are a
direct consequence of the definition of ΔΣþ ΔSsys as the
logarithm of a path probability ratio (43). Obviously,
formally equivalent relations are valid for any quantity
defined in this way. Here these relations (43)–(45) become
useful because our analysis equips us with an explicit
expression for ΔΣ as a functional of the particle trajectory
in forward time.

In Eq. (45), equality is achieved if and only if the
dynamics is symmetric under time reversal. The setting
considered here, however, is generally not symmetric
under time reversal because of our choice of particle
position and active fluctuations being independent initially.
The approach to a correlated (stationary) state is irrevers-
ible, such that we inevitably pick up transient contributions
to ΔΣþ ΔSsys, which are strictly positive on average, even
if the external forces f are time independent and
conservative.
For the same reason, namely, the build up of correlations

between the particle trajectory xðtÞ and the active fluc-
tuation ηðtÞ, the quantity ΔΣ is nonadditive, i.e., ΔΣ½x̄� ≠
ΔΣ½fxðtÞgt0t¼0� þ ΔΣ½fxðtÞgτt¼t0 � in general, for any inter-
mediate time 0 < t0 < τ. In order to establish such an
additivity property, we have to take into account the
correlations between xðtÞ and ηðtÞ in the initial distribution
pt0 ðηt0 jxt0 Þ for the path integral (34) of the second part of the
trajectory xðtÞ with t0 < t < τ that have been built up until
the time point t0. However, it is not possible to specify this
conditional distribution in the general situation considered
here allowing for arbitrary forces and force protocols
f ¼ fðx; tÞ; see Eq. (6b) and the remark below Eq. (35).
The path probability ratio (42a) relating the time revers-

ibility of trajectories to the extensive quantity ΔΣ½x̄�,
together with its corresponding integral fluctuation theorem
(44), constitute our second main result. The interpretation
of ΔΣ and its fluctuation theorems in physical terms is,
however, not as straightforward as in the case of a passive
Brownian particle in which we could identify the logarithm
of the path probability ratio as the heat dissipated into the
thermal environment divided by the bath temperature
[34,38]; see Eq. (20). Although we cannot make such a
simple identification for the Brownian particle driven by
active fluctuations, it is still possible to connect ΔΣ to
physically meaningful quantities, as we show in the
following.
As a first step in this direction, we observe a formal

similarity between ΔS given in Eq. (19) and ΔΣ given in
Eq. (42b). Defining the nonlocal “force”

φτ½x̄; t� ¼ fðxðtÞ; tÞ −Da

D

Z
τ

0

dt0fðxðt0Þ; t0ÞΓτðt; t0Þ; ð46Þ

we can bring Eq. (42b) into the form

ΔΣ½x̄� ¼ 1

T

Z
τ

0

dt _xðtÞ · φτ½x̄; t�

¼ 1

T

Z
τ

0

dxðtÞ · φτ½x̄; t�; ð47Þ

in obvious analogy to Eq. (19) but with the essential
difference that the “force” φτ½x̄; t� at time 0 ≤ t ≤ τ
depends not only on xðtÞ but rather on the full trajectory
x̄ ¼ fxðtÞgτt¼0 via the memory term

R
τ
0 dt

0fðxðt0Þ;t0ÞΓτðt;t0Þ.
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Similar “memory forces” have already been found to affect
irreversibility by contributing to dissipation in Langevin
systems with colored noise, which does not obey the
fluctuation-dissipation relation [107].
From Eq. (47), we can read off a production rate for Σ,

στðtÞ ¼ _xðtÞ · 1
T
φτ½x̄; t� ð48aÞ

or

δΣτðtÞ ¼ dxðtÞ · 1
T
φτ½x̄; t�: ð48bÞ

Even though this expression for the Σ production is
analogous to the actual entropy productions in the envi-
ronment as identified in Eqs. (28) or (32) [see also Eq. (20)]
and even contains a term fdxðtÞ · fðxðtÞ; tÞg=T, which
quantifies dissipation due to the external force f , its
physical meaning beyond formally defined memory forces
is unclear. In the following, we argue that a valid inter-
pretation is provided by the mutual information between
the active fluctuations ηðtÞ and the particle trajectory xðtÞ.

V. MUTUAL INFORMATION

The pathwise mutual information [108] between the
particle trajectory x̄ (starting at x0) and a realization η̄ of the
active fluctuations [with ηð0Þ ¼ η0] is given as

I ½x̄; η̄� ¼ ln
p½x̄; η̄�
p½x̄�p½η̄� ¼ ln

p½x̄jη̄�
p½x̄� ; ð49Þ

where p½x̄;η̄�¼p½x;ηjx0;η0�pðx0;η0Þ, p½x̄� ¼ p½xjx0�pðx0Þ,
and p½η̄�¼p½ηjη0�pðη0Þ include the initial densitiespðx0;η0Þ,
pðx0Þ¼

R
dη0pðx0;η0Þ, and pðη0Þ¼

R
dx0pðx0;η0Þ of the

Brownian particle and the active fluctuations (see also the
discussion in Sec. IV B). This pathwise mutual information
quantifies the reduction in uncertainty about the path x̄ when
we know the realization η̄ and vice versa, and can therefore,
loosely speaking, be seen as a measure of the correlations
between x̄ and η̄. Note that it can become negative if
p½x̄jη̄� < p½x̄�, while its average is always positive.
Likewise, the pathwise mutual information between the

time-reversed trajectory ¯̃x from Eq. (17) and a suitably
chosen time-reversed realization ¯̃η of the active fluctuations
is

Ĩ ½ ¯̃x; ¯̃η� ¼ ln
p̃½ ¯̃xj ¯̃η�
p̃½ ¯̃x� : ð50Þ

For their difference

ΔI ½x̄; η̄� ¼ I ½x̄; η̄� − Ĩ ½ ¯̃x; ¯̃η�; ð51aÞ

we thus find

ΔI ½x̄; η̄� ¼ ln
p̃½ ¯̃x�
p½x̄� − ln

p̃½ ¯̃xj ¯̃η�
p½x̄jη̄� : ð51bÞ

This expression represents the pathwise mutual information
difference between a combined forward process ðx̄; η̄Þ and
its backward twin. If ΔI ½x̄; η̄� is positive, the pathwise
mutual information I ½x̄; η̄� along the combined forward
path is larger than Ĩ ½ ¯̃x; ¯̃η� for the time-reversed path [see
Eq. (51a)], implying that correlations between the particle
trajectory x̄ and the active fluctuation η̄ are stronger in the
time-forward direction. Intuitively, we may thus say that
they are more likely to occur together than their time-
reversed twins, making the combined forward process
ðx̄; η̄Þ the more “natural” one of the two processes in terms
of pathwise mutual information.
To make the connection to irreversibility more rigorous,

we rewrite in Eq. (51b) the pathwise mutual information
difference ΔI ½x̄; η̄� explicitly as path probability ratios
between time-forward and time-backward processes. We
now see that ΔI via the term − ln ðp̃½ ¯̃x�=p½x̄�Þ is directly
related to the irreversibility measure ΔΣ for the actively
driven Brownian particle and its change in system entropy
ΔSsys. The additional log ratio ln ðp̃½ ¯̃xj ¯̃η�=p½x̄jη̄�Þ involves
the probability of the forward path x̄ being generated by the
specific realization η̄ of the active fluctuations for which we
measure the mutual information content with x̄ in ΔI , and,
likewise, the path probability of the time-reversed twin
being generated by the time-reversed fluctuation. We can
rewrite this term by splitting off the contributions from the
initial densities,

ln
p̃½ ¯̃xj ¯̃η�
p½x̄jη̄� ¼ ln

p̃½x̃jx̃0; ¯̃η�
p½xjx0; η̄�

þ ln
pðx̃0j ¯̃ηÞ
pðx0jη0Þ

: ð52Þ

Here we keep the possibility that the initial particle position
is conditioned on the initial state of the active fluctuations
pðx0jη̄Þ ¼ pðx0jη0Þ, which is more general than the sit-
uation pðx0jη̄Þ ¼ pðx0Þ for which we calculated ΔΣ in
Sec. IV B [see also the discussion around Eq. (35)].
According to Eq. (17), the time-reversed initial position
is given by the final point of the forward path, x̃0 ¼ xτ. It
therefore depends on the complete history of the active
fluctuations, which is captured equivalently by ¯̃η or η̄, for
any reasonable choice of the time-reversed fluctuations in
terms of the forward realization [see also Eq. (55) below].
With pðx̃0j ¯̃ηÞ ¼ pðxτjη̄Þ, we can identify the boundary term
in Eq. (52) as the change in system entropy

ΔSjη̄sys½x̄jη̄� ¼ −kB lnpðxτjη̄Þ þ kB lnpðx0jη0Þ; ð53Þ

which occurs along the trajectory x̄ under the specific
realization η̄ of the active fluctuations (we explicitly
indicate the conditioning on the realization of the active
fluctuation by adding “jη̄” as a superscript).
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To quantify the first term in Eq. (52), we exploit that a
prescribed active fluctuation η̄ ¼ fηðtÞgτt¼0 acts like an
additional driving force in Eq. (5). Without needing to
know any further details about ηðtÞ (e.g., of how it is
generated), we can thus derive the conditioned forward path
probability p½xjx0; η̄� directly from Eq. (5) as a standard
Onsager-Machlup path integral,

p½xjx0; η̄� ∝ exp

�
−
Z

τ

0

dt
ð_xt − vt −

ffiffiffiffiffiffiffiffiffi
2Da

p
ηtÞ2

4D
−
∇ · vt
2

�
:

ð54Þ
In order to evaluate the time-reversed counterpart, we have
to specify the behavior of the active fluctuation signal ηðtÞ
under inversion of the direction of time. There are essen-
tially two choices,

η̃�ðtÞ ¼ �ηðτ − tÞ; ð55Þ
corresponding to ηðtÞ being an even or odd process. While
both these options a priori appear to be equally valid, they
are connected to different interpretations of the active
fluctuations. We argue below (beginning of Sec. VA) that
for passive tracer particles which are suspended in an active
bath, the active fluctuations ηðtÞ bear the character of an
external force and therefore should be considered even
under time reversal. In contrast, for an active particle with
self-propulsion (see beginning of Sec. V B), the active
fluctuations ηðtÞ are internal to the particle and thus should
change sign when time is reversed (odd under time
reversal), otherwise, the particle trajectory would not be
reversed under inversion of the direction of time in a setup
in which only self-propulsion is acting (no thermal noise
and no external forces) [109].

A. Active bath

If we interpret ηðtÞ as fluctuations coming from an active
bath, they are external to the particle and as such are similar
to externally applied forces. The question of irreversibility
under a prescribed realization η̄ is then related to the
question of how likely the backward particle trajectory x̃ðtÞ
[see Eq. (17)] is to be observed when exactly the same
forces act on the particle at identical positions during the
forward and backward motion. Hence, this case is
described by active fluctuations which are even under time
reversal, i.e., by the plus sign in Eq. (55).
Using η̃þðtÞ ¼ þηðτ − tÞ as the time-reversed fluc-

tuation, we find

ln
p̃½x̃jx̃0; ¯̃ηþ�
p½xjx0; η̄�

¼ −ΔSþ½x̄jη̄�=kB ð56aÞ

for the path probability ratio, where ΔSþ½x̄jη̄� is given by
the entropy production in the thermal environment from
Eq. (28),

ΔSþ½x̄jη̄� ¼
Z

τ

0

dt δSþðtÞ

¼ 1

T

Z
τ

0

dxðtÞ · ½fðxðtÞ; tÞþ
ffiffiffiffiffiffiffiffiffi
2Da

p
γηðtÞ�: ð56bÞ

Together with Eq. (53), we thus obtain the total entropy
production along the particle trajectory x̄ which is gen-
erated by a given realization η̄ of the active fluctuations
assumed to be even under time inversion. It is defined in
analogy to Eq. (22) as

ΔSþtot½x̄jη̄� ¼ ΔSþ½x̄jη̄� þ ΔSjη̄sys½x̄jη̄�: ð57Þ

By construction [see Eqs. (53), (56a), and also Eq. (52)],
ΔSþtot½x̄jη̄� is identical to the log ratio−kB ln ðp̃½ ¯̃xj ¯̃ηþ�=p½x̄jη̄�Þ.
Combining this result with Eqs. (52), (43), and (51), we

then infer that ΔΣ½x̄� þ ΔSsysðx0; xτÞ is a combination of
the conditioned entropy production and the difference in
mutual information between time-forward and time-
backward processes,

ΔΣ½x̄� þ ΔSsysðx0; xτÞ ¼ ΔSþtot½x̄jη̄� − kBΔIþ½x̄; η̄�; ð58Þ

where ΔIþ½x̄; η̄� is given by Eq. (51) with ¯̃η ¼ ¯̃ηþ ¼
fη̃þðtÞgτt¼0. Note that the individual terms on the right-
hand side both depend on the active noise η̄ with a
dependence that is compensated exactly because the left-
hand side is independent of η̄.
As an immediate consequence of Eq. (44), the total

conditioned entropy production together with the mutual
information difference fulfill the integral fluctuation
theorem

he−ðΔSþtot=kB−ΔIþÞix̄ ¼ 1; ð59Þ

and the second-law-like relation

hΔSþtot½x̄jη̄�ix̄ − kBhΔIþ½x̄; η̄�ix̄ ≥ 0: ð60aÞ

These results (59) and (60) are valid for any realization η̄ of
the active fluctuations because the original average h·i in
Eq. (44) is just over the distribution of all particle
trajectories x̄. We accentuate this fact here by the subscript
x̄ at the averages h·ix̄ to distinguish them from the standard
meaning of the brackets h·i as an average over all stochastic
quantities present. Since the terms in Eq. (60a) taken
together are independent of η̄ [see Eq. (58)], we can even
average over the joint distribution p½x̄; η̄� to obtain a further
second-law-like relation

hΔSþtoti − kBhΔIþi ≥ 0: ð60bÞ

We emphasize that Eqs. (58)–(60), being a direct conse-
quence of the structure of the equation of motion (5), are
completely independent of the specific model behind the
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active fluctuations. Moreover, they are formally similar to
the fluctuation theorem with information exchange derived
by Sagawa and Ueda [110] for a completely different
physical setup. Sagawa and Ueda considered the difference
between initial and final correlations of a system of interest
with an “information reservoir,”which provides correlations
as a resource of entropy changes.
For the Ornstein-Uhlenbeck representation (7), we can

use our result (42b) for ΔΣ½x̄� to derive an explicit
expression for the mutual information difference,

ΔIþ½x̄; η̄� þ
�
ln
pðxτjη̄Þ
pðxτÞ

− ln
pðx0jη0Þ
pðx0Þ

�

¼ 1

kBT

� ffiffiffiffiffiffiffiffiffi
2Da

p Z
τ

0

dt _xTt ηt

þDa

D

Z
τ

0

dt
Z

τ

0

dt0 _xTt f t0Γτðt; t0Þ
�

¼ 1

kBT

�
ΔAþ½x̄; η̄�

þDa

D

Z
τ

0

dt
Z

τ

0

dt0 _xTt f t0Γτðt; t0Þ
�
; ð61Þ

where in the last equality we use ΔAþ½x̄; η̄� ¼
R
τ
0 dt δAþðtÞ

with the “heat” δAþðtÞ exchanged with the active bath as
identified in Eq. (27).

B. Self-propulsion

If the active fluctuations represent an effective model for
a self-propulsion mechanism of the particle, we choose ηðtÞ
to be odd under time reversal for a proper assessment of
irreversibility; i.e., we choose the minus sign in Eq. (55).
Otherwise, we would relate irreversibility to the likelihood
that thermal fluctuations make the particle move a certain
path backward against its internal self-propulsion rather
than to the probability that a self-propelled particle traces
out a given trajectory backward in time driven by the same
propulsion forces [109].
Calculating the path probability ratio p½x̃jx̃0; ¯̃η�=p½xjx0; η̄�

for odd active fluctuations η̃ðtÞ ¼ η̃−ðtÞ ¼ −ηðτ − tÞ, we
obtain

ln
p̃½x̃jx̃0; ¯̃η−�
p½xjx0; η̄�

¼ −ΔS−½x̄jη̄�=kB: ð62aÞ

The quantity ΔS−½x̄jη̄� is given by

ΔS−½x̄jη̄�¼
Z

τ

0

dtδS−ðtÞ

¼ 1

T

Z
τ

0

ðdxðtÞ−
ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞdtÞ ·fðxðtÞ;tÞ: ð62bÞ

It thus represents the entropy production in the environment
along the trajectory x̄ because δS−ðtÞ results from the heat

−δQ−ðtÞ dissipated into the thermal bath during a displace-
ment of the active self-propelled particle, which deviates
from the “force-free” path that would be carved out by the
self-propulsion drive alone; see also Eq. (32) and the
discussion above Eq. (29). In analogy to Eq. (22), we finally
combine ΔS−½x̄jη̄� with Eq. (53) to define the total entropy
production under a given realization η̄ of the active pro-
pulsion as

ΔS−tot½x̄jη̄� ¼ ΔS−½x̄jη̄� þ ΔSjη̄sys½x̄jη̄�: ð63Þ

Note that with Eqs. (53) and (62a) [see also Eq. (52)], we can
write this total entropy production as the log ratio
−kB ln ðp̃½ ¯̃xj ¯̃η−�=p½x̄jη̄�Þ of path weights.
Hence, we find again thatΔΣ½x̄� þ ΔSsysðx0; xτÞ consists

of conditional total entropy production and mutual infor-
mation difference [compare Eqs. (51)), (43), and (63)],

ΔΣ½x̄� þ ΔSsysðx0; xτÞ ¼ ΔS−tot½x̄jη̄� − kBΔI−½x̄; η̄�: ð64Þ

This identity provides exactly the same interpretation of
ΔΣ½x̄� þ ΔSsysðx0; xτÞ as we found earlier for the case of an
active bath [cf. Eq. (58)] but with different expressions for
the entropy production and the mutual information differ-
ence. The mutual information in the backward process is
now measured with respect to the sign-inverted active
fluctuation process η̃−ðtÞ ¼ −ηðτ − tÞ, i.e., ΔI−½x̄; η̄� in
Eq. (64) is given by Eq. (51) with ¯̃η ¼ ¯̃η− ¼ fη̃−ðtÞgτt¼0. As
in the case of an active bath (58), the dependence of the
individual terms ΔS−tot and ΔI− in Eq. (64) on the active
forcing η̄ cancel exactly to result in the η̄-independent
expression ΔΣ½x̄� þ ΔSsysðx0; xτÞ.
From Eq. (44), we immediately obtain the integral

fluctuation theorem

he−ðΔS−tot=kB−ΔI−Þix̄ ¼ 1; ð65Þ

and the second-law-like relation

hΔS−tot½x̄jη̄�ix̄ − kBhΔI−½x̄; η̄�ix̄ ≥ 0 ð66aÞ

for active self-propulsion. Like in Eq. (59), we use the
subscript x̄ to explicitly indicate that the averages are over
the distribution p½x̄� alone and that the resulting quantities
are still functionals of the active fluctuations and are valid
for any realization η̄ of the self-propelling forces. After
extending to the average over p½x̄; η̄� to include these active
fluctuations, we end up with the bound

hΔS−toti − kBhΔI−i ≥ 0: ð66bÞ

Again, these findings (64)–(66) are independent of the
specific model for the active fluctuations because they are a
direct consequence of the particle’s equation of motion (5).
Moreover, they are formally similar to the Sagawa-Ueda
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fluctuation theorem with information [110]. If the active
propulsion ηðtÞ is modeled by Eq. (7), we can write the
mutual information difference in the explicit form

ΔI−½x̄; η̄� þ
�
ln
pðxτjη̄Þ
pðxτÞ

− ln
pðx0jη0Þ
pðx0Þ

�

¼ 1

kBT

�
−

ffiffiffiffiffiffiffiffiffi
2Da

p Z
τ

0

dt ηTt f t

þDa

D

Z
τ

0

dt
Z

τ

0

dt0 _xTt f t0Γτðt; t0Þ
�

¼ 1

kBT

�
ΔA−½x̄; η̄�

þDa

D

Z
τ

0

dt
Z

τ

0

dt0 _xTt f t0Γτðt; t0Þ
�

ð67Þ

by using Eq. (42b) and by defining ΔA−½x̄; η̄� ¼R
τ
0 dt δA−ðtÞ [see Eq. (31)] as the total “heat” transferred
from the active propulsion to the thermal bath along the
trajectory x̄.

C. Relation to information theory

The second-law-like relations (60) and (66) involve the
averages hΔIþi and hΔI−i of the mutual information
difference. As we show in the following, these averages are
closely related to central concepts in information theory
entailing additional bounds and an interpretation in terms of
hypothesis testing.
Because of the unbiased Gaussian character of the active

fluctuations, the probabilities for observing a time-forward
and its time-reversed realization are the same, i.e.,
p̃½ ¯̃η� ¼ p½η̄�. We can therefore rewrite Eq. (51b) as

ΔI�½x̄; η̄� ¼ ln
p̃½ ¯̃x�
p½x̄� − ln

p̃½ ¯̃x; ¯̃η��
p½x̄; η̄� ; ð68Þ

where we insert our two options ¯̃η ¼ ¯̃η� from Eq. (55) for
the time-reversed active fluctuation. Performing the aver-
age over ðx̄; η̄Þ with density p½x̄; η̄�, we then find

hΔI�½x̄; η̄�i ¼ DKLðp½x̄; η̄�jjp̃½ ¯̃x; ¯̃η��Þ −DKLðp½x̄�jjp̃½ ¯̃x�Þ:
ð69Þ

Here, we use the definition

DKLðp½ȳ�jjp̃½ ¯̃y�Þ ¼
Z

Dȳ p½ȳ� lnp½ȳ�
p̃½ ¯̃y� ð70Þ

of the Kullback-Leibler divergence between a probability
density p½ȳ� for a process ȳ and another density p̃½ ¯̃y� for a
second process ¯̃y; in our case, the two processes are related
by time reversal. The Kullback-Leibler divergence is a
standard concept in information theory to measure how

distinct two probability densities are. It is non-negative and
equals zero if and only if the two probabilities are identical
[111,112].
The result (69) shows that the average mutual informa-

tion difference hΔI�½x̄; η̄�i is the difference between the
Kullback-Leibler divergence of the particle trajectory x̄
relative to its time-reversed twin ¯̃x and the Kullback-Leibler
divergence of the combined path ðx̄; η̄Þ relative to the time-
reversed realization ð ¯̃x; ¯̃η�Þ. We can therefore interpret it to
measure how much harder it is to discriminate between
time-forward and time-backward realizations if only the
particle trajectory is known rather than the full dynamics
including the active noise realization η̄. Since x̄ can be seen
as a “coarse-graining projection” of ðx̄; η̄Þ, we expect the
discrimination to become harder, i.e., DKLðp½x̄�jjp̃½ ¯̃x�Þ to
become smaller compared to DKLðp½x̄; η̄�jjp̃½ ¯̃x; ¯̃η��Þ (see
Ref. [113] for a similar discussion). This intuition is
corroborated by the so-called data processing inequality
[111,112], which, applied to our situation, proves

DKLðp½x̄; η̄�jjp̃½ ¯̃x; ¯̃η��Þ ≥ DKLðp½x̄�jjp̃½ ¯̃x�Þ: ð71Þ

As a direct consequence, we find from Eq. (69) the bound

hΔI�½x̄; η̄�i ≥ 0 ð72Þ

on the average mutual information difference. Exploiting
Eqs. (60b) and (66b), respectively, we infer that
hΔS�toti ≥ 0. This follows also from the fact that the
ΔS�tot are given as log ratios of path probabilities, which
are conditioned on η̄ [see the discussion around Eqs. (56)
and (62)]. Accordingly, they obey an integral fluctuation
theorem when averaged over the conditioned density p½x̄jη̄�
but then also when averaged over the full density p½x̄; η̄�.
More interestingly, we can also use Eq. (72) to equip the

second-law-like relations for the total irreversibility mea-
sure ΔΣþ ΔSsys with an upper bound. Taking the average
of Eqs. (58) and (64) over ðx̄; η̄Þ, the non-negativity (72) of
hΔI�i implies

hΔS�tot½x̄jη̄�i ≥ hΔΣ½x̄� þ ΔSsysðx0; xτÞi ≥ 0: ð73Þ

The total average irreversibility of a particle trajectory
measured as hΔΣþ ΔSsysi is thus always smaller than (or
equal to) the mean entropy change

R
Dx̄p½x̄jη̄�ΔS�tot½x̄jη̄�,

which would occur for a given realization η̄ of the active
fluctuations if treated as a known (and measurable) external
force contributing to the dissipation in the thermal envi-
ronment averaged over the distribution p½η̄� of all possible
active fluctuations, i.e.,

R
Dη̄p½η̄� R Dx̄p½x̄jη̄�ΔS�tot½x̄jη̄� ¼R

Dη̄
R
Dx̄p½x̄; η̄�ΔS�tot½x̄jη̄� ¼ hΔS�tot½x̄jη̄�i. For this bound

to be valid, it does not matter whether these forcings come
from an active bath and thus are considered even under time
reversal (“þ” sign), or from active self-propulsion, which is
odd under time reversal (“−” sign). The difference between
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hΔS�tot½x̄jη̄�i and hΔΣþ ΔSsysi is compensated by the build
up of mutual information.
We point out that the upper bound for the total average

irreversibility in Eq. (73) is stronger than the usual coarse-
graining inequality obtained when integrating out “hidden”
d.o.f. (see, e.g., Ref. [114]). In the present notation, such
an inequality would read hΔStot½x̄; η̄�i ≥ hΔΣ½x̄�þ
ΔSsysðx0; xτÞi. Here, hΔStot½x̄; η̄�i would denote the total
average entropy production in the thermal environment of
the combined processes ðx̄; η̄Þ, a quantity which is not well
defined, however, because we cannot quantify the entropy
production associated with the auxiliary process η̄.
Finally, we remark that the inequality (71) has an

interesting interpretation in the context of hypothesis test-
ing [112,115] when estimating the direction of the arrow of
time in the system [33,116]. It states that the probability of
misclassifying a specific path as having been generated by
a forward dynamics when, in reality, it was generated by a
backward one decreases faster with the number of obser-
vations if more detailed information on the dynamics of the
system is available by additionally monitoring the realiza-
tions η̄ of the active fluctuations.

D. Discussion

The fluctuation theorems and second-law-like relations
(59), (60) and (65), (66) for an active bath and for active
self-propulsion, respectively, and their interpretation in
terms of mutual information differences are our third main
result; see also Eq. (73). For both cases, we find that the
total irreversibility measure ΔΣ½x̄� þ ΔSsysðx0; xτÞ consists
of two contributions: First, the “usual” entropy production
ΔS�tot, which we would measure for the motion of the
Brownian particle under a given realization of the active
fluctuations (as if the active fluctuations were just some
additional known “external” driving force), and second, the
difference in mutual information ΔI� accumulated
between the particle trajectory and the active nonequili-
brium environment along the forward versus the backward
path. We note that even though the individual contributions
in ΔS�tot − kBΔI� depend on the specific realization η̄ of
the active fluctuations, their sum does not [see Eqs. (58)
and (64)]; i.e., entropy production and change in mutual
information always compensate their dependence on the
realization of the active fluctuations. However, if we want
to have access to these individual contributions ΔS�tot and
ΔI� directly, we would have to measure the active
fluctuations η̄, i.e., the direction and magnitude of the
forces representing the activity in the system. In general,
this may be a challenging task in typical experiments with
active Brownian particles, as one would have to separate
thermal from active fluctuations. We can imagine, however,
that at least partial information about η̄ could be obtained
experimentally. For example, tracking the orientation of an
active self-propelled particle (e.g., a bacterium with a

flagellum), it may be possible to infer the direction of η.
Moreover, we could think of an experimental setup in
which the active fluctuations η̄ are realized artificially by an
external colored noise source, like in Ref. [117], then all
relevant quantities may be accessible.
The entropy productions ΔS�tot for an active bath and for

active self-propulsion, respectively, as obtained from irre-
versibility arguments in Eqs. (56) and (62) are consistent
with the energetics derived in Secs. IVA 1 and IVA 2
[compare with Eqs. (25) and (29)]. They are thus directly
related to the heat dissipated into the thermal part of the
environment. Hence, the appearance of the pathwise mutual
information difference in the fluctuation theorem is a
consequence of the active fluctuations being present as a
nonequilibrium bath in addition to the usual thermal bath.
Indeed, we can easily see from Eqs. (61) and (67) that ΔI�
vanish identically in the absence of active fluctuations,
Da ¼ 0. Accordingly, ΔS� reduce to the standard entropy
production in the thermal environment in this limit [see
Eqs. (56), (62), and (19)].
We emphasize that the pathwise mutual information

quantifies how the active fluctuations contribute to the
irreversibility of the particle trajectory but does not capture
the unavoidable dissipation connected with maintaining the
active nature of the nonequilibrium environment itself. In
fact, our effective description (7) of the active fluctuations
as a time-correlated Gaussian noise source does not have
any knowledge about the microscopic details generating
this noise so that it obviously cannot assess the associated
dissipative processes. On the one hand, we may therefore
suspect that the appearance of the pathwise mutual infor-
mation is a consequence of this coarse-grained description
of the active environment and might be replaced by a
“finer” measure once all the details are known [41,71,72].
On the other hand, we may argue that these microscopic
details behind the active fluctuations are irrelevant if we are
interested only in characterizing the irreversibility of the
particle trajectory and related thermodynamiclike proper-
ties of the system emerging on this level of coarse graining.
Then, knowledge of the statistical properties of the active
fluctuations, as provided by Eq. (7), is sufficient, and the
pathwise mutual information between particle trajectory
and active noise realization emerges as a natural and
adequate irreversibility measure. This situation may be
comparable to the one for entropy production in a thermal
bath: We quantify entropy production solely from the
statistical properties of the thermal noise without having
to rely on a detailed microscopic description of the bath.

VI. EXAMPLE: HARMONIC POTENTIAL

To illustrate our results, we consider the example of a
one-dimensional Brownian particle trapped in a harmonic
potential Uðx; tÞ ¼ ðk=2Þðx − utÞ2, whose center is either
held at fixed position (u ¼ 0) or else is displaced at
constant velocity u ≠ 0. Such a setup can be readily
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implemented in experiment with state-of-the-art optical
tweezers and in fact has been used to study various aspects
of stochastic thermodynamics and active matter, for in-
stance, in Refs. [23,49,79,118–120].
The Langevin equation of motion (5) for this specific

setup is linear,

_xðtÞ ¼ −
k
γ
½xðtÞ − ut� þ

ffiffiffiffiffiffiffi
2D

p
ξðtÞ þ

ffiffiffiffiffiffiffiffiffi
2Da

p
ηðtÞ: ð74Þ

We can therefore solve the associated Fokker-Planck
equation analytically [47,99,121] to obtain the propagator
in closed form. From that, we can explicitly compute the
averages of the irreversibility measure ΔΣ, the mutual
information difference ΔI�, and the change in system
entropy ΔSsys for a Gaussian initial distribution p0ðx0Þ of
particle positions with zero mean and variance c20.
Although the calculations are straightforward (we present
some details in Appendix D), the resulting formulas for
hΔΣi, hΔSsysi, and hΔI�i are lengthy and bulky so that we
discuss them mostly in graphical form (see Figs. 2 and 4)
and give explicit expressions only in some limiting cases
[see Eqs. (75), (76), and (79) below]. For the initial variance
c20, two specific cases are of particular physical relevance.
First, c20 ¼ kBT=k corresponding to a Gaussian distribution
that would be created as an equilibrium state by thermal
fluctuations only. Starting from this distribution, the time
evolution of our irreversibility measures includes the
transient relaxation from the thermal state towards
the steady state which develops due to the presence of
the active fluctuations. Second, c20¼ð1=kÞfkBTþ½ðγDaÞ=
(1þðkτa=γÞ)�g corresponding to a Gaussian distribution
with a variance which is exactly the same as the one the
particle distribution has when particle and active fluctua-
tions are in their joint steady state. In that case, the particle
distributions at the beginning and end of the process are
identical so that any contributions to the irreversibility
measure ΔΣ that are not associated with the displacement u
of the trap are solely due to the build up of correlations
between particle position and active d.o.f. In the following,
we focus on the first alternative and briefly come back to
the second alternative at the end of Sec. VI A and in
Sec. VI B.

A. Irreversibility

In Fig. 2, we compare hΔΣi, hΔSsysi, and hΔΣþ ΔSsysi
for u ¼ 0 and u ¼ 1 as a function of the duration τ of the
trajectories. We find that the average change in system
entropy hΔSsysi is independent of the driving velocity u,
because it depends only on the variance of the initial and
final Gaussian distributions but not on their centers. For
long trajectories, i.e., large τ, it approaches the constant
value

lim
τ→∞

hΔSsysi ¼
kB
2
ln

�
1þDa

D
1

1þ kτa
γ

�
: ð75Þ

In contrast, the irreversibility measures hΔΣi for the
static trap u ¼ 0 and the moving trap u ¼ 1 are similar only
during a short transient phase but then become qualitatively
different. In the static trap, hΔΣi becomes constant at large
times τ,

lim
τ→∞

hΔΣiju¼0

¼ −
kB
2

ð1− kτa
γ Þ þ 2 D

Da
ð1þ kτa

γ Þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Da

D

q �
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Da

D

q �
2
�

kτa
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Da

D

q �
2

�
Da

D

�
2

;

ð76Þ
in accordance with the system reaching a currentless
equilibriumlike steady state. In the moving trap, the particle

(a)

(b)

FIG. 2. Average contributions to irreversibility hΔΣi and
average change in system entropy hΔSsysi as a function of the
observation time τ. We compare the cases of a particle trapped in
a static (u ¼ 0, orange lines) or moving (u ¼ 1, blue lines)
harmonic potential having an initial distribution which is Gaus-
sian with variance (a) c20 ¼ kBT=k ¼ Dγ=k and (b) c20 ¼
ð1=kÞfkBT þ ½ðγDaÞ=(1þ ðkτa=γÞ)�g. Parameter values are
k ¼ 0.1, γ ¼ 1, τa ¼ 0.2, D ¼ Da ¼ 0.2. Note that the blue
and orange lines for the change in system entropy are on top of
each other in both figures, as hΔSsysi does not depend on u.
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is transported continuously by permanent dissipation
of energy so that hΔΣi increases with the length τ of the
trajectories. For large τ, the growth rate is given by the
ensemble average of the time-averaged production rate
σ ¼ limτ→∞ð1=τÞ

R
τ
0 dt στðtÞ, where στðtÞ is defined in

Eq. (48a). Explicitly, we obtain

hσi ¼ lim
τ→∞

hΔΣi
τ

¼ kB
u2

DþDa
: ð77Þ

We thus see that the total “irreversibility production”
hΔΣþ ΔSsysi in the moving trap grows extensively with
the observation time as it would without active fluctuations,
too. The growth rate, however, is reduced by the additional
presence of active fluctuations, as the combined environ-
ment can be interpreted to have a higher “effective temper-
ature.” Remarkably, the average growth rate (77) is
independent of the relevant system timescales, i.e., the
correlation time τa of active fluctuations and the relaxation
time γ=k in the harmonic potential.
In the static trap u ¼ 0, we find that no such extensive

growth occurs for hΔΣþ ΔSsysi. Hence, the system reaches
a steady state, which appears equilibriumlike from the
viewpoint of particle trajectories without access to the
microscopic processes generating the active driving.
Nevertheless, we observe limτ→∞hΔΣþ ΔSsysi > 0

regardless of the initial distribution p0ðx0Þ. For the case
of a Gaussian with “thermal variance” c20 ¼ kBT=k, the
relevant results are given in Fig. 2 and Eqs. (75) and (76).
Both limτ→∞hΔSsysi and limτ→∞hΔΣi depend on just two
dimensionless parameters: the ratio of the two noise
intensitiesDa=D and the ratio of the two system timescales
½ðkτaÞ=γ�. The limits of large and small correlation time and
noise amplitudes can be easily computed and present no
difficulties. As an interesting example, we consider the case
of vanishing correlation time of the active fluctuations,

lim
τa→0

lim
τ→∞

hΔΣþ ΔSsysiju¼0 ¼
kB
2
ln

�
1þDa

D

�
−
kB
2

Da

DþDa
:

ð78Þ
This expression is exactly the entropy which would be
produced by a thermal white-noise process with diffusion
constant DþDa relaxing from an initial Gaussian distri-
bution with variance Dγ=k ¼ kBT=k to its equilibrium
state, a Gaussian with variance ðDþDaÞγ=k.
It is quite obvious that for a variance c20 ¼ kBT=k of the

initial Gaussian distribution, there must be some change in
system entropy and a build up of irreversibility because the
Gaussian particle distribution approached at long times has
a larger variance ð1=kÞfðkBTÞ þ ½ðγDaÞ=ð1þ kτa=γÞ�g
[see Eq. (D2d)]. But even if we start with the initial
variance c20 ¼ ð1=kÞfðkBTÞ þ ½ðγDaÞ=(1þ ðkτa=γÞ)�g, we
find a positive hΔΣi while reaching the steady state at
large τ,

lim
τ→∞

hΔΣiju¼0¼
kB

kτa
γ ðDa

D Þ2�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þDa

D

q �
2
�

kτa
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þDa

D

q �
2
: ð79Þ

The origin of this positive contribution is our choice of
independent initial conditions in the form of a product
density p0ðx0; η0Þ ¼ p0ðx0Þpsðη0Þ [see also the discussion
of Eq. (35)]. Hence, during the initial transient, there must
be an irreversible build up of correlations between the
particle and the active fluctuations becoming manifest in a
nonzero total hΔΣþ ΔSsysi. It turns out that the associated
change in hΔΣþ ΔSsysi is nonmonotonic [see Fig. 2(b)],
indicating that the variance of the particle distribution
departs over some (transient) time period, even though the
initial variance c20¼ð1=kÞfðkBTÞþ½ðγDaÞ=(1þðkτa=γÞ)�g
is identical to the final one. In order to obtain a vanishing
average hΔΣþ ΔSsysi, we would have to start from a joint
stationary state psðx0; η0Þ of particle positions and active
fluctuations instead of a factorized one. It can even be
shown that forward and backward paths are equally likely
in that case (see Ref. [100]), implying that ΔΣ½x̄� þ
ΔSsysðx0; xτÞ ¼ 0 holds already on the level of individual
trajectories. It is unsolved, however, if the latter property is
generic for stationary states of trapped active particles (in
the absence of symmetry-breaking forces), or if it is specific
to the harmonic trap, to the Ornstein-Uhlenbeck realization
of the active fluctuations, or to the dimensionality one.
We emphasize again that these correlations are the very

reason that the irreversibility measure ΔΣ is nonadditive
[see also the discussion below Eq. (45)]. The curves in
Fig. 2 apply only to trajectories evolving over the complete
time interval ½0; τ�. We cannot split a trajectory at an
intermediate time, calculate the individual ΔΣ for the
two parts of the trajectory from Eq. (42b), and then add
them up to obtain ΔΣ for the full time interval because the
“initial” state for the second part will inevitably depend on
correlations between particle and active fluctuations accu-
mulated during the first part. Such correlations are not
taken into account in Eq. (42b) which is based on the
assumption of an initial product state.

B. Fluctuation theorem

To illustrate the integral fluctuation theorem (44) sat-
isfied by ΔΣþ ΔSsys, we show in Fig. 3 the probability
densities for the path probability ratio (43) for the same two
situations of a static and a moving harmonic trapping
potential already analyzed in Fig. 2(b). The probability
densities are obtained from simulating 105 trajectories of
length τ ¼ 1, well within the transient regime of the system
evolution (see Fig. 2). While the distribution for
exp½−ðΔΣþ ΔSsysÞ=kB� is almost symmetric about 1 in
the static trap u ¼ 0, the most probable value lies visibly
below 1 for the moving trap u ¼ 1, indicating that
trajectories with a positive ΔΣþ ΔSsys are more likely
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than those with a negative value (see insets in Fig. 2).
The sample mean for the path probability ratio lies well
within 1 standard deviation of 1 in both cases, in accor-
dance with the exact result (44).

C. Mutual information

The quantities ΔΣ and ΔSsys analyzed in the previous
two sections as a measure for the irreversibility in the
system evolution depend only on the particle trajectories
but not on the realizations of the active fluctuations, and

thus are readily accessible in experiments and simulations.
The specific role of the active fluctuations, on the other hand,
is nicely captured by the splitting of irreversibility, i.e., the
log ratio of path probabilities, into total conditional entropy
productionΔS�tot and mutual informationΔI�, as described
Sec. VA for an active bath (þ sign) and in Sec. V B for self-
propulsion (− sign). Since for the present example of a
particle trapped in a harmonic potential we have analytical
expressions at hand for the combined propagator of particle
position and active fluctuations (see Appendix D), we can
calculate the conditional entropy production from Eqs. (56)
and (62) and the mutual information from Eqs. (61) and (67)
explicitly. Only the quantity lnpðxτjη̄Þ is not easily acces-
sible because it is conditioned on the full realization η̄, such
thatwe add it to the change inmutual information in the form

of the change in (conditional) system entropy ΔSjη̄sys [see
Eq. (53)]. Note that ΔSjη̄sys is nonextensive with τ, and thus
only a small correction toΔI�whichbecomes negligible for
long times.
In Fig. 4, we show the average conditional entropy

production hΔS�i and the average mutual information

kBhΔI�i − hΔSjη̄sysi for an active bath [Fig. 4(a)] and active
self-propulsion [Fig. 4(b)]. The system parameters are the
same as before in Figs. 2 and 3; in particular, we again
compare a static trap u ¼ 0 with a moving trap u ¼ 1. We
can see that now in all cases, both hΔS�i and hΔI�i grow
linearly with time for large τ. This conforms nicely with our
previous findings: For the conditional total entropy ΔS�tot,
the active fluctuations are treated like an external
time-dependent forcing. Such a force is then naturally
expected to produce entropy extensively. For the ensemble-
and time-averaged rate of total entropy production
hσ�toti ¼ limt→∞hΔS�toti=τ, we find

hσþtoti ¼ kB

�ð1þ Da
D Þu2

DþDa
þDa

D

�
1

1þ kτa
γ

�
1

τa

�
; ð80aÞ

hσ−toti ¼ kB

�ð1þ Da
D Þu2

DþDa
þDa

D

�
1

1þ kτa
γ

�
k
γ

�
: ð80bÞ

The first terms in these expressions contain the production
rate of hΔΣi from Eq. (77). The second terms quantify the
additional contributions from the active fluctuations. They
are balanced by the mutual information production rates
hσ�I i ¼ limτ→∞kBhΔI�i=τ (note that we include a factor of
kB in this definition of the rates so that they have units of
entropy/time), which explicitly read

hσþI i ¼ kB
Da

D

�
u2

DþDa
þ
�

1

1þ kτa
γ

�
1

τa

�
; ð81aÞ

hσ−I i ¼ kB
Da

D

�
u2

DþDa
þ
�

1

1þ kτa
γ

�
k
γ

�
: ð81bÞ

(a)

(b)

FIG. 3. Probability densities of the path probability ratio (43)
for a harmonically trapped particle (a) in a static trap u ¼ 0 and
(b) in a moving trap u ¼ 1. The densities are obtained from
numerically simulating 105 sample trajectories of duration τ ¼ 1.
Parameters are k ¼ 0.1, γ ¼ 1, τa ¼ 0.2, D ¼ Da ¼ 0.2,
c20 ¼ ðγ=kÞfDþ ½ðDaÞ=ð1þ kτa=γÞ�g. The insets show the cor-
responding densities of ΔStot ¼ ΔΣþ ΔSsys. The average values
hΔΣi, hΔSsysi, and hΔΣþ ΔSsysi as obtained from the numerical
simulations are consistent with the corresponding theoretical
predictions. (a) u ¼ 0, simulation hΔΣi ¼ 0.010ð4Þ, hΔSsysi ¼
−0.0090ð13Þ, hΔΣþ ΔSsysi ¼ 0.00139ð17Þ; u ¼ 0, theory
hΔΣi ¼ 0.00975, hΔSsysi ¼ −0.00828, hΔΣ þ ΔSsysi ¼
0.00148. (b) u ¼ 1, simulation hΔΣi ¼ 0.017ð4Þ,
hΔSsysi ¼ −0.0073ð13Þ, hΔΣþ ΔSsysi ¼ 0.0104ð5Þ; u ¼ 1,
theory hΔΣi ¼ 0.01883, hΔSsysi ¼ −0.00828, hΔΣþ ΔSsysi ¼
0.01056.
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In total, we therefore find in both cases that hσi ¼ hσ�toti −
hσ�I i holds, where hσi is given in Eq. (77).
As we discuss in Sec. IVA, the two interpretations of the

active fluctuations as active bath or as self-propulsion
mechanism correspond to measuring the mutual informa-
tion with respect to, respectively, even or odd time reversal
of the active forcing so that the rate of “mutual information
production” is different in the two cases; compare
Eqs. (81a) and (81b). Their difference reads

hσþI i − hσ−I i ¼ kB
Da

D

�
1

1þ kτa
γ

��
1

τa
−
k
γ

�
: ð82Þ

We conclude that for the active bath, the relevant timescale
the trajectory duration τ is measured against is the

correlation time of fluctuations τa, whereas it is the
system’s relaxation time in the harmonic potential γ=k
for the self-propelled particle.

VII. CONCLUSIONS AND DISCUSSION

Our present work contributes to assessing the out-of-
equilibrium character of active matter [28,29,42,50,51,
61,122,123] based on its observable dynamical behavior.
Having in mind that in a typical experiment the central
observables are particle trajectories, we quantify irrevers-
ibility in active matter systems based on particle trajectories
alone, without resolving the microscopic mechanisms and
associated dissipation underlying the active fluctuations
which drive particle motion. For the thermodynamiclike
features emerging from the dynamical behavior, it is
presumably of little relevance what kind of microscopic
processes dissipate how much entropy in generating the
active fluctuations in the system (e.g., via self-propulsion),
as long as these processes are not altered due to the
motion of the particle. We are therefore interested in how
(ir)reversible a specific particle trajectory is, out of the set
of all possible trajectories which can be generated by the
combined influence of thermal and active fluctuations, but
not in how (ir)reversible the processes which underly the
active fluctuations are. In that spirit, we treat the active
fluctuations as an active (nonthermal) bath the particle is in
contact with in addition to the thermal bath, with statistical
properties which are completely independent of the internal
dynamical state of the particle.
We implement this active bath by following the common

approach to include stochastic active forces into the
equations of motion, which emulate the directional per-
sistence and the nonequilibrium character of the active
fluctuations [124]. A particularly successful description of
active fluctuations along these lines consists in a colored
noise model, more specifically, a Gaussian Ornstein-
Uhlenbeck process [7,15–18,21–24,28,42,49–61]. For this
model class, we calculate the exact expression for the
probability density of particle trajectories by integrating
over all possible realizations of the active fluctuations [see
Eq. (38)]. Since the colored noise renders the particle’s
dynamics non-Markovian, the standard Onsager-Machlup
path integral [84–87] cannot be applied directly to obtain
the path probabilities. While expressions for a single
colored noise source exist in the literature [105,106], here
we derive for the first time the path weight for the
superposition of colored Ornstein-Uhlenbeck noise (the
active fluctuations) and white thermal noise.
Building on this result, we then relate the probabilities of

time-forward and time-backward processes and establish
an integral fluctuation theorem [32–35] for their log ratio
ΔΣ, a functional over the forward particle trajectory [see
Eqs. (44) and (42b)] which quantifies the time (ir)revers-
ibility of the particle dynamics. From the integral fluc-
tuation theorem, we directly obtain a corresponding

(a)

(b)

FIG. 4. Average mutual information and conditional entropy
production as a function of the observation time τ for a particle
trapped in a static (u ¼ 0, orange lines) or moving (u ¼ 1, blue
lines) harmonic potential. Parameters are again k ¼ 0.1, γ ¼ 1,
τa ¼ 0.2, D ¼ Da ¼ 0.2. (a) Interpretation of the active fluctua-
tions as an active bath; i.e., they are considered being even under
time reversal. (b) Interpretation of the active fluctuations as self-
propulsion; i.e., they are considered being odd under time
reversal. Note that even for u ¼ 0 (orange lines), the curves

for hΔSþi, kBhΔIþi − hΔSjη̄sysi and hΔS−i, kBhΔI−i − hΔSjη̄sysi,
respectively, are not identical, but just appear very similar on the
shown scale.
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second-law-like relation for ΔΣ [see Eq. (45)]. With ΔΣ,
we therefore provide an explicit expression to (exactly)
evaluate the fluctuation theorem for a Brownian particle in
contact not only with a thermal bath but at the same time
also with an active nonequilibrium bath. In particular, it
applies to trajectories of arbitrary finite duration. We expect
that it can be tested experimentally with state-of-the-art
micro(fluidic) technology for biological or synthetic active
matter systems, as used, e.g., in Refs. [5,22–24,127–131].
We point out again that our explicit results for the path
weight and the fluctuation theorem are based on the
assumption that the active fluctuations are Gaussian with
exponential correlations in time generated by an Ornstein-
Uhlenbeck process.
Like in the case of usual Brownian motion in contact

with a thermal bath only, the path probability ratio (42a) is
equal to the identity if there are no external forces acting on
the particle. Therefore, for f ¼ 0 any time-backward
trajectory is equally likely to occur as its time-forward
twin so that the particle dynamics looks reversible and
equilibriumlike. Indeed on a coarse-grained timescale
(beyond τa) they appear very similar to free Brownian
diffusion in thermal equilibrium. Accordingly, in the
absence of external forces, the probability ratio of particle
trajectories does not reveal the nonequilibrium nature of the
system, even though the whole system is out of equilibrium
due to the active fluctuations. This observation should be
true for any stationary (and unbiased) nonequilibrium bath,
not just the Ornstein-Uhlenbeck implementation consid-
ered here. In order to detect the irreversibility connected
with the active fluctuations, we would have to resolve the
corresponding d.o.f. and analyze their behavior under time
reversal [41,71,72].
However, as we can see from comparing Eqs. (19) and

(42b), for nonvanishing forces f , the irreversibility measure
ΔΣ is distinctively different from the entropy production of
purely Brownian motion because it contains the nonlocal
memory kernel Γτðt; t0Þ. Driving the particle by an external
force thus reveals the non-Markovian and nonequilibrium
character of the environment; even in the limit τa → 0 of
δ-correlated active fluctuations the kernel Γτðt; t0Þ yields a
nontrivial contribution (see also Appendix C), which
renders ΔΣ different from the entropy production in the
actual thermal bath. We leave for future exploration how
this observation that external forces may reveal the non-
equilibrium character of the environment may be used to
probe properties of the active bath. Preliminary results
indicate that the external force f has to be nonlinear or time
dependent, as a simple linear f leads to ΔΣ ¼ 0 already on
the level of individual trajectories [100]; see also Ref. [28].
Our irreversibility measure ΔΣ from Eq. (42) quantifies

the combined “dissipation” into the thermal and the active
bath, which occurs along a (time-forward) particle trajec-
tory x̄ but cannot be interpreted easily as entropy produc-
tion or dissipated heat. However, if we keep track of a

specific realization η̄ of the active noise as a fluctuating
force affecting the particle dynamics, we find that ΔΣ can
be split into two parts which have a direct physical
interpretation: the usual entropy production in the thermal
environment and a complementary dissipative component
in the active bath, which is expressed as the difference of
pathwise mutual information ΔI accumulated along the
time-forward process ðx̄; η̄Þ versus its time-backward twin
process [see Eqs. (58) and (64)]. This partition of ΔΣ is
valid for any particle trajectory x̄ and any realization of the
active noise fluctuation η̄ but with process-dependent
amounts of dissipation in the two baths.
All these general results and interpretations are inde-

pendent of how we choose the active fluctuations to behave
under time reversal, even [Secs. IVA 1 and VA] or odd
[Secs. IVA 2 and V B]. The quantitative details, however,
are different; compare, e.g., Eq. (61) with Eq. (67). These
quantitative differences are a consequence of the different
amounts of heat exchanged with the thermal environment
along a displacement dx in the two cases; see Eqs. (25) and
(29). When we interpret the active fluctuations ηðtÞ as an
active environment the particle is moving through, the
viscous friction forces from the thermal bath which balance
these active fluctuations are included in the heat exchange.
In contrast, they are not counted as contributing to heat in
the case of self-propulsion because self-propelled motion
occurs without external forces; i.e., on the coarse-grained
level of description based on particle d.o.f., self-propulsion
appears to be force- and thus dissipation-free. We argue in
Sec. IVA that the interpretation of the active fluctuations
ηðtÞ as an active environment requires ηðtÞ to be even under
time reversal, while their interpretation as self-propulsion
corresponds to ηðtÞ being odd [109].
In any case, the corresponding stochastic energetics for

active systems related to displacements of the particles, i.e.,
the definition of heat and work based on particle trajecto-
ries, appears as a natural and consistent generalization of
Sekimoto’s stochastic energetics of passive Brownian
motion [31] (see Sec. IVA), with a clear-cut connection
to the irreversibility measure ΔΣ as obtained from the
path probability ratio. The consistency and unambiguity of
these results rely on fully incorporating the thermal
fluctuations from the equilibrium heat bath into our
description [cf. Eqs. (5)]. A number of previous works
[28,42,50,51,122,123] attempted to assess irreversibility in
active particle systems and its connection to heat and entropy
production using the model class (5)–(7), including, how-
ever, only viscous friction effects from the heat bath and
neglecting thermal fluctuations [D ¼ 0 in Eq. (5) in our
notation]. In this way, they disregarded an essential part of
the energy exchange between system and heat bath [42],
leading to ambiguities in the definition of heat and entropy
production. Likewise, no consensus could be reached on
the thermodynamic interpretation of the path probability
ratio in terms of entropy production (see Ref. [42] for a
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clear and enlightening summary, as well as the comment
[122] and the corresponding reply [123]). We believe that
here we resolve these problems in a unique and consistent
wayby incorporating the thermal fluctuations in our analysis
[see model (5)–(7)]. In particular, this leads to a clear
interpretation of the path probability ratio in terms of entropy
production in the thermal bath (connected to the actual heat
dissipated in the bath) and mutual information “production”
with the active bath [see Eqs. (58) and (64)].
In the present work, our focus is on deriving the path

probability ratio p̃½x̃jx̃0�=p½xjx0� as a measure of irrevers-
ibility in active matter systems and on establishing its
interpretation in thermodynamic terms. As a fundamental
concept in stochastic thermodynamics, it contains essential
information about the system and entails many interesting
implications. With the fluctuation theorems and the second-
law-like relations, we derive the most immediate ones here.
Further potential applications of our results include the
exploration of features in ΔΣ and ΔI which are character-
istic for the different phases of active matter [20], the
analysis of linear response under small external perturba-
tions and its potential for probing properties of the active
bath [132], the connection between violations of the
fluctuation-response relation and irreversibility [132,133],
the characterization of universal statistics of infima, stop-
ping times, and passage probabilities of ΔΣ and ΔI based
on the properties of p̃½x̃jx̃0�=p½xjx0� [134], the connection
of ΔΣ and ΔI to the arrow of time [116,135] in active
matter systems, and universal properties in the efficiency
fluctuations of stochastic heat engines operating between
active baths [96,136,137].
Here, we analyze the model (5), (6) in great detail from

the viewpoint of a Brownian particle moving under the
influence of active fluctuations, which are represented by
the Ornstein-Uhlenbeck process (7). However, most of
our results, in particular, the path weight (38) and the
associated integral fluctuation theorem (44), as well as its
formulation in information-theoretic terms in Sec. V, are a
direct consequence of the mathematical structure of the
model and are therefore valid in a much broader physical
context. In principle, our results can be applied to any
Brownian dynamics that is driven by an additional
Gaussian Ornstein-Uhlenbeck process. For instance, in
Ref. [138], an information-theoretic analysis similar to
ours has been conducted for a colored-noise-driven
Brownian model. Other examples are Brownian motion
in a harmonic trap with fluctuating location [78,139–141]
and thermodynamic nonequilibrium processes using exter-
nal (artificial) colored noise sources [117,142].
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APPENDIX A: INTEGRATING OVER THE
ACTIVE FLUCTUATIONS η(t)

Here we show that the path integral (36) evaluates to
expression (38). Gaussian path integrals of this form are
ubiquitous in field theories [101,102] with well-established
results. Using the abbreviationwt¼½ð ffiffiffiffiffiffiffiffiffi

2Da
p Þ=ð2DÞ�ð_xt−vtÞ,

the relevant terms in Eq. (36) involving the active noise
variable ηt become

Z
Dη̄ exp

�
−
1

2

Z
τ

0

dt
Z

τ

0

dt0ηTt V̂τðt; t0Þηt0 þ
Z

τ

0

dt ηTt wt

�
:

ðA1Þ

Completing the square, we wish to write this as

Z
Dη̄ exp

�
1

2

Z
τ

0

dt
Z

τ

0

dt0½wT
t Γτðt; t0Þwt0

−ðηt þ εtÞTV̂τðt; t0Þðηt0 þ εt0 Þ�
�
; ðA2Þ

where εt and Γτðt; t0Þ are yet unknown functions. We can
then shift the active noise histories and integrate over η0t ¼
ηt þ εt instead of ηt. Since the path integral effectively
integrates over all possible states of ηt from −∞ to þ∞
for any point in time t, this shift of trajectories does not alter
the domain of integration. Moreover, the Jacobian associated
with the transformation is the identity. Performing the
remaining functional integral over η̄0, expression (A2) then
reduces to

ðDetV̂τÞ−1=2 exp
�
1

2

Z
τ

0

dt
Z

τ

0

dt0wtΓτðt; t0Þwt0

�
; ðA3Þ

assuming proper normalization of the integration measure
Dη̄0. Absorbing the path-independent functional determinant
ðDetV̂τÞ−1=2 into the normalization,weobtain the pathweight
stated in Eq. (38).
However, we still have to show that Γτðt; t0Þ is the

operator inverse of V̂τðt; t0Þ; i.e., we have to verify Eq. (39).
Requiring equality of Eqs. (A1) and (A2), we find that

Z
τ

0

dt ηTt wt¼!
1

2

Z
τ

0

dt
Z

τ

0

dt0½wT
t Γτðt; t0Þwt0 − εTt V̂τðt; t0Þεt0

− 2ηTt V̂τðt; t0Þεt0 �: ðA4Þ
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Note that we use V̂τðt; t0Þ ¼ V̂τðt0; tÞ. We now observe that
the term on the left-hand side as well as the last term on the
right-hand side are of first order in ηt, whereas the
remaining terms on the right-hand side do not contain
ηt. Therefore, these two types of expressions must cancel
individually, i.e.,

Z
τ

0

dt
Z

τ

0

dt0εTt V̂τðt; t0Þεt0 ¼
Z

τ

0

dt
Z

τ

0

dt0wT
t Γτðt; t0Þwt0 ;

ðA5aÞ
Z

τ

0

dt ηTt wt ¼ −
Z

τ

0

dt ηTt

Z
τ

0

dt0V̂τðt; t0Þεt0 : ðA5bÞ

From Eq. (A5b), we immediately infer

wt ¼ −
Z

τ

0

dt0V̂τðt; t0Þεt0 : ðA6Þ

Substituting this result into the left-hand side of Eq. (A5a),
we obtain

−
Z

τ

0

dt εTt wt ¼
Z

τ

0

dt wT
t

Z
τ

0

dt0Γτðt; t0Þwt0 ; ðA7Þ

implying

εt ¼ −
Z

τ

0

dt0Γτðt; t0Þwt0 : ðA8Þ

This intermediate result gives the shift εt required to
complete the square in Eq. (A1) [see also Eq. (A2)] as a
function of Γτðt; t0Þ and wt. Moreover, substituting Eq. (A8)
back into Eq. (A6), we find

wt ¼
Z

τ

0

dt0
Z

τ

0

dt00V̂τðt; t0ÞΓτðt0; t00Þwt00 ; ðA9Þ

which implies Eq. (39) and thus establishes that Γτðt; t0Þ is
indeed the Green’s function of the differential opera-
tor V̂τðt; t0Þ.

APPENDIX B: CONSTRUCTION OF THE
GREEN’S FUNCTION Γτ(t;t0)

In this Appendix, we construct the Green’s function
(40a) by solving its defining equation (39) with the
differential operator V̂τðt; t0Þ from Eq. (37). Exploiting
the “diagonal” structure of V̂τðt; t0Þ, we can directly
evaluate the integral and obtain

½V̂ðtÞ þ V̂0ðtÞ þ V̂τðtÞ�Γτðt; t0Þ ¼ δðt − t0Þ: ðB1Þ

This is a linear second-order ordinary differential equation
with a δ inhomogeneity. We calculate its solution in two
steps. First, we compute the Green’s function Γ̄ðt; t0Þ of the
ordinary component V̂ðtÞ with vanishing boundary con-
ditions, i.e., Γ̄ð0; t0Þ ¼ Γ̄ðτ; t0Þ ¼ 0. Then we add a solution
Γ0;τðt; t0Þ of the corresponding homogeneous problem
V̂ðtÞΓ0;τðt; t0Þ ¼ 0 that fixes the two boundary terms.
Their sum Γτðt;t0Þ¼Γ̄ðt;t0ÞþΓ0;τðt;t0Þ satisfies Eq. (B1)
and thus gives the desired solution.
We can construct both these parts Γ̄ðt; t0Þ and Γ0;τðt; t0Þ

from the solution of the homogeneous problem associated
with V̂τðt; tÞ, which reads [see Eq. (37)]

½−τ2a∂2
t þ ð1þDa=DÞ�ΓðtÞ ¼ 0: ðB2Þ

We make an exponential ansatz ΓðtÞ ∼ eλt and easily obtain

ΓðtÞ ¼ αþeλt þ α−e−λt; λ ¼ 1

τa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDa

D

r
; ðB3Þ

with constants α� to be determined by the boundary
conditions or the δ inhomogeneity.
There exists a standard recipe [103,104] for the con-

struction of Green’s functions of boundary value problems
for ordinary differential equations, which we follow here to
calculate Γ̄ðt; t0Þ. Splitting the interval ½0; τ� at t ¼ t0, we
write

Γ̄ðt; t0Þ ¼ Θðt0 − tÞΓ̄<ðt; t0Þ þ Θðt − t0ÞΓ̄>ðt; t0Þ; ðB4Þ

where Θ is the Heaviside step function and both Γ̄<ðt; t0Þ
and Γ̄>ðt; t0Þ satisfy the homogenous problem; i.e., they are
of the form (B3) with constants α�< and α�>, respectively, to
be determined. The constants are fixed by the boundary
conditions,

Γ̄<ð0; t0Þ ¼ 0 and Γ̄>ðτ; t0Þ ¼ 0; ðB5aÞ

and the requirements that Γ̄ is continuous at t ¼ t0,

Γ̄<ðt0; t0Þ ¼ Γ̄>ðt0; t0Þ; ðB5bÞ

and has a jump of size −1=τ2a in its first derivative at t ¼ t0,

½∂tΓ̄>ðt; t0Þ − ∂tΓ̄<ðt; t0Þ�t¼t0 ¼ −
1

τ2a
: ðB5cÞ

The last two conditions ensure the desired δ discontinuity at
t ¼ t0 in the second derivative. Solving the resulting system
of linear equations for αþ<, α−<, αþ>, and α−>, we obtain
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Γ̄>ðt; t0Þ ¼
�

1

2τ2aλ

�
eλτ½e−λðt−t0Þ − e−λðtþt0Þ� þ e−λτ½eλðt−t0Þ − eλðtþt0Þ�

eλτ − e−λτ
ðB6Þ

and Γ̄<ðt; t0Þ ¼ Γ̄>ðt0; tÞ. With Eq. (B4), we can thus write the Green’s function of the ordinary component on the entire
interval ½0; τ� in the form

Γ̄ðt; t0Þ ¼
�

1

2τ2aλ

�
e−λjt−t0j − e−λðtþt0Þ þ e−λð2τ−jt−t0jÞ − e−λð2τ−t−t0Þ

1 − e−2λτ
: ðB7Þ

We can immediately check that indeed V̂ðtÞΓ̄ðt; t0Þ ¼
δðt − t0Þ as well as Γ̄ð0; t0Þ ¼ 0 and Γ̄ðτ; t0Þ ¼ 0. Moreover,
we note that Γ̄ðt; t0Þ is symmetric in its arguments,
Γ̄ðt; t0Þ ¼ Γ̄ðt0; tÞ.
As announced earlier, we now add a homogeneous

solution Γ0;τðt; t0Þ ¼ αþeλt þ α−e−λt to the ordinary inverse
Γ̄ðt; t0Þ. Since V̂ðtÞΓ0;τðt; t0Þ ¼ 0 and Γ̄ðt; t0Þ vanishes at
both boundaries of the interval ½0; τ�, the differential
equation (B1) for the sum Γτðt; t0Þ ¼ Γ̄ðt; t0Þ þ Γ0;τðt; t0Þ
becomes

δðt − τÞ½τ2a∂tΓ̄>ðt; t0Þjt¼τ þ αþτaκþeλτ þ α−τaκ−e−λτ�
þ δðtÞ½−τ2a∂tΓ̄<ðt; t0Þjt¼0 þ αþτaκ− þ α−τaκþ� ¼ 0;

ðB8Þ

with κ� ¼ 1� λτa ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðD=DaÞ

p
. We require the

two terms in square brackets to vanish individually and thus
obtain two linear equations for the two unknowns αþ and
α−. Solving them and combining the results for Γ̄ðt; t0Þ and
Γ0;τðt; t0Þ into Γτðt; t0Þ ¼ Γ̄ðt; t0Þ þ Γ0;τðt; t0Þ, we finally
find the Green’s function (40a).

APPENDIX C: LIMITING CASES
FOR THE PATH WEIGHT

Here we analyze three relevant limiting cases of the path
weight (38), namely, Da → 0 (usual Brownian particle
without active fluctuations), τa → 0 (memoryless active
fluctuations), and D → 0 (no thermal fluctuations). All
three limits reduce the Langevin equation (5) to simpler
setups, for which the path probabilities are already known
in the literature. We recover all these results when perform-
ing the respective limits in our general expression (38).

1. Usual Brownian motion Da → 0

Removing the effects of the active fluctuations from the
system amounts to setting ηðtÞ ¼ 0 or, equivalently, Da ¼
0 in the equation of motion (5). Performing this limit for the
path weight is straightforward: In this case, λ ¼ 1=τa is
well behaved, so that the term containing the Green’s
function simply drops out in Eq. (38). The remaining path

probability is just the standard Onsager-Machlup expres-
sion (16) for a Brownian particle in a thermal bath.

2. Vanishing correlation time τa → 0

In the limit τa → 0, the correlator (8) of the active noise
approaches a δ distribution, i.e., hηiðtÞηjðt0Þi → δijδðt − t0Þ.
This means that ηðtÞ becomes just another Gaussian white
noise with diffusion constant Da. The equation of motion
(5) thus contains two independent Gaussian white noises
with zero mean and variance 2D and 2Da, respectively.
Their sum is itself a Gaussian white noise with zero mean
but variance 2ðDþDaÞ. Therefore, we expect Eq. (38) to
reduce to

p½xjx0�τa→0 ∝ exp
Z

τ

0

dt

�
−

ð_xt − vtÞ2
4ðDþDaÞ

−
∇ · vt
2

�
ðC1Þ

as τa → 0.
We first note that λ diverges in this limit so that we have

to take more care when analyzing the Green’s function
(40a). Since the limit is expressed more compactly as
λ → ∞, we rewrite all occurrences of τa in Eq. (40a) in
terms of λ, D, and Da. By definition [see Eqs. (40b) and
(B3)], τ2a ¼ ½1þ ðDa=DÞ�=λ2. Thus, the leading-order
behavior of Γτðt; t0Þ is

Γτðt; t0Þ ∼
�
λ

2

� e−λjt−t0j − κ−
κþ
½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�
1þ Da

D

: ðC2Þ

We observe that

lim
λ→∞

λ

2
e−λjt−t0j ¼ δðt − t0Þ; ðC3aÞ

lim
λ→∞

λ

2
e−λtΘðtÞ ¼ 1

2
δðtÞ; ðC3bÞ

such that the exponentials become δ distributions as
λ → ∞:

Γτðt; t0Þ ∼
δðt − t0Þ − κ−

2κþ
½δðtþ t0Þ þ δð2τ − t − t0Þ�

1þ Da
D

:
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However, the last two δ distributions map either of the two
times t and t0 outside of the interval of integration when
integrating over the other. Therefore, they do not contribute
when integrating over both t and t0. We can see this also
from partially integrating the corresponding term in
Eq. (C2) with two test functions f and g,

Z
τ

0

dt
Z

τ

0

dt0fðtÞgðt0Þ λ
2
½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

¼
Z

τ

0

dtfðtÞ
�
gðt0Þ 1

2
½−e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

				
τ

t0¼0

−
Z

τ

0

dt0 _gðt0Þ 1
2
½−e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

�

→ 0 as λ → ∞:

Therefore, Γτðt; t0Þ ∼ δðt − t0Þ=½1þ ðDa=DÞ� as τa → 0.
Substituting this finding into the path weight (38) leads
precisely to the expected limit (C1).

3. No thermal fluctuations D → 0

The limit of vanishing thermal white noise is a little more
involved. If we let D → 0 in the equation of motion (5), we
are left with a system driven by a single colored noise
source. The resulting path probability density is known in
the literature [105,106] and given by Eq. (41). However, it
is not immediately obvious how we can obtain this result
from Eq. (38) because both the prefactor 1=ð4DÞ and the
exponent λ diverge as D → 0.
We first rewrite Eq. (41) so that the action can be

expressed in the form of Eq. (38). To this end, we introduce
the abbreviation wt ¼ _xt − vt in Eq. (41) and remember that
we choose ps to be the stationary distribution (35) of the
colored noise. After partial integration of the _w2

t term, we
find

p½xjx0�D→0 ∝ exp

�
−

1

4Da

�Z
τ

0

dtð−τ2awT
t ẅt þ w2

t Þ

þ τ2a _wT
t wtj0

τ þ τaw2
t j0
τ þ 2τ2aw2

0

�

−
Z

τ

0

dt
∇ · vt
2

�
: ðC4Þ

We now show that the action

A½x̄� ¼ 1

4D

Z
τ

0

dt
Z

τ

0

dt0wT
t

�
δðt − t0Þ −Da

D
Γτðt; t0Þ

�
w0
t

ðC5Þ

of the full path weight p½xjx0� ∝ e−A½x̄�−
R

τ

0
dt∇·vt=2 as given

in Eq. (38) reduces to the form of the action in Eq. (C4) in
the limit D → 0.

We rewrite the limit D → 0 again as λ → ∞; i.e., we
express all occurrences of D in terms of λ, Da, and τa
according to ðDa=DÞ ¼ λ2τ2a − 1 [see Eqs. (40b) and (B3)].
For the leading-order behavior of the Green’s function
Γτðt; t0Þ, we then find

Γτðt;t0Þ∼
e−λjt−t0j þ½1− 2

τaλ
þOðλ−2Þ�½e−λðtþt0Þ þe−λð2τ−t−t0Þ�

2τ2aλ
;

ðC6Þ

which implies

A½x̄�D→0 ∼
1

4Da

Z
τ

0

dt
Z

τ

0

dt0wT
t wt0

�
ðλ2τ2a − 1Þδðt − t0Þ

−
�
λ3τ2a
2

− λ

�
½e−λjt−t0j þ e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

þ ½λ2τa þOðλÞ�½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�
�
:

We divide our further analysis into three parts by writing
A½x̄� ∼ ½1=ð4DaÞ�ðB1½x̄� þ B2½x̄� þ B3½x̄�Þ with

B1½x̄� ¼
Z

τ

0

dt
Z

τ

0

dt0wT
t wt0

�
ðλ2τ2a − 1Þδðt − t0Þ

−
�
λ3τ2a
2

− λ

�
e−λjt−t0j

�
; ðC7aÞ

B2½x̄� ¼ −
Z

τ

0

dt
Z

τ

0

dt0wT
t wt0

�
λ3τ2a
2

− λ

�

× ½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�; ðC7bÞ

B3½x̄� ¼
Z

τ

0

dt
Z

τ

0

dt0wT
t wt0 ½λ2τa þOðλÞ�

× ½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�: ðC7cÞ

Upon repeated partial integration using λe−λt ¼ −∂te−λt to
remove powers of λ, and upon performing the λ → ∞
limiting procedure for well-behaved terms, we find for the
first part

B1½x̄� ∼
Z

τ

0

dt½−τ2awT
t ẅt þ w2

t � þ ðw2
0 þ w2

τÞ
λτ2a
2

:

Similarly, the second part reduces to

B2½x̄� ∼ −ðw2
0 þ w2

τÞ
λτ2a
2

þ τ2aðwT
τ _wτ − wT

0 _w0Þ:

For the third part, we first remark that the terms of order λ
vanish here again under double time integrals because they
become δ distributions that map one of the times outside the
interval of integration, similar to the case we have for the
limit of vanishing correlation time. Hence,
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B3½x̄� ∼
Z

τ

0

dt
Z

τ

0

dt0wT
t wt0λ

2τa½e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

¼
Z

τ

0

dt
Z

τ

0

dt0wT
t wt0λτa∂t0 ½−e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

¼
Z

τ

0

dt wT
t wt0λτa½−e−λðtþt0Þ þ e−λð2τ−t−t0Þ�jτt0¼0

−
Z

τ

0

dt
Z

τ

0

dt0wT
t _wt0λτa½−e−λðtþt0Þ þ e−λð2τ−t−t0Þ�

∼
Z

τ

0

dt wT
t fwττaλ½−e−λðτþtÞ þ e−λðτ−tÞ�g

−
Z

τ

0

dt wT
t fw0τaλ½−e−λt þ e−λð2τ−tÞ�g

∼ τaðw2
τ − w2

0Þ þ 2τaw2
0:

Combining these three results, we finally find

A½x̄�D→0 ¼
1

4Da

�Z
τ

0

dtð−τ2awT
t ẅt þ w2

t Þ

þ τ2aðwT
τ _wτ − wT

0 _w0Þ þ τaðw2
τ − w2

0Þ þ 2τaw2
0

�
;

ðC8Þ

which is identical to the path weight (C4).

APPENDIX D: DETAILS FOR THE
HARMONICALLY TRAPPED PARTICLE

In this Appendix, we summarize some details and a few
key steps behind the calculations for the Brownian particle
in a harmonic potential from Sec. VI.

1. Dynamics

The equations of motion for the joint Markovian system
of particle and active fluctuations combined from Eqs. (74)
and (7) (for d ¼ 1) read

�
_xt
_ηt

�
¼ −A

��
xt
ηt

�
−
�
u

0

�
t

�
þ B

�
ξt

ζt

�
ðD1aÞ

with

A ¼
�
k=γ −

ffiffiffiffiffiffiffiffiffi
2Da

p

0 1=τa

�
and B ¼

� ffiffiffiffiffiffiffi
2D

p
0

0 1=τa

�
:

ðD1bÞ

Because of its Markovian character, all statistical properties
of this joint system are encoded in the propagator
pðq; tjq0; t0Þ, where q ¼ ðx; ηÞ, q0 ¼ ðx0; η0Þ are “gener-
alized coordinates” summarizing particle position and state

of the active fluctuations. This propagator represents the
probability to be at “position” q at time t when having
been at q0 at an earlier time t0 < t. We obtain its explicit
form by solving the Fokker-Planck equation associated
with Eq. (D1),

pðq; tjq0; t0Þ ¼
e−

1
2
½q−μðtjq0;t0Þ�TCðtjt0Þ−1½q−μðtjq0;t0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ2 detCðtjt0Þ
p : ðD2aÞ

Here, the expectation vector and covariance matrix con-
ditioned on the initial time point are given by

μðtjq0; t0Þ ¼ ðt − A−1Þuþ e−ðt−t0ÞA½q0 − ðt0 − A−1Þu�;
ðD2bÞ

Cðtjt0Þ ¼ Cð∞Þ − e−ðt−t0ÞACð∞Þe−ðt−t0ÞAT ðD2cÞ

with u ¼ ðu; 0Þ and the stationary covariance matrix

Cð∞Þ ¼

0
BB@

γ
k

h
Dþ Da

1þkτa
γ

i ffiffiffiffiffi
Da
2

q
1

1þkτa
γffiffiffiffiffi

Da
2

q
1

1þkτa
γ

1
2τa

1
CCA: ðD2dÞ

As we describe in the main text, we consider the situation
in which initially the distribution of particle positions is
independent of the active fluctuations (which are in their
stationary state) so that the initial distribution for the joint
system factorizes as p0ðx0; η0Þ ¼ p0ðx0ÞpsðηÞ. We further
assume that p0ðx0Þ is Gaussian with zero mean and
variance c20, whereas psðη0Þ is given in Eq. (35). The
initial probability density p0ðx0; η0Þ is thus also Gaussian
with mean μð0Þ ¼ 0 and covariance matrix
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Cð0Þ ¼
�
c20 0

0 1=2τa

�
: ðD3Þ

Because of the linearity of the system [see Eq. (D1)], the
distribution remains Gaussian for all later times t > t0,
with the expectation values and covariances evolving
according to

μðtÞ ¼ ½t − ð1 − e−tAÞA−1�u; ðD4aÞ

CðtÞ ¼ Cð∞Þ þ e−tA½Cð0Þ − Cð∞Þ�e−tAT
: ðD4bÞ

In order to calculate averages of, e.g., ΔΣ or ΔI�, we have
to evaluate correlators of particle positions and/or active
fluctuations at two different time points (see next section).
Using the propagator (D2) and the time-dependent prob-
ability density (D4), we find

h½qðtÞ − μðtÞ�i½qðt0Þ − μðt0Þ�ji

¼
� ½e−ðt−t0ÞACðt0Þ�ij for t ≥ t0;

½e−ðt0−tÞACðtÞ�ji for t < t0:
ðD5Þ

2. Evaluation of averages

We are interested in the averages hΔSsysi, hΔΣi, and
hΔI�i, where the general, trajectorywise expressions of all
these quantities are given in Eqs. (22), (42b), and (61), (67),
respectively. While calculating hΔSsysi is relatively
straightforward (and basically amounts to computing the
variances of the Gaussians at initial and final time), the
evaluation of hΔΣi and hΔI�i is more complicated. It
involves the nonlocal memory kernel Γτðt; t0Þ and the
averages h_xðtÞk½xðt0Þ − ut0�i [for hΔΣi and hΔI�i, see
Eqs. (42b) and (61), (67)], and h_xðtÞηðt0Þi or hηðtÞk½xðt0Þ −
ut0�i [for hΔI�i, see Eqs. (61) and (67)]. Here, we use
ft0 ¼ fðxðt0Þ; t0Þ ¼ k½xðt0Þ − ut0�; see Eq. (74). It turns out
to be convenient to move the time derivative from _xðtÞ over
to Γτðt; t0Þ by partial integration. Then all the correlations
reduce to hxðtÞxðt0Þi and hxðtÞηðt0Þi, which we already
calculated in Eq. (D5).
We exemplify the procedure in more detail for hΔΣi,

hΔI�i can be evaluated in an analogous way. For the
explicit calculation, it is useful to split Eq. (42b) into a
white-noise and a colored-noise contribution,

ΔΣw ¼ 1

T

Z
τ

0

dxtft; ðD6aÞ

ΔΣc ¼ −
1

T

�
Da

D

�Z
τ

0

dt
Z

τ

0

dt0 _xtft0Γτðt; t0Þ; ðD6bÞ

such that ΔΣ ¼ ΔΣw þ ΔΣc. The white-noise part ΔΣw is
an ordinary stochastic integral, and its average can be
evaluated using standard techniques; we recall that we use

the Stratonovich convention throughout this work. For
evaluating ΔΣc, we observe that Γτðt; t0Þ is continuously
differentiable except at t ¼ t0 [see Eq. (B5c)]. Splitting the t
integral into the intervals ½0; t0� and ½t0; τ�, we can transfer
the time derivative from the trajectory _xðtÞ to the memory
kernel by partial integration, so that

ΔΣc ¼
1

T

�
Da

D

�Z
τ

0

dt0
�
x0ft0Γ<ð0; t0Þ − xτft0Γ>ðτ; t0Þ

þ
Z

t0

0

dt xtft0∂tΓ<ðt; t0Þ þ
Z

τ

t0
dt xtft0∂tΓ>ðt; t0Þ

�
;

ðD7Þ

where Γ<ðt; t0Þ and Γ>ðt; t0Þ are defined in analogy to
Eq. (B4). Now, the average hΔΣci involves correlations
hxtft0 i ¼ khxt½xt0 − ut0�i between different time points.
Using the autocorrelation functions (D5) and the result
(40) for Γτðt; t0Þ, it can thus be evaluated as an ordinary
integral.
In its full general form, the resulting expression for

hΔΣi ¼ hΔΣwi þ hΔΣci is rather lengthy so that we omit it
here. A few relevant limiting cases are given in Sec. VI.
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