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We study a 1D chain of noninteracting bosonic cavities which are subject to nearest-neighbor parametric
driving, thus realizing a bosonic Hamiltonian whose form is reminiscent of the celebrated Kitaev model of a
1D p-wave superconductor. For a suitable choice of drive phases, the model exhibits a number of remarkable
properties. This includes phase-dependent chirality: Photons propagate and are amplified in a direction
determined by the phase of the initial drive or excitation. It also exhibits a drastic sensitivity to boundary
conditions: For a range of parameters, the boundaryless system has only delocalized, dynamically unstable
modes, while a finite open chain is described by localized, dynamically stable modes. While our model is
described by a Hermitian Hamiltonian, we show that it has a surprising connection to non-Hermitian
asymmetric hopping models. In addition to being of fundamental interest as a new kind of topological bosonic
system, our system also has potential practical utility as a quantum amplifier and a source of multimode
entangled photons.
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I. INTRODUCTION

Superconducting fermionic systems are by now well
known to exhibit unique kinds of topological behavior.
Perhaps the best-known example is the Kitaev chain model
[1], the simplest possible model of a spinless p-wave
superconductor: One takes a 1D tight-binding chain of
spinless fermions with nearest-neighbor hopping and adds
pairing terms on each bond. This model exhibits topologi-
cally protected end Majorana zero modes and underpins the
current quest to realize Majorana-based topological quan-
tum computation [2–6].
Parametrically driven bosonic systems have quadratic

Hamiltonians with the same basic form as that of a
fermionic superconductor. The parametric drive corre-
sponds to coherent two-photon addition and removal and
is analogous to a superconducting pair potential. The lack
of any exclusion principle implies that such bosonic models
can differ strongly from their fermionic counterparts.
Recent work has demonstrated that noninteracting para-
metrically driven models can realize unique forms of
topological phases, with bands characterized by an integer

Chern number, and with edge states that act as ideal
amplifying or squeezing channels [7–14]. Work has also
shown that in 1D, strong interactions fermionize bosons,
letting parametric drives directly realize many aspects of
the fermionic Kitaev chain [15,16].

FIG. 1. (a) Schematic of the setup: An array of tunnel-coupled
cavities (hopping t, on-site loss κj) is subject to resonant
parametric driving (amplitude Δ) on each bond. We require a
purely imaginary hopping matrix element, which is gauge
equivalent to having staggered parametric drive phases. (b) When
written in terms of local cavity quadratures x̂j and p̂j, the model
describes a spatially asymmetric pattern of couplings reminiscent
of the asymmetric coupling of Majorana operators in the
fermionic Kitaev-Majorana chain. The system exhibits phase-
dependent chiral transport that is robust against arbitrary spatially
varying loss.
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In this work, we consider a one-dimensional, parametri-
cally driven system whose quadratic Hamiltonian has an
almost identical form to the fermionic Kitaev chain. Unlike
Ref. [15], we do not require strong on-site repulsive
interactions but instead consider the effects of reducing
the symmetry of the system by introducing hopping phases.
Remarkably, we find that this system has striking features
reminiscent of the Kitaev chain: The system is best
understood in terms of Hermitian quadrature operators,
not photonic annihilation operators, and exhibits a strong
sensitivity to boundary conditions, including the presence
of highly localized states. The system also has unique
transport properties: Photons propagate and are amplified
in a chiral fashion, with the direction being set by the phase
of the initial excitation, which is in stark contrast to more
conventional traveling-wave amplifiers. We also point out a
surprising connection between the dynamics of our model
and non-Hermitian asymmetric hopping models [17].
We believe that our system is of fundamental interest in

that it represents a new kind of topological bosonic system.
It also has potential in a variety of quantum-information
and quantum-photonics settings. The phase-sensitive chiral
amplification represents a new kind of quantum amplifier,
one that could be used for the readout and routing of
quantum information. In addition, we discuss how the
system could be used to generate complex multimode
entangled Gaussian states in a manner that is simply related
to a network of beam splitters driven by input squeezing.
Such states have garnered recent attention as a means of
demonstrating quantum supremacy and for applications
ranging from simulating the vibronic spectra of molecules
[18] to solving graph-theoretic problems [19].
In what follows, we introduce our model, outline its

exceptional properties, and discuss implementations based
on superconducting quantum circuits.

II. MODEL

We start by recalling the fermionic Kitaev model [1]:
spinless electrons on a 1D lattice subject to a p-wave
pairing potential. In momentum space and at zero chemical
potential, it takes the form

ĤF ¼
X
k

�
t cos kĉ†kĉk þ i

Δ
2
sin kðĉ†kĉ†−k − H:c:Þ

�
; ð1Þ

where ĉk is a fermionic annihilation operator, and the sum
runs over the first Brillouin zone; we take t > 0, Δ > 0
throughout. The remarkable features of this model can be
related to its topological properties. To see this, we define
C†
k ¼ ðĉ†k; ĉ−kÞ and write Eq. (1) as

ĤF ¼ 1

2

X
k

C†
k½hFðkÞ · σ̌�Ck; ð2Þ

where hFðkÞ ¼ ½0;−Δ sinðkÞ; t cosðkÞ�, and σ̌ is a vector of
Pauli matrices in particle-hole space. The Hamiltonian ĤF
has chiral symmetry as the first component of the vector
hFðkÞ is zero for all momenta which allows us to define a
topological number associated with the number of times
that hFðkÞ encircles the origin. In the Kitaev model, the
topological number is nonzero as the vector hFðkÞ
winds once.
Can we construct a similar bosonic model with momen-

tum space winding? At first glance, the answer is no. Simply
replacing fermionic operators in Eq. (1) with bosonic ones
does not work: Since bosonic operators commute (not
anticommute), the two-photon term must now be an even
function of k and thus cannot be proportional to sin k. As a
result, a bosonic model with the identical real-space form as
the fermionic Kitaev chain has no nontrivial topology and no
unusual properties (see Appendix A).
To obtain a bosonic model that has a nonzero winding in

momentum space, we can keep the pairing term even in k
but instead make the kinetic energy vary as sin k:

ĤB ¼
X
k

�
t sin kâ†kâk þ i

Δ
2
cos kðâ†kâ†−k − H:c:Þ

�
; ð3Þ

where hFðkÞ from the fermionic case is replaced by
hBðkÞ ¼ ð0;−Δ cos k; t sin kÞ, which also winds once
around the origin. The form of ĤB in real space

ĤB ¼ 1

2

X
j

ðitâ†jþ1âj þ iΔâ†jþ1â
†
j þ H:c:Þ ð4Þ

is almost identical to that of the Kitaev chain, except that
we now have a purely imaginary hopping matrix element.
Because of the nonzero pair potential, this π=2 phase
cannot be completely gauged away; the best one can do is
make the Hamiltonian real, at the expense of doubling the
size of the unit cell [see Eq. (29) below]. As we now
explore in detail, this model has a number of remarkable
properties. The case of an arbitrary phase for the hopping
matrix element is treated in Appendix B; for a range of
parameters, such models exhibit analogous physics to the
model in Eq. (4).

III. QUADRATURE REPRESENTATION

Recall that the fermionic Kitaev chain is best understood
in terms of Hermitian Majorana fermion operators, as
opposed to the original (Dirac) fermions [2]. The Majorana
operators are defined via ĉj ¼ eiðπ=4Þðγ̂Aj þ iγ̂Bj Þ=2.When the
Hamiltonian in Eq. (1) is expressed using these operators, one
finds thatA-typeMajoranas couple only toB-typeMajoranas
on neighboring sites. Moreover, this coupling is spatially
asymmetric. This unusual pairing directly leads to the
existence of unpaired Majorana end modes in an open chain.
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Remarkably, the bosonic model in Eq. (4) exhibits an
analogous structure when we express it in terms of
Hermitian quadrature operators x̂j,p̂j on each site, defined

via âj ¼ ðx̂j þ ip̂jÞ=
ffiffiffi
2

p
. A direct substitution yields

ĤB ≡ 1

2

X
j

½−ðt − ΔÞx̂jþ1p̂j þ ðtþ ΔÞp̂jþ1x̂j�: ð5Þ

The structure here is analogous to the fermionic case: x̂
quadratures are coupled only to p̂ quadratures, and further,
there is an asymmetry in the coupling between x̂j and p̂j�1

(see Fig. 1).
In the fermionic Kitaev chain, the system is gapped: The

hopping asymmetry leads to isolated Majorana modes on
the edges, while the bulk can carry only supercurrent.
Conversely, the asymmetric coupling in the bosonic version
gives rise to unusual propagation within the bulk which has
no fermionic counterpart. Indeed, perhaps the most dra-
matic consequence of the quadrature pairing structure in
Eq. (5) is in the dynamics. The Heisenberg equations
of motion corresponding to ĤB (with ℏ ¼ 1 throughout) are

_̂xj ¼
tþ Δ
2

x̂j−1 −
t − Δ
2

x̂jþ1; ð6Þ

_̂pj ¼
t − Δ
2

p̂j−1 −
tþ Δ
2

p̂jþ1: ð7Þ

We see that the dynamics of the x̂ quadratures are com-
pletely independent of the p̂ quadratures. Further, each
quadrature is forced in a spatially asymmetric manner by its
neighbors. As t approaches Δ, we have complete asymme-
try: x̂ quadratures are forced only by their neighbors to the
left, and p̂ quadratures are forced only by their neighbors to
the right. Viewing quadratures as particles, we thus expect
chiral propagation: x “particles” would propagate only to the
right and p particles only to the left. As we will see, this
basic expectation is borne out: Eqs. (6) and (7) imply that the
transport of a photonic wave packet in our chain will be
directional, with the direction determined by the phase of the
wave packet. This behavior is reminiscent of edge states in
the quantum spin Hall effect, where directionality of an edge
state is determined by its spin [20–22].
Before proceeding, it is important to ask whether our

system is dynamically stable: Can ĤB be diagonalized?
Unlike a fermionic system, the pairing terms in Eq. (5)
can lead to dynamical instability, analogous to a standard
parametric instability. Focusing on a finite chain with open-
boundary conditions, we find that the system is stable as
long as t > Δ, independent of the chain length. In contrast,
the case t < Δ is always dynamically unstable (see
Appendix C). We thus focus exclusively on the case
t > Δ throughout the manuscript. In this regime, the
Hamiltonian is unitarily equivalent to a simple tight-
binding chain with no parametric drive, as we now show.

Defining the parameter r via

e2r ¼ ðtþ ΔÞ=ðt − ΔÞ; ð8Þ

we consider a position-dependent local squeezing trans-
formation defined by

Ûx̂jÛ
† ¼ erðj−j0Þ ˆ̃xj; Ûp̂jÛ

† ¼ e−rðj−j0Þ ˆ̃pj: ð9Þ

Here, ˆ̃xj; ˆ̃pj are new canonical quadratures, and j0 is an
arbitrary real number. One finds that

ÛĤBÛ
† ¼ t̃

2

X
j

ð− ˆ̃xjþ1
ˆ̃pj þ ˆ̃pjþ1

ˆ̃xjÞ

¼ 1

2

X
j

ðit̃ ˆ̃a†jþ1
ˆ̃aj þ H:c:Þ; ð10Þ

with

t̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − Δ2

p
¼ t=coshðrÞ: ð11Þ

Thus, in the stable regime t > Δ, the system is unitarily
equivalent to a simple (excitation-conserving) tight-binding
chain with a hopping matrix element it̃. Note that the
transformed Hamiltonian is completely independent of the
parameter j0. This reflects the invariance of ĤB under any
spatially uniform squeezing transformation that does not
mix x̂ and p̂ quadratures, i.e., x̂j → ezx̂j, p̂j → e−zp̂j.
We also briefly comment on the special case t ¼ Δ. In

this case, Eq. (5) implies a complete coupling asymmetry:
x̂j is coupled only to p̂jþ1 (and not to p̂j−1). For an open
chain with N sites, there are thus two localized quadrature
operators at the ends of the chain, p̂1 and x̂N , that drop out
of the Hamiltonian. While in the fermionic model, the
corresponding decoupled modes are of great interest, they
are of less interest here. Unlike with fermions, these
decoupled quadrature operators cannot be recombined to
form a new, delocalized canonical bosonic mode: Since
x̂N and p̂1 commute, any operator f̂ which is a linear
combination of both quadratures will never satisfy the
bosonic commutation relation ½f̂; f̂†� ¼ 1̂. While these
decoupled quadratures do represent quantum nondemoli-
tion observables, their existence here requires precise
tuning to the threshold of instability.

IV. PHASE-SENSITIVE CHIRAL PROPAGATION

Equations (6) and (7) imply that photonic excitations in
our lattice propagate in a chiral fashion, with a direction
that depends on the phase of the excitation. To fully
characterize this behavior, we calculate the retarded
single-particle Green’s functions for our system in position
space, focusing on an N-site open chain. To make the
chirality explicit, we calculate quadrature-quadrature
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Green’s functions. This is easily done using the position-
dependent squeezing transformation in Eq. (9). One finds
that the only nonzero Green’s functions are

GR
x ½j; j0;ω�≡ −i

Z
∞

0

dteiωth½x̂jðtÞ; p̂j0 ð0Þ�i

¼ iG̃R
0 ½j; j0;ω�erðj−j0Þ; ð12Þ

GR
p½j; j0;ω� ¼ −iG̃R

0 ½j; j0;ω�e−rðj−j0Þ: ð13Þ

Here, G̃R
0 ½j; j0;ω� is the retarded-photon Green’s function of

an N-site tight-binding chain with tunnel matrix element it̃
(see Appendix D).
The Green’s function GR

x ½j; j0;ω� describes propagation
of the x quadrature in the lattice; more explicitly, it
describes how x̂j responds to a perturbation which directly
forces x̂j0 . GR

p½j; j0;ω� is interpreted analogously. The
Green’s functions above directly manifest the expected
chirality: x quadrature signals are amplified (deamplified)
as they propagate from left to right (right to left); the p
quadratures exhibit the opposite behavior. Note that the
local Green’s functions (j ¼ j0) have no explicit r depend-
ence or phase sensitivity: They are identical to those of a
particle-conserving tight-binding model with hopping it̃.
Remarkably, the above structure still holds if we break

translational invariance by introducing position-dependent
loss on each site. We treat this loss as Markovian and model
it using standard input-output theory [23,24]. The loss
gives rise to a damping rate κj on each lattice site; it could
be due to a deliberate coupling to waveguides or to internal
loss. The Heisenberg-Langevin equations for the x̂ and p̂
quadratures on each site now read

_̂xj ¼
t̃
2
ðerx̂j−1 − e−rx̂jþ1Þ −

1

2
κjx̂j −

ffiffiffiffi
κj

p
x̂ðinÞj ; ð14Þ

_̂pj ¼
t̃
2
ðe−rp̂j−1 − erp̂jþ1Þ −

1

2
κjp̂j −

ffiffiffiffi
κj

p
p̂ðinÞ
j : ð15Þ

x̂ðinÞj ðtÞ and p̂ðinÞ
j ðtÞ describe the quadratures of the input

field associated with the loss port κj; in the simplest case,
they just describe vacuum fluctuations.
Despite the additional terms due to loss, we can still map

our system to a simple tight-binding model with no pairing
terms. One simply applies the local-site-dependent squeez-
ing transformation in Eq. (9) to the Langevin equations.
After this transformation, the Heisenberg-Langevin equa-
tions describe a simple tight-binding model with renor-
malized hopping t̃ [cf. Eq. (11)] and decay rate κj on each
site. While the input noise operators now describe squeezed
noise, the linearity of the equations means that this does not
have any effect on the Green’s functions. As a result, even
with loss, the Green’s functions of our system still have the
form of Eqs. (12) and (13), where now G̃R

0 ½j; j0;ω� is the

photonic Green’s function of a tight-binding chain with
hopping t̃ and on-site loss rates κj (see Appendix D). Note
that this squeezing transformation still maps the model to a
particle-conserving one since x and p quadratures remain
dynamically decoupled in the presence of on-site loss. In
Sec. VII, we discuss other relevant perturbations which
couple these orthogonal quadratures.
Finally, we stress that the phase-dependent chirality

manifested by the Green’s functions also reflects itself in
simple wave-packet dynamics. To be concrete, suppose we
initially prepare our lattice in a coherent-state wave packet
with zero average momentum. Such a state is characterized
by hâjð0Þi ¼ eiθfj, where θ is the global phase of the
excitation, and fj > 0 describes the envelope of the wave
packet. We can now directly use Eqs. (6) and (7) to
determine the evolution of hâjðtÞi and hence the motion
of the wave packet. We see that the wave packet will split
into two: The cos θ component of the wave packet
corresponds to an x quadrature excitation that propagates
and is amplified as it moves to the right, while the sin θ
component is a p quadrature excitation that propagates to
the left.

V. SCATTERING PROPERTIES

We now consider the case where input-output wave-
guides are attached to our lattice and ask how fields
incident on the lattice from these waveguides are scattered.
The relevant scattering matrix follows immediately from

the input-output boundary condition âðoutÞj ¼ âðinÞj þ ffiffiffiffi
κj

p âj
[23,24] and the Heisenberg-Langevin equations in
Eqs. (14) and (15). As x and p quadratures are dynamically
decoupled in our system, scattering does not mix these
quadratures. The scattering matrix thus takes a simple form
in the quadrature basis and is defined by

x̂ðoutÞj ½ω� ¼
X
j0
sxjj0 ½ω�x̂ðinÞj0 ½ω�;

p̂ðoutÞ
j ½ω� ¼

X
j0
spjj0 ½ω�p̂ðinÞ

j0 ½ω�: ð16Þ

The scattering matrix is directly determined by the system
Green’s functions and thus inherits their structure:

sxjj0 ½ω� ¼ erðj−j0Þs̃jj0 ½ω�; ð17Þ

spjj0 ½ω� ¼ e−rðj−j0Þs̃jj0 ½ω�: ð18Þ

Here, s̃jj0 ½ω� is the scattering matrix of an N-site tight-
binding chain with tunnel matrix element it̃ and decay rate
κj on each site (see Appendix D); the scattering in such a
system is insensitive to phase, and hence the same for any
quadrature. We see that in our full system, as expected, the
x̂ quadrature is amplified (deamplified) in transmission
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from left to right (right to left), whereas the p̂ quadrature
exhibits the opposite behavior (see Fig. 2).
Our system thus represents a unique kind of phase-

sensitive amplifier. Such devices amplify only one quad-
rature of an input signal (deamplifying the other conjugate
quadrature) and are capable of quantum amplification
with zero added noise [24]. They also serve as sources
of nonclassical quadrature squeezed light. Standard phase-
sensitive amplifiers either amplify only in one direction
(due to phase matching) or are reciprocal and amplify the
same quadrature irrespective of transmission direction. In
contrast, we obtain amplification in both directions but in
different orthogonal quadratures. Note that the end-to-end
transmission gains jsxN1½ω�j2 ¼ jsp1N ½ω�j2 scale like e2rN ,
while the amplification bandwidth scales like t̃ ¼
t= coshðrÞ. Our system is thus not limited by a standard
gain-bandwidth product: By using a long chain and a small
r, large gain is possible without sacrificing bandwidth.
Viewed as an amplifier, our system has another remark-

able property: While there is strong gain in transmission,
there is never any gain in reflection. This follows immedi-
ately from Eqs. (17) and (18), which tells us that sxjj½ω� ¼
spjj½ω� ¼ s̃jj½ω�: The reflection amplitude coincides with
that of a simple tight-binding model with hopping it̃, and
hence it can never be larger than unity. The lack of
reflection gain is of practical utility in many settings,
where one wishes to protect a fragile signal source coupled
to an input port.
For an intuitive picture of the lack of reflection gain,

consider trajectories and the equations of motion in Eqs. (6)
and (7). Any reflection process requires an equal amount of
left-to-right propagation and right-to-left propagation. In
our system, the directional nature of the amplification
means that the net amplification for such a process will

always be zero: Amplification in one direction is perfectly
compensated by deamplification in the opposite direction.

VI. EXTREME SENSITIVITY TO THE
PRESENCE OF EDGES

A key feature of the fermionic Kitaev-Majorana chain is a
marked sensitivity to the presence of edges: For periodic
boundary conditions, the system has an energy gap centered
around zero energy, whereas with open-boundary condi-
tions, there exist localized, zero-energy Majorana edge
modes. We find that our bosonic analogue of the Kitaev
chain also exhibits an extreme sensitivity to the presence of
edges: With periodic boundary conditions, the system is
always characterized by unstable, spatially extended eigenm-
odes, whereas with open-boundary conditions, it can be
completely stable (all mode energies real), and further, it can
have completely localized wave functions. We explain this
remarkable behavior further in what follows.
Consider first the system with periodic boundary con-

ditions and no dissipation. The Heisenberg equations of
motion in momentum space take the form

ði∂t − M̌kÞ
�

âk

â†−k

�
¼

�
0

0

�
; ð19Þ

M̌k ¼ t sinðkÞ1̌þ iΔ cosðkÞσ̌x: ð20Þ

As usual, the mode energies are the eigenvalues of the
dynamical matrix M̌k and are given by Ek;� ¼ t sinðkÞ �
iΔ cosðkÞ. The fact that the eigenvalues are complex for all
k (except �π=2) indicates that for any nonzero Δ, the
system is past the threshold for parametric instability and
will exhibit exponential growth in the time domain. This is

FIG. 2. Scattering properties of the bosonic Kitaev-Majorana chain. (a) Schematic of the setup. The leftmost, middle, and rightmost
sites are attached to waveguides (coupling rates κL, κM, and κR, respectively). A signal with a frequency ω and global phase θ ¼ 0
corresponding to an x excitation is injected in the middle waveguide and is amplified (deamplified) as it propagates to the right (left).
(b) Amplitude squared of the scattering matrix elements plotted as a function of the frequency of the input signal. As expected, signals
propagating to the right (left) are amplified (deamplified). Note the reflection probability (black) is bounded by unity. (c) Same setup as
in (a), except the phase of the signal is now θ ¼ π=2 corresponding to a p excitation. (d) The signal is now amplified (deamplified) as it
propagates to the left (right). For (b),(d), we take N ¼ 13 sites, Δ ¼ t=2, uniform on-site internal loss rate κ ¼ 10−2t, and waveguide
couplings κM ¼ 2κL ¼ 2κR ¼ 2t.
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not surprising, as the parametric drive is resonant: The
drive is adding pairs of photons with zero total momen-
tum, and the energy detuning of such a pair is always zero.
Note that the wave functions of these modes are simple
plane waves, consistent with the translational invariance
of the model.
While intuitively reasonable, the behavior of the peri-

odic boundary condition system is in stark contrast to the
open-boundary-condition system. As already shown in
Eq. (9), in this case we can make a unitary squeezing
transformation for any t > Δ to map our system to a
simple tight-binding model with hopping matrix element
it̃ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − Δ2

p
. As such, there is no instability: All mode

eigenvalues are real, given by En ¼ t̃ cos kn, with
kn ¼ nπ=ðN þ 1Þ. We thus have a dramatic difference
in the spectrum of the model depending on if the system
has edges or not (see Fig. 3). Note that this conclusion is
independent of system size.
The difference between a ring and chain geometry goes

beyond just the spectrum: The wave functions are also
completely different in the two cases. Naively, one would
expect that for the open chain, the eigenstates are simple
standing waves formed by taking linear combinations of the
plane-wave eigenstates of the ring. This is not the case. For
an N-site open chain, the diagonalized Hamiltonian can be
written as ĤOBC

B ¼ P
nEnβ̂

†
nβ̂n. The quasiparticle β̂n is

given by a Bogoliubov transformation of our original real-
space photon operators,

β̂n ¼
XN
j¼1

½unðjÞâj − vnðjÞâ†j �; ð21Þ

with the functions unðjÞ, vnðjÞ representing the “particle”
and “antiparticle” parts of the wave function. Using the
squeezing transformation in Eq. (9) which diagonalizes our
Hamiltonian, one finds easily

unðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r
i−j sinðknjÞ cosh½rðj − j0Þ�; ð22Þ

vnðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r
i−j sinðknjÞ sinh½rðj − j0Þ�; ð23Þ

where the squeeze parameter r is defined in Eq. (8). Note
that the chiral symmetry of our system implies that there are
many possible choices of eigenmode basis; this choice
corresponds to the freedom to pick the parameter j0
defining our squeezing transformation.
Equations (22) and (23) show that both the particle and

antiparticle parts of the mode wave function are localized:
They have an exponential dependence on position, and
their weight is concentrated at the ends of the chain.
Further, it is the squeezing parameter r which plays the
role of an inverse localization length. We note that the
parametric dependence of this localization is identical to
that in the fermionic Kitaev chain at zero chemical
potential. The fermionic model in this case is always
topological, and the accompanying Majorana zero-energy
edge modes have an inverse localization length given by r
as defined in Eq. (8) [1].
Despite the localization of particle and hole wave

functions, note that for a given eigenmode, the total
contribution of each site to the symplectic norm junðjÞj2 −
jvnðjÞj2 does not exhibit any sort of localization. This
quantity is, in fact, completely independent of the two-
photon driving amplitude Δ. This is consistent with the
local Green’s function being phase insensitive and inde-
pendent of r. The upshot is that it is difficult to detect the
localization of mode wave functions in our system using
purely local probes; one must instead consider a nonlocal
probe such as transmission.
For an intuitive picture of our model’s striking sensitivity

to the presence of edges, we return to our picture of chiral
wave-packet dynamics. Recall that, e.g., an x quadrature

FIG. 3. Spectrum of the system with periodic boundary con-
dition (PBC) EPBC

k;� ¼ t sinðkÞ � iΔ cosðkÞ versus open-boundary
conditions (OBC) EOBC

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − Δ2

p
cosðkÞ with Δ ¼ t=2. The

spectrum with PBC is complex for any nonzero Δ, indicating
parametric instability. In contrast, the system with OBC is stable
as long as t > Δ, regardless of system size.

FIG. 4. (a) An x excitation is amplified as it propagates to the
right. After being reflected off the boundary, it remains an x
excitation as it propagates to the left while being deamplified. The
scattering mechanism is the same if we consider reflecting off of
on-site loss. (b) An x excitation can turn into a p excitation after
scattering off an impurity (dark blue site). In combination with
the chiral nature of amplification, multiple reflections between
impurities can lead to instability.
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excitation propagates to the right with amplification and to
the left with deamplification. Thus, in a ring geometry, an
initial x excitation can propagate and be amplified indefi-
nitely as it traverses the ring several times in a clockwise
direction. This infinite amplification directly leads to
dynamical instability. In contrast, in a finite chain, the
disturbance will eventually hit the right boundary of the
system and be reflected. As it now propagates to the left,
it will be deamplified. There is thus no possibility for
indefinite amplification, and the system remains stable
(see Fig. 4).

VII. EFFECTS OF ON-SITE PERTURBATIONS

We now explore the sensitivity of our lattice to various
types of perturbations, focusing on the case of an open
chain with N sites. The simplest kind of perturbation in our
model is random on-site losses κj. We have already seen
that such perturbations are innocuous: While random loss
breaks translational invariance and causes reflections
within the chain, it never causes any instability. The system
remains unitarily equivalent to a simple tight-binding chain
with disordered loss; cf. Eqs. (14) and (15).
The situation is markedly different if we have nonzero

on-site energies described by

Ĥdis ¼
XN
j¼1

ωjâ
†
j âj: ð24Þ

Such detuning perturbations can induce instability in our
system even if t > Δ. Formally, this instability can be
understood from the local squeezing transformation in
Eq. (9) that maps our system onto a simple tight-binding
chain. While on-site loss terms are invariant under this
mapping, on-site detuning terms transform to particle-
nonconserving parametric drive terms, i.e.,

ÛĤdisÛ
† ¼

XN
j¼1

ωj

�
cosh½2rðj − j0Þ� ˆ̃a†j ˆ̃aj

þ 1

2
sinh½2rðj − j0Þ�½ ˆ̃a†j ˆ̃a†j þ ˆ̃aj ˆ̃aj�

�
; ð25Þ

where we throw away terms proportional to the identity. It
is thus generically impossible to transform to a frame where
our system conserves particle number, and thus, one can
generically get dynamical instability. Note that in the
special case where there is just a single impurity at site
j ¼ jimp, the system is still always stable: Formally, we
could pick the origin j0 of our squeezing transformation to
coincide with jimp, and thus map our system onto a particle-
conserving model, which is no longer the case if we were to
add even one additional impurity at any other lattice site.
For a more heuristic understanding of how impurities

cause instability, we return to the equations of motion for

local quadratures. With the relevant perturbations, they
now read

_̂xj ¼
t̃
2
ðerx̂j−1 − e−rx̂jþ1Þ −

1

2
κjx̂j þ ωjp̂j; ð26Þ

_̂pj ¼
t̃
2
ðe−rp̂j−1 − erp̂jþ1Þ −

1

2
κjp̂j − ωjx̂j: ð27Þ

We see that while loss never dynamically couples x and p
quadratures, the same is not true of detuning perturbations.
Scattering off impurities changes the phase of an excitation
(i.e., converts x to p and vice versa). The chiral nature of
amplification in our lattice implies that multiple scatterings
of this type can lead to indefinite amplification and thus
instability (see Fig. 4). This type of scattering is in contrast
to scattering off of local on-site loss or off the boundaries of
a finite-sized system, processes which manifestly preserve
the excitation’s phase and hence do not lead to any
instability.
To quantitatively assess the impact of detuning pertur-

bations, we numerically perform a disorder average. We
take the ωj in Eq. (24) to be independent random variables
drawn from a uniform distribution on the interval ½−W;W�,
with W representing the disorder strength. While multiple
scatterings can lead to instability if there is significant
amplification, disorder effects should be weak ifW ≪ t̃ and
r, N are not too large. This intuitive reasoning is borne out
by our simulations. Figure 5 shows the results for disorder-
averaged scattering probabilities (104 realizations) for a

FIG. 5. Disorder-averaged transmission coefficient hjsxRM½ω�j2idis
for the same setup as is Fig. 2 but with on-site disordered detuning
perturbations (disorder strength W ¼ 10−3t). The shaded region
corresponds to the variance, and the dashed orange line corresponds
to the clean system. Although stability is no longer guaranteed
after introducing the detuning perturbations, with the chosen
parameters, instability occurs only in less than 0.01% of realiza-
tions. For smaller values of r and/or N, one can tolerate even
larger amounts of disorder. Parameters: N ¼ 13 sites, Δ ¼ t=2,
uniform on-site internal loss κ ¼ 10−2t, waveguide coupling rates
κM ¼ 2κL ¼ 2κR ¼ 2t.
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chain similar to that in Fig. 2 (N ¼ 13, r ≈ 0.55) but with
disorder strength W ¼ 10−3t. For these parameters, less
than 0.01% of disorder realizations yield instability. In the
remaining instances, the scattering closely resembles the
behavior of the clean system.

VIII. GENERATION OF MULTIPARTITE
ENTANGLEMENT

We now consider our system’s ability to emit entangled
photons. Consider the case whereM ≤ N sites of the lattice
are coupled to input-output waveguides. Even if simple
vacuum noise is incident in each of these channels, the
outgoing light will have nonzero photon number and will
exhibit entanglement.
While entanglement generation is generic to any sort of

bosonic quantum amplifier, our system has unique features.
In particular, the state of the output light has a remarkably
transparent form: It is identical to sending a product of
single-mode squeezed states into a beam-splitter network,
with the squeezing parameters and beam-splitter unitary
being directly determined (in a simple way) by the
Hamiltonian. This setup is depicted in Fig. 6 and follows
immediately from Eqs. (17) and (18). First, one preparesM
single-mode squeezed states (one for each channel), with
squeeze parameter Rj ¼ rj [cf. Eq. (8)] in the waveguide
coupled to site j. Therefore each channel is populated with
photons but there are no correlations. Next, the resulting
state is sent into an effective beam-splitter network
described by an M ×M unitary matrix K, the scattering
matrix of a (particle-conserving) tight-binding model with
hopping it̃ [cf. Eq. (11)] and waveguide couplings κj.
Finally, we apply another set of local, single-mode squeez-
ing transformations on each channel. As this operation is a

product of purely local unitaries, this last step does not
modify entanglement properties.
Note that the resource complexity of such states can be

quantified by the number of independent single-mode
squeezed states required for their production [25]; in our
case, this number is M and can be extremely large. The
standard method for producing them requires the exper-
imentally challenging task of first preparing M squeezed
states, then transporting and injecting them with high
efficiency into a complex beam-splitter network. Our
system allows one to circumvent these difficulties by
having all the required squeezing generated locally.
States of the form depicted in Fig. 6 have received

considerable recent attention. They are of interest as a
means to demonstrate “quantum supremacy” [26].
Computing their photon statistics (i.e., Gaussian boson
sampling [27]) requires calculating the Halfnian of an
M ×M matrix, something that is known to be computa-
tionally hard classically (being in the ♯P complexity class).
Output states of this form are also a resource for simulating
molecular vibronic spectra [18] and for solving certain
classically hard graph-theoretic problems [19].
For applications, one ideally wants the ability to realize

a variety of beam-splitter operations K appearing in
Fig. 6. The requisite tunability can be achieved by allowing
the magnitude of the hopping and parametric driving on
each bond to vary, i.e., t → tj, Δ → Δj. As shown in
Appendix E, as long as Δj < tj on each bond, our system
remains dynamically stable, and the scattering continues to
correspond to the schematic in Fig. 6. Now, however, the
beam-splitter unitaryK corresponds to the scattering matrix
of a nonuniform tight-binding chain with hoppings

t̃j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2j − Δ2

j

q
. Thus, in realizations of our model where

one can control tj, Δj, one has the ability to realize a wide
class of nontrivial multimode entangled output states.

IX. CONNECTIONS TO NON-HERMITIAN
MODELS

It is natural to ask whether the striking features of our
bosonic model can be given a topological underpinning.
To address this, we first make the simple observation
that while our Hamiltonian is clearly Hermitian, the mode
eigenvalues follow from diagonalizing the system’s dyna-
mical matrix [e.g., M̌k in momentum space; cf. Eq. (20)].
This matrix is explicitly non-Hermitian. As such, there is
an intimate connection between our model (and parametri-
cally driven bosonic systems in general) and the study
of non-Hermitian quantum models. Most work on this
subject has focused on quadratic Hamiltonians whose
corresponding dynamics are simply linear. Since this is
also the case here, any interesting physics that can be
uniquely attributed to non-Hermicity in these models must
also be present in ours. Consequently, recently developed

FIG. 6. Schematic showing an equivalent depiction of scatter-
ing off our lattice with M input-output waveguides coupled to
M ≤ N arbitrary sites. Input states in each waveguide are first
locally squeezed (squeeze parameters Rj). They then pass
through a beam-splitter network and are then finally locally
antisqueezed at the outputs. Crucially, the squeeze parameters Rj
and beam-splitter unitary matrix K have a direct and simple
relation to the system Hamiltonian. In particular, K is the unitary
of a simple tight-binding model [see Eqs. (E5) and (E6)].
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topological invariants for non-Hermitian systems can be
directly applied to our system.
Note that the dynamical matrix M̌k [cf. Eq. (20)] of

our model is unitarily equivalent to the non-Hermitian
Hamiltonian:

ȞHN ¼ t sinðkÞ1̌þ iΔ cosðkÞσ̌z

¼ −i
2

�
t−eik − tþe−ik 0

0 tþeik − t−e−ik

�
; ð28Þ

where t� ≡ t� Δ. This non-Hermitian Hamiltonian
describes two decoupled 1D chains with asymmetric
nearest-neighbor hopping, i.e., two copies of the well-
known Hatano-Nelson model [17]. One chain has stronger
left-to-right hopping, while the other has stronger right-to-
left hopping. These two effective chains correspond
directly to the chirality of quadrature propagation as
described by Eqs. (6) and (7).
Non-Hermitian asymmetric hopping models have been

the subject of several recent studies exploring topology. In
particular, Ref. [28] argues that the winding of the complex
spectrum of a single-band 1D non-Hermitian model can be
used to define a topological invariant, and that this invariant
gives rise to a kind of bulk-boundary correspondence
between an infinite system and a semi-infinite system. A
nonzero topological number then implies a macroscopic
number of edge modes. This has been recently been dubbed
the “non-Hermitian skin effect” [29]. This invariant could
be applied to each of the decoupled 1D chains described by
Eq. (28): The top chain would have a winding þ1 and the
bottom chain a winding −1. In another study, Ref. [30]
demonstrated that non-Hermitian asymmetric hopping
models exhibit striking differences in both their spectrum
and wave functions when comparing a ring versus open
chain configuration; this is also reminiscent of our model.
Non-Hermitian asymmetric hopping models are often

introduced without any clear sense of how they could be
physically realized; in addition, any such realization would
involve dissipation, and the corresponding fluctuations
could disrupt interesting behavior. Our work shows that
parametrically driven bosonic systems give a physically
realizable platform for a class of effective non-Hermitian
models, and moreover, they can do this without any
necessity for dissipation and noise.

X. PHYSICAL REALIZATION

The parametrically driven coupled-cavity model studied
in this work could be realized in a variety of different
photonic and phononic systems. ĤB in Eq. (4) describes a
1D array of tunnel-coupled cavities subject to parametric
driving on each bond, where we work in a rotating frame
at the parametric drive frequency (which is the same for
each bond). To construct simple physical implementations
of our system, it is easiest to work in a gauge where the

Hamiltonian is real but where the pairing amplitude Δ is
spatially dependent. Making the gauge transformation
âj → âjeiπj=2 yields

ĤB ¼ 1

2

X
j

ðtâ†jþ1âj þ ð−1ÞjΔâ†jþ1â
†
j þ H:c:Þ: ð29Þ

In this gauge, the pairing amplitude phase is modulated
from site to site, corresponding to parametric driving
where we inject pairs with a center-of-mass momentum
ktot ¼ π. Note that in this gauge the Hamiltonian is
invariant under an inversion operation centered on a bond;
this is, however, fully consistent with the chiral propa-
gation we describe (see Appendix F). Our system can thus
be realized by using a cavity array with passive nearest-
neighbor tunneling and nearest-neighbor parametric driv-
ing with staggered phases.
A generic implementation is depicted schematically in

Fig. 7, where on each link of our main lattice, we have a
nonlinear three-wave mixing interaction with an auxiliary
mode b̂j:

Ĥint ¼ g0
X
j

ðâjþ1 þ â†jþ1Þðâj þ â†jÞðb̂j þ b̂†jÞ: ð30Þ

By coherently driving the b̂j mode with the appropriate
frequency and phase, this nonlinear Hamiltonian (within
mean-field and rotating-wave approximations) yields the
Hamiltonian in Eq. (29), with Δ ¼ g0jhb̂jij. Note that pure
three-wave mixing elements can be realized in several
different ways in superconducting quantum circuits.
Examples include the Josephson ring modulator [31] and
the recently developed SNAIL Josephson device [32].
Optomechanical systems also feature a nonlinear
radiation-pressure coupling between the mechanical and
photonic modes [33] and thus present another possible
realization.

FIG. 7. A possible realization of the bosonic Kitaev-Majorana
chain. On each bond, adjacent cavity modes âj and âjþ1 are
tunnel coupled with hopping amplitude t. In addition, they are
both coupled to a coherently driven auxiliary mode b̂j via a three-
wave mixing interaction [Eq. (30)]. At the mean-field level, this
interaction yields the parametric two-photon drive in our model.
Staggering the drive phases results in a Hamiltonian that is gauge
equivalent to a purely imaginary hopping phase, a key ingredient
in our setup.
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It is also possible to realize our model [as written in
Eq. (29)] using purely intracavity nonlinearities as opposed
to nonlinear couplings. This could allow an implementation
using, e.g., an array of silicon ring resonators and the
intrinsic χð3Þ optical nonlinearity of silicon (as was recently
used in Ref. [34] to explore the interplay of parametric
driving and topological band structures). The setup in this
case is shown in Fig. 8. We take the even and odd cavities
of the lattice to have different frequencies ωE and ωO.
Further, on each bond between the primary sites of the
lattice, we have two auxiliary cavities. One is driven
nonresonantly at ðωE þ ωOÞ=2; using its intrinsic Kerr
nonlinearity, the drive realizes the desired nearest-neighbor
parametric drive Δ on the main lattice sites. The second
auxiliary cavity supports resonances at both ωE and ωO;
by using dynamic modulation [35–37] (e.g., via an electro-
optic modulator), this auxiliary cavity can mediate the
hopping t of our model. More details are given in
Appendix G.

XI. CONCLUSIONS

In this work, we introduce and analyze a bosonic version
of the well-known fermionic Kitaev chain. Our system does
not require strong photon-photon interactions but instead
exploits the presence of nontrivial phases in a quadratic,
particle-nonconserving Hamiltonian. It exhibits a spatially
asymmetric coupling between local quadrature operators,
which, in turn, results in a variety of remarkable features.
This includes phase-dependent chiral propagation and a
striking sensitivity to the presence of edges impacting both

the localization and dynamic stability of system eigenm-
odes. Further, despite being nondissipative, our system has
a direct connection to non-Hermitian asymmetric hopping
models, which allows us to give our model a topological
underpinning.
In terms of outlook, the physics we discuss here could be

exploited for applications. Phase-sensitive quantum ampli-
fiers play a central role in several diverse areas of physics
such as continuous-variable quantum computing [25] and
quantum sensing (see, e.g., Refs. [38,39] for applications to
axion detection). As we discuss, our system can serve as a
unique kind of phase-sensitive amplifier, in which orthogo-
nal quadratures are amplified in opposite directions. It also
is a unique tool for preparing entangled multimode
Gaussian states which have recently been proposed as a
means to demonstrate quantum supremacy [26]. Our model
circumvents the normally difficult task of producing and
transporting a large number of squeezed states by generat-
ing all squeezing locally.
Our work also suggests directions for future basic

research. We obtain unusual physics by replacing fermionic
Majorana modes by bosonic quadrature operators: It is only
natural to ask whether this can be taken further. The
quadrature pairing structure is ultimately what gives rise
to the physics we discuss. Future work could thus inves-
tigate the effects of dimensionality on this structure, where
there is more than right and left hopping, or how sym-
metries restrict the kind of coupling that the quadratures can
take. The role of true photon-photon interactions in this
setting would also be extremely interesting.
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APPENDIX A: REAL-VALUED HOPPING

In this Appendix, we demonstrate that the same model as
in Eq. (4) without any hopping phase is trivial. For the case
of an infinite lattice, the Heisenberg equations of motion for
the momentum space operators are

ði∂t − M̌kÞ
�

âk

â†−k

�
¼

�
0

0

�
; ðA1Þ

M̌k ¼ t cosðkÞσ̌z þ iΔ cosðkÞσ̌x: ðA2Þ

The mode energies are readily obtained from the eigen-
values of the dynamical matrix M̌k and are given by
Ek;� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − Δ2

p
cosðkÞ. The condition for stability

t > Δ is thus the same throughout the band.

FIG. 8. (a) Schematic of a realization of our model which uses
purely intracavity nonlinearities. There are two lattice sites per
unit cell, consisting of even and odd lattice sites which have
different resonant frequency ωE and ωO, respectively. Each site is
tunnel coupled to four auxiliary resonators. (b) Single unit cell of
our 1D lattice. One of the auxiliary cavities has a Kerr-type
nonlinearity and is driven nonresonantly at some carefully chosen
frequency ωP, which induces the nearest-neighbor parametric
drive Δ on the main lattice sites. Dynamically modulating the
dielectric constant of the second auxiliary resonator ϵðtÞ ∝
cos½ðω̃E − ω̃OÞt� gives rise to an effective nearest-neighbor
hopping t [35–37]. Here, ω̃E and ω̃O are detuned cavity
frequencies; see Appendix G for details.
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To understand why this model displays trivial physics,
we now consider a finite chain of N sites with open
boundaries. The Hamiltonian is

ĤB ¼ 1

2

XN−1

j¼1

ðtâ†jþ1âj þ iΔâ†jþ1â
†
j þ H:c:Þ: ðA3Þ

With translational invariance being broken by the boun-
dary, momentum is not conserved, and we can no longer
diagonalize the Hamiltonian by moving to a basis of plane
waves. Instead, the Hamiltonian is diagonal in the basis of
standing waves, which are simply a linear combination of
plane waves

ĤB ¼
XN
n¼1

�
t cos knâ

†
kn
âkn þ i

Δ
2
cos knðâ†kn â

†
kn
− H:c:Þ

�
;

ðA4Þ

with âkn a standing-wave annihilation operator

âkn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r XN
j¼1

sinðknjÞâj; ðA5Þ

and kn ¼ nπ=ðN þ 1Þ. The finite chain with open-
boundary conditions is essentially no different from the
infinite lattice or the chain with periodic boundary con-
ditions. One readily sees that stability is achieved through-
out the band if and only if t > Δ, just like in the system
without boundaries. Furthermore, the eigenstates of the
finite-sized system are standing waves and thus do no
exhibit any localization, unlike the model presented in the
main text [cf. Eqs. (22) and (23)].

APPENDIX B: ARBITRARY HOPPING PHASE

Here, we study a similar Hamiltonian to that in Eq. (4),
except now the hopping matrix element has an arbitrary
phase it → eiϕt. As in the main text, we assume that t > Δ.
We find that depending on the magnitude of the real and
imaginary part of the hopping, this more general model
exhibits similar physics either to the one presented in the
main text or a trivial tight-binding model. We explain
further in what follows.
First, let us assume that tj cosðϕÞj < Δ. One can easily

verify that

ĤB ¼ 1

2

X
j

ðeiϕtâ†jþ1âj þ iΔâ†jþ1â
†
j þ H:c:Þ

¼ 1

2

X
j

ðit0β̂†jþ1β̂j þ iΔ0β̂†jþ1β̂
†
j þ H:c:Þ; ðB1Þ

where t0 ¼ t sinðϕÞ andΔ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − t2 cos2ðϕÞ

p
. The β̂j are

Bogoliubov modes of the original photonic operators

β̂j ¼ coshðξÞâj þ i sinhðξÞâ†j ; ðB2Þ

and the squeeze parameter ξ is defined via

tanhð2ξÞ ¼ t cosðϕÞ
Δ

: ðB3Þ

This is exactly equivalent to the model presented in the
main text with renormalized parameters t → t sinðϕÞ and
Δ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − t2 cos2ðϕÞ

p
.

On the other hand, if tj cosðϕÞj > Δ, the previous
squeezing transformation is not well defined. We can no
longer map our Hamiltonian to a similar model with purely
imaginary hopping phase and renormalized parameters.
What we can do instead, however, is make a similar
transformation that maps the Hamiltonian onto a simple
tight-binding model. More concretely, we have

ĤB ¼ 1

2

X
j

ðeiϕtâ†jþ1âj þ iΔâ†jþ1â
†
j þ H:c:Þ

¼ 1

2

X
j

ðeiϕ̃ t̃α̂†jþ1α̂j þ H:c:Þ; ðB4Þ

where, as in the main text, t̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − Δ2

p
. Here we

introduce the operators α̂j, which are also Bogoliubov
modes of the original photonic operators

α̂j ¼ coshðρÞâj þ i sinhðρÞâ†j ; ðB5Þ

with ρ the squeeze parameter defined via

tanhð2ρÞ ¼ Δ
t cosðϕÞ ; ðB6Þ

and ϕ̃ is the phase

eiϕ̃ ¼ it sinðϕÞ þ sgn½cosðϕÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 cos2ðϕÞ − Δ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − Δ2

p : ðB7Þ

To see why this model does not display any interesting
physics, we note that the transformation defined in Eq. (B5)
is valid regardless of boundary conditions. Thus, in the
regime tj cosðϕÞj > Δ, one can always map the system
onto a simple particle-conserving tight-binding model. This
is in contrast with the model considered in the main text
which is unitarily equivalent to an excitation-conserving
Hamiltonian only in the case of open-boundary conditions.
Furthermore, the unitary operator is a local position-
dependent squeezing transformation [cf. Eq. (9)], whereas
here the relevant operator is spatially uniform.
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APPENDIX C: FINITE CHAIN WITH EDGES:
THE t < Δ CASE

We now show when t < Δ the finite chain with open-
boundary conditions studied in the main text, as defined
by Eq. (5), is dynamically unstable. Defining the parameter
r̃ via

e2r̃ ¼ ðΔþ tÞ=ðΔ − tÞ; ðC1Þ

we consider a position-dependent local squeezing trans-
formation defined by

V̂x̂jV̂
† ¼ er̃ðj−j0Þ ˆ̃xj; V̂p̂jV̂

† ¼ e−r̃ðj−j0Þ ˆ̃pj: ðC2Þ

As in the main text, ˆ̃xj, ˆ̃pj are new canonical quadratures,
and j0 is an arbitrary real number. One finds that

V̂ĤBV̂† ¼ Δ̃
2

X
j

ð ˆ̃xjþ1
ˆ̃pj þ ˆ̃pjþ1

ˆ̃xjÞ

¼ 1

2

X
j

ðiΔ̃ ˆ̃a†jþ1
ˆ̃a†j þ H:c:Þ; ðC3Þ

with

Δ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − t2

p
¼ Δ= coshðr̃Þ: ðC4Þ

Thus, in the regime t < Δ, the system is unitarily equiv-
alent to a model where we have only pairing (i.e., para-
metric driving) on each bond with no hopping. It is now
evident that the system is dynamically unstable: In this
frame, we are resonantly adding pairs of photons on
neighboring sites.

APPENDIX D: SCATTERING MATRIX OF A
REGULAR TIGHT-BINDING CHAIN

For completeness, here we derive the expression of the
photon scattering matrix of a regular tight-binding chain
s̃jj0 ½ω�, from which we immediately obtain the quadrature
scattering matrices; cf. Eqs. (17) and (18). The first step is
to compute the Green’s function G̃0½ω� of the unperturbed
system, i.e., without the spatially dependent loss. By
definition,

G̃0½ω� ¼
��

ωþ i
κ

2

�
1 −H

�
−1
; ðD1Þ

where κ is the uniform on-site decay rate, and H is the
single-particle Hamiltonian which, in real space, has matrix
elements [cf. Eq. (10)]

Hij ¼ i
t̃
2
δi;jþ1 − i

t̃
2
δi;j−1: ðD2Þ

Note that we could make a local gauge transformation to
make the Hamiltonian matrix H real valued. However, this
transformation would also alter the scattering matrix, and
we therefore choose to keep the imaginary phase factors
in the definition of the Hamiltonian. With Eq. (D1) in
combination with Eq. (D2), one easily verifies that the
Green’s function for a finite chain of N sites is

G̃0½j;j0;ω�

¼ ij−j
0 2sinfq½ω�minðj;j0Þgsinfq½ω�½Nþ1−maxðj;j0Þ�g

t̃sinðq½ω�Þsinfq½ω�ðNþ1Þg ;

ðD3Þ

where q½ω� is the complex wave vector satisfying the
dispersion

ωþ i
κ

2
− t̃ cosðq½ω�Þ ¼ 0: ðD4Þ

The introduction of spatially dependent loss κj introduces
an effective imaginary potentialV at each lattice site. In real
space, it has matrix elements

Vij ¼ −i
κj
2
δij: ðD5Þ

The full Green’s function G̃½ω� is given by Dyson’s
equation

G̃½ω�¼ G̃0½ω�þG̃0½ω�VG̃½ω�¼ 1

1−G̃0½ω�V
G̃0½ω�: ðD6Þ

Standard input-output theory [23,24] then gives a simple
relation between the scattering matrix and the Green’s
function

sjj0 ½ω� ¼ δjj0 − i
ffiffiffiffiffiffiffiffiffi
κjκj0

p
G̃½j; j0;ω�: ðD7Þ

APPENDIX E: SPATIALLY VARYING HOPPING
AND PAIRING

We now consider a generalized version of our model
where the hopping and parametric drive amplitudes vary
from bond to bond:

ĤB0 ≡ 1

2

XN−1

j¼1

½−ðtj − ΔjÞx̂jþ1p̂j þ ðtj þ ΔjÞp̂jþ1x̂j�: ðE1Þ

As long as tj > Δj for all j, the model can still be
mapped to a particle-conserving model. Defining

e2rj ¼ tj þ Δj

tj − Δj
; Rj ¼

Xj−1
m¼0

rm; ðE2Þ
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with r0 an arbitrary real number, we make a local position-
dependent squeezing transformation:

Ûx̂jÛ
† ¼ eRj ˆ̃xj; Ûp̂jÛ

† ¼ e−Rj ˆ̃pj: ðE3Þ

One finds that

ÛĤB0Û† ¼ 1

2

X
j

ðit̃j ˆ̃a†jþ1
ˆ̃aj þ H:c:Þ; ðE4Þ

with t̃j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2j − Δ2

j

q
.

Thus, in the case where tj > Δj for all j, ĤB0 is unitarily
equivalent to a particle-conserving tight-binding chain with
a spatially varying tunnel matrix element it̃j. This mapping
also implies a simple form for the scattering matrices that
correspond to Fig. 6:

sxjj0 ½ω� ¼ eRj−Rj0 s̃jj0 ½ω�; ðE5Þ

spjj0 ½ω� ¼ e−ðRj−Rj0 Þs̃jj0 ½ω�; ðE6Þ

where now s̃jj0 ½ω� is the scattering matrix of an N-site tight-
binding chain with hopping matrix elements it̃j and on-site
decay rates κj.

APPENDIX F: CHIRALITY IN THE
REAL GAUGE

The Hamiltonian Eq. (29) is invariant under a spatial
inversion centered on a bond. This would seem to imply
that there can never be any sort of chirality in our model.
Yet we know this must be false: The Hamiltonian in the
gauge used throughout most of the main text Eq. (5) and
the corresponding equations of motion Eqs. (6) and (7)
manifestly are. The issue is resolved by defining dynami-
cally decoupled quadratures in a site-dependent manner.
Working in the gauge used to write Eq. (29), we define the
quadratures of interest differently on even and odd sites.
For even j, we define

x̂j ¼
eiπj=2ffiffiffi

2
p ðâj þ â†jÞ; ðF1Þ

p̂j ¼
eiπj=2ffiffiffi

2
p

i
ðâj − â†jÞ; ðF2Þ

and for odd j, we define

x̂j ¼
eiπðjþ1Þ=2ffiffiffi

2
p

i
ðâj − â†jÞ; ðF3Þ

p̂j ¼
eiπðj−1Þ=2ffiffiffi

2
p ðâj þ â†jÞ: ðF4Þ

One readily verifies that the equations of motion of these
new quadrature operators are the same as in the old gauge
[i.e., Eqs. (6) and (7)], and all transport properties are
therefore identical.
Working in the same gauge, consider a driving force on

site 1 that excites the x̂ quadrature which propagates and is
amplified to the right. One could imagine the correspond-
ing solution to the Schrödinger equation jψðtÞi that
describes this propagation. We may now apply an inversion
operation centered on a bond and ask what are the transport
properties in this new frame. The Hamiltonian is invariant
under such a transformation, whereas the direction of
propagation of the state is now to the left. However,
inversion centered on a bond exchanges even and odd
lattice sites, and consequently, the force in this new frame
forces a p̂ quadrature. There is thus no contradiction: One
must simply be careful in identifying the correct degrees of
freedom.

APPENDIX G: PHYSICAL REALIZATION USING
INTRACAVITY NONLINEARITIES

We now demonstrate that our model can be realized
using only intracavity nonlinearities, as shown in Fig. 8.
Let us first focus on the two lattice sites E and O as well as
the driven nonlinear resonator R. In the lab frame, the
Hamiltonian describing these three elements is

H ¼ ωEâ
†
EâE þ ωOâ

†
OâO þ ωRâ

†
RâR þU

2
â†Râ

†
RâRâR

þ JEðâ†RâE þ H:c:Þ þ JOðâ†RâO þ H:c:Þ; ðG1Þ

where âR is the nonlinear auxiliary resonator, and
âE and âO are the main modes of our lattice. Moving to
a rotating frame with the appropriate unitary U ¼
exp½iðω̃Eâ

†
EâE þ ω̃Oâ

†
OâOÞt�, the Hamiltonian becomes

H ¼ ðωE − ω̃EÞâ†EâE þ ðωO − ω̃OÞâ†EâE þ ωRâ
†
RâR

þ U
2
â†Râ

†
RâRâR þ JEðe−iω̃Etâ†RâE þ H:c:Þ

þ JOðe−iω̃Otâ†RâB þ H:c:Þ: ðG2Þ

Note that the frequencies ω̃E and ω̃O are not the exact
resonance frequencies of ωE and ωO. As we soon see, we
work in this frame to cancel dispersive shifts caused by the
resonator mode âR on our two main cavity modes.
In this frame, the Heisenberg equations of motion are

∂tâR ¼ −
�
iωR þ κR

2

�
âR − iUâ†RâRâR

− iJEe−iω̃EtâE − iJOe−iω̃OtâO; ðG3Þ

∂tâE ¼ −
�
iðωE − ω̃EÞ þ

κE
2

�
âE − iJEeiω̃EtâR; ðG4Þ
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∂tâO ¼ −
�
iðωO − ω̃OÞ þ

κO
2

�
âO − iJOeiω̃OtâR: ðG5Þ

We now drive the nonlinear mode with frequency ωP and
write âP ¼ e−iωPtðαþ δâPÞ, where δâP is the deviation
from the amplitude α that solves the classical equations of
motion. We then linearize the equations of motion by
keeping terms that are to first order in δâR,

∂tδâR ¼ −
�
iω̃d þ

κR
2

�
δâR − iUα2δâ†R

− iJEe−iðωE−ωPÞtâE − iJOe−iðωO−ωPÞtâO; ðG6Þ

∂tâE ¼ −
�
iðωE − ω̃EÞ þ

κE
2

�
âE

− iJEeiðωE−ωPÞtðαþ δâRÞ; ðG7Þ

∂tâO ¼ −
�
iðωO − ω̃OÞ þ

κO
2

�
âO

− iJOeiðωO−ωPÞtðαþ δâRÞ; ðG8Þ

with ω̃d ¼ ωR − ωP þ 2Ujαj2 the effective detuning.
Assuming that the effective detuning ω̃d is the largest
frequency scale in this problem, we may adiabatically
eliminate δâR. Thus, as far as modes âE and âO are
concerned, δâR has no dynamics, and we may set the time
derivative of δâR to zero. We then express δâR as a function
of âE, âO and insert that into their respective equations
of motion. After doing so, the equations of motion for âE
now read

∂tâE ¼
�
−
κA
2
− iΩ̃E

�
âE − iλ̃Ee2iðω̃E−ωPÞtâ†E

− iJ̃eiðω̃E−ω̃OÞtâO − iΔeiðω̃Eþω̃O−2ωPÞtâ†O; ðG9Þ

where we omit a constant term that oscillates at frequency
ω̃E − ω̃P. The equation of motion for âO is the same, with
E ↔ O. The effective coupling constants are

Ω̃E ¼ ωE − ω̃E − J2E
ω̃d − i κR

2

ω̃2
d þ κ2R

4
−U2jαj4

; ðG10Þ

λ̃E ¼ J2E
Uα2

ω̃2
d þ κ2

4
−U2jαj4 ; ðG11Þ

J̃ ¼ −JEJO
ω̃d − i κR

2

ω̃2
d þ κ2

4
−U2jαj4 ; ðG12Þ

Δ ¼ JEJO
Uα2

ω̃2
d þ κ2

4
−U2jαj4 : ðG13Þ

The pump must be chosen self-consistently to satisfy
2ωP ¼ ω̃E þ ω̃O, and ℜðΩ̃EÞ ¼ ℜðΩ̃OÞ ¼ 0. The first
condition asserts that, in the rotating frame, we are
resonantly creating pairs of photons in the even and odd
cavities. The second condition is required to cancel the AC
Stark shifts induced by the resonator mode which is
detrimental to the stability of the bosonic Kitaev-
Majorana chain. If we then chose ω̃E and ω̃O to be very
detuned, then all time-dependent terms in Eq. (G9) are
nonresonant and drop out under the rotating-wave approxi-
mation. We are then simply left with an effective nearest-
neighbor parametric drive with pairing amplitude Δ.
To implement the nearest-neighbor hopping in our

lattice, we must couple the even and odd lattice sites to
another auxiliary cavity. This cavity has mode spacing
ω̃E − ω̃O. By using two phase modulators oscillating at
frequency ω̃E − ω̃O, one can ensure phase matching. The
upshot is an effective nearest-neighbor coupling t, in which
photons can tunnel between the two lattice sites, despite
being very separated in energy (see Ref. [37] for details).
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