PHYSICAL REVIEW X 8, 041029 (2018)

Optimal Sequence Memory in Driven Random Networks

Jannis Schuecker,l’z’* Sven Goedeke,l’l* and Moritz Helias'*

Unstitute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6)
and JARA BRAIN Institute I, Jiilich Research Centre, 52428 Jiilich, Germany
2Fraunhofer Center for Machine Learning and Fraunhofer IAIS, 53757 Sankt Augustin, Germany
*Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn,
53115 Bonn, Germany
4Departrmznt of Physics, Faculty 1, RWTH Aachen University, 52074 Aachen, Germany

® (Received 28 September 2017; revised manuscript received 13 August 2018; published 14 November 2018)

Autonomous, randomly coupled, neural networks display a transition to chaos at a critical coupling strength.
Here, we investigate the effect of a time-varying input on the onset of chaos and the resulting consequences for
information processing. Dynamic mean-field theory yields the statistics of the activity, the maximum
Lyapunov exponent, and the memory capacity of the network. We find an exact condition that determines the
transition from stable to chaotic dynamics and the sequential memory capacity in closed form. The input
suppresses chaos by a dynamic mechanism, shifting the transition to significantly larger coupling strengths
than predicted by local stability analysis. Beyond linear stability, a regime of coexistent locally expansive but
nonchaotic dynamics emerges that optimizes the capacity of the network to store sequential input.
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I. INTRODUCTION

Large random networks of neuronlike units can exhibit
collective chaotic dynamics [1-4]. Their information
processing capabilities have been a focus in neuroscience
[5] and in machine learning [6], and they show optimal
performance close to the transition to chaos [7-9]. Because of
its rich chaotic dynamics, the seminal network model by
Sompolinsky et al. [1] serves as a model for various activity
patterns observed in working memory tasks [10-13], motor
control [14], and perceptual decision making [15]. The
interplay between a time-dependent input signal and
the dynamical state of the network, however, is poorly
understood, notwithstanding consequences for information
processing.

In the absence of a signal, the network dynamics is
autonomous. Networks of randomly coupled rate neurons
display a transition from a fixed point to chaotic fluctua-
tions at a critical coupling strength [1], illustrated in
Fig. 1(a). The transition is well understood by dynamic
mean-field theory, originally developed for spin glasses
[16,17]. The onset of chaos is equivalent to the emergence
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of a nonzero, decaying autocorrelation function, whose
decay time diverges at the transition. This equivalence
has been used in several subsequent studies [18-20].
Furthermore, for autonomous systems, a tight relationship
exists to random matrix theory [21,22]: The transition from
a fixed point to the chaotic state happens precisely when the
fixed point becomes linearly unstable [1], which identifies
the spectral radius of the random connectivity matrix as the
parameter controlling the transition in such systems.

In stochastically driven systems, a direct relation between
a decaying autocorrelation function, chaotic dynamics, and
linear stability does not exist: Stochastic drive per se
decorrelates the network activity even if the dynamics is
stable [Fig. 1(b)], so a decaying autocorrelation function
does not necessarily indicate chaos. The stochastic drive,
furthermore, causes perpetual fluctuations in the regular
regime as well. Therefore, a transition to chaos, if it exists at
all, must be of a qualitatively different kind than the
transition from the silent fixed point in the autonomous
case. Time-dependent driving has indeed been found to
stabilize network dynamics [18,23]. However, the mecha-
nism is only understood for low-dimensional systems in the
context of chaos synchronization by noise [24], in networks
driven by deterministic signals [18], and in systems with
discrete-time dynamics [23]. In the latter model, the effect of
the stochastic input on the transition to chaos is completely
captured by its influence on the spectral radius of the
Jacobian matrix. Its single neuron dynamics, moreover,
does not possess nontrivial temporal correlations. But these
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FIG. 1. Activity statistics of the autonomous and driven net-
works. The autonomous case is for 6 = 0 (left column), and the
driven case is for 6 = 0.35 (right column). Upper row: Simulated
trajectories of two example neurons for subcritical g = 0.5 (upper
part of vertical axis) and supercritical coupling g = 1.7 (lower
part of vertical axis). Middle row: Classical potential (10) with
self-consistently determined variance c, following from energy
conservation (11) for different coupling strengths g (correspond-
ing legends in lower row). The dashed horizontal line indicates
minus initial kinetic energy Ey;, = ¢*/2. In the driven case, the
critical coupling g. = 1.48 from Eq. (20) is shown in red. Lower
row: Self-consistent autocorrelation function (solid curve) com-
pared to simulations (crosses). The variance (peak height) ¢
corresponds to the largest value of ¢ at which the potential
(middle row) is defined, indicated for g = 1.7 with gray dotted
lines in (d) and (f). The network size in the simulations is
N = 10000.

temporal correlations are indeed essential for the transition
to chaos and for information processing in continuous-time
systems, as we show here.

Realistic continuous-time network models can generate
complex but controlled responses to input [8] that resemble
activity patterns observed in the motor cortex. In particular,
the dynamical state of the network plays a crucial role
during the involved learning process. However, the effect of
the input on the dynamical state has remained obscure.

To investigate the generic influence of external input on
the network state, we include additive white noise in the
seminal model by Sompolinsky et al. [1] and develop the
dynamic mean-field theory for the resulting stochastic
continuous-time dynamics. In contrast to the original work,
here we reformulate the problem in terms of the generating
functional formalism for stochastic differential equations
[25-29]. The application of the auxiliary field formulation
known from large N field theory [30] then allows us

to derive the mean-field equations by a saddle-point
approximation. As in the original model, the autocorrela-
tion function is formally identical to the motion of a
classical particle in a potential [1]. In our model, the noise
amounts to an initial kinetic energy. We then determine the
maximum Lyapunov exponent [31] by considering two
copies of the system with different initial conditions [32] in
a replica calculation. Our main result is a closed-form
condition for the transition from stable to chaotic dynamics.
We find that the input suppresses chaos significantly more
strongly than expected from time-local linear stability, the
criterion valid in discrete-time systems. This observation
is explained by a dynamic effect: The decrease of the
maximum Lyapunov exponent is related to the sharpening
of the autocorrelation function by the stochastic drive.
The regime in the phase diagram between local instability,
as indicated by the spectral radius of the Jacobian, and
transition to chaos, corresponding to a positive maximum
Lyapunov exponent, constitutes an as yet unreported
dynamical regime that combines locally expansive dynam-
ics with asymptotic stability. Moreover, in contrast to the
autonomous case, the decay time of the autocorrelation
function does not diverge at the transition. Its peak is
strongly reduced by the input and occurs slightly above the
critical coupling strength.

To study information-processing capabilities, we evalu-
ate the capacity to reconstruct a past input signal by a linear
readout of the present state, the so-called memory curve
[33]. Dynamic mean-field theory and a replica calculation
lead to a closed-form expression for the memory curve. We
find that the memory capacity peaks within the expansive,
nonchaotic regime, indicating that locally expansive, while
asymptotically stable dynamics is beneficial to store input
sequences in the dynamics of the neural network.

II. DYNAMIC MEAN-FIELD EQUATION

We study the continuous-time dynamics of a random
network of N neurons, whose states x;(#) R, i =1, ..., N,
evolve according to the system of stochastic differential
equations,

A N
%: —xi+ZJij¢(xj)+§i(t)- (1)
=1

The J;; are independent and identically Gaussian-distributed
random coupling weights with zero mean and variance g*/ N,
where the intensive gain parameter g controls the recurrent
coupling strength or, equivalently, the weight heterogeneity
of the network. We further exclude self-coupling, setting
Ji; =0. The time-varying inputs &;(7) are independent
Gaussian white-noise processes with correlation functions
(Ei(1)E;(s)) = 20°5,;6(1 — s). We choose the sigmoidal
transfer function ¢(x) = tanh(x) so that, without input,
for o = 0, the model agrees with the autonomous one studied
in Ref. [1].
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The dynamical system (1) contains two sources of
randomness: the quenched disorder due to the random
coupling weights and the temporally fluctuating drive. A
particular realization of the random couplings J;; defines a
fixed network configuration, and its dynamical properties
usually vary between different realizations. For large net-
work size N, however, certain quantities are self-averaging,
meaning that their values for a typical realization can be
obtained by an average over network configurations [34].
An important example is the population-averaged autocor-
relation function.

Here, we derive a dynamic mean-field theory that
describes the statistical properties of the system under
the joint distribution of disorder, noise, and possibly
random initial conditions in the limit of large network size
N — 0. The theory can be derived via a heuristic “local
chaos” assumption [35] or by using a generating functional
formulation [17,36]. Here, we follow the latter approach
because it casts the problem into the established language
of statistical field theory for which a wealth of approxi-
mation techniques is available [37]. A mathematically
rigorous proof uses large deviation techniques [38].
The general idea is that for large network size N, the
local recurrent input Z?’:l Jij¢(x;) in Eq. (1) approaches
a Gaussian process with self-consistently determined
statistics.

We interpret the stochastic differential equations in the
[td convention [39] and formulate the problem (1) in terms
of a moment-generating functional Z. Using the Martin—
Siggia—Rose—de Dominicis—Janssen path integral formal-
ism [25,28,40,41], we obtain

Z@) = / Dx / DR exp (Solx. ] = KTIp(x) + 1Tx)
(2)
with
Solx, X] = XT(9, + 1)x + 0’XT%, (3)

where the field x = (x;(7), 1 € R)Y_, is the vector of trajec-
tories (paths), X'y = >, [ x;(¢)y;(¢t)dr denotes the scalar
product in time and in neuron space, and 1= (/;(z),1 €
R)Y, represents a source field. The response field
% = (%;(1),t € R)Y., appears as a result of a Hubbard-
Stratonovich transformation, representing, at each time point,
a Dirac delta as §(x) = (2zi)~" [“1i® dxe™ [29,41]. The
measures are defined as [Dx=lim,,  JIY_ TIM [ dx!
and [ DX = limy,_ JIY_TIY, [i® (27i)~'d%l, with the
subscript k denoting the kth unit and the superscript / denoting
the /th time slice. The action S in Eq. (3) contains all single-
unit properties, therefore excluding the coupling term

—xTJ¢(x), which is written explicitly in Eq. (2).

Assuming that the dynamics is self-averaging, we
average over the quenched disorder in the coupling matrix
J= (J,-j)f\,'j:l and perform a saddle-point approximation
(Appendix A). The resulting functional factorizes into N
terms

2
Z* O(/DX/D%GXP(S()[X,%] +g2’iTC(/,(x)¢(x)i) (4)

with  Cynp (1, 5) = (P(x(2))p(x(s))) denoting the
average autocorrelation function of the nonlinearly
transformed activity of the units, see Eq. (A10), and
' CypnE = [[X(1)Cypx)p(x) (1, 8)X(s)drds. The factoriza-
tion reduces the network to N noninteracting units, each on
a background of an independent Gaussian noise with
identical, self-consistently determined statistics. At this
level of approximation, the problem is hence equivalent
to a single-unit system. The effective equation of motion
corresponding to this system can be read from Eq. (4)
(Appendix A):

&t + e, (5)
t

Without the additional input £(¢), Eq. (5) is the starting
point of the analysis in Ref. [1]. Here, £(¢) is a Gaussian
white-noise process as in Eq. (1), independent of 5(t). The
centered Gaussian process #7(t) is fully specified by its
autocorrelation function

(n(0)n(s)) = & Cpropen (t.9)- (6)

III. EFFECTIVE EQUATION OF MOTION
OF THE AUTOCORRELATION FUNCTION

Our goal is to determine the mean-field autocorrelation
function (x(r)x(s)), which, by self-averaging, also
describes the population-averaged autocorrelation function.
Assuming that x(7) is a stationary process, ¢(z) = (x(t +
7)x(t)) obeys the differential equation (Appendix B)

¢ =—5=c—gf4lc,co) —26°5(1) (7)

with ¢y = ¢(0). The Dirac delta inhomogeneity originates
from the white-noise autocorrelation function of the time-
varying input. Without the delta inhomogeneity, Eq. (7) has
been derived in Ref. [1], while the first derivation including
the inhomogeneity, to our knowledge, has been presented
by Cabana and Touboul [38], using the mathematically
rigorous framework of large deviations. The same inho-
mogeneity arises from Poisson spiking noise with 26> =
g°r [42], where r is the population-averaged firing rate.
One may obtain the same result by dynamic mean-
field theory [43]. In Eq. (7), we write f,(c(7).cp) =
Cypx)p(x) (t + 7, 1), introducing the notation
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u«(c.co) // <\/;:Z1+?Zz>u(\/_Z2)DZ1DZ2

(8)

for an arbitrary function u(x), where Dz; = exp(—z?/2)/
V/2rdz; denotes the standard Gaussian integration measure.
This representation holds since x(¢) is itself a Gaussian
process. Note that Eq. (8) reduces to a one-dimensional

integral for f,(co,co) = (u(\/coz1)*) and f,(0,co) =
(u(y/coz1))*.

Following the approach in Ref. [1], we formulate Eq. (7)
as the one-dimensional motion of a classical particle in a
potential:

¢ =-V'(c) = 26%(1), 9)

where we define

V(e) — ¢ fa(0.co)

(10)

1
=V(cicy) = —502 + ¢ fo(c. co)

with @(x) = [ ¢(y)dy and 9/0cfe(c.co) = fy(c. co)
followmg from Price’s theorem [44,45]. The autocorrela-
tion ¢(r) here plays the role of the position of the particle
and the time lag 7 the role of time. The potential (10)
depends on the initial value c(, which has to be determined
self-consistently. We obtain ¢, from classical energy
conservation, ¢?/2 + V(c) = constant. Considering 7 > 0
and the symmetry of ¢(z), the delta inhomogeneity in
Eq. (9) amounts to an initial velocity ¢(0+) = —¢? and
thus to the kinetic energy ¢?(0+)/2 =o*/2. Since
le(7)| < ¢, the solution ¢(z) and its first derivative must
approach zero as 7 — oco. Thus, we obtain the self-
consistency condition for ¢ as

1
50'4 + V(CO; Co) =

V(0;¢9) = 0. (11)
For the autonomous case, Figs. 1(c) and 1(e) show the
resulting potential and the corresponding self-consistent
autocorrelation function c¢(z) in the chaotic regime.
Approaching the transition from above, g — g. = 1, the
amplitude ¢, vanishes and the decay time of ¢(z) given by
T = 1/y/1 — ¢*{¢(x))? diverges [1]. This picture breaks
down in the driven case [Figs. 1(d) and 1(f)], where ¢ is
always nonzero and c¢(z) decays with finite timescale and
has a kink at zero. The mean-field prediction is in excellent
agreement with the population-averaged autocorrelation
function obtained from numerical simulations of one net-
work instance showing that the self-averaging property is
fulfilled. In the following, we derive a condition for the

transition from stable to chaotic dynamics in the presence
of the time-varying input.

IV. EFFECT OF INPUT ON THE TRANSITION
TO CHAOS

The maximum Lyapunov exponent quantifies how sen-
sitively the dynamics depends on the initial conditions [31].
It measures the asymptotic growth rate of infinitesimal
perturbations. For stochastic dynamics, the stability of the
solution for a fixed realization of the noise or, equivalently,
the stochastic input is also characterized by the maximum
Lyapunov exponent [46]: If it is negative, trajectories
with nearby initial conditions converge to the same time-
dependent solution determined by the input; the dynamics
is stable. If it is positive, the distance between two initially
arbitrary close trajectories grows exponentially in time; the
dynamics exhibits sensitive dependence on initial condi-
tions and is hence chaotic.

We derive the maximum Lyapunov exponent by using
dynamic mean-field theory. To this end, we consider two
copies of the network distinguished by superscripts
a € {1,2}. These copies, or replicas, have an identical
coupling matrix J and, for ¢ > 0, are subject to the same
realization of the stochastic inputs (7). The maximum
Lyapunov exponent can be defined as the asymptotic
growth rate of the Euclidean distance between trajectories

of the two copies:
1 1) — x2(f)]2
i (X0 -X01Y
=0)-027 \[[x7(0) = x*(0)]]

We now follow an idea by Derrida and Pomeau [32] and
exploit the self-averaging propeny of population-averaged
correlation functions, i.e., (1/N) SN x@(1)x? (s)~c®(1,s),
where ¢*(t,s) denotes the mean- ﬁeld correlation func-
tions. We express the mean-squared Euclidean distance as

Amax = lim
=00 ||x!(0)-

%ZN:(x}(t)—x,z(t))zzc“(t,t)+622(t,t)—2612(t,t):d(t),

where we define the mean-field squared distance d(r).
Thus, the asymptotic growth rate of d(¢) provides us with a
mean-field description of the maximum Lyapunov expo-
nent. To obtain this growth rate, we first consider

d(t,s) = c'(t,s) + *2(t,s) — c(t,5) = A (t,s)  (12)
with the obvious property d(¢) = d(t, t). We then determine
the temporal evolution of d(t,s) for infinitesimally per-
turbed initial conditions ||x!(0) — x?(0)|| = e. To this end,
it is again convenient to use a generating functional that
captures the joint statistics of the two systems and, in
addition, allows averaging over the quenched disorder (see
also Ref. [37], last remark in Appendix 23). The generating
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functional describing the two copies is defined analogously
to the single system functional (2) as

ZNL1P)(J) = Hizl{/DX“/Di“exp (So[x*, X7]

_ iaTJQIﬁ(XG) + laTXa)} exp(ZGZiITiz),
(13)

with the single-system “free action” Sy[x,X] defined in
Eq. (3). The factor in the last line results from the identical
external input in the two copies and effectively couples the
two systems. We also note that the coupling matrix J is the
same in both copies.

Averaging Eq. (13) over the quenched disorder of the
random coupling matrix J and performing a saddle-point
approximation, we obtain a pair of effective equations of
motion (Appendix C),

(G 1)r0=co+ro. acn2, 4

together with a set of self-consistency equations for the
correlations of the Gaussian noises 7%(7),

(O’ (9)) = (P (x*(1)p(F (). (15)

Now, there are two terms that introduce correlations
between the two copies. First, the common fluctuating
drive £(r) is injected into both systems. Second, the
effective noises 1%(¢) and 7”(¢) can be correlated between
replicas, see Eq. (15), because the two systems have the
same coupling J in each realization. The origin of the latter
coupling is hence of static nature.

The squared distance (12) between the two copies is
given by the autocorrelations of the single systems and the
cross-correlations between them. We consider the case
where both copies are prepared with identical initial
conditions and thus are fully synchronized: The cross-
correlation c'?(z,s) initially equals the autocorrelations
c'!(t,s), ¢**(t,5). The latter are identical to the single-
system autocorrelation function because the marginal
statistics of each subsystem is not affected by the mere
presence of the other system. An increase of the squared
distance d(t), by Eq. (12), amounts to a decline of ¢'?(¢, s)
away from its initial value ¢ (7 — s). Here, c is the stationary
autocorrelation, as we are interested in the Lyapunov
exponent averaged over initial conditions drawn from
the stationary distribution. To determine the growth rate
for infinitesimal distances d(0) «x ¢ between the two
copies, we therefore expand the cross-correlation around
its stationary solution c¢'?(z,s) = c(t —s) + ek (1, ),
€ < 1, which, to linear order, leads to an equation of
motion for the deflection (Appendix C 1)

(0, + 1)@ + DA (1, 5) = ¢ f (c(t = 5), co)k V(1. 5)
(16)

with d(1) = —2ek (1, 1).

A separation ansatz in the coordinates 7 =t — s and T =
t + s then yields an eigenvalue problem in the form of a time-
independent Schrodinger equation [1,42] (Appendix C 2),

(=02 + W(D)ly(7) = Ew(z), (17)

where 7 now plays the role of a spatial coordinate.
Sompolinsky et al. [1] state this Schrodinger equation for
the Lyapunov exponent, but no details are provided. As in
their case, the quantum potential W(z) = —V"(¢(7)) =1 —
¢ fy(c(z).co) is the negative second derivative of the
classical potential V(c¢) evaluated along the self-consistent
autocorrelation function ¢(z). The ground-state energy E, of
Eq. (17) determines the asymptotic growth rate of k') (¢, 7) as
t — oo and, hence, the maximum Lyapunov exponent via
Amax = —1 + /1 — E,. Therefore, the dynamics is predicted
to become chaotic if £y < 0. The quantum potential, together
with the solution for the ground-state energy and wave
function, is shown in Fig. 2. The latter are obtained as
solutions of a finite-difference discretization of Eq. (17).

In the autonomous case, a decaying autocorrelation
function corresponds to a positive maximum Lyapunov
exponent [1]. This follows from the observation that for
g > 1 the derivative of the self-consistent autocorrelation
function ¢(7) solves the Schrodinger equation with E = 0.
But as ¢(7) is an eigenfunction with a single node, it cannot
be the ground state, which must have zero nodes. The
ground-state energy, which is necessarily lower, must
therefore be negative, E, < 0. So the dynamics is chaotic,
and A, crosses zero at g = 1 [Fig. 3(a)].

(@) (b)

0.15 | — g=148 0.5} — g=-148
— g=17
=

N

= A

0 0
—30 0 30 —30 0 30
T T

FIG. 2. Ground state of the Schrodinger equation, which
determines the Lyapunov exponent. Upper part of vertical axis:
Quantum potential W(z) (solid curve) and ground-state energy E,,
(dashed line) for the autonomous case (a) and the driven case
(b) for ¢ = 0.35. Lower part of vertical axis: Corresponding
squared ground-state wave function. The parameters are the same
as in Fig. 1 (with the driven case for g = 0 left out).
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FIG. 3. Transition to chaos. (a) Upper part of vertical axis:
Maximum Lyapunov exponent 1,,,, as a function of the coupling
strength ¢ for different input amplitude levels. Mean-field
prediction (solid curve) and simulation results (diamonds). We
show a comparison to the upper bound —1 + g/([¢'(x)]?)
(dashed curve) for ¢ = 0.5 in the inset. Zero crossings are
marked with dots. Lower part of vertical axis: Ground-state
energy E, as a function of g. (b) Phase diagram with transition
curve (solid red curve) obtained from Eq. (20) and necessary
condition [Eq. (18) with equal sign] (gray dashed curve). Dots
correspond to zero crossings in the inset in panel (a). We show the
disk of eigenvalues of the Jacobian matrix in Eq. (19) for o = 0.8
and g = 1.25 (lower) and g = 2.0 (upper) centered at —1 in the
complex plane (gray dots). The radius p = g/([¢'(x)]?) is
obtained from random matrix theory (black circle). The vertical
line is at zero. (c) Asymptotic decay time 7, of the autocorre-
lation function. Vertical dashed lines mark the transition to chaos.
The color code is the same as in panel (a). The network size in the
simulations is N = 5000.

In the presence of a fluctuating drive, the maximum
Lyapunov exponent becomes positive at a critical coupling
strength g, > 1; with increasing input amplitude, the
transition shifts to larger values [Fig. 3(a)]. The mean-field
prediction Ay, = —1 4+ +/1 — E; shows excellent agree-
ment with the Lyapunov exponent obtained in simulations
using a standard algorithm [31]. Since the ground-state
energy E, must be larger than the minimum W(0) =1 —
@ {[¢'(x)]?) of the quantum potential, an upper bound for

Amax 18 provided by —1+ g\/([¢'(x)]*), leading to a

necessary condition

([’ ()]?) 2 1 (18)

for chaotic dynamics. However, close to the transition, A,
is clearly smaller than the upper bound, which is a good
approximation only for small g [Fig. 3(a), inset]: The actual
transition occurs at substantially larger coupling strengths.
In contrast, for memoryless discrete-time dynamics, the
necessary condition found here is also sufficient for the
transition to chaos [see Eq. (13) in Ref. [23]].

The local linear stability of the dynamical system (1) is
analyzed via the variational equation

N
D)= =)+ I )0, (19)
j=1

J

i=1,...,N, describing the temporal evolution of an
infinitesimal deviation y;(¢) about a reference trajectory
x; (). Interestingly, p = g+/{[¢'(x)]?) in Eq. (18) is also the
radius of the disk formed by the eigenvalues of the Jacobian
matrix in the variational equation (19) estimated by random
matrix theory [21,22]. In the following, we refer to p as the
eigenvalue radius. Therefore, the dynamics is expected to
become locally unstable if this radius exceeds unity, as
shown in Fig. 3(b) displaying p and the eigenvalues at an
arbitrary point in time. But even for the case with p > 1,
the system is not necessarily chaotic. Hence, contrary to
the autonomous case [1,21], the transition to chaos is not
predicted by random matrix theory.

To derive an exact condition for the transition, we
determine a ground state with vanishing energy E, = 0.
As in the autonomous case, ¢(7) solves Eq. (17) for E = 0,
except at 7 = 0 where it exhibits a jump, because ¢(z) has a
kink due to the white-noise input, Eq. (7). By linearity,
|¢(7)| is a continuous and symmetric solution with zero
nodes. Therefore, if its derivative is continuous as well,
requiring ¢(04) = 0, it constitutes the ground state that we
searched for. This is in contrast to the autonomous case,
where ¢(z) corresponds to the first excited state.
Consequently, with Eq. (7), we find the condition for the
transition

g%qu(co» co) —co =0, (20)

in which ¢ is determined by the self-consistency condition
(11) resulting in the transition curve (g.,oc.) in parameter
space [Fig. 3(b)]. This reveals the relationship between the
onset of chaos, the statistics of the random coupling matrix,
and the input amplitude.

From Eq. (20), it follows that the system becomes
chaotic precisely when the variance ¢, of a typical single
unit equals the variance of its recurrent input from the
network ¢?(¢*(x)). At the transition, the classical self-
consistent potential V(c;cg) has a horizontal tangent
at c¢q, while in the chaotic regime, a minimum emerges
[Fig. 1(d)]. With Eq. (7) it follows that the curvature ¢(0+)
of the autocorrelation function at zero changes sign from
positive to negative [Fig. 1(f)]. Close to the transition, a
standard perturbative approach shows that 4., is propor-
tional to ¢*(¢*(x)) — ¢, indicating a self-stabilizing effect:
Since both terms grow with g, the growth of their difference
is attenuated, explaining why A,,.,(g) bends down as the
transition is approached [Fig. 3(a)].
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In the autonomous case, the timescale of fluctuations
diverges at the transition to chaos [1]. Here, we consider the
effect of the input on the asymptotic decay time 7, of the
autocorrelation function [Fig. 3(c)]. For weak input ampli-
tude, the decay time peaks at the transition, corresponding
to the diverging timescale in the autonomous case. For
larger input amplitudes, the peak is strongly reduced, and
the maximum decay time is attained above the transition.

V. STATIC AND DYNAMIC SUPPRESSION
OF CHAOS

The condition (20) predicts the transition at significantly
larger coupling strengths than the necessary condition p =

gv/{[¢'(x)]?) > 1 [Fig 3(b)]. In this section, we show that
chaos suppression can be decomposed into a static and a
dynamic mechanism. We first consider the static effect,
which can be fully attributed to the increase of the variance
co caused by the additional input. Because ¢'(x) is
maximal at the origin, increasing the variance ¢, reduces
the averaged squared slope in ¢*{[¢'(x)]?) with x~
N(0,cp), thereby stabilizing the dynamics. The same
effect can be obtained if we replace the white-noise input
in Eq. (1) by a static (constant in time) heterogeneous input
.f,-%j "N(0,62), called quenched noise in the following. In
this case, the calculation of the saddle-point solution,
analogous to Sec. III, leads to the differential equation
(Appendix D)

¢=c—gf4lc.co) —od (21)

for the stationary autocorrelation function ¢(z).

A possible self-consistent solution of Eq. (21) is given by
a constant autocorrelation function c¢(z) = ¢, which
describes the variance ¢ of a heterogeneous fixed point
of the network dynamics in the presence of heterogeneous
static input. Such a fixed point loses stability when the
eigenvalue radius of the Jacobian matrix p = g/ {[¢'(x)]?)
evaluated at the fixed point exceeds unity. This determines
a critical coupling strength, which coincides with our
necessary condition. Hence, we denote its value by gc..

For g > gpee» @ decaying autocorrelation function c¢(z)
emerges which decays to a nonzero asymptotic value ¢
(Appendix D). The function can be constructed by again
writing Eq. (21) in the form of a classical equation of
motion in a potential: ¢ = —V/(c). The modified potential
Vq(cico) is given by Eq. (10) plus the additional linear
term aéc originating from the quenched noise. The asymp-
totic value requires Vy'(ce;co) =0, which we solve
together with classical energy conservation, V,(cq: o) =
Vq(cos co), to self-consistently determine the initial value
co [Fig. 4(a)]. By integrating Eq. (21), we obtain the
corresponding  self-consistent autocorrelation function
¢(7), which agrees with direct simulations [Fig. 4(b)].

FIG. 4. Effect of correlation time of the input on the transition to
chaos. The cases of white-noise, colored noise with 7, = 2, and
quenched input correspond to the curves shown in gray, blue, and
black, respectively. (a) Self-consistent variance ¢, depending on
the coupling g. At vanishing coupling, the inputs are chosen such
that ¢y = 6% = 0.25 is identical in all three cases of white,
colored, and quenched noise. Resulting dynamic contribution
Cp — C (dashed black curve) of the variance in the case of
quenched noise. (b) Self-consistent autocorrelation function (solid
curves) compared to simulations (crosses) for ¢ = 1.5. The ampli-
tude of colored and quenched noise is adjusted to obtain the same
variance (peak height) as for white noise. (c) Maximum Lyapunov
exponent as a function of ¢ for colored and quenched noise
measured in simulations (diamonds connected by lines) compared
to white noise (identical to Fig. 3(a) with 6 = 0.5). (d) Same as in
panel (c) but for identical variance ¢ for each value of g. Gray
curves correspond to the Lyapunov exponent (solid) and the upper
bound (dashed) from the white-noise case. The necessary condition
(18) is marked as a gray dotted vertical line in panels (c) and (d).

The Schrodinger equation for the Lyapunov exponent (17)
also holds in the case of quenched-noise input since the
explicit form of the noise term vanishes in the linearized
equation (16) (Appendix D). As in the case without
input [1], ¢(r) is an eigenfunction with a single node,
and therefore, the dynamics corresponding to a decaying
autocorrelation function must be chaotic; we hence con-
clude that the transition to chaos for quenched input occurs
at gnec» Which is confirmed by the numerically estimated
maximum Lyapunov exponent [Fig 4(c)].

In the following, we consider how the variance c
depends on g for the different cases of white- and
quenched-noise input. This is important because many
of the relevant quantities like the eigenvalue radius p
depend on cy. For g = 0, we have ¢, = o—é; 0, choosing
2 = o7 leads to the same variance ¢ as for the white-noise
input in Eq. (1). With increasing coupling strength g,
however, the variance c, grows significantly faster for
quenched-noise input [Fig. 4(a)]: The resulting internally
generated fluctuations are stronger in this case, which will
have important consequences for information-processing
capabilities as we investigate below in Sec. VIL.

O,
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To isolate the dynamic effect on the transition to chaos,
we need to keep the static effect identical for quenched- and
white-noise input. To maintain the same variance ¢, also for
nonzero couplings, we decrease the input variance aﬁ with
increasing g. Because the variance ¢, is now identical in
both cases, the eigenvalue radius is identical, too, as is the
minimum of the quantum mechanical potential in Eq. (17).

Comparing the Lyapunov exponents in the two cases
shows that the system with quenched input becomes
chaotic at a smaller coupling than the system with
white-noise input [Fig. 4(d)]. As expected, the point of
the transition coincides with the critical value g¢p..
Therefore, a dynamical regime between the loss of local
stability and the transition to chaos does not exist in the
case of quenched input.

The comparison between quenched- and white-noise
input demonstrates two points: First, the variability of the
input, be it static or dynamic, increases the variance c. It
therefore reduces the eigenvalue radius p and increases the
minimum of the quantum mechanical potential and thus
suppresses chaos by a purely static effect that is identical in
both cases. This mechanism corresponds to the one
observed for discrete-time dynamics [9,23]. Second, the
remaining difference between the Lyapunov exponents in
Fig. 4(d) for quenched input and white-noise input is a
dynamic effect caused by the temporal variations of the
input. It occurs for the continuous-time dynamics consid-
ered here and is also expected to appear in discrete-time
networks with leaky single-unit dynamics.

To gain some insight into this dynamic mechanism, we
return to the variational equation (19) describing the
evolution of infinitesimal perturbations. Its fundamental
solution can be written as a product of short-time propa-
gator matrices:

v =exp ([ 1430/ xs))ls ) 00)

t/h—1
=1im [][1 =+ rJ¢/ (x(1h))]y(0), (22)

where the matrix J¢'(x) has the entries (J¢'(x));; =
Jij¢' (x;). Here, each factor has the same stability properties
since the fraction of its eigenvalues with positive real parts
stays approximately constant. However, the corresponding
unstable directions may vary in time: They are determined
by the matrix J¢'(x(/h)) at the respective discretized time
point [A. The rate of this variation depends on the timescale
on which ¢’ (x(#)) varies, which for fixed ¢, is monoton-
ically related to the decay of the autocorrelation function
¢(7). We conjecture that a faster variation of the unstable
directions as indicated by a sharper autocorrelation function
decreases the growth of generic perturbations. If this
temporal variation is induced by time-varying input, it is

even possible that perturbations shrink despite the presence
of unstable directions at each point in time.

Is the dynamic mechanism also present for nonwhite
time-varying input? How does the timescale of the auto-
correlation function affect the transition? To answer these
questions, we investigate the case of colored Gaussian
noise inputs in the form of Ornstein-Uhlenbeck processes
with finite correlation time (Appendix D). This setting
constitutes an intermediate case between the two extremes
discussed above. Again, we keep the variance ¢, at the
same level as for white-noise input; hence, the static effect
is identical in all three cases. The Lyapunov exponent for
colored noise input lies between the two limiting cases
[Fig. 4(d)], and the dynamic effect is still present as the
transition to chaos occurs at a larger coupling strength
compared to the case of quenched input. Indeed, Fig. 4(d)
shows that for fixed ¢, the Lyapunov exponent decreases if
the input varies faster, which is in line with a sharper
autocorrelation function [Fig. 4(b)]. Note that for colored
noise input, the autocorrelation function does not exhibit a
kink at the origin, so this is not a prerequisite for the
dynamic effect.

We can also understand the dynamic effect on the basis
of the Schrodinger equation (17). As noted above, the form
of the input only implicitly appears by shaping the quantum
potential W(z) = =V"(c(z)) = 1 — ¢*f y(c(1). ¢p), where
c(7) is the self-consistent autocorrelation function in the
presence of the quenched or colored noise input. Increasing
the correlation time of the input while keeping the variance
co constant leads to a slower decay of the autocorrelation
function [Fig. 4(b)] and thereby to a wider quantum
potential with identical minimum W(0) because the latter
only depends on cj. Therefore, the ground-state energy
decreases, and the Lyapunov exponent increases. The sign
of the minimum also determines the local stability. So, for
both cases of time-varying noise, white noise and colored
noise, there is an offset between local stability and the
transition to chaos [Fig. 4(d)]; an intermediate regime
exists, and its extent decreases with increasing correlation
time of the input. The term shaping the quantum potential is
fu(e(z).co) = (@' (x(t + 7))¢'(x(2))), the autocorrelation
function of ¢'(x(¢)). This directly links the temporal
variation of ¢'(x(¢)) to the Lyapunov exponent and hence
to the growth of generic perturbations as conjectured above.

In low-dimensional systems, the suppression of chaos by
external fluctuations is understood: Noise forces the system
to visit regions of the phase space with locally contracting
dynamics more frequently [24], so contraction dominates
expansion, in total yielding stable asymptotic behavior.
This mechanism is similar to the static stabilization
effect described above, where fluctuating drive causes
the system to sample regions of the phase space with
smaller eigenvalues of the Jacobian. The self-averaging
high-dimensional system, however, has a constant eigen-
value radius over time, and hence, the dynamics is either
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locally contracting or locally expanding for all times. While
the previous effects are explained by local stability, the
dynamic suppression of chaos found here is a genuinely
time-dependent mechanism, explained by the time evolu-
tion of the Jacobian in Eq. (22).

VI. NONVANISHING MEAN COUPLING AND
NON-NEGATIVE TRANSFER FUNCTIONS

The random coupling weights J;; with vanishing mean
and the odd transfer function ¢(x) = tanh(x) in Eq. (1) are
certainly not biologically realistic. We considered this case
before to explain the mechanism of chaos suppression by
fluctuating drive in the simplest setting; it allowed us to
directly compare our findings to the classical results by
Sompolinsky et al. [1]. In this section, we extend our
analysis to the biologically more realistic case of random
networks with nonvanishing mean coupling and with non-
negative transfer functions.

A. Rectified-linear transfer function

We first examine the rectified-linear transfer function
¢(x) = max(x,0), for which the transition to chaos has
been investigated recently [20,42,43]. However, the effect
of time-varying input in these networks has not been
studied yet. We consider Gaussian-distributed coupling

weights J ,-jl'bd "N (3/N,g*/N) or the sparse connectivity of
a directed Erd6s-Rényi random network with connection
probability p and nonzero weight J,/+/N. Both cases lead
to the same mean-field equations by identifying the
parameters for the mean as § = \/NJ, and the variance
as ¢> =Jip(1 —p) (shown in Appendix E; see also
Ref. [42]). The resulting equation for the autocorrela-
tion function ¢(z) is identical to Eq. (7), but with
S (o) (€0, ¢(7)): We need to displace the transfer func-
tion by the nonzero mean of x as ¢(o + (x)). The additional
equation for the mean reads

() = gl =7 / Dip((x) + D), (23)

where Dz is again the standard Gaussian measure.

In structure, these equations resemble those that arise in
the Sherrington-Kirkpatrick spin-glass model [see
Egs. (2.17) and (2.18) in Ref. [47] ], which is not surprising
given that the physical problems are related and a similar
mean-field approximation of the auxiliary fields has been
employed. Importantly, Cy\p(x)(7) = fporx)) (o, (7))
approaches a nonzero asymptotic value for 7 — o
(Appendix E). It reflects the variability of the average
input across neurons in the network that arises from the
variability of the incoming connections and the nonzero
mean activity of each neuron. Qualitatively, it is the same
as the addition of a quenched noise with variance

07 = 9*Cy(v)p(x)(0), which we have studied above
(Sec. V). Correspondingly, the autocorrelation function
c¢(7) also approaches a nonzero asymptotic value c.,; we
determine it simultaneously with the variance ¢, and the
mean (x) by self-consistently solving Eq. (23) together with
the condition for the asymptotic value V'(cy;cy) = 0 and
energy conservation (11). These statistics are in excellent
agreement with direct simulations [inset in Fig 5(a)].

We now consider the effect of the nonvanishing mean
coupling on the transition to chaos. The variability in the
average input across neurons, as reflected by ¢, > 0, leads
to an additional static contribution to the suppression of
chaos as in the quenched-noise case treated in Sec. V. Does
the dynamic suppression of chaos, as well as the inter-
mediate regime between local instability and the transition
to chaos, persist in this setting? The replica calculation
proceeds completely analogously to the case of Gaussian-
distributed couplings with vanishing mean (Appendix F).
The result is a pair of effective equations of the form

(% + 1>X“<r) = gp(x*(1)) + &) + (1), (24)

a € {1,2}, together with a set of self-consistency equations
for the correlations of the noises 7%(z),

(O’ (5)) = {p(x*(1)p(F(s))). (25

Compared to Eq. (14), the only difference is the term
g{p(x%)) in Eq. (24), which represents the nonzero mean
input from the network. Importantly, the additional term

FIG. 5. Transition to chaos for nonvanishing mean coupling
and more realistic transfer functions. (a) Rectified-linear transfer
function ¢(x) = max(x,0): Maximum Lyapunov exponent as a
function of g measured in simulations (diamonds connected by
lines), transition criterion (20) (red vertical line), and necessary
condition (18) (gray vertical line) for g = —1 and 6 = 0.5. The
inset shows the autocorrelation function in simulations (solid
curve) and ¢, ¢, (diamonds) from the self-consistent solution for
g=1.5. (b) Leaky integrate-and-fire neuron transfer function:
Maximum Lyapunov exponent (solid curve) and eigenvalue
radius p minus one (dashed curve) as a function of g for the
autonomous (black) and driven cases (gray). The network size is
N = 1000, and g € [-0.05,—-30] varies linearly with g. Other
parameters are Jo, = 0.1, e = 600 Hz, and ¢ = 7.1. Param-
eters of the transfer function (for definitions, see, e.g., Eq. (27) in
Ref. [48]) are as follows: 7,, = 20 ms, synaptic time constant
7, = 1 ms, threshold 8 = 1, reset V. = 0, and refractory period
7, = 2 ms. Simulations were carried out with NEST [49].
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does not introduce a coupling between the two replicas and
therefore does not directly affect their correlation. It is
determined independently for each replicon by a separate
self-consistency equation of the form (23). Therefore, the
mean coupling enters the calculation of the maximum
Lyapunov exponent only indirectly by shaping the auto-
correlation function: the shift of the transfer function
¢(o+ (x)) in Eq. (7) and the nonzero asymptotic value
Cs- Furthermore, the same transition criterion (20) still
applies; this prediction is confirmed by direct simulations
in Fig. 5(a). As a consequence, the dynamic mechanism of
chaos suppression is identical to the case of coupling with
vanishing mean, and the locally unstable but globally stable
regime emerges [Fig. 5(a)].

B. Leaky integrate-and-fire neuron transfer function

Here, we demonstrate that the mechanism of dynamic
chaos suppression is also present in random networks of
biologically more realistic neuron models. To this end, we
consider a nonlinear rate model [43,50]:

dv.
% =—v; + (. 0,), (26)

with
Hi = Tmzjijl/j + T extbext + Si(1),

J
2 _ 2 2
07 = Ty E Jivi + tmd extVext-
J

The transfer function ¢ in Eq. (26) is the firing rate function
of the leaky integrate-and-fire (LIF) neuron model with
synaptic filtering [51]. Each v; can be interpreted as the
instantaneous firing rate of a LIF neuron (or an uncoupled
population thereof), and Eq. (26) represents the rate
dynamics of a random network of such neurons. More
precisely, the firing rate response of these neurons is
approximated by a first-order low-pass characteristic,
qualitatively capturing the dominant behavior [52,53].

As above, the coupling weights are Gaussian distri-

buted, J; j“A'fl N (g/N,g?/N). We also include a time-
homogeneous external input to the neurons with firing
rate v, and weight J., since this is usually present in
biological networks. Here, 7, is the membrane time
constant of the corresponding LIF neurons, and it sets
the scale of the firing rates.

Our goal is to study the effect of the external time-
varying drive &;(¢) on the transition to chaos; it models an
additional fluctuating input driving the membrane potential
of the corresponding LIF neurons and therefore contributes
to u; in Eq. (26). The Gaussian white-noise input in Eq. (1)
is low-pass filtered before it enters the nonlinear transfer
function. Consequently, for &;(f), we use independent

Gaussian colored noise with correlation time 7, = 1 and
standard deviation o.

Using simulations, we show that both the transition to
chaos and the dynamic suppression of chaos exist in these
networks [Fig. 5(b)]. To assess the local linear stability, we
simulate Eq. (26) and determine the eigenvalue radius p by
numerically evaluating the eigenvalues of the Jacobian
matrix (0¢;/0v;) [Eqgs. (A.2) and (A.3) in Ref. [54] ]. The
eigenvalue radius p minus one and the maximum Lyapunov
exponent 4., both become positive when the variability of
the couplings g is increased [Fig. 5(b)]. To keep the transfer
function from complete saturation, and thus the rates of the
neurons in their dynamical range, we balance the increase
in g by a more negative mean coupling strength g. For an
autonomous network, i.e., for &; = 0, the transition to chaos
precisely coincides with the local linear instability. Below
the transition, the Lyapunov exponent 4,,,, equals p — 1 as
expected for a dynamical system at a stable fixed point. For
the driven, nonautonomous case, however, a dynamical
regime emerges where the eigenvalue radius p exceeds
unity, while the Lyapunov exponent 4, is still negative.
Hence, the mechanism of dynamic chaos suppression also
persists in this more realistic setup.

VII. INFORMATION-PROCESSING
CAPABILITIES

We expect the expansive, nonchaotic regime to be
beneficial for information processing: The local instability
of the network ensures sufficient initial amplification of an
impinging external signal. The asymptotic stability is
required for the driving signal to be uncorrupted by the
amplification of small variations of the input; it is hence
necessary to ensure generalization. In the following, we
investigate these ideas quantitatively by considering the
sequential memory capacity of the network.

We focus on the component z(r) = 1/N Y ¥ | &(t) of
the input that is received by all neurons with equal strength.
In other words, the total input to each neuron is decom-
posed into the signal z(f) and the remaining inputs
&i(1) — z(t), which act as noise. In Appendix G, we treat
the more general case of signals given by an arbitrary linear
combination of the inputs. We consider the dynamic short-
term or sequential memory defined as the capacity to
reconstruct the signal z(¢z) from the network state at a
later time 7 + 7 using a linear readout, Y X, wx;(1 + 7),
where K <N is the number of readout neurons. The
reconstruction capacity as a function of the time lag 7
yields the memory curve m(z) = 1 — ¢(z) [33], where ¢(7)
is the minimal relative mean-squared error between readout
and signal. Alternatively, this measure quantifies the
fidelity by which a sequence of past inputs can be
reconstructed from the current network activity.

For optimal readout weights w; that minimize e(z), the
memory curve is given by [33,55]
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_ x4 o)z(0) e (@x() ) (4 1)2(0))
m(z) = 200 . (27)

Here, the vector x(f) contains only the states of the K
readout neurons. We follow the approach by Toyoizumi
and Abbott [9] and neglect the off-diagonal entries in
(xxT), which is justifiable for a sparse readout with K < N.
Additionally, for large N, the diagonal entries (x?) are
given by their mean-field value ¢, which is identical for all
units. Determining the memory curve (27) then amounts
to computing the sum of squared correlation functions
Silxi(t 4+ 7)z(1))* between the signal and the network
activity, which we obtain by a replica calculation
(Appendix G). The technique to perform a replica calcu-
lation, as it is known from disordered systems [34], is
closely tied to the field-theoretical formulation chosen here.
The key idea is to express the correlation functions (x;z) as
a sum of response functions (x;%;); this is possible because
z is Gaussian distributed. The calculation is similar to the
derivation of the Schrodinger equation (Appendix C) with
the difference, however, that the two replicas receive
independent realizations of the inputs. The memory curve
follows from a differential equation for the correlation
between the two systems and is measured in units of the
readout ratio K/N (G22):

m(z) = zcioe-zfzo[zg<¢/<x>>ﬂ®<r>dr, (28)

with the modified Bessel function of the first kind /, and
the Heaviside step function ®(z). The memory curve has
two contributions (G22): memory due to the collective
network dynamics and local memory due to the leaky
integration of the single units. The latter effect is trivial
and is reflected in the initial steep falloff as exp(—2z) of
the memory curves with time lag 7z, independent of the
coupling strength [Fig. 6(a)]. Its decay time is half the
time constant of the neurons, which is set to unity in
Eq. (1). With increasing coupling strength, the variance ¢,
increases, so the memory curve (28) decreases at zero time
lag. For time lags that are large compared to the single-unit
time constant, the network contribution to the memory
dominates. A nonvanishing memory capacity for longer
time lags is therefore only the result of the reverberation of
the input through the network interaction. The analytical
results are in excellent agreement with direct simulations
[Figs. 6(a) and 6(b)].

We isolate the interesting network memory by sub-
tracting the single-unit contribution:

O
Mper(7) = m(7) = —e 2 0(7)dr. (29)

Co
This quantity is particularly important in situations where
the readout does not have access to the neurons receiving
the signal. The network memory curve vanishes for the

(a) (c) — =20
— =40
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FIG. 6. Sequential memory. Mean-field prediction (solid
curves) and simulation results (crosses). (a) Memory (28) as a
function of time lag 7 between signal and readout for different
coupling strengths encoded in color [legend in panel (b)] for o =
1 and additionally for colored background noise with z,, = 2 for
g=2.4 and o =1 (blue). (b) Corresponding network contribu-
tion (29) to memory. (c) Upper part of vertical axis: Memory at
different time lags 7 as a function of coupling strength g. Network
contribution to memory shown as dashed thick light-gray curves,
which coincide with total memory curves for z > 4. The vertical
gray line marks local instability (18), and the vertical red line
marks the transition to chaos [cf. Fig. 3(b)]. Lower part of vertical
axis: Memory capacity M (black), Eq. (30), and network
contribution to memory capacity, M, (red).

uncoupled case. We compare the performance at two
different coupling strengths: defined by p =

gnec’
InecV {[@'(x)]?) =1 and corresponding to the onset of
the local instability, and g,.., marking the onset of chaos [see
Fig. 3(b)]. For short time lags, here for 7 < 4, the network
memory curve is larger for g,.., while for longer time lags,
it is larger for g. because of a slower decay of the memory
curve. This behavior is confirmed by the memory curve as a
function of g, shown for different time lags [Fig. 6(c), upper
panel]. For 7 > 4, the memory capacity m is entirely given
by m,e, which is in line with the fast decay of the single-
unit contribution. Moreover, while for small time lags the
memory is maximal around g,.., for larger time lags it
peaks near ¢, indicating that the intermediate, expansive,
nonchaotic regime supports storage of the input.

The total memory capacity is defined as the integral over
the memory curve:

<) 02 1 62
R b v e e

where the result follows directly from the Laplace trans-
form of the Bessel function. Here, 7, is the asymptotic
decay time constant of the autocorrelation function, as
defined above. Correspondingly, the total network memory
capacity is defined as M= [my=M—0>/c,. Usually,
the memory capacity is bounded by the number of neurons

(30)
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N [33,55]. The signal z in our situation, however, can be
seen as one out of N independent inputs, and m(z) is its
corresponding memory curve. The expressions are there-
fore independent of N [56], and the memory capacity
satisfies M < 1. While the memory capacity decreases in
the chaotic regime, the network memory peaks within the
expansive, nonchaotic regime [Fig. 6(b), lower panel].
So far, we have considered the memory capacity at a
fixed amplitude o of the input. In the following, we
investigate the memory capacity over the whole phase
diagram. The total memory capacity shows a steep falloff
directly above the onset of chaos [Fig. 7(a)]. This is
expected because the variance ¢ increases as the network
dynamics becomes more chaotic. The contour lines of the
memory capacity are nearly parallel to the transition
criterion, the curve with a vanishing Lyapunov exponent.
This observation closely links the transition to chaos to the
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FIG. 7. Memory capacity in different phases of the network

dynamics. (a) Total memory capacity (30) encoded in color. We
show the transition curve (20) between regular and chaotic
dynamics (red) and the necessary condition (18) of local
instability (gray) as in Fig. 3. Contour lines of memory are
shown in black. (b) Same as panel (a) for the network contri-
bution to memory capacity. Panels (c) and (d) are the same as
panels (a) and (b) but for quenched background noise. (e) Self-
consistent ¢, (dashed curve) and g(¢’) (solid curve) for white-
noise input (red) and quenched-noise input (blue) for
o, =0 =0.5. (f) Network contribution to memory capacity

q
M ., for white-noise input (red) and quenched-noise input (blue).

memory capacity: The direction in the phase diagram in
which the system most quickly enters the chaotic regime is
accompanied by the steepest decline of memory. The
contour lines of the network memory capacity show a
ridge running through the expansive, nonchaotic regime
[Fig. 7(b)] confirming the results found above: The
memory is optimal in the dynamical regime of local
instability and asymptotic stability. Moreover, the network
capacity has a substantial contribution to the total memory
capacity of about 50%.

The optimal network memory in the hitherto unreported
regime between ¢,.. and g. can be understood in an
intuitive manner. Two conditions must be met for good
memory. First, individual units must be susceptible to the
signal; the susceptibility equals the noise-averaged slope
(¢'(x)) of the transfer function. Second, the signal must
propagate effectively through the network, requiring a
sufficiently strong coupling g. These two requirements
are reflected in the monotonic increase of the memory
curve (28) with the effective slope g{(¢'), independent of the
time lag z. Increasing the coupling strength g, however,
elevates internally generated fluctuations as well. The
corresponding increase of the variance ¢ [Fig. 7(e)] has
a twofold effect on the memory capacity. First, it decreases
(@), s0 g{¢') assumes a maximum [Fig. 7(e)], which is also
reflected by the maximum of the decay time 7, of the
autocorrelation function [Fig. 3(c)]. Second, it reduces the
signal-to-noise ratio of the readout, the prefactor 6°/c, in
Eqgs. (28) and (30). The interplay of these two effects
determines the location of the optimal memory within the
phase diagram.

To further relate optimal memory to the dynamical
behavior and to demonstrate the robustness of our results,
we close this section by considering colored background
noise with correlation time 7, as in Sec. V. So far, the
memory task was to reconstruct a white-noise signal z(¢)
on the background of the remaining white-noise inputs
&i(t) — z(r). Since a signal with temporal correlations
contains memory on its own, we keep the signal z(¢) as
a white noise with amplitude 262 /N, while the independent
colored Gaussian background inputs &;(¢) with autocorre-
lation function (D1) act as noise. This setup allows a direct
comparison of the memory capacity in the driven network
to the case of white background noise. In the uncoupled
network, g = 0, the colored background inputs lead to a
variance ¢, = ¢* that is independent of the correlation time
7,; the variance then increases with g (see Sec. V). Hence,
the input signal-to-noise ratio is 1/N, and the variance c is
predominantly determined by the background.

We find that the analytically derived memory curves (28)
and (29) also hold for colored background noise because
the autocorrelation function of the background does not
enter the derivation of Eq. (G12). This finding is confirmed
by simulations [Fig. 6(a)]. Indeed, the correlations of the
background noise affect the memory only by changing the
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variance c¢q. The qualitative behavior can be understood by
comparing the peaks of the network memory within the
phase diagrams for the two limiting cases of quenched and
white-noise background input (Fig. 7).

For quenched background input, the network memory
capacity peaks below the transition to local instability,
which in this case also marks the transition to chaos
[Fig. 7(c)]. To understand the emergence of the peak,
we plot the decisive quantities ¢, and g(¢’) as a function of
gin Fig. 7(e); the corresponding network memory is shown
in Fig. 7(f). The peak emerges at the point where g{¢’)
begins to saturate, while the variance ¢ increases signifi-
cantly. Now, compare this to the case of white-noise input:
A corresponding increase of ¢, takes place only at larger
values of g, and thus g(¢’') assumes higher values. The
latter effect combined with the appearance of ¢, in the
denominator of the memory leads to a substantial increase
in the peak height as well as a shift of the maximum to
higher coupling values [Fig. 7(f)]. Furthermore, the
decrease in c(, by Eq. (18), shifts the line of local instability
to lower values of g [compare Fig. 7(b) and 7(d)]. In
combination, these effects switch the relative positions of
the local stability line and the peak of the memory when
going from quenched to white noise. Finally, due to the
dynamic chaos suppression, the transition to chaos is
located at even higher values of g, so the optimal memory
is located in the expansive, nonchaotic regime.

VIII. DISCUSSION

Here, we present a completely solvable random network
model that allows us to investigate the effect of time-
varying input on the transition to chaos and information-
processing capabilities. Adding time-varying stochastic
drive to the seminal model by Sompolinsky et al. [1]
yields a stochastic continuous-time dynamical system.
Contrary to the original model [1], here we reformulate
the stochastic differential equations as a field theory
[25-28]. This formal step allows us to develop the dynamic
mean-field theory by standard tools: a saddle-point
approximation of the auxiliary-field generating functional
[17,30,36]. As in the original model, this procedure reduces
the interacting system to the dynamics of a single unit. The
self-consistent solution of the effective equation yields a
standard physics problem: The autocorrelation function of
a typical unit is given by the motion of a classical particle in
a potential. We find that the amplitude of the input
corresponds to the initial kinetic energy of the particle.

Using the field-theoretical formulation, we then perform
a replica calculation to determine the maximum Lyapunov
exponent; the problem formally reduces to finding the
ground-state energy of a single-particle quantum mechani-
cal problem. The transition to chaos appears at the point
where the ground-state energy changes sign, which allows
us to obtain a closed-form condition relating the coupling
strength and the input amplitude at the transition. We find a

simple hallmark of the transition in the single-unit activity:
At the transition point, the variance of the recurrent input to
a single unit equals the variance of its own activity.
Correspondingly, the autocorrelation function at zero time
lag changes its curvature from convex to concave at the
transition point. These features can readily be measured in
most physical systems. The assessment of chaos by these
passive observations, in particular, does not require a
perturbation of the system.

The transition criterion allows us to map out the phase
diagram spanned by the coupling strength and the input
amplitude. It shows that stochastic drive shifts the transition
to chaos to significantly larger coupling strengths than
predicted by time-local linear stability analysis. The tran-
sition in the stochastic system is thus qualitatively different
from the transition in the autonomous system, where loss of
local stability and transition to chaos are equivalent [1,21].
The discrepancy of these two measures in the driven system
is explained by a dynamic effect: The decrease of the
maximum Lyapunov exponent is related to the sharpening
of the autocorrelation function by the stochastic input. The
displacement between local instability and transition to
chaos leads to an intermediate regime that is absent in
discrete-time networks of nonleaky units [23]. This hitherto
unreported dynamical regime combines locally expansive
dynamics with asymptotic stability.

The seminal works [1,21] have established a tight
link between the fields of random matrix theory and
autonomous neural networks with random couplings:
Deterministic chaos emerges if the spectral radius of the
coupling matrix exceeds unity. In contrast, we find in
stochastically driven networks that the spectral radius only
yields a necessary condition for a positive Lyapunov
exponent; it determines the minimum of the quantum
mechanical potential whose ground-state energy relates
to the Lyapunov exponent. The presented closed-form
relation between input strength, the statistics of the random
matrix, and the onset of chaos, Eq. (20), generalizes the
well-known link to nonautonomous stochastic dynamics.

It is controversially discussed whether the instability of
deterministic rate dynamics explains a transition to chaos in
networks of spiking neurons [57-59]. It was argued that
such a transition is absent in spiking models because the
correlation time does not peak at the point where the
corresponding deterministic rate dynamics becomes unsta-
ble [43,58,59]. For the analysis of oscillations [60] and
correlations [54,61] in these networks, the irregular spiking
activity of the neurons can be approximated by effective
stochastic rate equations, whereby the realization of the
spikes is represented by an explicit source of noise. In this
setting, the white-noise input in Eq. (1) can be interpreted
as such spiking noise, explicitly investigated in Ref. [42].
For weak noise, one may neglect its impact on the location
of the transition. In this limit, noise suppresses the
divergence of the correlation time [42]. Moreover, the
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authors obtained scaling laws for the decay time and
amplitude of the autocorrelation, indicative of a second-
order phase transition. Our work is not bound to small noise
amplitudes, and it suggests that a diverging timescale in
spiking networks does not occur at the instability for two
reasons. First, we have shown that, in a stochastic system,
the transition to chaos is not predicted by local instability. If
a diverging timescale at the transition existed, it would not
occur at the instability but at a larger coupling strength.
But the presented analysis shows that the decay time of the
autocorrelation function does not even peak at the transition
to chaos but rather in the chaotic regime. While these
results strictly only hold for the rate dynamics considered
here, they still strongly suggest the absence of a diverging
timescale in networks of spiking neurons. Indeed, the
absence of a diverging timescale has been observed in
the simulation of spiking neurons [58] as well as in an
iterative approach solving for the self-consistent autocor-
relation function [62,63].

A complementary view on the transition to chaos in
autonomous systems has been given by Wainrib and
Touboul [64], showing that the number of fixed points of
the dynamics, the topological complexity of the system,
diverges at the transition in tight relation to the Lyapunov
exponent, which measures the dynamical complexity. It is
intriguing to ask how this view extends to the stochastic
systems considered here. Investigating topological features
of the fixed points of the effective action instead of the fixed
points of the actual action may allow for addressing this
question, drawing on the analogy between stochastic sys-
tems and their effective deterministic counterparts, which is
exposed by the field-theoretical formulation presented here.

To assess whether this richer dynamics found in the
driven network has functional consequences, we investigate
sequential memory [33]. The obtained closed-form expres-
sion for the network memory capacity exhibits a peak within
the expansive, nonchaotic regime. We identify two mech-
anisms whose partly antagonistic interplay causes optimal
memory: local amplification of the stimulus and intrinsically
generated noise. Local instability of the network ensures
sensitivity to the external input, so on short timescales, the
incoming signal is amplified and can therefore be read out
more reliably. But larger coupling also increases network-
intrinsic fluctuations, which, in turn, reduce the susceptibil-
ity as well as the signal-to-noise ratio of the readout.
Therefore, it is plausible that the optimal memory appears
at a point where local amplification of the external input is
large enough, but intrinsic chaoticity is still limited.

Sequential memory has been studied in a discrete-time
neural network model [9], which receives a single, weak,
external input. In contrast, here we investigate the memory
of a single signal in the presence of multiple simultaneous
inputs with arbitrary amplitude . Without additional
observation noise, Toyoizumi and Abbott [9] find that
sequential memory does not possess a maximum; it is

constant and optimal for subcritical coupling values 0 <
g <1 and falls off in the chaotic regime ¢g > 1 due to
intrinsically generated fluctuations. Perfect reconstruction
in the nonchaotic regime is possible because the one-step
delayed activity is a direct linear function of the input. In our
setting, the single neuron memory has a similar effect
[Fig. 7(a)]. In the discrete-time system without additional
input noise, optimal memory close to the transition arises
only in the presence of observation noise [9]. In the chaotic
phase, memory falls off more slowly than in the direction of
regular dynamics, so fine-tuning is not needed if the network
dynamics is slightly chaotic. The authors mention that the
situation changes qualitatively in the presence of a small
additional noise in the input: The signal-to-noise ratio then
stays finite and peaks slightly below the transition to chaos.

In the continuous-time model studied here, we do not
consider observation noise, but the remaining inputs act in a
similar manner as the input noise mentioned in Ref. [9].
The network component of the memory or, equivalently,
the memory for longer delay times 7, also shows non-
monotonic behavior. For small signal amplitude o, our
analytical results show that memory is optimal right
below the transition to chaos and steeply falls off above
[Fig. 7(b)]; this is in line with the observation in the
discrete-time setting with input noise [9]. For larger o, the
falloff is weaker in the chaotic regime, qualitatively more
similar to the situation with observation noise.

A negative maximum Lyapunov exponent for nonau-
tonomous dynamics indicates the echo state property, the
reliability of the network response to input [65]. We could
indeed show, for the analytically tractable model here, that
memory capacity quickly declines in the chaotic regime
due to intrinsically generated chaotic fluctuations. Echo
state networks show long temporal memory near the edge
of chaos [66-69]. Typically, these networks operate in
discrete time, and thus, the onset of chaos is directly linked
to the spectral radius of the Jacobian. This relation is used
in the design of these systems, exploiting the fact that a
spectral radius close to local instability ensures long
memory times. Here, we show, for the driven and con-
tinuous-time system, that the edge of chaos and local
instability are two different concepts and that memory
capacity is a third, distinct measure: Memory is not optimal
at either of the two other criteria but rather in between. In
particular, our analytical results for the memory capacity
can be used to determine the optimal coupling strength for a
given input amplitude.

The finding that the edge of chaos does not necessarily
coincide with the optimality of the measures of computa-
tion, as reported here, qualitatively alters the edge-of-chaos
hypothesis leading to implications for methods that tune
networks towards the edge of criticality with the goal to
optimize performance [70]: The fundamental assumption
of an equivalence of these a priori different measures is
true for some discrete-time network dynamics [9]. But it
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certainly fails for nonautonomous networks operating in
continuous time, as we show here. Moreover, the diver-
gence of the timescale of the autocorrelation function in
the autonomous setting [Fig. 3(c)] is indicative of critical
slowing down [71] and could therefore point to a continu-
ous phase transition. This phenomenon, however, vanishes
in the nonautonomous case; the nature of the transition may
hence be different. The presence of a continuous phase
transition is an often-made second assumption to identify
optimal network parameters [70,72].

Recently, an algorithm was proposed to train a random
network as given by Eq. (1) to produce a wide range of
activity patterns [8]. Such learning shows the best perfor-
mance if the random network without input is initially in
the chaotic state. It has been argued that such networks
have a large dynamic range and are able to produce a wide
variety of outputs. In the training phase, the input to the
network needs to suppress chaos so that learning con-
verges. The procedure therefore requires the choice of an
initial coupling that is large enough to ensure chaos but not
too large so that the input can suppress chaos. Our
quantitative criterion for the transition easily enables a
proper choice of parameters and facilitates the design,
control, and understanding of functional networks.

In this work, we have considered the memory of the
input signal. An important task of the brain, however, is not
only to maintain the input but also to perform nonlinear
transformations on it. We expect the locally unstable but
globally stable dynamics to be beneficial for such a task:
The expansive behavior can project the input into a high-
dimensional space, which is crucial for nonlinear compu-
tations or discrimination tasks [67]. Thus, this dynamical
regime not only provides memory but might serve as a basis
for more complex computations.

To show the generic effect of input, we added a time-
varying drive to the seminal model by Sompolinsky et al.
[1]. Even though the original model makes some simplify-
ing assumptions, such as the all-to-all Gaussian connec-
tivity and a sigmoidal odd transfer function, the transition
to chaos is qualitatively the same as in networks with
biologically more realistic parameters [20,42,43]. To focus
on the new physics arising in nonautonomous systems,
here we start from the simplest but nontrivial and yet
application-relevant model. Subsequently, we show that the
mechanism is robust with regard to more realistic con-
nectivity with nonvanishing mean and also for non-negative
transfer functions, as they arise, for example, in rate model
abstractions of spiking neurons. Preliminary results indi-
cate that the same mechanism also persists in networks of
populations of spiking neurons. Here, however, a suitable
definition of rate chaos still needs to be found for a more
quantitative advancement.

Our work predicts that time-varying input to the network
modulates the distance to the transition to chaos, and it
elucidates the corresponding mechanisms that control the

transition. Consequently, we expect that the ongoing dynam-
ics moves further away from the transition to chaos in periods
in which the fluctuating drive to a network is elevated, thus
potentially altering the processing capabilities along with the
dimensionality of the intrinsic dynamics [73].

The reformulated derivation of the dynamic mean-field
theory using established methods from field theory
[17,30,36,41,74] here allows us to find the explicit form
of sequential memory by a replica calculation. In general,
the presented formulation opens the study of recurrent
neural networks to the rich and powerful set of field-
theoretical methods developed in other branches of physics.
This language leads to straightforward extension of our
results in various directions. Among these directions are
more biologically realistic settings, such as sparse con-
nectivity respecting Dale’s law [75] or multiple popula-
tions. The over-representation of bidirectional connections
[76] can also be treated in this framework [77]. The
extension to multiple populations would enable the study
of the interesting case in which the population receiving the
signal is separated from the readout population. Such a
situation would most likely emerge in the cortex, where the
input population of local microcircuits typically differs
from the output population.

More generally, the stability of complex dynamical
systems plays an important role in various other fields of
physics, biology, and technology. Examples include oscil-
lator networks [78], disordered soft-spin models [16],
power grids [79], food webs [80], and gene-regulatory
networks [81]. Presenting exact results for a prototypical
and solvable model, this work contributes to the under-
standing of chaos and signal propagation in such high-
dimensional systems.
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APPENDIX A: DERIVATION OF
MEAN-FIELD EQUATION

The generating functional Z[1](J) in Eq. (2) is properly
normalized independent of the realization of J. This
property allows us to follow Ref. [28] and to introduce
the disorder-averaged generating functional
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2= W)= [ yan (050, ) 2. (A

The coupling term exp ( — ZZ#JUJQT (x;)) in Eq. (2) over
unit indices i, j, and the random weights J;; appear linear
in the exponent. Thus, we can separately integrate over the
independently and identically distributed J;;, i # j, by
completing the square, and we obtain

/dJi,N<ofv2 J,,) exp (= J, ¥ (x,)
~ exp (f—N (1057 (A2)

We reorganize the resulting sum in the exponent of the
coupling term as

% 2 ( / )”c,»(t)qb(xj(t))dt)Q

S ] st ot
:%Z // % (0%( ( Z¢<x Db ( >)>drdr’
Z JEC: T30 ()t

(A3)
where we used ( [ f(t)dr)* = [[f(1)f(¢')drdt in the first
step and ), x;y; = > _,x; ) ;y; in the second. The last line
is the diagonal (self-coupling) to be skipped in the double
sum. It is a correction of order N~! and will be neglected in

the following. The disorder-averaged generating functional
(A1) therefore takes the form

1
:/Dx/Diexp(So[x,i]—l—lTx —I—Ef(TQli),

(A4)

where we extend our notation with x"Ay = [[x(1)A(t, 7')x
y(¢')dtdt to bilinear forms and define

Zcb(x Db (x;()). (AS)

The field Q; is an empirical average over N contributions,
which, by the law of large numbers and in the case of
weak correlations, will converge to its expectation value
for large N. This heuristic argument is validated in the
following more formally: A saddle-point approximation
leads to the replacement of Q; by its (self-consistent)

expectation value. To this end, we first decouple the
interaction term by inserting the Fourier representation
of the Dirac delta functional:

5|~ 01(1,5) + p(x(1)TH(x(5))
g

- / Dgzexm—;Q$Q2+¢<x>TQ2¢<x>), (A6)

where we further extend our notation with
QTQZ J[Q1(2,5)0x(t, s)dtds and p(x(1)) p(x(s)) =

N @(xi(1))p(x;(s)). We note that the conjugate field
0, is purely imaginary. We hence rewrite Eq. (A4) as

Z[j. ]l Z/DQ1/DQ2
N ¢
X exp —?QIQQ—I—NIHQ[Ql,Qz]

+770, + jTQz) ,

Q[0,. 0s] = /m/m

X exp (So[x, X+ %XTQJC + ¢(X)TQ2¢(X)> ;
(A7)

where we introduce source terms j, j for the auxiliary fields
and drop the original source terms 1"x. The integral measures
DQ, , must be defined suitably. By writing N In Q[Q, O-],
we use the fact that the auxiliary fields couple only to sums of
fields >_, ¢*(x;) and }_; ¥2, so the generating functional for
the fields x and X factorizes into a product of N identical
factors Q[Q, 0,).

The remaining problem can be considered as a field
theory for the auxiliary fields Q; and Q,. The form (A7)
clearly exposes the N dependence of the action for these
latter fields: It is of the form [ dQ exp (Nf(Q)), which, for
large N, suggests a saddle-point approximation. This
approximation neglects fluctuations in the auxiliary fields
and hence sets them equal to their expectation value; this
point is the dominant contribution to the probability mass.
To obtain the saddle-point equations, we consider the
Legendre-Fenchel transform of In Z as
—InZ[j. jI},

=sup{;’q +7"q (A8)

JoJ

Clgy. 5]

which is called the vertex-generating functional or effective
action [37,82]. It holds that 6I'/6g, = j and ' /6q, = ],
the so-called equations of state. The leading-order
mean-field or tree-level approximation amounts to the
approximation I'[g;, ¢»] =~ —S[q., ¢»], where S[Q;, 0,] =
—(N/?)0T0, + NInQ[Q,, Q,] is the action for the
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auxiliary fields Q; and Q,. We insert this tree-level
approximation into the equations of state and further set
j = J = 0since the source fields have no physical meaning
and thus must vanish. We get the saddle-point equations

0= 5S[Q17 QZ]
60112
1)

= _Nor
_5Q{1’2}< ng1Q2+N1ng[Ql,Qz}>, (A9)

from which we obtain a pair of equations

Eég[le Q2]
Q (st([,S) 0"

< Qi(t.s) = g p(x(1)¢(x(5))) o = F*Coppp( (1. 9)

N
0= —?QT(I‘,S) +

N ey g s NEQU01L 0]
0=~ S G509 |
2
< 03(1.5) = T ((0x(s))g- =0, (A10)

where we define the average autocorrelation function
Cyx)p(x) (2, s) of the nonlinearly transformed activity of
the units. The second saddle point Q3 =0 vanishes
because the field was introduced to represent a Dirac delta
constraint in the Fourier domain. One can show that,
consequently, [DQexp(S[Q;,0,])Q> =0, which is the
true mean value Q3 = (Q,) = 0.

Here, (o) - denotes the expectation value with respect to
realizations of x evaluated at the saddle point Q*. The
expectation value must be computed self-consistently since
the values of the saddle points, by Eq. (A7), influence the
statistics of the fields x, which in turn determines the
function Q] by Eq. (Al0). Inserting the saddle-point
solution into the generating functional (A7), we get Eq. (4):

2
VA oc/Dx/chexp(SO[x,Sc] +%~TC¢(X)¢(X))~C).

The action has the important property that it decomposes
into a sum of actions for individual, noninteracting units
which are driven by a field with common, self-consistently
determined statistics, characterized by the second cumulant
Cy(x)g(x)- Prior to the saddle-point approximation (A7), the
fluctuations in the field O are common to all of the single
units, effectively coupling them. The saddle-point approxi-
mation replaces the fluctuating field Q; by its mean (A10),
which reduces the network to N noninteracting units, or,
equivalently, a single-unit system. The second term in
Eq. (4) represents a Gaussian noise with a correlation
function g>Cp(,)4(x) (2. 5). Physically, it corresponds to the
fluctuating input each unit receives from the N — 1 other

units. Its autocorrelation function is given by the summed
autocorrelation functions of the output activities ¢(x;(7))
weighted by ¢*N~!, which incorporates the Gaussian
distribution of the couplings.

The interpretation of the noise can be appreciated by
explicitly considering the moment-generating functional of
a Gaussian noise with a given autocorrelation function
C(t, s), which leads to the cumulant-generating functional
In Z, [X] that appears in the exponent of Eq. (4) and has the
form

. - |
InZ,[-X] = In{exp (—%"n)) = 5 Tcx.

Note that the only nonvanishing cumulant of the effective
noise is the second cumulant; the cumulant-generating
functional is quadratic in ¥. This means that the effective
noise is Gaussian and only couples pairs of time points
according to the correlation function.

APPENDIX B: STATIONARY PROCESS
We rewrite Eq. (5) as

(0, + Dx(2) = 7(2),

where we combine the two independent Gaussian processes
n(t) and &£(¢) appearing in Eq. (5) into #(¢). We then
multiply Eq. (B1) for time points ¢ and s and take the
expectation value over realizations of the noise # on both
sides, which leads to

(B1)

(at + 1)(89 + l)cxx(t7 S) = gzcdi(x)#)(x)(tv S) + 26250 - S),
(B2)

where we define the autocorrelation function of the acti-
vities C(t,s) = (x(1)x(s)). We are now interested in the
stationary statistics C,(t,s) = c¢(¢ — s) of the system. The
inhomogeneity in Eq. (B2) is then also time-translation
invariant; Cy(yg(x) (2, s) is only a function of 7 =1—s.
Therefore, the differential operator (9,+1)(9;+1)c(t—s),
with 7 = ¢ — s, simplifies to (=92 + 1)c(z), and we get

(=07 +1)c(7) = FCopop (1 + 7.1) +26°5(2),

given as Eq. (7) in the main text.

APPENDIX C: REPLICA CALCULATION FOR
THE MAXIMUM LYAPUNOV EXPONENT

We start from the generating functional for the pair of
systems (13) and perform the average over realizations of
the coupling matrix J, as in Eq. (A2). We therefore need to
evaluate the Gaussian integral
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The first exponential factor only includes variables of a single subsystem and is identical to the term appearing in Eq. (A2).
The second exponential factor is a coupling term between the two systems arising from the identical matrix J in the two
replicas in each realization that enters the expectation value. We treat the former terms as before and concentrate on the
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mixed coupling term here. Analogous to Eq. (A3), the exponent of the mixed coupling term can be rewritten as

9 Z 1T¢ 2T¢

N2 // Zx (1)x3 (s

Z¢(x )¢ (x3(s))drds,

(C2)

where we include the self-coupling term i = j, which is again a subleading correction of order N~!.

We now follow the steps in Appendix A and introduce three pairs of auxiliary variables. The pairs Qf,

9 are defined as

before in Egs. (AS) and (A6), but for each subsystem, and the pair 7', T, decouples the mixed term (C2) by defining

Z¢(x

N (xj(5))-

Taken together, we can therefore rewrite the generating functional (13) averaged over the couplings as

2

_ Zg QOLTQ2

a=1

SHOT. QS tacpiny - T1. To) =

le[{ a }ae{12}vT1’T2 a 1{/Dx(l/px‘lexp (So[x“ xa}

xexp (¥11(T) +20%)% + ¢(x') Trp(x?)).

where the generating functional factorizes into a product of
2N identical factors Q'2.

Analogously to Appendix A, we can introduce sources
for the auxiliary fields Of, Q%, T, T,. Then, the equations
of state are obtained from the vertex-generating functional
I' as before, which, in the tree-level approximation, is given
by I' = —S§ and, for vanishing sources, leads to the saddle-
point equations 5S/5Q¢ , = 6S/6T , = 0. From the latter,
we obtain the set of equations

- o, 1 Q2
Ql (t’ S) =9 912 5Qg(t, S)

= () p(x*(5)) g 1+

§(1.5) =0,
. 1 Q"
9 =9 or sy
= (' ())p(¥*(5))) g 1+
T5(t,s) = 0. (C4)

Therefore, the generating functional Z* at the saddle point is

7= (2, = ngzl{ [ per | DQS’} [ o7y [ Praexs(51(01. 08} ueqr oy Tio T2,

TTTz + NI Q{0 05} eeqi oy T1, Tl

1
EX”TQ(I’FC“ + ¢(x”)TQ‘2’¢(x"))}
(C3)

I, {/Dx /Dx exp(SO[x ] 4 - xaTwaa)}

x exp (X'T(T; + 26%)%?). (C5)

We make the following observations:

(1) The two subsystems a =1, 2 in the first line of
Eqg. (C5) have the same form as in Eq. (4). This
consistency is expected because there is no physical
coupling between the two systems. This implies that
the marginal statistics of the activity in one system
cannot be affected by the mere presence of the
second. Hence, in particular, the saddle points Q%
must be the same as in Eq. (4).

(2) If the term in the second line of Eq. (C5) was absent,
the two systems would be independent. Two
sources, however, contribute to correlations between
the systems: the common Gaussian white noise that
gives rise to the term proportional to 26> and the
effective Gaussian noise due to a nonzero value of
the auxiliary field T7(z, s).
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(3) Only products of pairs of fields appear in Eq. (C5),
so x* are Gaussian.

From Egs. (C5) and (C4), we can read off the pair of effective

dynamical equations (14) with self-consistent statistics (15).

1. Derivation of the variational equation

We multiply Eq. (14) with itself for equal or different
values of o and take the expectation value on both sides.
Thus, we get, for a, € {1,2},

(0r 4+ 1)(0s + D)e(1,5)
=20%8(t —5) + P F 4 (c™(1,5), c*(1,1), (s, 5)),
(Co)

where the function F, is defined as the expectation value

Fy(c?, e, c?) = (p(x")g(x?))

for the centered bivariate Gaussian distribution

Xl cll Cl2
<x2> NNZ(O’ <c12 c22>>'

First, we observe that the equations for the autocorrelation
functions ¢**(t,s) decouple and can each be solved
separately, leading to the same equation (9) as before.
This formal result could have been anticipated because the
marginal statistics of each subsystem cannot be affected by
the mere presence of the other system. Their stationary
solutions

(e, s) = c*(t,s) = c(t—ys)

then provide the “background” for the equation for the
cross-correlation function between the two copies; they fix
the second and third arguments of the function F, on the
right-hand side of Eq. (C6). It remains to determine the
equation of motion for ¢'?(¢, s).

We first determine the stationary solution c'?(¢,s) =
k(t — s). We see immediately from Eq. (C6) that k(z) obeys
the same equation of motion as ¢(z), so k(z) = ¢(z) is a
solution. The distance (12) between replicas for this
solution therefore vanishes; the dynamics in both replicas
follows identical trajectories. Let us now study the stability
of this solution. We hence need to expand c!? around the
stationary solution

c2(t,5) = c(t—s) +ekW(t,s), ex1. (C7)
We expand the right-hand side of Eq. (C6) to linear order in
€ using Price’s theorem and Eq. (8):

Fu(c'(1,5), co. co) = f4(c'.(1.5). co)
= fy(c(t =), o)
+efy(c(t—s),co)kV(t,s). (C8)

Inserting the expansion into Eq. (C6) and using the fact that
() solves the zeroth-order equation, we get the equation
of motion for the linear deflection (16). By Eq. (12), the
deflection k(V)(z,s) determines the squared distance
between the two subsystems as

d(t) = " (t,1) + (1, 1) —=c(t, 1) — (1, 1)
—— =
=Co =¢o =—2¢o—2ekM (1,r)

= —2ekW(1,1).

2. Schrodinger equation for the maximum
Lyapunov exponent

Here, we reformulate the equation for the variation of the
cross-correlation (16) into a Schrodinger equation, as in the
original work [see Eq. (10) in Ref. [1]].

First, noting that Cy(t,5) = fy(c(t =), ¢q) is time-
translation invariant, it is advantageous to introduce the
coordinates T = ¢ + s and 7 = ¢ — s and write k(') (z, s) as
k(T,7) with k1) (z,5) = k(t +s,¢—s). The differential
operator (0, + 1)(0, + 1) with the chain rule 9, — 7 +
0, and O, —» 0y —0, in the new coordinates is
(97 + 1)2 = &2 A separation ansatz k(T,7) = e y(z)
then yields the eigenvalue equation

(5+1) o) - () = 2y (cto) o)

for the growth rates k of d(1) = —2ekV (¢, 1) = —2¢k(2t,0).
We can express the right-hand side by the second derivative
of the potential (C10) so that, with

V'(c(r)ico) = =1+ g fy(c(r).co).  (C10)

we get the time-independent Schrodinger equation

(== viCeraw) = (1= (5+1) Jutol

(C11)

where the time lag 7 plays the role of a spatial coordinate for
the Schrodinger equation. The eigenvalues (“energies”) E,,
determine the exponential growth rates x, of the solutions
k(2t,0) = e"y,(0) at ¢ = 0 with

KF=2(-1+

1-E,). (C12)
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We can therefore determine the growth rate of the mean-
square distance of the two subsystems by Eq. (9). The fastest-
growing mode of the distance is hence given by
the ground-state energy E, and the plus in Eq. (12). The
deflection between the two subsystems therefore grows with
the rate

kg =—14+/1—E,,

where the factor 1/2 in the first line follows from d being the
squared distance.

(C13)

j'max =

N[ =

APPENDIX D: COLORED AND
QUENCHED-NOISE INPUT

1. General case of colored Gaussian noise

Here, we consider a network driven by N independent
colored Gaussian noise inputs &;(f) with zero mean
and stationary covariance functions (&;(7+17)&;(1)) =
8;jcen(7). For concreteness, we use Ornstein-Uhlenbeck
processes with autocorrelation function

1
Cen(7) = 02 <1 + —) eI/, (D1)
T

n

where the correlation time 0 < 7, < oo determines how fast
the input varies in time. The limit 7, - oo leads to
quenched-noise input, which is randomly Gaussian dis-
tributed but constant in time, while the limit z, — 0
corresponds to Gaussian white-noise input as in Eq. (1).
The cumulant-generating functional of the noise takes the
form

A SE
an[]] = EJchn]-
It appears in the action of the disorder-averaged moment-
generating functional, analogous to Eq. (A4), as

Z[] = (Z[N)(3)),
= /DX / Dx exXp (iT(at + l)X + %ﬁchni + lTX)

1
X exp (E)ZTQli),

where Q; is defined as before in Eq. (A5). Introducing a
second auxiliary field Q, and performing the saddle-point
approximation analogously to Appendix A, we obtain,
from the stationary point for the auxiliary field Q,, the
differential equation for the stationary autocorrelation
function ¢(z) corresponding to Eq. (7):

(D2)

(=02 + 1)e(t) = ¢ f4(c(7). o) + Cen(7).  (D3)

The factor 1 + 1/7, in Eq. (D1) has been chosen such that,
for g = 0, the solution of Eq. (D3) yields the same variance
¢y = ¢(0) = &? for all correlation times 7, and is identical
to the case of white-noise input with autocorrelation
function (&;(1)&(s)) = 26%5(t — s).

Except in the case of quenched input, the second term in
Eq. (D3) depends on 7. If we rewrite this equation as a
motion of a classical particle, this term corresponds to an
additional, time-dependent force:

&(r) = =V'(c()) = can(2), (D4)
where the potential V(c) = V(c;cq) is defined as in
Eq. (10) and has to be determined self-consistently.
Because of the time-dependent force, however, we cannot
use energy conservation anymore to obtain cj.

We may obtain a self-consistent solution numerically:
Choosing an initial value ¢(0) = ¢, > ¢ arbitrarily, we
integrate the differential equation (4) forward in time 7 > 0
based on the system

% (i) - <—V’(c;coé) - Ccn(7>>’

with the initial conditions c¢(0) =c¢,, ¢(0) =0. To
determine the correct initial value c;, we apply the
shooting method to find the initial value ¢, at which
lim,_,c(7) = 0. It leads to a self-consistent autocorrela-
tion function ¢(z), which monotonically decreases to zero.

2. Quenched Gaussian noise

The case of quenched Gaussian noise follows from the
above by considering the limit 7z, — oo in Eq. (D1). We
hence obtain from Eq. (D3) the differential equation for the
autocorrelation function:

(=02 + 1)e(t) = ¢ f4(c(7).c0) + 05, (D5)
where 05 denotes the variance of the static quenched inputs

with mean zero. Since the additional term in Eq. (D5) does
not depend on 7, we can include it into a potential and write

&(r) = =Vy/(c())

with the modified potential V(c;co) = V(cicy) + oac.
Again, the potential has to be determined self-consistently
through the initial value c¢(0) = c¢,. Without time-
dependent input, a constant autocorrelation function ¢(z7) =
co can be a solution; it is determined by V,'(cq;co) = 0,
which has a solution for all values of g. Depending on the
coupling strength g, however, other time-dependent self-
consistent solutions exist as in the case without any input
[1], which corresponds to aé = 0 here.
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We only consider a self-consistent autocorrelation func-
tion ¢(z) that monotonically decays to an asymptotic value
Cs» Which is related to the variance of the quenched input
Jé. In Sec. V, we describe how to construct this solution.
Here, we briefly discuss its existence: Such a solution can
only exist if the self-consistent potential V(c; ¢() has both
a maximum (at ¢, ) and a minimum (between ¢, and cg)
because the classical motion of ¢(7) starts with zero kinetic
energy, i.e., ¢(0) = 0. There exists a critical value g,.. at
which the second derivative at the endpoint of the potential
V" (cosco) = =1 4 g*([¢(x)]*) changes sign from nega-
tive to positive; here, ¢, is determined for each g by
V4 (coico) = 0. This implies that for g > gy, the self-
consistent potential V(c; ¢,) for a constant autocorrelation
function ¢(z) = ¢y ends in a minimum and has an inter-
mediate maximum. As a maximum followed by a minimum
of the potential is necessary for the time-dependent,
monotonically decaying, self-consistent, autocorrelation
function, we conjecture that such a solution only exists
for g > gpe.- This result agrees with the condition found for
networks with internally generated quenched noise [20].

3. Lyapunov exponent for colored
and quenched-noise input

The Lyapunov exponent for quenched or colored noise
input can be obtained from the same Schrodinger eigen-
value equation (17) as in the white-noise case. This result
follows from a replica calculation analogous to the white-
noise case (Appendix C), where the only difference is the
form of the noise term. The saddle-point equation leads to a
set of self-consistency equations for the correlations within
and between the replicas, analogous to Eq. (C6). The
explicit appearance of the noise term on the right-hand side
vanishes in the equation for the distance, Eq. (12), after the
linearization (8); hence, the correlation function of the
noise enters only implicitly by determining the quantum
potential (C10) in the Schrodinger equation (C11), where
we need to insert the self-consistently determined auto-
correlation function c(r) obeying Eq. (D3) for colored
noise or Eq. (5) for quenched noise.

APPENDIX E: DYNAMIC MEAN-FIELD THEORY
FOR NONVANISHING MEAN COUPLING

In this Appendix, we treat the case of random couplings
with nonzero mean. For concreteness, we assume here that
the coupling weights are independently and identically
Gaussian distributed according to

11d g g
i N(N N>

Alternatively, we assume Jl-ji'i&d'(Jo/\/N)B(p), where
B(p) denotes the Bernoulli distribution with success

(E1)

probability p. This assumption leads to a directed Erd6s-
Rényi network with connection probability p and nonzero
synaptic weights J,/v/N. We show below how the latter
parameters J;, p determine the former ones g, g and that both
networks are identical in the limit of large N. The network
dynamics again follows Eq. (1). The moment-generating
functional takes the same form as for the case of vanishing
mean (2). Taking the disorder average, the calculation
proceeds analogously to Eq. (A1). Introducing the abbrevia-
tiony;; = — [ X;(1)¢(x;())dt, we may write the term in the
action that is affected as

(el m),

= exp < Zy,, +——Zylj>

(exp (=170)),

= Hexp <5ciTR1 + %Fc,-TQlfc,), (E2)
where we introduce the auxiliary fields
)= %Ejqu(x,-(r»
01(65) = SH Ol ()

Analogously, the disorder average over an Erd6s-Rényi
network can be expressed by noting that its cumulant-
generating function for a single connection weight reads

=In <e)’(]0/\/ﬁ)s>

Py, ) s~B(p)

= ln(pe(fo/\/ﬁ)y — 1)
2

J 1-p)J
:pr+p( P)J3

2+ O(N7),
N sy Y oW

where the first two cumulants p(Jo/v/N) and p(1—
p)(J3/N) appear as coefficients in the polynomial in y.
We therefore get the same form for the disorder-averaged
action as Eq. (E2), but with different scalar factors in the
definition of the auxiliary fields as R(f) = [(Jop)/
VNI h(xj(1) and  Qy(r.s) = {[p(1 — p)J5]/2N}x
> jd)(x j(t))gb(x j(s)). The terms that originate from cumu-
lants of order higher than 2 are suppressed for large

network size with at least O(N~2), so they do not contribute
in the limit of large N. Comparing to Eq. (E3), we may
hence treat the Erd6s-Rényi network on the same footing as
the network with Gaussian connectivity by identifying the
parameters as
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9= vNJp.
= p(1—-p)J}.

We now derive the mean-field equations for the system.
The four-point coupling term involving Q; is handled in
the same manner as before by introducing an auxiliary

|

field O, that serves to represent a functional delta as in
Eq. (A6). Analogously, we perform a second Hubbard-
Stratonovich transform to write 5—(N/g)R; + >_;¢p(x;)]
JDRyexp(— (N/g)RIR, + RYY ,¢(x;)) to obtain the
disorder-averaged moment-generating functional

= s - N N . . ~
ZkKjj) = // (DR} // (DO} exp (—ERTRZ -2 010 +NINQR, Ry, 01, Q:] + TRy +FTR /10, +JTQ2>,

QIR,. Ry, 01, 0] = /Dx/m exp (Solx, 5] — RT% + RIg(x) +%XTQ15€+¢(X)TQ2¢(;C)),

where again the generating functional factorizes into
independent, identical single unit contributions €, giving
rise to the factor N in front of InQ in the first line.

To formally derive a consistent approximation, it is
standard to define the vertex-generating functional or
effective action as

sup {kTr) +k"ry+ jTq + j g,
{J. ok}

—InZ[k.k, j,]]}.

F[rl,”z,ﬂha%]:

The equations of state

or

- =0, E6
5{7117’27%,612} ( )

solved for the auxiliary fields, then yield a coupled set of
self-consistency equations for these fields in the absence of
external sources.

In the lowest order, the tree-level approximation [37], the
effective action I" is approximated by the negative action:

Clry, re g1 @) = =S[ri. 12, q1, 42, (E7)
N N
S[ri. 712,91, q2) = —TrTrz ——2(11T612
g g
+N1ng[rl9r2aqlvq2]' (Eg)

The self-consistency equations (E6) for the auxiliary fields
then take the explicit form

(E4)
(ES)
0= 5= Rill) = 5(3(0)a = 0.
0 =2 Ri(1) = Glh(x(1))or
;qu = 03(5.1) = L (3(5)3(1))q = 0.
0= % = 0i(s.1) = PHE(E)NPG(M))a. (B

where (o)q is the expectation value with respect to the
statistics of the fields x and X given by Q in Eq. (E5), with
the saddle-point values for the auxiliary fields inserted. The
effective equation of motion follows from inserting the
saddle-point values into the action as
= o LT s
Solx. %] — R{'x + ¥ Qix,
which demonstrates that we get a mean input proportional

to R} and Gaussian fluctuations with covariance Qf7,
analogous to Appendix B

(0, + Dx(1) =
{n(t)n(s)) =

where 7(t) is again a Gaussian process with zero mean.
Hence, the stationary solution for the mean value satisfies
the nonlinear self-consistency equation

(x) = 9(e).

Defining as 6x(¢f) = x(¢) — (x) the deflection from the
mean, we get a differential equation for the stationary
covariance function c¢(z) = (6x(t+ 7)6x(¢)) [using the
equation of motion (E10) with the mean (x) subtracted
on both sides],

9(e(1)) +n(1),

Qi(t,s) +206%5(t—s),  (E10)
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(—82 + 1)6‘(’[) = ng¢(x)¢(x)(t + T, l‘) + 2625(1),

which is identical to Eq. (7).

The new term is therefore the mean input g{¢) from the
network. We can obtain the joint solution of (¢) and C,,
from the coupled system of equations,

($(x)) = / De((x) + v/&52).
Cop(0) = F st (0. ().

where f,(cy,c;) is defined in Eq. (8) and Dz denotes
the standard Gaussian measure. Here, we need to insert the
function ¢ (o + (x)) to capture the nonzero mean of x; the
Gaussian fluctuating part is contained in the definition of f.

Note that for (x) #0, C,,(z) does not decay to 0 as
7 — oo, but it approaches a nonzero asymptotic value
Cpp(0) = fp(or () (Cos o). This signifies that the disor-
der in the connectivity contributes to a distribution of mean
activities across units in the population.

fd)o+

APPENDIX F: LYAPUNOV EXPONENT FOR
NONVANISHING MEAN COUPLING

The calculation of the maximum Lyapunov exponent in
the case of nonvanishing mean of the connections proceeds
along the same line as in Appendix C. We therefore only
highlight the steps in which the calculation differs from the
former case.

As shown in Appendix E, Erd6s-Rényi networks and
networks with Gaussian connectivity lead to the same
limiting equations for large N. So, without loss of general-
ity, we keep the notation of Gaussian connectivity here. To
assess the Lyapunov exponent, one needs to compute the

|

disorder-average over a pair of systems (13). The only term
affected takes the form

ol fo)on(o o)
— exp (—%aiﬁ%(x?))
s exp (j;f] )P

1

<exp (& BB ) (F1)

where the only difference from Eq. (C1) is the additional
first factor on the right-hand side. The important property
of this additional term is that it does not couple variables
belonging to different replicas; hence, it does not contribute
to the correlation between the two replicas. As we dem-
onstrate below, the analysis of the transition to chaos
therefore remains unchanged.

As a direct consequence, the corresponding saddle-point
equations for the auxiliary variables Rf, are identical to
Eq. (E9) and hence read

R (1)
Ri*(1)

= 3(3(1)a = .
= B

Performing the same steps as in Appendix C leads to the
same form of the saddle-point equations (C4) for the
remaining fields, so the generating functional at the saddle
point takes the form

2
1
x // I12_, Dx*Di% exp (Z Solx?, ] = Ry + ST OF x + XT(T] + 262)5&)

a=1

analogous to Eq. (C5). The only differences are the terms
=32 | Ri“Tx,, which correspond to the mean input
received by the neuron in each replicon. The corresponding
set of effective equations can be read off in the same
manner as before, yielding Eq. (24) given in the main text.

APPENDIX G: MEMORY CURVE

To evaluate Eq. (27), we need to determine the disorder-
averaged sum of squared response functions

> (aln)z(1)), (G1)

i=1

[
with ty =t —17 and K denoting the number of neurons
connected to the readout, which we initially leave as a free
parameter. Here, (o) denotes the average over realizations
of the inputs &;(#) (or, alternatively, over time), and the
overbar is the average over realizations of the connectivity
J as in Eq. (Al). Moreover, here we examine a more
general signal z(r) = Y ), v;¢;(1), a linear combination
with weights v; of the inputs to different neurons.

We pick two points in time 7, s > t, and define

K

= Z (xi(1)z(t0)) (xi(s)z(t0)) -

i=1

K (1, ) (G2)

The measure of interest (G1) then follows for ¢t = 5. The
key idea is to express the correlation function (x;(7)z(zy))
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as a weighted sum of response functions (x;(¢)X(y)),
which we show in the following. We introduce a scalar
source term k(¢) for the signal z(¢) and average over the
inputs. This yields the generating functional

Z[L k] = /Dx/Diexp (So[x, %] — xTJoh(x))

X exp (lTx - ZZazvikaci> : (G3)
Evaluating the correlation leads to
8z
x;(0)z(t)) = =
(xi(1)2(00)) 1 (1)k(t0) |1, —i—o
N
:—20221)]()( 0x(t (G4)
=1

We now consider a pair of systems (replicas) similar to
Appendix C, with the difference being that the two systems
receive independent realizations of the inputs. We need two
independent systems to express the product of the two
correlation functions in Eq. (G1). By independence, the
corresponding average factorizes

(xi(1)z(10)) (xi(5)2(t0)) = (xi (1)2" (20)x7 ()2
= l’li(f, S, to),

(1))
(G5)

where the superscript denotes the replicon index as before.
It is sufficient to introduce a single source term

46 Zv v,/dte ( V%2 (1),

with source €(7), to the corresponding generating func-
tional, which allows us to obtain (x;(f)z(#y)) with Egs. (G4)
and (G5) as

(Go)

o o o
SI(1) 813 (s) Se(1y)

1

(xi()z(10)) (xi(s)z(t0)) =

Z|p—p—c=o-

The additional source term (G6) has the physical inter-
pretation of a common input with time-dependent variance
€(t) injected into a pair of units between the two replicas.
The absence of quadratic terms (%%)> shows that this
common input does not affect the marginal statistics of
the two systems in isolation. This interpretation is only
mentioned here for illustrative purposes; the derivation
does not rely on it. Because of the weight v;v, for different
neuron pairs j, /, we keep the neuron index in the following.

To compute Eq. (G1), we need the disorder average of
Eq. (GS), h(t, s, ty). Similar to Appendix C 1, we proceed
by deriving a differential equation for this function.

First, after averaging over the disorder, completely
analogous to Appendix C, we can read off effective
equations for the single units,

(0 + 1)xi (1) + 77 (1) + pi (1),

ae{l,2},ie{l,...,N}, together with a set of self-
consistency equations for the correlations of the noises:

=¢i(1) (G7)

(EX(N)E(s)) = 20%6,58,;8(1 — 5).
2
(e (01 (5)) = %5,~,~Z<¢(x?<r>)¢<xf<s>)>,
p/} = 46

The first line in Eq. (G8) represents the independent noise
between the systems, the second line the common con-
nectivity, and the third line the common noise component
we introduced in Eq. (G6) to express the squared response
function (G2).

Second, we obtain h;(z, s, 1)) by a functional derivative
with respect to I} (z), I3(s), and e(t,), which follows from
the representation (GS5). Writing the functional derivative
with respect to e explicitly as a limit, we can express it by
the correlation between the pair of systems:

— Oyp)vi0;€(1)0(t — 5). (G8)

s ) =l (0 6)| (@)

e=15(o—to)]
where we use that for ¢ = 0, the two systems are uncorre-

lated. We now combine the effective equations (G7) and
(G9) to obtain a partial differential equation:

(0, + 1)(0; + D)hi(2, 5, 1)

=it [ o]

e=16(o—1¢)
(G10)

Since we are interested in the limit : — 0, we expand to
linear order around the uncorrelated state:

(B} (1) (x7(5))) = £4(0. co) + Ocf (0. co)c

= 1 (x))"hi(t.5.10).

*(t.5)
(G11)

where the first term vanishes as (¢(x))*> = 0. Inserting
Eq. (G11) into Eq. (G10), we arrive at

(00 + 1)(9; + Dhi(t, 5, 10)

<

N
(@ () D hy(t.5.10) +40*028(t — 10)5(s — 1o).
j=1

= |
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Here, (¢'(x;)) is independent of j because the expectation
value is taken with respect to the disorder-averaged
unperturbed system; thus, we use a representative unit j
as the index. Taking the sum over i = 1, ..., K yields

(0, + 1)(0, + )hK (1, 5)
= g2<¢’<xj)>2§hN(t, s) + 40| [28(1 = 10)8(s — 1)
(G12)

with ||vg||*> = >°K, 7. For the complete sum of squared
response functions, A" (t,s5), the following closed linear
partial differential equation holds:

(0; + 1)(0, 4+ )N (1, 5)

= (¢ (x)))°hV (t.5) + 46*8(t — 1)d(s — 15),  (G13)
where we set ||vy|> = ||v]|*> = 1 without loss of generality.
In the main text, we consider ||v|]|> = 1/N, which only
leads to an additional factor in the following and cancels in
the formula for the memory curve. The solution to this
equation describes the shape of the memory curve if the
readout has access to the states of all neurons. To deter-
mine hX(z,5), we note that the difference h%(z,s) —
(K/N)hN(t,s) is proportional to the solution of

(0, + 1)(0s + D)hO (2, 5) = 8(t — 15)3(s — ), (G14)
which by direct integration yields
hO(t,5) = e~ (=0)@(t — 1)e @ (s — 1,).  (G15)

Thus, hX(¢,s) is given by
K K
9 (05) = 01 025) -4 (ol = 3 )00

K K
= 4o4ﬁh(')(t, s) + 4a4<||v,<||2 - N> hO)(z, s),

(G16)
where (1) (1, s) solves
(0, + 1)(9; + DAY (1,5)
= ahW(t,s) +8(t—15)8(s —ty)  (G17)

with parameter a> = ¢>(¢/(x;))” = 1 — 1/7%,. Here, 7, is
the asymptotic decay time of the autocorrelation function.

As in Appendix C 2, it is useful to change coordinates to
T=t+s—-2ty and 7=1t—s. In these coordinates,
Eq. (G17) takes the form

(07 + 1)2hUN(T, 7) — 02h)(T, 7)
= a’h"(T,7) +26(T)é(7),

and setting /") (T, 7) = e~Tu(T,7) simplifies the equation
further to

Au(T,7) — 0*u(T,7) = a®u(T,7) + 25(T)5(z),  (G18)
a Klein-Gordon wave equation with temporal coordinate T
and spatial coordinate 7 (and negative squared mass —a?).
We are looking for the solution u(7,7) in T > 0, 7 € R. To
this end, we consider the temporal Laplace and the spatial
Fourier transform of Eq. (G18). Fourier transformation in =
yields

O:u(T, k) + (K> — a®)a(T, k) = 25(T), (G19)
with k € R and the Fourier representation
1 +0o0
u(T7) =5 / i (T, K)dk.
For each k € R, the Laplace transformation in 7,
a(p, k)= /e‘PTﬁ(T, k)dT,
0
of Eq. (G19) reads
pra(p.k) = pa(0,k) = dra(0, k) + (kK — a®)a(p, k) = 2.
=0 =0

Hence, in the Fourier-Laplace domain, we obtain

2
i(p k) =——-5—.
i(p.K) p> 4k —a?
For the memory curve, we only need the solution u(7, 7)
for 7 = 0, the diagonal s = ¢ in the original coordinates.
Setting 7 =0 in the Fourier representation gives the
Laplace transform of u(T,7 = 0):

+o0

1 1
:—/7dk
n) kK4 p*-ad®

—00

i(p) =u(p,7=0)

S (G20)

with p € C such that Re(p?) > a®. The function on the
right is the Laplace transform of the modified Bessel
function of the first kind Iy(a7) [83]. Together with
h(T,7) = e Tu(T, 7), we therefore obtain the shape of
the memory curve as
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RN(T) = k(T2 =0) = e T1,(aT)O(T). (G21)

Finally, using Eqgs. (G15) and (G21) in Eq. (G16) gives
the following explicit expression (setting #, = 0) for the
sum of squared response functions:

K
hy(t) = hg(t, 1) = 464ﬁe_2’10(a2t)®(t)
K
+ 40* <||v,(|\2 - N) e 20(1)

RRLT——

+ 4o*||vi || Pe™H (). (G22)
In Eq. (G22), we split hg(r) into two contributions: a
network contribution Aj§'(¢) proportional to K/N with
shape e~ (Iy(a2t) — 1)©(¢) and a local contribution pro-
portional to || vk ||> with shape e=2/® (7). The latter is just the
memory of the signal due to the leaky integration of the
single units, while the former describes the memory due to
the collective network dynamics; only this contribution is
affected by the network coupling strength.

We can evaluate Eq. (27) using Eq. (G22) with the choice
v; = 1/N, which leads to Eq. (28) and to the network
memory (29).
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