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We solve a minimal model for an ergodic phase in a spatially extended quantum many-body system.
The model consists of a chain of sites with nearest-neighbor coupling under Floquet time evolution.
Quantum states at each site span a q-dimensional Hilbert space, and time evolution for a pair of sites is
generated by a q2 × q2 random unitary matrix. The Floquet operator is specified by a quantum circuit of
depth two, in which each site is coupled to its neighbor on one side during the first half of the evolution
period and to its neighbor on the other side during the second half of the period. We show how dynamical
behavior averaged over realizations of the random matrices can be evaluated using diagrammatic
techniques and how this approach leads to exact expressions in the large-q limit. We give results for
the spectral form factor, relaxation of local observables, bipartite entanglement growth, and operator
spreading.
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I. INTRODUCTION

Random-matrix theory plays a central role in the under-
standing of chaotic quantum systems [1]. It is founded on
the idea that for many systems of interest there is no
privileged basis in Hilbert space. Some important phenom-
ena in this field, however, arise only if there is spatial
structure and a notion of locality. Diffusive transport in
weakly disordered conductors is such an example for
single-particle systems, and spreading of quantum infor-
mation is a counterpart for many-body systems. It is natural
to attempt to combine the simplifying features of random-
matrix theory with extended spatial structure. For diffusive
conductors, this goal is achieved in Wegner’s n-orbital
model [2] in which hopping between sites of a tight-
binding system is governed by n × n random matrices, and
disorder-averaged properties can be calculated exactly in
the limit n → ∞. Our aim in this paper is to establish a
comparable simplification for spatially extended many-
body systems.
Chaotic many-body quantum systems lie at the focus of

efforts to understand the foundations of quantum statistical
mechanics [3–6]. Generic features expected in the dynam-
ics of such systems include rapid equilibration of local
observables [5] and ballistic propagation of quantum

information [7], as well as ballistic growth of bipartite
entanglement [8,9]. Conservation laws play a central part in
dynamics, and one expects that systems with a given set of
conservation laws will form a distinct class. Our focus in
the following is on evolution arising from a time-dependent
Hamiltonian: Without even energy as a conserved quantity,
it constitutes a particularly simple example.
Random-matrix approaches offer natural routes to con-

structing models with minimal structure, and unitary quan-
tum circuits provide an attractive way to formulate the
evolution operator for time-dependent quantum systems.
Unitary circuits that are random in both space and time have
recently yielded valuable insights into chaotic quantum
dynamics [10–13]. Here we initiate an analytic study of
unitary circuits that are random in space but periodic in time.
We study a Floquet operator acting on a one-dimensional

system consisting of q-state “spins” at each site. The
Floquet operator is constructed from unitary matrices that
couple adjacent sites. These q2 × q2 matrices are drawn
independently from the circular unitary ensemble (CUE),
and we compute physical properties averaged over the
ensemble. Our key simplification is to treat the large-q
limit. We show that quantum dynamics in this system
exhibits a range of features that are expected to be
characteristic of ergodic many-body quantum systems:
Correlators of local observables decay rapidly in time,
and quantum information spreads ballistically, in the sense
that the bipartite entanglement of an initial product state
grows linearly in time, and the out-of-time-order correlator
[14,15] (OTOC) shows the “butterfly” effect. Our approach
also provides access to the spectral properties of the Floquet
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operator, and we show (on scales much larger than the level
spacing) that its eigenvalue correlations are those of the
CUE. At a technical level, our calculations are based on the
application of diagrammatic techniques developed previ-
ously for single-particle problems in mesoscopic physics
involving random matrices from the CUE [16].
Some features of the large-q limit are nongeneric: As for

random unitary circuits [11,12] at large q, the distinction
between the velocities associated with entanglement and
operator spreading vanishes, and sublinear growth of
entanglement expected at long times in one-dimensional
disordered systems because of weak links [17] is absent.
The balance of this paper is organized as follows. In

Sec. II, we define the model, observables, and results. In
Sec. III, we develop the diagrammatic approach for taking
the ensemble average of a given observable. In Sec. IV, we
sketch the proof of the results presented in Sec. II using the
tools developed in Sec. III. Lastly, in Sec. V, we summarize.
Technical details are described in a series of Appendices.

II. MODEL, OBSERVABLES, AND RESULTS

We seek aminimal model for quantum chaos in a spatially
extended many-body system with local interactions. We
formulate the model directly in terms of the time-evolution
operator rather than a Hamiltonian, and for simplicity we
consider a Floquet problem. Taking a one-dimensional
lattice, evolution over one period is separated into two half
steps. Each even site is coupled to its neighbor on the left in
the first half step and to its neighbor on the right in the second
half step. This quantum circuit is illustrated in Fig. 1.
To write the evolution operator explicitly, let U2n−1;2n

denote the unitary matrix that couples sites 2n − 1 and 2n
in the first half step, and let U2n;2nþ1 be the matrix that
couples sites 2n and 2nþ 1 in the second half step. Each
Ui;iþ1 is independently distributed with the Haar measure,
and we calculate physical properties as an average over
this ensemble denoted by h…i. For a system of L sites, the
full Hilbert space has dimension qL. Taking L even for
definiteness, the first half step is represented by an
evolution operator acting in this space with the form

W1 ¼ U1;2 ⊗ U3;4 ⊗ … ⊗ UL−1;L: ð1Þ

The evolution operator for the second half step is similarly

W2 ¼ 1q ⊗ U2;3 ⊗ U4;5…UL−2;L−1 ⊗ 1q; ð2Þ

where 1q denotes the q × q unit matrix. The Floquet
operator describing evolution over a single complete
period is

W ¼ W2W1: ð3Þ

We denote the evolution operator for an integer number t
of periods (the tth power of W) by WðtÞ.
To demonstrate that this model has the features expected

in a chaotic quantum many-body system, we examine a
range of physical properties, as detailed below. Our results
for entanglement spreading and for the OTOC are the same
as those for random unitary circuits with the same structure
as our model if one takes the large-q limit in previous
results [11,12]. In this context, one of our significant
conclusions is that random unitary circuits do indeed share
important physical features with deterministic systems. At
the same time, our model opens up discussion of the
spectral properties of the evolution operator. This has no
equivalent for random unitary circuits since they lack any
such fixed operator.

A. Spectral form factor

Our results for the spectral form factor show that the
Floquet operator for the model has exactly the same
eigenvalue correlations in the large-q limit as an ensemble
of Haar-distributed unitary matrices. This insensitivity to
the spatial structure of the system is a striking emergent
feature.
The spectral form factor KðtÞ is the Fourier transform of

the two-point correlation function of the eigenvalue density.
Denote the eigenphases of W by fθmg for m ¼ 1;…; qL.
Then,

KðtÞ≡ hTr½WðtÞ�Tr½W†ðtÞ�i ¼
X
m;n

heiðθm−θnÞti: ð4Þ

For N × N matrices from the CUE, one has [1]

KðtÞ ¼

8>><
>>:

N2 t ¼ 0;

jtj 0 < jtj ≤ N;

N N ≤ jtj:
ð5Þ

The behavior of KðtÞ on scales jtj ≪ N reflects level
correlations at separations much larger than the mean
spacing, and the linear dependence of KðtÞ on jtj in this
regime is a consequence of Coulombic suppression of
long wavelength fluctuations in the eigenvalue density.
Conversely, the form of KðtÞ for jtj ∼ N encodes spectral
correlations on the scale of the level spacing.

FIG. 1. Illustration of the model for Floquet time evolution
studied in this paper. Space and time are represented by the
horizontal and vertical directions. Lattice sites are indicated by
filled dots, and the coupling of pairs of sites under time evolution
is shown with rectangles.
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We obtain exactly the CUE form KðtÞ ¼ jtj for t ≠ 0 in
the large-q limit at fixed L and t. We stress that this result
is a consequence of coupling between all sites, and it is not
simply a reflection of the properties of individual random
matrices Ui;iþ1. To illustrate the point, consider an alter-
native model in which the couplings U2n;2nþ1 on even
bonds are replaced with unit matrices 1q2 . For this toy
system of L=2-independent pairs of sites, one has much
larger fluctuations in eigenvalue density, with KðtÞ ¼ jtjL=2
for 0 < jtj ≤ q2.
Returning to the original model, it is interesting to

speculate on behavior in regimes other than the one we
are able to analyze exactly. At large but fixed q and fixed t,
it is natural to expect KðtÞ to increase with L if L is
sufficiently large, since distant parts of the system should
be only weakly correlated; the results for this regime will be
presented elsewhere [18]. In the opposite limit, fixing q
and L and varying t, the form of KðtÞ at jtj ∼ qL probes
correlations on the scale of the level spacing. We expect
correlations on this scale to be of CUE form for all q and L,
provided only that qL ≫ 1. They should therefore show a
transition from KðtÞ ¼ jtj for jtj≲ qL to KðtÞ ¼ qL for
jtj ≥ qL. The transition to constant KðtÞ at large t is,
however, well known to be inaccessible in a perturbation
expansion in inverse powers of q [19,20].

B. Dynamics

We next examine the physical properties chosen to reveal
both the dynamics of local degrees of freedom and the
spreading of quantum information.

1. Local relaxation

A characteristic feature of chaotic dynamics is that local
observables relax rapidly towards equilibrium. To probe
relaxation in our model, we introduce an operator Ox

representing an observable at site x and obeying O†
x ¼ Ox,

TrOx ¼ 0, and O2
x ¼ 1q. Let

OðxÞ ¼ 1q ⊗ … ⊗ 1q ⊗ Ox ⊗ … ⊗ 1q ð6Þ

andOðx; tÞ ¼ W†ðtÞOðxÞWðtÞ. The statistical average for a
system with density matrix ρ is ½…�av ¼ Tr½ρ…�. In our
Floquet model, the infinite-temperature density matrix ρ ¼
q−L1qL is the natural choice, and we denote the normalized
many-body trace by tr≡ q−LTr.
One anticipates that ½Oðx; tÞOðxÞ�av will relax to the

value ½OðxÞ�2av [which is zero with this form for OðxÞ] on a
microscopic timescale of order the Floquet period. At large
q, we in fact find complete relaxation within a single
period, obtaining for q → ∞ the result

htr½Oðx; tÞOðxÞ�i ¼ δt;0: ð7Þ

We discuss the leading corrections to this result for finite q
and small t in Sec. IV B.

2. Entanglement spreading

We probe entanglement spreading via the time depend-
ence of the ensemble-averaged bipartite entanglement
purity (and, more generally, ensemble averages of expo-
nentials of Rényi entropies) for an initial state jψi that is a
direct product over sites. Specifically, let A be the left half
of the system (with site labels 1 ≤ n ≤ L=2) and B the right
half, and consider the reduced density matrix

ρAðtÞ ¼ TrB½WðtÞjψihψ jW†ðtÞ�: ð8Þ

The Rényi entropies SαðtÞ are given by

eð1−αÞSαðtÞ ¼ TrA½ρAðtÞ�α; ð9Þ

and the entanglement purity is PðtÞ ¼ e−S2ðtÞ. We compute
heð1−αÞSαðtÞi for α ¼ 2 and α ¼ 3. The purity shows an
exponential decay in time until it falls to a value PðtÞ ∼
q−L=2 typical of random states in the many-body Hilbert
space. In detail, we obtain at large q,

heð1−αÞSαðtÞi ∼
�
fαðtÞq−2ðα−1Þt t ≤ L=4;

Kαq−ðα−1ÞL=2 t > L=4.
ð10Þ

The function fαðtÞ grows exponentially with t, and in
particular, we find f2ðtÞ ¼ 4t and f3ðtÞ ≃ ½ð4þ 3

ffiffiffi
2

p Þ=2�2t
for t ≫ 1. At times t > L=4, the Rényi entropies saturate,
and we conjecture that Kα ¼ CatðαÞ, where Cat is the αth
Catalan number. The latter result is proven for α up to 5
(see Appendix F). This result is consistent with the
generalized Page formula for bipartite entanglement in
random states [21,22] and with the results from the random
unitary circuit [23].
An interpretation of these results is that the reduced

density matrix for the pure initial state spreads at time t over
the Hilbert space spanned by basis states at 2t sites. As an
illustration, suppose that ρAðtÞ has q2t nonzero eigenvalues
that are all equal. Then, TrAρAðtÞ ¼ q−2ðα−1Þt, which is
consistent with the leading-order behavior of Eq. (10) for
t ≤ L=4. This result demonstrates that the entanglement
spreads ballistically with a velocity at large q that is the same
as the naive light-cone velocity v ¼ 2 introduced below in
Fig. 2. The values of f2ðtÞ and f3ðtÞ give information on the
distribution of nonzero eigenvalues of ρAðtÞ, and it is
noteworthy that these two quantities are distinct.
The growth of entanglement found here is similar to that

obtained for integrable systems using conformal field
theories [24]. In integrable systems, this behavior is
associated with the presence of quasiparticles that travel
ballistically; a quite different physical picture is required
for ergodic systems.
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3. Out-of-time-order correlator

The spreading with time of local operators is charac-
terized by the behavior of the (ensemble-averaged) com-
mutator

Cðx − y; tÞ ¼ 1

2
htrj½Oðx; tÞ; OðyÞ�j2i; ð11Þ

which measures how a local perturbation at site x affects
measurements at a later time at the site y. With our
normalization for local operators, one has

Cðx − y; tÞ ¼ 1 − htr½Oðx; tÞOðyÞOðx; tÞOðyÞ�i; ð12Þ
and the second term on the right-hand side is the OTOC.
For short times t and large separations x − y, the operators
Oðx; tÞ andOðyÞ commute and Cðx − y; tÞ is zero, while for
large times, the OTOC is small and Cðx − y; tÞ approaches
unity. We obtain at large q a sharp light-cone behavior

Cðx − y; tÞ ¼
8<
:

0 jtj < jx − yj=2;

1 jtj ≥ jx − yj=2:
ð13Þ

Hence, operator spreading occurs with a butterfly velocity
that, like the entanglement velocity, is equal to the naive
light-cone velocity v ¼ 2 in the large-q limit. The results on
random unitary circuits [11,12] suggest that all three
velocities should be distinct for q finite. From the same
comparison, we also expect at finite q that the step function
of Eq. (13) will broaden.

III. ENSEMBLE AVERAGING

We now set out in several steps the general approach that
we use to obtain these results.

First, it is useful to extend the notation of Fig. 1 in
various ways so as to represent pictorially the quantities
defined in Sec. II. An example for Tr½Oðx; tÞOðx; 0Þ� is
shown in Fig. 2. The vertical timelines of sites join
rectangles representing factors ofUi;iþ1 and indicate matrix
multiplication. Repeated copies of W denote multiple time
steps; W† is shown as a differently shaded version of W,
and local operators appear as squares. The matrix trace is
shown by joining the timelines of sites to form closed
loops. Finally, product states in the site basis (which do not
appear in this example) are shown using circles at the ends
of the timelines.
A straightforward simplification in many instances is that

some factors of U and U† cancel, as illustrated in Fig. 2(b),
and the naive light-cone velocity v ¼ 2 clearly emerges.
As a second step, it is helpful to fold the pictorial

representations so that while the timelines in W run
upward, those in W† run downward, as shown in Fig. 2(c).
These folded pictures provide a direct depiction of

physical quantities but are cumbersome. A simpler repre-
sentation is possible if we focus on the time evolution of a
single site. To this end, and in anticipation of the disorder
average, we switch to an alternative notation for Ui;iþ1 and
U†

i;iþ1 in which individual sites appear separately, as shown
in Fig. 3.
With these preliminaries in place, we can set out a

diagrammatic representation for ensemble averages. It is a
many-body extension of the one introduced for averages
over the CUE by Brouwer and Beenakker [16]. It can be
applied to an arbitrary observable fðWÞ, but to be definite,
we illustrate it for KðtÞ with t ¼ 2 and L ¼ 2 so that
Wð2Þ ¼ ½U1;2�2. In general, three steps are involved.

(i) The observable fðWÞ is represented as a collection
of single-site diagrams using the notation introduced

(a) (b) (c)

FIG. 2. Illustration of Tr½OðtÞOð0Þ� for t ¼ 2. U’s and U†’s are represented by rectangles, respectively, shaded in light and dark gray.
The local operatorOx is represented by a square. The curled lines at the top and bottom edge indicate closed loops which denote the trace
operation. (a) Initial expression. (b) After cancellation of pairs of U with U† wherever possible. The boundaries of the regions within
which U’s and U†’s remain form light cones with a velocity v ¼ 2 set by the construction of the model. (c) Illustration of Tr½OðtÞOð0Þ�
for t ¼ 2 formed by folding Fig. 2 (right) so that timelines run upward for W and downward for W†.
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in Fig. 3. For the example of Kðt ¼ 2Þ, one starts
from the many-body diagram shown in Fig. 4 (right)
and obtains the single-site representation shown in
Fig. 5 (left).

(ii) The ensemble average hfðWÞi is computed by
generating a collection of single-site “contracted”
diagrams G ¼ fGigLi¼1 as follows. On each site,
filled U dots are connected to filled U† dots of the
same color on the same site with a dashed line (a
contraction) in all possible ways and likewise for the
empty dots.
Since U’s and U†’s act on neighboring pairs of

sites, these contractions must be matched: For even
i, the choice of contractions between blue dots must
be the same in the diagrams Gi−1 and Gi and similar
for the red dots and the diagrams Gi, Giþ1. We refer
to this matching requirement as the bond constraint.

(iii) Each contracted site diagram Gi gives rise to an
algebraic expression AðGiÞ obtained as the product
of two factors

AðGiÞ ¼ ATðGiÞAUðGiÞ: ð14Þ

These factors are associated with loops of two kinds
called T loops and U loops in Ref. [16]. The T loops
simply record pairings of matrix labels and give
rise to powers of q in the contribution of a diagram.
The U loops distinguish different contributions from
the average of factors of U and U†. Examples of
these two types of loops are illustrated in Fig. 6.

A T loop is a closed sequence of alternating single and
dashed lines. It carries an index corresponding to one of
the q basis states at a site. We generate the contribution
associated with each T loop by summing over its index.
This summation leads to a factor of q for a T loop of single
lines if it does not pass through any operator insertion or of
TrðO1O2…Þ if the T loop passes through the operators
fO1; O2;…g. The overall factor ATðGiÞ is obtained as the
product of the individual factors coming from each T loop.
A U loop is a closed sequence of alternating double and

dashed lines. The length c of a U loop is defined as half of

the number of double lines it contains. Let Ri ¼ fcðrÞk grik¼1

and Bi ¼ fcðbÞk gbik¼1 be the sets of lengths of red and blue U
loops in Gi. Then, from the theory of CUE averages [16],

AUðGiÞ ¼ ðVRi
VBi

Þ1=2; ð15Þ

where the explicit form of the coefficients VRi
≡ Vc1;…;cri

and VBi
≡ Vc1;…;cbi

(also known as the Weingarten func-
tions) is given in Appendix A. Note that the exponent 1=2
in Eq. (15) arises because we distribute the contribution
arising from unitary operators equally over the two sites on
which the operators act.

FIG. 3. Adaptations to diagrammatic notation made in order to
show time evolution of an individual site. The shaded rectangles
representing Ui;iþ1 and U†

i;iþ1 are replaced by pairs of double
lines, with an arrow directed from the column label to the row
label of the matrix. To record the distinction between odd and
even i, the double lines are blue in the first case and red in the
second. This color convention allows us to represent single-site
diagrams without ambiguities (see, e.g., Fig. 7).

FIG. 4. Alternative diagrammatic representations of
Tr½Wðt ¼ 2Þ�Tr½W†ðt ¼ 2Þ�, which gives Kðt ¼ 2Þ after ensem-
ble averaging using the notation of the left and right sides of
Fig. 3.

FIG. 5. Single-site diagrams associated with Tr½Wðt¼2Þ�
Tr½W†ðt¼2Þ� (left) and its ensemble average Kðt ¼ 2Þ (right).

FIG. 6. The T and U loops (right) associated with a contracted
diagram for Tr½Wðt ¼ 2Þ�Tr½W†ðt ¼ 2Þ� (left in this figure and
top middle in Fig. 5). The associated algebraic factors are
ATðGiÞ ¼ q2 and AUðGiÞ ¼ ðV1;1Þ1=2.
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The final value of the ensemble average reads

hfðWÞi ¼
X
G

Y
i

AðGiÞ; ð16Þ

where the sum runs over all contracted diagrams G
satisfying the bond constraint. For the example of
hKðt ¼ 2Þi, all possible single-site contracted diagrams
are drawn in Fig. 5 right. Explicit evaluation of the
algebraic expressions for this case leads to

hKðt ¼ 2Þi ¼ ðq4V1;1 þ q2V2 þ q2V2 þ q4V1;1Þ ≈ 2:

ð17Þ

The factors of q within the brackets are contributions from
the T loops. We take the large-q limit on the far right using
V1;1 ¼ ðq4 − 1Þ−1 and V2 ¼ −½q2ðq4 − 1Þ�−1. At large q,
the first and fourth diagrams are leading order, while the
second and third are subleading.
The above procedure is exact for any q, but the sum in

Eq. (16) is problematic in general, as it may involve an
extremely large number of terms. For example, a total of
ðt!Þ2ðL−1Þ diagrams contribute to KðtÞ. It is therefore useful
to establish which terms dominate in the large-q limit. For
large q, one has AUðGiÞ ∼ qui−ni , where ui ¼ ri þ bi is the
total number of U loops, and ni ¼

P
k ck is the number of

contractions on the ith site. Let τi be the number of T loops
in Gi that contribute a factor q. Then we have the large-q
expansion Y

i

AðGiÞ ∼
Y
i∈site

qτiþui−ni ≡OðGÞ; ð18Þ

where we introduce the order OðGÞ and omit a proportion-
ality constant independent of q. In Appendix B, we discuss
ways of enumerating the leading-order diagrams. As a
general rule, since the total number of contractions

P
i ni is

fixed, we should retain in Eq. (16) only the diagrams that
maximize the total number of T and U loops.
A natural approximation at large q is to treat the elements

of U as independent Gaussian random variables so that a
standard Wick theorem applies. This approximation cor-
responds to including all diagrams where all U loops are of
unit length and omitting all others. We refer to this set as the
Gaussian diagrams. As an example, in Fig. 5, the first and
fourth diagrams on the right-hand side are Gaussian. For
these diagrams, Eq. (18) holds with proportionality con-
stant 1; therefore, counting the overall number of U and T
loops is sufficient to obtain the leading contribution of the
diagram.
In this paper, the leading contributions to all quantities

calculated (except for the autocorrelation function of a local
observable for t > 0) are Gaussian. A procedure that goes
beyond the Gaussian approximation is necessary, first, for
the proof of this statement, and second, for future dis-
cussion of the subleading contributions. Since the number

of diagrams contributing to each of the quantities we
consider is finite at fixed L and t, our results are exact
in the limit q → ∞ with L, t fixed.

IV. DIAGRAMMATIC EVALUATION
OF RESULTS

We now show how this diagrammatic approach can be
used to generate the results given in Sec. II. We sketch the
main ideas here, deferring formal proofs to the Appendices.

A. Spectral form factor

Consider the spectral form factor KðtÞ introduced in
Eq. (5). Applying the procedure described in Sec. III (and
generalizing the example given for L ¼ 2 and t ¼ 2 in
Fig. 5), we obtain for L > 2 a many-body diagram
consisting of single-site diagrams as shown in Fig. 7(a).
Here, each time step inWðtÞ contributes with two unitaries,
leading to 4t dots divided into four types: blue or red, and
empty or filled.
Next we consider ensemble averaging this diagram,

making all possible contractions. On a single site, one
can easily check that one of the diagrams with the
maximum number of loops is, e.g., the site diagram in
Fig. 7(b). Since this diagram is Gaussian and τi ¼ ui ¼ 2t
and ni ¼ 4t, its contribution for large q is simply 1. There
are t-equivalent diagrams of this kind obtained by cycli-
cally shifting the right dots with respect to the left ones, as
shown in Figs. 7(c) and 7(d). Additionally, once one of these
configurations is chosen on the site i, the bond constraint
forces all other sites to be in the same configuration in order
to maximize the number of loops. All other diagrams are
smaller by powers of q for q → ∞. Consequently, we get the

(a) (b) (c) (d)

FIG. 7. (a) The site diagram associated with Tr½WðtÞ�Tr½W†ðtÞ�.
It is color coded as follows: For an odd site i, the blue dots and
double lines are contributions from Ui;iþ1 or U†

i;iþ1 and the red

ones are from Ui−1;i or U
†
i−1;i. For an even site, this coding is

reversed. (b)–(d) Three examples from a total of t leading-order
diagrams for KðtÞ at t > 0.
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result KðtÞ ¼ jtj. A proof of this statement is given in
Appendix C.

B. Relaxation of local observables

Contributions to the autocorrelation function
tr½Oðx; tÞOðxÞ� are generated by contractions of the site
diagrams shown in Figs. 8(a) and 8(b). The leading
contribution Gi at a site i ≠ x is from a contraction of
the form shown in Fig. 8(c). However, if this contraction is
made at every site i ≠ x, then because of the bond
constraint, it also applies at site x and yields AðGxÞ ∝
TrOx ¼ 0 in Fig. 8(d). An example of an alternative
contraction, for which AðGxÞ ≠ 0, is shown in Fig. 8(e).
With such a choice at i ¼ x, the bond constraint imposes
contractions at nearby sites i ≠ x that are subleading in q.
We also evaluate the leading nonzero contributions to

an autocorrelation function for large q at small values of t.
We find

h½Oðx; tÞOðxÞ�avi ¼

8>>><
>>>:

1 for t ¼ 0;

0 for t ¼ 1;

q−7 for t ¼ 2;

16q−11 for t ¼ 3:

ð19Þ

These results are interesting for two reasons. First, the
equivalent quantity for time evolution with a random
unitary circuit is identically zero at all t ≠ 0. Hence, the
results expose a difference between our Floquet model and
random unitary circuits. The finite relaxation rate at finite q

in the Floquet model is consistent with expected generic
behavior, whereas complete relaxation for any t ≠ 0 is
likely to be a special feature of random unitary circuits.
Second, and quite separate, the dominant contributions
arise from non-Gaussian diagrams: For example, at t ¼ 3

the largest Gaussian term is 2q−9, but it is canceled by non-
Gaussian contributions.

C. Purity and Rényi entropies

We now show that the large-q calculation of the purity
can be reduced to counting DW configurations with
positive weights, in a problem analogous to one from
classical statistical mechanics. Related ideas apply (albeit
more elaborately) to the evaluation of averages of the
exponential of the Rényi entropy SαðtÞ for general positive
integer α, and we discuss the case α ¼ 3 in Appendix F.
A domain structure similar to what we derive here also
appears in recent treatments of random unitary circuits
[10,11], and it is striking to find it as an emergent property
of our Floquet model.
The main steps in our procedure are summarized in Fig. 9.

We wish to average TrA½ρAðtÞα� for α ¼ 2. Using the
conventions of Fig. 2, Eq. (9) has the pictorial representation
shown in Fig. 9(a). Since each ρAðtÞ ¼ W†ðtÞjψihψ jWðtÞ,
we have four sectors containing WðtÞ, W†ðtÞ, WðtÞ, and
W†ðtÞ, respectively. It is convenient to fold this diagram, as
we discuss in Sec. III and Fig. 2. This procedure leads to a
folded representation containing four layers, as shown in
Fig. 9(b) top. The folded site diagrams in regions A and B
are shown in Fig. 9(b) bottom left. Note, in particular, how
the timelines of the sites in the regions A and B connect
differently at the top of these diagrams because of the
structure of traces in Eq. (9). After averaging, it turns out
that the leading contributions come from contractions of the
U’s and U†’s that are brought to lie in a stack on top of
each other by the folding operation. We call a contraction of
this type local. Such a stack of unitaries is indicated with a
large blue box in Fig. 9(b) top. In the evaluation of the purity
(where two U’s and two U†’s are involved), there are two
possible local contractions [Fig. 9(b) bottom right].
An intuitive explanation of the fact that only local

contractions contribute for q → ∞ is that any contraction
between two dots in distant blocks will necessarily lead to a
longer loop; as the total loop length is fixed, this implies a
smaller number of loops and a lower order according to
Eq. (18). This statement is proved in Appendix E.
Given the restriction to local contractions, a further

simplification of the diagrammatic representation is possible.
It is no longer necessary to represent the unitaries within a
stack individually. Instead, we can simply depict the stack
using a label to indicate the type of local contraction.We label
the two types of local contraction that appear in a calculation
of the purity A and B because they involve the same types
of pairing as are induced by the trace structure in regions A
and B of the system. The diagrammatic notation applied to

(a) (b) (c) (d) (e)

FIG. 8. (a),(b) Site diagrams associated with ½Oðx;t¼2ÞOðxÞ�av
at sites i ≠ x and sites i ¼ x, respectively. Color coding is as
in Fig. 7. (c) The leading contraction of the site diagram for
x ≠ i. (d),(e) Two alternative contractions of the site diagram
for ½Oðx; t ¼ 2ÞOðxÞ�av at site x. (d) gives a contribution
AðGxÞ ∝ TrOx ¼ 0. (e) has AðGxÞ ≠ 0 but forces similar con-
tractions on adjacent sites via the bond constraint, and these
contributions vanish as q → ∞.
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one stack is shown in Fig. 9(b) bottom right. The same
notation is used for a larger system in Fig. 9(c).
We prove in Appendix E that the order of a diagram with

only local contractions is given by q−hAB, where hAB is the
number of segments of horizontal wall of length one lattice
unit between an A and a B block. Such walls are shown
with horizontal red lines in Fig. 9(c). In this framework,
the problem of finding the leading contributions admits a
simple geometrical interpretation: They are represented by
the set of minimal-length DW diagrams that separate the A
and B contractions. Given the fixed boundary conditions
for the blocks on the top of the diagram, a DW must
connect the top center to either the side or the bottom of the
diagram [Fig. 9(c)].
For t ≤ L=4, a minimal-length DW can connect only the

top center to the bottom edge of the diagram. Since there is
a total of 2t rows, the minimal hAB is 2t, and the order is
q−2t. Moreover, there are two choices (for the DW to go left
or right) below every row, so the number of leading-order
diagrams is 22t. For t > L=4, the lengths of the DWs
are minimized when they connect the top center and
the side of the diagram with the shortest possible paths.

This observation implies that there are only two leading-
order diagrams: those where the DW is directed exclusively
towards either the left or the right. For these cases, hAB ¼
L=2, and the order is q−L=2.
In summary, Gaussian diagrams give the leading behav-

ior at large q:

he−S2ðtÞi ∼
�
22tq−2t t ≤ L=4;

2q−L=2 t > L=4.
ð20Þ

Subleading terms eliminate the discontinuity in Eq. (20) at
t ¼ L=4. For larger α, one can repeat the construction of
Fig. 9. Each block has now α! possible states corresponding
to the possible local contraction inside a block of αU’s and
αU†’s. So, generically the problem reduces to counting, but
for large α, the procedure quickly becomes problematic.
The case α ¼ 3 is discussed in Appendix F.

D. Out-of-time-order correlator

Consider the diagrammatic representation of the OTOC
defined in Eq. (12). After the cancellation of U’s with U†’s
wherever possible, we can distinguish two alternative

(a) (b) (c)

FIG. 9. Summary of the steps that convert the evaluation of the average purity into a combinatorial statistical mechanics problem.
(a) Illustration of e−S2ðtÞ for t ¼ 1. Open circles represent a product state in the site basis and other conventions are as in Fig. 2. (b) Top:
Folded representation of exp½−S2ðtÞ� obtained by folding (a) so that timelines in WðtÞ run upward and those in W†ðtÞ run downward.
The large blue box highlights a stack of four unitary operators (see main text). (b) Bottom left: Site diagrams in regions A and B. Note in
particular how the timelines of sites in the regions A and B connect differently at the top of these diagram because of the structure of
traces in Eq. (9). (b) Bottom right: The two possible local contractions made within a block, which we label A and B. Only leading-order
diagrams have such contractions. We represent these contractions in two alternative ways: either explicitly for a single site, as on the left
side of the equivalences, or schematically for a pair of sites and a stack of unitaries, as on the right side of the equivalences. Note that the
top boundary of the diagram can be treated as equivalent to blocks of such contractions. (c) Leading-order diagrams for he−S2ðtÞi at large
q are minimal-length domain-wall (DW) diagrams. Their weight is q−hAB with hAB being the length of horizontal DW between A and B
contractions. The labels A and B on blocks in this figure indicate the type of local contraction. Top: A minimal-length DW diagram for
hexp½−S2ðtÞ�i at t ¼ 4 and L > 6. Bottom: One of the two minimal-length DW diagrams at t > 2 and L ¼ 6. These two diagrams have
the DW directed solely to the left or right.
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scenarios. For t < jx − yj=2, all the unitary matrices are
canceled and we simply have tr½Oðx;tÞOðyÞOðx;tÞOðyÞ�¼
tr½OðxÞ2�tr½OðyÞ2�¼1, independent of the realization.
Substituting the OTOC in Eq. (11), we see that the
commutator vanishes. This result is consistent with the
fact that the light cone spreading from x with velocity
v ¼ 2 has not yet reached the operator in y. Conversely, for
t ≥ jx − yj=2, there is a region of unitary operators that
cannot be canceled.
The calculation of the OTOC for t ≥ jx − yj=2 is shown

in Fig. 10 left using a folded diagram. The diagram contains
four layers of W ’s, as for the purity, and we employ the
block representation introduced in Sec. IV C. Similar to
Sec. IV C, it can be shown that the leading-order diagrams
necessarily involve only local contractions. Moreover, the
trace structure of OTOC sets boundary conditions along the
top of the diagram that act as A blocks and along the bottom
that act as B blocks. From this feature, one would expect
that the leading-order diagrams are minimal-length DWs
that cross the diagram horizontally, separating an upper
domain of A0s from a lower domain of B’s (Fig. 10 right).
These diagrams, however, vanish because they involve
factors of either trOðxÞ≡ 0 or trOðyÞ≡ 0. In Appendix G,
we prove that the leading contributions to the OTOC for
t ≥ jx − yj=2 go to zero for q → ∞, and hence, Eq. (13) is
recovered in the large-q limit.

V. SUMMARY AND OUTLOOK

In summary, we introduce a minimal random-matrix
model with extended spatial structure to study the chaotic
Floquet dynamics of a many-body quantum system. We
present a diagrammatic technique to compute several

quantities using a systematic and controlled expansion in
the inverse of the local Hilbert space dimension q.
Our study of a minimal model and the techniques we

develop are complementary to a variety of other recent
works. In particular, the semiclassical approach to quantum
chaos in few-body systems [25] has been extended to
bosonic systems at high density by considering interfering
paths in Fock space that arise from solutions to the Gross-
Pitaevskii equation [26,27] and to periodically driven spin
systems in the large-spin limit [28]. These semiclassical
techniques have the attraction of applying directly to specific
physical systems that are of wide interest rather than simply
to a minimal model. They have been used so far to identify
particular many-body interference phenomena but have not
been developed to allow general computation of the dynam-
ics of quantum information. In a separate advance, the
Keldysh technique has been generalized to permit calcu-
lation of out-of-time-order correlators, with applications to a
variety of microscopic models [29]. These calculations are
well controlled in a quasiclassical regime, analogous to our
large-q limit, while the augmented Keldysh contour of
Ref. [29] is (unsurprisingly) mirrored quite closely by the
structure of the diagrammatic calculations we describe here.
Further topical research [30] addressing a spatially extended
version of the Sachdev-Ye-Kitaev (SYK) model [31] is set
apart from the results we present by the fact that the zero-
dimensional SYK model exhibits much greater structure
than the individual random matrices of our model.
There are some obvious and interesting directions for

additional investigations using the techniques we set out.
First, in contrast with random unitary circuits, our model
has a well-defined Floquet operator, opening the possibility
for the study of its spectral properties. It seems likely that
further work in this direction will be useful, going beyond
our evaluation of the spectral form factor in the random-
matrix regime. Second, the results we present are averages
over an ensemble of systems. It would be useful to
understand the magnitude of sample-to-sample fluctuations
by evaluating quantities such as hðe−SαðtÞÞ2i − he−SαðtÞi2.
More ambitiously, it would be appealing to use higher-
order terms in the 1=q expansion to search for the expected
differences between the naive light-cone velocity, the
entanglement-spreading velocity, and the butterfly velocity,
and to investigate broadening of the step in the OTOC given
in Eq. (13) for the large-q limit.
There are also several generalizations. Our model and the

techniques we develop can be naturally extended to higher
dimensions. Analogous models could also be developed for
the other symmetry classes in random-matrix theory. In the
context of quantum transport, it would be interesting to
incorporate the presence of conserved quantities by modi-
fying the local structure of the Floquet operator, as has been
done recently for random quantum circuits [32,33].
Finally, and speculatively, it is possible that an under-

standing of the ergodic phase in our model for chaotic

FIG. 10. Diagrammatic representation of OTOC. Left: Folded
diagram for tr½Oðx; tÞOðyÞOðx; tÞOðyÞ� with jx − yj ¼ 2 and
t ¼ 2. The blue box highlights four unitary operators, which
can be represented in the block representation in a similar way
as the ones in Fig. 9(c). Right: An apparent minimal-length
horizontal DW diagram that vanishes due to trOðyÞ≡ 0. The red
blocks are unitary pairs that cannot be annihilated. The dark gray
blocks represent the boundary conditions. A0 represents an
effective contraction A [Fig. 9(c)] with operators along the loops,
and similar for B0.
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many-body systems may play a role analogous to the
treatment of a diffusive metal in the theory of disordered
conductors and provide a starting point for a theory [34] of
the many-body localization transition [35].
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Note added.—Recently, we learned of recent related cal-
culations of the spectral form factor for a many-body
system in which the equivalent of Eq. (5) is derived for the
orthogonal symmetry class [36]. There are, however,
important differences between the two approaches. In
particular, the result of Ref. [36] develops from a specific
long-range Hamiltonian using ideas of periodic orbit
theory. Instead, the present work utilizes a limit of large
on-site Hilbert space and disorder averaging still retaining a
local short-range structure. Therefore, one important poten-
tial use of our method is to address ergodicity in disordered
systems [37].

APPENDIX A: RECURSIVE FORMULA FOR
Vc1;c2;…;cu

The coefficient Vc1;…;ck appearing in Eq. (15) obeys the
recursion relation [16,38,39]

δc1;1Vc2;…;ck ¼ NVc1;…;ck þ
X

pþq¼c1

Vp;q;c2;…;ck

þ
Xk
j¼2

cjVc1þcj;c2;…;cj−1;cjþ1;…;ck ; ðA1Þ

where V0 ≡ 1, and N ¼ q2 is the dimension of the unitary
group from which the Haar-distributed unitary operators
are drawn.

APPENDIX B: ENUMERATION OF
LEADING-ORDER DIAGRAMS

In the following, we describe two methods for efficiently
enumerating the leading-order diagrams for the physical
quantities we compute. The contraction addition method
described in Appendix B 1 can be used to eliminate
subleading single-site diagrams efficiently, which is par-
ticularly useful if the many-body diagram of interest has the
same site diagrams across all sites (e.g., the spectral form
factor). The DW approach described in Appendix B 2
allows us to obtain an upper bound to the order, a global
property of a diagram, by making only local calculations
between neighboring domains. We apply the ideas from
Appendix B 1 in Appendices C, D, and G, and those from
Appendix B 2 in Appendices E and G.

The foundation for both of these methods is Eq. (18),
which gives the order OðGÞ of a diagram G as a product of
factors qτiþui−ni from each site. As the numbers τi of T
loops and ui of U loops contribute to the order in the same
way, we do not need to distinguish between T and U loops
in the calculation of order discussed below.

1. Method of contraction addition

An ensemble-averaged many-body diagram consists of
L site diagrams labeled by i, each with a number ni of
contractions. The idea of this approach is that, given a site
diagram, we can first remove all the contractions and then
reconstruct the diagram by adding contractions one at a
time. The order can be evaluated by considering the effect
of each contraction addition. The crucial point is that the
procedure is independent of the sequence of contraction
additions. Each addition either leaves the order in q
unchanged (if it increases both τi þ ui and ni by 1) or
reduces the order (if the addition increases only ni, or
reduces τi þ ui and increases ni). A convenient sequence
(one that contains order-reducing contraction additions in
the first few steps) can therefore be used to eliminate
subleading diagrams efficiently.
To be more precise, given a diagram G, we consider the

single-site configurationGi on site i. We choose a sequence

of diagrams fGð0Þ
i ;…; GðniÞ

i g, such that Gð0Þ
i has no con-

tractions, Gðmþ1Þ
i is obtained from GðmÞ

i by adding one

contraction, and GðniÞ
i ¼ Gi. The overall order is then

OðGÞ ¼
Y
i∈site

OðGð0Þ
i Þ

Yni
m¼1

ΔðmÞ
i : ðB1Þ

Here, ΔðmÞ
i ¼ OðGðmÞ

i Þ=OðGðm−1Þ
i Þ is the change in the

order when one contraction is added.
As we establish that we do not need to distinguish

between T and U loops here, each contracted site diagram
can be represented as a collection of loops using the same
notation for both types of loops. The same representation

can also be used for each intermediate GðmÞ
i despite the fact

that the notion of distinct T and U loops may not apply to

GðmÞ
i . The addition of a contraction has the effect either of

merging two loops into a single longer one or of breaking
one loop into two. To see this, recall the prescription for
construction of loops in a single-site configuration Gi that
is implied by Fig. 6. It can be expressed as follows. Start at
any point on a single (for T loops) or double (for U loops)
line; follow the direction along this line; when a dashed line
is encountered, go to the other end of the dashed line and
continue along the single or double line in the same sense;
repeat until the starting point is reached: the path traced is a
loop. The addition of an extra contraction to this prescrip-
tion simply reroutes the paths of the two loop segments that
meet the contraction from either side. Moreover, since the
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two ends of the dashed line depicting a contraction are
attached either to two separate loops or to two different

portions of the same loop, we can evaluateΔðmÞ
i omitting all

information except what concerns the one or two loops
involved in the contraction. Once one focuses on the
relevant details in this way, there are only eight distinct
contraction-addition scenarios. We list them all in Fig. 11,
using a single unbroken line to denote generic loops. A
minor complication is that it is necessary to distinguish
loops that pass through one or two operators representing
local observables from ones that do not, since these
operators may also affect the weight of a diagram.
We provide a simple example of how this approach to

determining the order of a site diagram works in Fig. 12.

2. Domain-wall approach

In Sec. IV C, we set out a way of considering contri-
butions to some quantities of interest in terms of space-time
domains within which contractions are all of the same type.
The power of this approach lies in the fact that one can
associate a bound on the diagram’s order with each DW

between two neighboring domains. Using DW, we can
calculate a bound on the diagram’s order, a global property,
by making only local calculations between neighboring
domains. We explain the details here, using for concrete-
ness the second Rényi entropy (see Sec. IV C) and referring
to the block representation introduced in Appendix E 1
and Fig. 13.
First, we rewrite the order of a diagram G in terms of

loops. We define the length ck of a loop k as half of the
number of nondashed lines it contains. We make the
convention that single lines at the top edge (where W
andW† are multiplied) are counted twice so that lengths are
always integer numbers (e.g., at the top edge of Fig. 5 there
are four single lines in each single-site diagram). This
construction generalizes the definition given in Sec. III to
both U loops and T loops. We also define the total length
lt ¼

P
kck where the sum runs over all loops. Then the

order of a diagram in Eq. (18) can be rewritten

OðGÞ ¼ qlt−n
Y

k∈loops
Γck ; ðB2Þ

where Γc ¼ q1−c, and n ¼ P
i ni is the total number of

contractions. The values of lt and n are fixed by the
observable of interest. In particular, for the second Rényi
entropy, lt ¼ n.
The intuition behind Eq. (B2) is as follows. Since a given

diagram has a fixed number of length segments, its order is
high (low) when there are many short (a few long) loops.
The prefactor qlt−n represents the theoretical maximum
order when all length segments are used to form 1-loops. Γc

FIG. 11. Enumeration of all distinct ways in which a contrac-
tion may be added to a site diagram. Columns from left to right
are as follows. (i) Eight distinct combinations of one or two loops,
before addition of a contraction, with associated contributions to

OðGðm−1Þ
i Þ. Three types of loop appear, containing zero, one, or

two local operatorsO indicated using open squares. (ii) The same
after adding a contraction shown as a dashed line and redrawn

purely as loops, with associated contributions to OðGðmÞ
i Þ.

(iii) Values of ΔðmÞ arising from each contraction obtained as
the ratio of contributions in columns (ii) and (i).

FIG. 12. An example of order determination of a diagram using
the method of contraction addition. Arrows giving an orientation
to loops are omitted for clarity.

FIG. 13. Top: The block representation of a leading DW
diagram for hexp½−S2ðtÞ�i. The top row (the zeroth row) denotes
the effective blocks that represent the structure of traces in
subregions A and B [Fig. 9(b) bottom left]. The dashed line
represents a light cone outside of which all unitary pairs can be
annihilated as described in Fig. 2. The red line represents costly
boundaries (between blocks of different contraction types; see
Appendix B 2 and Table I). Bottom: The correspondence between
blocks and the symbols used in the bottom right of Fig. 9(b).
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is the cost associated with a loop of length c, and its value
decreases as c increases. For example, Γ1 has value 1 since
1-loop is the shortest possible loop. Γ2 has value q−1 because
one could have formed two 1-loops [giving a factor of q2

in Eq. (18)] instead of one 2-loop (giving a factor of q).
Next, we rewrite the order of a diagram in terms of

boundaries that intersect the loops. We define a boundary
as a horizontal segment of unit lattice spacing that separates
two blocks (e.g., the red lines in Fig. 15 top) so that each
block has four boundaries (except for the blocks represent-
ing the trace structure at the upper edge, e.g., zeroth row in
Fig. 15 top). Every loop intersects two such boundaries per
unit length. To each boundary w, we can therefore associate
a cost

CðwÞ ¼
Y
k∈loops
k∤w

Γ1=2ck
ck ; ðB3Þ

where k labels the loops that the boundary w intersects, and
ck is the corresponding loop length. In this way, the order of
a diagram G is expressed in terms of the cost of each
boundary so that

OðGÞ ¼ qlt−n
Y

w∈walls
CðwÞ: ðB4Þ

Since Γ1 ¼ 1, loops of unit length do not contribute to
OðGÞ. We obtain an upper limit on the cost of a boundary
by assuming longer loops to have length not more than
ck ¼ 2. This procedure leads to

CðwÞ ¼
Y

k∤w;ck≥2
Γ1=2ck
ck ≤ q−nw=4; ðB5Þ

where nw is the number of loops crossing the boundary w
with length longer than 1. Referring to examples in Fig. 15,
CðwÞ for the top subfigure is bounded by (and equal to) q−1
with nw ¼ 4, and CðwÞ for the bottom subfigure is bounded
by q−3=4 with nw ¼ 3. As we see, a costly boundary (one
with nw > 0) is always sandwiched between blocks with
different contractions. It is therefore natural to call such a
boundary a DW.With minor modifications, this method can
also be applied to diagrams that contain local operators.

APPENDIX C: SPECTRAL FORM FACTOR

Here we use the method of contraction addition
(Appendix B 1) to enumerate the leading-order diagrams
for hKðtÞi. In Eq. (B1), we have ni ¼ 4t andOðGð0Þ

i Þ ¼ q2.
There are only two relevant contraction-addition scenarios
illustrated in Fig. 11: (i) An intraloop addition (item 1 in the
figure), where the two legs of the new contraction line land
on the same loop. Then, Δ ¼ q0 according to Eq. (18)
because τ þ u and n both increase by 1. (ii) An interloop
addition (item 2 in figure), where the two contraction legs

land on two different bare loops. Since the two loops merge
into a single bigger loop due to the new contraction, τ þ u
decreases by 1, and n increases by 1. So Δ ¼ q−2.
The many-body diagram for KðtÞ comprises site dia-

grams before contraction as in Fig. 7(a). For t ¼ 0, we have
KðtÞ ¼ q2L since Wð0Þ ¼ 1qL . To compute the large-q
limit of KðtÞ for t > 0, we first note that there are diagrams
with multiple contractions that are Oð1Þ, such as Fig. 8(c).
This is, in fact, a highest-order diagram for t > 0 according
to Eq. (B1) because there must be at least one interloop
contraction addition which is associated with Δ ¼ q−2 per
site, and because, from Fig. 11, the later contraction
additions can be made without increasing the order of
the diagram. So, any diagrams with order smaller thanOð1Þ
are subleading.
There are t leading-order site diagrams on site i by the

following argument. Using the fact that the order determi-
nation is independent of the sequence of contraction
addition, we choose to contract on site i the (filled and
unfilled) blue dots on the top layer from left to right. The
first filled blue dot can be contracted with any one of the
t-filled blue dots on the bottom layer. This interloop
contraction costs q−2. In order to obtain a leading diagram,
the later contractions must all be of Oð1Þ, i.e., intraloop
contractions. A general feature of an Oð1Þ contraction is
that it must partition a bigger loop into two smaller loops,
such that the q factor associated with the extra loop (since τ
or u increases by 1) cancels the q−1 factor of the contraction
(since n increases by 1) (see Fig. 11). Furthermore, on each
of the two smaller loops, there must be equal numbers of
uncontracted blue dots on the top and bottom layers.
Otherwise, there will be an interloop contraction which
will render the diagram subleading. It is straightforward to
see that there is a unique choice of contraction of the second
blue dot that satisfies this requirement. Similarly, there are
unique choices for the rest of the blue dots on this site.
In order to not incur further cost on site i, each red dot on
the top layer must be contracted with the only other red dot
on the same loop on the bottom layer. So there are unique
choices for the red dots as well.
Because of the bond constraint, the (iþ 1)th site dia-

grams inherit the choice of either the blue or red dot
contractions on site i. We can repeat the above analysis site
by site and conclude that there are t leading-order diagrams
of Oð1Þ for t > 0 [Figs. 7(b)–7(d)].
Lastly, each of these t diagrams is translated algebrai-

cally to the factor 1, simply observing that it is Gaussian
and for each site τi þ ui ¼ ni in Eq. (18). In other words,
for t > 0, KðtÞ ¼ t, and we arrive at Eq. (5).

APPENDIX D: RELAXATION OF LOCAL
OBSERVABLES

Here we prove Eq. (7). For t ¼ 0, the calculation is
straightforward since Wð0Þ ¼ 1qL . For t ¼ 1, there is only
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one configuration at each site because there is only one pair
of dots of each kind. Since we choose TrOx ¼ 0, the
algebraic term associated with this diagram vanishes. For
t > 1, we use the same argument as in Appendix C to show
that every possible diagram has an order that vanishes
as q → ∞. In the formulation of contraction addition

(Appendix B 1), we have ni ¼ 4t and OðGð0Þ
i Þ ¼ 1. On

site x, we choose to first contract the blue dot on the bottom
left of the diagram [Fig. 8(b)]. This bottom left blue dot
cannot be contracted with the bottom right blue dot
nontrivially since TrOx is zero. However, if this bottom
left blue dot is contracted with any other blue dots, it will
partition a bigger loop into two smaller loops, each of
which has an unequal number of dots from U’s and U†’s.
Consequently, there will be at least one addition of an
interloop contraction with Δ ∝ q−1 (item 6 in Fig. 11).
Since all other contraction additions can further reduce only
the order according to Fig. 11, we haveOðGÞ < q−1 for any
diagram G associated with h½Oðx; tÞOðxÞ�avi when t > 1.

APPENDIX E: SECOND RÉNYI ENTROPY

The diagrammatic representation used in Fig. 9(c)
requires a straightforward extension when it is employed
in the presentation of detailed proofs, and we start by
describing this extension. It arises for the following reason.
The rectangles of Fig. 9(c) represent local contractions for a
stack of two U’s and two U†’s. Each contraction involves
linking both open dots with open dots, and closed dots with
closed dots. To allow for the possibility that different
pairings are made for open dots and for closed dots, each
rectangle appearing in Fig. 9(c) is divided horizontally into
two in this Appendix.

1. Block representation of hexp½− S2ðtÞ�i
In detail, we introduce theblock representation as follows.

Beginning from the folded representation that we introduce
in Sec. IV C, we consider a stack of four unitary operators
(blue box in Fig. 9). We use Fig. 3 to represent each unitary
operator in terms of dots and double lines. A block is defined
as a region within this box that encloses only filled (or only
empty) dots. In this way, to each stack of four unitaries, we
associate two blocks containing, respectively, filled and
empty dots [so that the four-legged symbol in the bottom
right of Fig. 9(b) corresponds to two blocks in Fig. 13
bottom]. For hexp½−SαðtÞ�i, there are 4t rows of such blocks,
and drawing each of them as an empty rectangle leads to the
representation in Fig. 13.
We categorize the possible contractions of the dots within

a block into seven types T ¼ fa; b; a1; a2; b1; b2; xg. As we
explain in the main text, a and b involve only local
contractions (within the block), while x involves only non-
local contractions. The other types are of mixed local and
nonlocal character and are defined in Fig. 14. An upper
bound ωðc; c0Þ for the cost of the boundary between two

neighboring block configurations c, c0 ∈ T is shown in
Table I. Two examples of the evaluation of ωðc; c0Þ are
illustrated in Fig. 15 using the method introduced in
Appendix B 2.

2. Evaluation of hexp½− S2ðtÞ�i
We discuss diagrams for hexp½−S2ðtÞ�i in terms of

different block pairings. We first fix our convention as
follows. We label the rows of blocks from the top as in
Fig. 13. We refer to the boundaries immediately above the
pth row of blocks as the pth row of boundaries.
Because of the simplification illustrated in Fig. 2, pairs of

U and U† can be canceled outside of the light cone
originating from the subsystem boundary (shown with
dashed lines in Fig. 13). Alternatively, instead of canceling
them, it is equivalent to assume that the blocks on the far
left and far right have, respectively, a and b contractions, as
long as we remain in the large-q limit. Consistently, this
choice implies costless boundaries according to Table I.
Therefore, in particular, a configuration for any given odd
row of boundaries can be parametrized as in Fig. 16, and we
denote this as ðad1d2d3;…; dkbÞwall with variables d1 ≠ a,
dk ≠ b, and di ≠ diþ1 for i ¼ 1;…; k − 1. a, b, and di
represent (connected) domains of blocks with the same type
of contractions. Note that for every change of domain, there
is a DW associated with a factor of q−m with m > 0.
We claim the following for the leading diagrams. (i) Each

odd row of walls has the form ðabÞwall. (ii) Each even row
of walls is sandwiched between two rows of blocks with
identical configurations. (iii) The leading diagrams have
order q−2t.

FIG. 14. Contractions in a portion of a site diagram for
hexp½−S2ðtÞ�i showing all seven possible block types.

TABLE I. Upper bounds for the cost associated with the
boundaries between the seven possible types of block contrac-
tion. The matrix is symmetric, and so only the upper triangle is
written explicitly.

ω a b a1 a2 b1 b2 x

a q0 q−1 q−1=2 q−1=2 q−1 q−1 q−1

b q0 q−1 q−1 q−1=2 q−1=2 q−1

a1 q0 q−1 q−3=4 q−3=4 q−1=2

a2 q0 q−3=4 q−3=4 q−1=2

b1 q0 q−1 q−1=2

b2 q0 q−1=2

x q0
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An example of order q−2t can be found by constructing a
single DW dividing two domains of blocks with contraction
a and b (Fig. 13), such that on the odd rows of boundaries,
the order is ωða; bÞ ¼ q−1, and on the even rows of
boundaries, the order is 1. So any diagram with order
lower than q−2t is subleading.
To prove these statements, we note that an odd row

ðabÞwall has only one DW segment with cost q−1.
Conversely, by using the costs in Table I, it is easy to
verify that any row configuration ðad1d2d3;…; dkbÞwall
with k ≥ 1 always has an order strictly smaller than q−1.
Note that the order of a row with k ≥ 2 is straightforwardly
smaller than q−1 since each wall costs at least q−1=2.
An even row of walls that is sandwiched by two rows

of blocks with different configurations is associated with
an order of q lower than 1 because there is a costly wall
sandwiched by two blocks of different types (see
Appendix E 1).
Leading diagrams are obtained maximizing the order on

odd and even rows, thus, proving (i) and (ii). Statement
(iii) follows trivially from statements (i) and (ii). Finally,
(ii) implies that these diagrams are Gaussian (see Sec. III)
and translate into positive algebraic factor. Hence, we
recover Eq. (20).

APPENDIX F: THIRD AND HIGHER RÉNYI
ENTROPIES

We can also represent the leading contributions to
hexp½−2S3ðtÞ�i by using a block representation. An extra

feature in this case compared with α ¼ 2 is that there are
six possible types of local contractions within a block. We
label these contractions a, b, k, and ji for i ¼ 1, 2, 3
(Fig. 17). The blocks at the top edge of the diagram are
fixed to be of type a and b by the structure of traces
in exp½−S3ðtÞ�.
Repeating the approach for α ¼ 2, we find that leading

diagrams involve only local contractions. Equivalent state-
ments to (i)–(iii) in Appendix E 2 apply. For (i), we find that
the leading-order odd rows of boundaries have order q−2,
and they are of the forms ðabÞwall or ðajibÞwall. All other
odd row configurations ðad1d2d3;…; dkbÞwall are associ-
ated with factors smaller than q−2. For k > 4, the upper
bound is trivially smaller than q−2 because each wall costs
at least q−1=2. For 1 ≤ k ≤ 4, we enumerate all cases using
symbolic computation to complete the proof. Statement
(ii) for α ¼ 3 is the same as the one for α ¼ 2, and
(iii) follows trivially for time t ≤ L=4. An example of a
leading-order [Oðq−4tÞ] diagram is given in Fig. 19.
The main difference with respect to α ¼ 2 is that the

leading contributions also include diagrams with regions of
ji contractions, as well as regions of a and b contractions.
We classify the leading diagrams at t by the width r of the ji
region on the bottom row of blocks. To count the number of
leading diagrams, we use an inductive approach from time t
to tþ 1. Every leading diagram at tþ 1 can be generated
from a leading diagram at t by adding four rows of blocks at
the bottom of the diagram at t. A newly added even row
must have a configuration identical to the one above. A
newly added odd row has configuration depending on the
one above according to the following rules (Fig. 18). For
each even row in which the width of the ji region is zero,
there are five possible configurations for the odd row
below: two with width 0 and three with width 1. For each

FIG. 16. A generic configuration of an odd row of boundaries
denoted as ðad1d2d3;…; dkbÞwall. Costly boundaries (DWs) are
drawn in red. Costless boundaries are drawn in black.

(a) (b)

FIG. 15. Examples of contractions in a portion of a site diagram
for hexp½−S2ðtÞ�i. Left sides of (a) and (b): Two neighboring
blocks along site i shown in the space-time plane with the time
axis vertical. Right sides of (a) and (b): Equivalent site diagrams
with the time axis vertical; open-ended dashed lines are con-
tracted nonlocally with an external block. Red lines represent
sections of boundary (of unit length in the left-hand pictures).
(a) Right: The boundary crosses four times a loop of length at
least 2 at the red crosses, so ωða; bÞ ¼ q−1. (b) Right: The
boundary has three costly crossings, so ωðb1; a2Þ ¼ q−3=4.

FIG. 17. The six local contractions for a block appearing in
hexp½−S3ðtÞ�i with the same notation as the one in Fig. 14.

FIG. 18. The recursive rules for enumerating the pþ 1th row of
the leading-order diagrams given the pth row of the leading-order
diagram. These rules are derived from the fact that, in a leading
diagram, the difference between the DW positions at even row p
and odd row pþ 1 is exactly one lattice spacing.
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even row with width r > 0, there are four possible
configurations for the odd row below, two with width r,
one with width (r − 1), and one width (rþ 1). An example
of a leading diagram is given in Fig. 19.
We can write this recurrence relation in matrix form by

introducing a vector vðpÞ ¼ ½v0ðpÞ; v1ðpÞ;…�T where
vrðpÞ denotes the number of diagrams with total number
of rows p that have a ji region of width r in the last row.
The degeneracy DðtÞ can be obtained by summing up the
components of vðtÞ. These components, in turn, can be
found by acting 2t times with a transfer matrix representing
the recursive rules on the vector vðt ¼ 0Þ ¼ ð1; 0; 0;…ÞT,

DðtÞ ¼ ½ 1 1 � � � �

2
666666664

2 1

3 2 1

1 2 1

1 2 . .
.

. .
. . .

.

3
777777775

2t2
666664

1

0

0

..

.

3
777775

∼
�
4þ 3

ffiffiffi
2

p

2

�2t

: ðF1Þ

On the right side of this expression, we use the fact that, for
1 ≪ t < L=4, DðtÞ is dominated by the largest eigenvalue
of the transfer matrix.
For t > L=4, there are five leading-order diagrams. The

first two have ab DW directed only towards the left or the
right. The other three diagrams have only ji contractions
within the light-cone region (dashed lines in Fig. 19), with
the aji and jib DWs directed only towards the left and the
right, respectively After translating these diagrams into
algebraic terms, we obtain Eq. (10) for α ¼ 3.
For higher Rényi entropies, we can prove for α ¼ 4 that

leading diagrams consist of local contractions only and that

K4 ¼ Catð4Þ in Eq. (10). If we assume the analogous
statements about local contractions for α > 4, we can apply
the above approach and show that Kα ¼ CatðαÞ up to
α ¼ 10.

APPENDIX G: EVALUATION OF OTOC

Here we prove that the OTOC htr½Oðx; tÞOðyÞOðx; tÞ
OðyÞ�i vanishes at large q for t ≥ jx − yj=2. We employ the
analogous block representation introduced in Appendix E
1. Using the contraction-addition method described in
Appendix B, the order of a diagram can be written as in

Eq. (B1) with OðGð0Þ
i Þ ¼ 1.

We choose to contract blocks of U’s and U†’s bond by
bond from the left to the right in Fig. 10. For the leftmost
bond, there are always two blocks of filled and empty dots
for all t ≥ x=2. For each of these blocks, there are two
choices of contraction: A or B. A choice of contraction A
in one of the two blocks can be followed by other
contractions in two alternative ways. Either all other
blocks within its upward light cone (in this case, a stripe
of blocks) have A contractions, which lead to a factor ∝
ðTrOÞ2 ¼ 0 at site x due to contraction addition of type
seven in Fig. 11. Alternatively, there is a q−1 cost due to at
least one interloop contraction addition of types two,
three, or six in Fig. 11. Similarly, the choice of contraction
B will give a vanishing contribution because of the
operator in y. These arguments are illustrated in
Fig. 20. So, we show that all diagrams have an order
bounded by q−1 for t ≥ jx − yj=2. By contrast, for t <
jx − yj=2 all U’s and U†’s can be canceled, leaving
only htr½OðxÞ2�tr½OðxÞ2�i ¼ 1.

FIG. 19. A leading-order DW diagram in the block represen-
tation for hexp½−2S3ðtÞ�i in the large-q limit. The order is given
by q−2hab−haji−hjib, where hc1c2 counts the horizontal walls
between c1 and c2 contractions in red.

FIG. 20. A partially contracted diagram for the OTOC at t ¼ 2
in the block representation. The choice of an A contraction (or a B
contraction) of blocks on the leftmost bond forces blocks in the
upper (lower) light cone (dashed lines) to have the same type of
contraction. Otherwise, the diagram has an order bounded by q−1.
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