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Restricted Boltzmann machines (RBMs) are energy-based neural networks which are commonly used as
the building blocks for deep-architecture neural architectures. In this work, we derive a deterministic
framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP)
mean-field approximation of widely connected systems with weak interactions coming from spin-glass
theory. While the TAP approach has been extensively studied for fully visible binary spin systems, our
construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin
systems with bounded support. In our numerical experiments, we demonstrate the effective deterministic
training of our proposed models and are able to show interesting features of unsupervised learning which
could not be directly observed with sampling. Additionally, we demonstrate how to utilize our TAP-based
framework for leveraging trained RBMs as joint priors in denoising problems.

DOI: 10.1103/PhysRevX.8.041006 Subject Areas: Computational Physics,
Statistical Physics

I. INTRODUCTION

The past decade has witnessed a groundswell of research
in machine learning, bolstered by the deep-learning revolu-
tion and the resurgence of neural networks [1]. Since their
inception, researchers have identified the deep connection
between neural networks and statistical mechanics. Perhaps
the most well-known unsupervised neural models studied
through the lens of statistical physics have been the Hopfield
model [2,3] and the Boltzmann machine [4]. These models
were proposed from a connectionist perspective of cognitive
science and were studied in the context of emergent
representation in unsupervised machine learning.
We can look to the Hopfield model to directly observe

some of the contributions of physics to both machine
learning and cognitive sciences. For example, by applying
techniques from the study of spin glasses, Amit, Gutfreund,
and Sompolinsky [3] were famously able to derive the
memory capacity of the Hopfield model and provide a
concrete understanding of the dynamics of the model via
the study of its phase transitions. This fundamental

understanding of the behavior of the Hopfield model
provides insight into the complexities of associative
memory.
The closely related Boltzmann machine is an undirected

stochastic neural network which finds its physics parallel in
Ising spin-glass models [5]. Specifically, for this model,
one is interested in the inverse problem: learning the
couplings between spins in order to generate a particular
set of configurations at equilibrium. The process of learning
couplings, or training, is often referred to as the inverse
Ising problem in the physics literature [6–8]. However,
because couplings exist only between pairs of spins for the
fully visible Ising spin glass, such models have limited
practical application, as they cannot successfully capture
higher-order correlations which might exist in a set of
training configurations.
For this reason, the general Boltzmann machine intro-

duces a set of unobserved latent spins. The effect of these
latent spins is to abstract high-order correlations within the
set of observed spins. While an optimal training of the
couplings would potentially lead to a very effective general
model of high-dimensional joint distributions, the intrac-
tability of this joint latent model confounds the practical
application of general Boltzmann machines.
A restricted Boltzmann machine (RBM) is a special case

of the general Boltzmann machine, where couplings exist
only between latent and observed spins. This bipartite
structure is key to the efficient and effective training of
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RBMs [9]. RBMs have found many applications in
machine-learning problems as diverse as dimensionality
reduction [10], classification [11], collaborative filtering
[12], feature learning [13], and topic modeling [14].
Additionally, RBMs can be stacked into multilayer neural
networks, which have played a historically fundamental
role in pretraining deep-network architectures [15,16].
These constructions, known as deep-belief networks, were
the first truly deep neural architectures, leading to the
current explosion of activity in deep learning [17]. While
access to vast training data sets has made such pretraining
dispensable for certain tasks, RBMs remain a fundamental
tool in the theory of unsupervised learning. As such, a
better understanding of RBMs can be key to future
developments in emergent machine intelligence.
To date, the most popular and effective approaches to

training RBMs have centered on differing flavors of short-
chain Monte Carlo sampling [9,18], which we cover in
detail in what follows. While such techniques can yield
trained RBMs which produce sampled configurations very
similar to the target data set and can be used in a number of
applications as detailed previously, they do not bridge the
gap in understanding what the RBM has learned.
Furthermore, understanding the modes, or internal repre-
sentations, of the RBM with sampling-based frameworks
has mostly consisted of subjective comparisons of sampled
configurations as well as a subjective analysis of the
couplings themselves, often referred to as receptive fields
in the machine-learning literature.
Additionally, comparing two trained models, or even

monitoring the training of one model, becomes problematic
when using sampling-based investigative tools. For example,
annealed techniques [19] can provide estimates of the log-
likelihood of a model but only at a large computational cost
[20,21]. At a much lower computational cost, pseudolikeli-
hoods can be used to monitor training, but the estimates
produced in this manner are inaccurate, as compared to
annealed importance sampling (AIS) [19], and even AIS can
fail to detect model divergence in practice [22].
In the present work, we seek to address these concerns by

developing a deterministic framework to train, compare, and
analyze RBMs as well as to leverage their modeling power
for inference tasks.We accomplish this via statistical physics
techniques through theuse of theThouless-Anderson-Palmer
(TAP) formalism of the spin-glass theory [5,23–25]. In this
manner, we produce a model which no longer refers to a
stochastic model possessing an intractable Gibbs measure but
to a TAP machine: an entirely self-consistent mean-field
model which operates as a classical RBM but which admits
deeper introspection via deterministic inference. TAP
machines also naturally handle nonbinary variables as well
as deep architectures. While deep Boltzmann machines’
(DBMs) [26] state-of-the-art training algorithms mix both
MonteCarlo sampling and “naïve”mean-field approximation,
a deep TAP machine relies entirely on the TAP mean-field
approximation.

Under this interpretation, a TAP machine is not a gen-
erative probabilistic model but a deterministic model defin-
ing a set of representational magnetizations for a given
training data set. Advantageously, this learning output can be
computed exactly in a finite time by converging a fixed-point
iteration, in contrast to the indeterminate stopping criterion of
Markov-chain Monte Carlo (MCMC) sampling. This con-
trast is a major distinction between the TAPmachine and the
classical RBM, for which the true probability density
function is intractable. At its core, the TAP machine training
consists of arranging the minima, solutions, in the proposed
TAP-approximated free energy so as to maximize the
correlation between these solutions and the data set. In
our experiments,we demonstrate how to track the growth and
geometry of these solutions as a novel way to investigate the
progress of unsupervised learning.Wealso showhow touse a
trained TAP machine as a prior for inference tasks.
The paper is organized as follows. In Sec. II, we formally

describe the classical binary RBM and review the literature
on RBM training and analysis. Subsequently, in Sec. III, we
describe our proposed modification of the binary RBM to a
model with arbitrary real-valued distributions with bounded
support. Next, in Sec. IV, we briefly describe how to apply
belief propagation to perform inference in the setting of
real-valued spins. The details of this approach are peda-
gogically described in Appendices A and B. In Sec. V, we
derive the TAP approximation of the real-valued RBM via a
high-temperature expansion of a two-moment Gibbs free
energy. Then, in Sec. VI, we detail how to convert this
approximation to a practical training algorithm. In Sec. VII,
we conduct a series of experiments on real data sets,
demonstrating how to use the properties of the TAP
machine interpretation to provide insight into the unsu-
pervised learning process. We additionally show how to use
a trained model for bit-flip correction as a simple example
of leveraging a TAP machine for inference tasks. Last, in
Appendix C, we detail the derivations of necessary dis-
tribution-specific functions.

II. RESTRICTED BOLTZMANN MACHINES

RBMs [27] are latent-variable generative models often
used in the context of unsupervised learning. A set of
weights and biases, the model parameters of the RBM,
which correspond to the couplings and local fields present
in the system, constructs an energy as a function of the data
points from which follows a Gibbs-Boltzmann probability
density function. In the well-known binary RBM, for
which all visible and latent variables are in f0; 1g, the
RBM distribution is

Pðx;W; θÞ ¼ 1

Z½W; θ�
X
h

e
P

ij
Wijxihjþ

P
i
bixiþ

P
j
cjhj ; ð1Þ

where θ ¼ fb; cg is the set of local potentials, i.e., the set of
values which define the biases acting on each variable, and
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Z½W; θ� ¼
X
x

X
h

e
P

ij
Wijxihjþ

P
i
bixiþ

P
j
cjhj : ð2Þ

Here, we use the notation
P

x and
P

h to refer to sums over
the entire space of possible configurations of visible and
latent variables, respectively. When taken with respect to the
parameters of the model, Z½W; θ� is known as the partition
function. We give a factor-graph representation of the RBM
distribution in Fig. 1.
As evidenced by Eq. (2), an exact computation of the

normalizing partition function, and thus the probability of a
given high-dimensional data point, is inaccessible in prac-
tice. Sophisticated Monte Carlo (MC) schemes relying on
importance sampling [20,21] can produce estimates and
bounds of the partition but at the cost of a substantial
computation, runningon the timescale of days or evenweeks.
Thankfully, a precise estimate of the normalization is

unnecessary for many RBM applications. Additionally, the
bipartite structure of the RBM, which admits only cou-
plings between the hidden and visible variables, can be
leveraged to construct efficient sampling schemes. This
approach is demonstrated in the contrastive divergence
(CD) of Ref. [9], where very short-chain block-Gibbs
sampling is shown to be sufficient for adequate RBM
training. The CD approach consists of a sampling chain
alternating between samples drawn from the conditional
probabilities of each layer, which are dependent on the
conditional expectations at the previously sampled layer.
Specifically, the conditional probabilities for the hidden
and visible units factorize as

PðxjhÞ ¼
Y
i

sigm

�
bi þ

X
j

Wijhj

�
; ð3Þ

PðhjxÞ ¼
Y
j

sigm

�
cj þ

X
i

Wijxi

�
; ð4Þ

where sigmðyÞ ¼ ð1þ e−yÞ−1 is the logistic sigmoid
function.
In order to learn the parameters of the RBM for a given

training data set, one looks to maximize the following log-
likelihood:

lnPðx;W; θÞ ¼ ln
X
h

e
P

Wijxihjþ
P

i
bixiþ

P
j
cjhj

− lnZ½W; θ�; ð5Þ

via a gradient ascent on the parameters W and θ.
Commonly, one does not calculate these gradients for each
data point from the training set but instead calculates the
gradients in average across M data points, often referred to
as a minibatch. At each minibatch, the gradients of Eq. (5)
are given as

ΔWij ¼ hxihjiX − hxihjisampled; ð6Þ

Δbi ¼ hxiiX − hxiisampled; ð7Þ

Δcj ¼ hhjiX − hhjisampled; ð8Þ

where h·isampled refers to averages over particles sampled
from the model and h·iX refers to the so-called clamped
expectations, where the values of x are fixed to the training-
data samples in the minibatch. In the case of the expect-
ations involving hidden units, which are unobserved and
therefore have no training data, Ref. [9] originally proposed
the use of configurations sampled from Pðhjx;W;b; cÞ.
However, one could also use the exact conditional expect-
ations directly to calculate these clamped averages, espe-
cially in cases where sampling from these conditionals may
be problematic.
Since Ref. [9], there have been a number of proposed

modifications to the core sampling-based training scheme
described above. The persistent trick [18] takes neatly
advantage of the iterative gradient ascent over minibatches
to quickly obtain thermalized Markov chains through
Gibbs sampling at no extra computational cost over one
step CD (CD-1). Nevertheless, the probability density
function of a trained RBM is typically highly multimodal,
thus making this sampling inexact. Indeed, in such glassy
landscapes, mixing becomes very slow as Markov chains
become stuck in metastable states, leading to over- and
underrepresented, as well as missed, modes of the high-
dimensional distribution, which, in turn, produces high
variance estimates of means and correlations. A more
accurate sampling can be achieved using parallel tempering
[28,29], where particles are swapped between multiple
Markov chains running at differing temperatures. This

FIG. 1. Factor-graph representation of the RBM distribution.
Variables are indicated by circles, with latent variables denoted by
shaded circles. The shaded rectangles indicated layer partitions
within the RBM structure. Factors are represented by squares,
with the right-hand side factors representing the pairwise relation-
ships between variables and the left-hand side factors represent-
ing the influence of the localized prior distributions on the
variables.
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approach, however, requires not only the additional com-
putational burden of running more chains but also further
tuning of hyperparameters, such as the number of chains
and at which temperatures to run them.
As accurate sampling-based inference on RBMs can be

costly, it would seem that their usefulness is limited. As
learning of the RBM via a gradient ascent is dependent
upon this inference, the difficulty of training a generative
model with a high degree of accuracy is compounded.
However, RBMs have proven to be very useful in many
applications where sampling from a full-fledged generative
model is unneeded. For instance, RBMs can be used as an
unsupervised “feature extraction” pretraining for feed-
forward networks [10,15,30]. RBMs have also been used
for data-imputation tasks, e.g., image in-painting, label
recovery [11], or collaborative filtering [12] by reconstruct-
ing missing data with a single visible-hidden-visible step.
In truth, the CD-k training algorithm which popularized
RBMs, first with binary units [9], then Gaussian units
[10,31], and finally with arbitrary units [32] does not use
thermalized samples to evaluate means and correlations.
Instead, it focuses on the region of the configuration space
nearest to the training data set [28] by using short block-
Gibbs Markov chains, starting from training data points, to
get fast and low variance estimates of moments. However,
CD-k is prone to learn spurious minima in a configuration
space far from the data, as it does not explore this region
during training [28]. It also does not systematically increase
the true likelihood of training data [33]. However, this
training strategy has been found to be very efficient in the
applications mentioned above, which consistently remain
close to the data set in configuration space. One finds that
CD falls short for applications which require long-chain
MCMC sampling from the trained RBM, as this represents
a fundamental mismatch between the training and appli-
cation of the RBM. In order to address some of these
shortcomings of sampling-based approaches, we now turn
our attention to deterministic mean-field approximations of
the RBM.
The TAP approximation [23] for disordered systems relies

on the deterministic inference of approximated magnetiza-
tions, from which one can obtain estimators of all kinds of
observables, starting from the log-partition or free energy.
TAP is derived from a small-weight expansion of the
variational approach and can be considered as an extension
of the naïve mean-field (NMF)method (see Refs. [34,35] for
the original derivation and Refs. [36,37] for pedagogical
expositions). Previous works which have attempted to make
use of the NMF approximation of the RBM have shown
negative results [18,38].
The TAP approximation was first considered for

Boltzmann machines in the context of small random models
without hidden units in Ref. [39]. In the recent work of
Ref. [40], this approximation is extended to a practical
training algorithm for full-scale binary RBMs which is

shown to be competitive with persistent contrastive diver-
gence [18] when applied to real-world data sets. In parallel,
otherworks useTAP, and the relatedBethe approximation, to
perform inference on binary Boltzmann machines [41–44].
In the next sections, we detail how to rewrite the RBM

model in the nonbinary case, for generalized distributions
on the visible and hidden units, similar in spirit to Ref. [32].
However, unlike earlier techniques, we approach the
problem of estimating the normalization of the RBM
model via the tools of statistical mechanics, resulting in
a fully deterministic framework for RBM inference, train-
ing, and application.

III. GENERAL DISTRIBUTIONS FOR RBMS

We now turn our attention to the case of the general
RBM (GRBM), where the distributions of the hidden and
visible units are not fixed. We define the distribution of
interest in the following manner:

Pðx;h;W; θÞ ¼ 1

Z½W; θ� e
P

i;j
xiWijhj

×
Y
i

Pv
i ðxi; θvi Þ

Y
j

Ph
j ðhj; θhj Þ; ð9Þ

where the sum over i, j indicates a sum over the all visible
and hidden units in the model and θ ¼ fθv1;…;
θvNv

; θh1;…; θhNh
g are the parameters defining the local

distributions, Pv
i and Ph

j , on, respectively, the variables
of x and the variables of h. In the case that x ∈ f�1gNv and
h ∈ f�1gNh , we can see that the distribution above reduces
to a bipartite spin-glass model with θ representing the local
fields acting on the system spins; the fields b and c are for
binary spins as described in Eq. (1). This specific case is
simply a binary RBM, as described in the previous section,
and which we have already considered within an extended
mean-field framework in Ref. [40]. The important distinc-
tion with the model we evaluate here is that we do not
assume a binary discrete distribution on the variables but
instead allow for a formulation where the variables in the
system can possess distributions on discrete- or real-valued
bounded support. By considering this more general class of
models, one can include a wide range of different models,
including the Hopfield model and spike-and-slab RBMs
[45], and data sets, such as images or genomic data, by
varying the distributions of the hidden and visible units.
The distribution of visible variables is obtained by mar-
ginalizing out the latent variables:

Pðx;W; θÞ ¼
Z �Y

j

dhj

�
Pðx;h;W; θÞ; ð10Þ

giving the log-probability
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lnPðx;W; θÞ ¼ − lnZ½W; θ� þ
X
i

lnPiðxi; θvi Þ

þ
X
j

ln
Z

dhjPjðhj; θhj Þehj
P

l
Wljxl :

ð11Þ
If we take the gradients of Eq. (11) with respect to the

model parameters, in the case of distribution terms θ we
find

Δθvi ¼
� ∂
∂θvi lnPiðxi; θvi Þ

�
X
−

∂
∂θvi lnZ½W; θ� ð12Þ

and

Δθhj ¼
� ∂
∂θhj lnPjðhj; θhj Þ

�
X

−
∂
∂θhj lnZ½W; θ�; ð13Þ

which are generalizations of Eqs. (7) and (8). However, in
the case of the gradient with respect to the couplings, we
find

ΔWij ¼
�
xi · f

�X
l
Wljxl; θhj

��
X
−

∂
∂Wij

lnZ½W; θ�;

ð14Þ

where the function

fðB; θÞ ¼
R
dh h · Pðh; θÞeBhR
dhPðh; θÞeBh ð15Þ

computes the conditional expectation of hl knowing the
value of the visible units. The one-dimensional integral in
Eq. (15) can be computed either analytically or numeri-
cally. Note, moreover, that the data-dependent term is
tractable thanks to the bipartite structure of the one-hidden
layer RBM.
In contrast to the data-dependent terms, the second terms

of Eqs. (12)–(14) require knowledge of the partials of the
log normalization with respect to the parameter of interest.
However, this term cannot be written exactly, as the explicit
calculation of the normalization is intractable. Rather than
resorting to sampling, we attempt to approximate the free
energy F ¼ − lnZ½W; θ� in a parametric and deterministic
way, as in Ref. [40]. In the next section, we discuss how
belief propagation can be used to estimate F and to conduct
inference on RBMs.

IV. APPROXIMATION VIA
BELIEF PROPAGATION

One method by which we might estimate the partition of
F is via belief propagation (BP) [46], which we review in
Appendix A for pairwise models such as the RBM.
Essentially, given a factor graph for some joint statistical

model, such as that of our RBM in Fig. 1, the BP algorithm
attempts to estimate a set of marginal distributions at each
variable. In the case of treelike graphs, BP provides an
exact calculation of these marginals. The application of BP
to factor graphs containing cycles, loopy BP, is not
guaranteed to provide accurate estimates of the marginals.
However, often these estimated marginals have a significant
overlap with the true ones [47]. Additionally, it is known
that the solutions of loopy BP are the fixed points of the
Bethe free energy [47], which allows the construction of an
approximation of F . Applying this to the inverse learning
problem, one can compute the gradients of this Bethe free
energy in terms of the parameters of the model, allowing a
gradient ascent on the Bethe-approximated log-likelihood
of the training data.
One significant hurdle in the application of loopy BP to

RBM learning for real-valued variables is that the messages
propagated on the edges of the factor graph are continuous
probability distribution functions (PDFs). In the case of
discrete variables, such as Ising or Potts spins, BP messages
can be written using magnetizations or the full discrete
probability mass function (PMF), respectively. For binary
variables, both BP and mean-field approximations of fully
connected Boltzmann machines are considered in Ref. [41]
in the context of inference with fixed parameters. A similar
study of binary RBMs is conducted with loopy BP in
Ref. [48]. It is important to note that both of these studies
investigate the properties of Boltzmann machines with
independent identically distributed random weights. While
such studies permit many analytical tools for studying the
behavior of the RBM, one cannot directly map these
observations to RBM inference in practice, where trained
weights may exhibit strong correlations both within and
between receptive fields.
In order to construct a BP algorithm for PDFs over real-

valued support, one requires a finite memory description of
the messages. Some examples of such descriptions are
given in nonparametric BP [49], moment matching [50],
and relaxed BP (RBP) [51]. In Appendix B, following the
example of RBP, we show how to arrive at a two-moment
approximation of the continuous BP messages via a small-
weight expansion on the RBM coupling parameters W.
There, we also show the RBP approximated free energy of
pairwise models as well as demonstrate the need for
distributions with bounded support in order to preserve
bounded messages.
In the next section, building upon this derivation, we

consider mean-field approximations of the RBM via a high-
temperature Plefka expansion.

V. TAP APPROXIMATION FOR
PAIRWISE MODELS

While one could utilize the RBP approach in order to
estimate the free energy of a generalized real-valued spin
model, as detailed in the earlier section, such an approach
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might not be desirable in practice. Specifically, if one wishes
to solve the inverse learning problem, estimating model
parameters from a given data set, it is necessary to estimate
the gradients of the model parameters with respect to the
model likelihood for each parameter update. Using a
steepest-ascent approach, as detailed in Sec. III, requires
one to estimate these gradients many thousands of times. For
systems of large size N, the RBP scales quite poorly.
Estimating a gradient requires the iteration of the RBP
equations on OðN2Þ messages. Additionally, one must
distinguish between cavity terms (i → j) and marginal terms
ð→ iÞ. If the finalOðNÞ gradients we desire can be estimated
using the marginal terms alone, then requiring an iteration on
the OðN2Þ set of messages is an extremely costly operation.
Instead, one can turn to a mean-field approach, writing

the free energy, and its stationary points, in terms of the
marginals alone, which can be done by including certain
correction terms, up to a specified degree in the weights. In
the context of RBMs, such approaches have been proposed
at both the first order, the naive mean-field [38], and the
second order, using the so-called Thouless-Anderson-
Palmer (TAP) [23] equations for introducing an additional
correction term [40,41,44,52,53]. In the case of a GRBM
with arbitrary distributions on each unit, however, we must
rederive the TAP approximation in terms of parameters of
these distributions as well as the approximate marginalized
distribution at each site, up to their first two moments. This
task turns out to be closely related to the TAP approach to
low-rank matrix factorization [52–56].
While it is possible to derive the stationarity conditions

for the inferred marginals from the RBP messages directly
by Taylor expansion, we rather focus on the free energy
directly that will provide the gradients we require for
training the GRBM parameters via a high-temperature
expansion we present below.
Last, we point out that the TAP free-energy second-order

(TAP) term depends on the statistical properties of the
weight distribution. The derivation presented below
assumes independent identically distributed weights, scal-
ing as Oð1= ffiffiffiffi

N
p Þ. This assumption is a simplification, as in

practice the weight distribution cannot be known a priori.
The distribution depends on the training data and changes
throughout the learning process according to the training
hyperparameters. The adaptive TAP (adaTAP) formalism
[57] attempts to correct this assumption by allowing one to
directly compute the “correct” second-order correction
term for a realization of the W matrix without any
hypothesis on how its entries are distributed. Although
this algorithm is the most principled approach, its computa-
tional complexity almost rules out its implementation.
Moreover, practical learning experiments indicate that
training using adaTAP does not differ significantly from
TAP assuming independent identically distributed weights.
A more detailed discussion of the computational complex-
ity and learning performance is described in Appendix D.

A. Derivation of the TAP free energy

We now discuss the main steps of the derivation of the
TAP free energy, which was originally performed in
Refs. [34,35]. We do not aim to perform it in full detail;
a more pedagogical and comprehensive derivation can be
found in Appendix B of Ref. [56].
In the limit N → ∞, if we assume that the entries of W

scale as Oð1= ffiffiffiffi
N

p Þ and that all sites are widely connected,
on the order of the size of the system, then we can apply the
TAP approximation—a high-temperature expansion of the
Gibbs free energy up to second order [34,35]. In the case of
a Boltzmann distribution, the global minima of the Gibbs
free energy, its value at equilibrium, matches the Helmholtz
free energy F [58]. We derive a two-variable parameter-
ization of the Gibbs free energy derived via the Legendre
transform [59]. Additionally, we show that this two-
variable Gibbs free energy both is variational and attains
the Helmholtz free energy at its minima. For clarity of
notation, we make our derivation in terms of a pairwise
interacting Hamiltonian without enforcing any specific
structure on the couplings; the bipartite structure of the
RBM is reintroduced in Sec. VI.
We first introduce the inverse temperature term β

to facilitate our expansion as β → 0, Pðx; β;W; θÞ ¼
e−βðH−FβÞ, where

H ¼ −
X
ði;jÞ

Wijxixj −
1

β

X
i

lnPiðxi; θiÞ: ð16Þ

Note that β can be interpreted as the weight scaling; i.e., one
can rescale the weights so that W ← βW.
We wish to derive our two-variable Gibbs free energy for

this system in terms of the first two moments of the
marginal distributions at each site. To accomplish this
goal, we proceed as in Refs. [35,57] by first defining an
augmented system under the effect of two auxiliary fields:

−βFβðλ; ξÞ ¼ ln
Z

dx e−βHþ
P

i
λixiþ

P
i
ξix2i ; ð17Þ

where we see that, as the fields disappear, Fβð0; 0Þ ¼ Fβ,
and we recover the true Helmholtz free energy.
We additionally note the following identities for the

augmented system, namely,

∂
∂λi ½−βFβðλ; ξÞ� ¼ hxiiλ;ξ; ð18Þ

∂
∂ξi ½−βFβðλ; ξÞ� ¼ hx2i iλ;ξ; ð19Þ

where h·iλ;ξ is the average over the augmented system for
the given auxiliary fields. Since the partial derivatives of the
field-augmented Helmholtz free energy generate the cumu-
lants of the Boltzmann distribution, it can be shown that the
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Hessian of −βFβðλ; ξÞ is simply a covariance matrix and,
subsequently, positive semidefinite. Hence, −βFβðλ; ξÞ is a
convex function in terms of λ × ξ. This convexity is shown
to be true for all log partitions of exponential family
distributions in Ref. [59].
We now take the Legendre transform of −βFβðλ; ξÞ,

introducing the conjugate variables a and c:

−βGβða;cÞ¼−βsup
λ;ξ

�
Fβðλ;ξÞþ

1

β

X
i

½λiaiþξiðciþa2i Þ�
�
;

ð20Þ

where we define the solution of the auxiliary fields at which
Gβða; cÞ is defined as λ� ≜ λ�ðβ; a; cÞ, ξ� ≜ ξ�ðβ; a; cÞ,
where we make explicit the dependence of the auxiliary
field solutions on the values of the conjugate variables.
Looking at the stationary points of these auxiliary fields, we
find that

∂
∂λ�i ½−βGβða; cÞ� ¼

∂
∂λ�i ½−βFðλ

�; ξ�Þ� − ai; ð21Þ

∴ ai ¼ hxiiλ�;ξ� ; ð22Þ
and

∂
∂ξ�i ½−βGβða; cÞ� ¼

∂
∂ξ�i ½−βFðλ

�; ξ�Þ� − ðci þ a2i Þ; ð23Þ

∴ ci ¼ hx2i iλ�;ξ� − hxii2λ�;ξ� : ð24Þ

The implication of these identities is that Gβða; cÞ cannot be
valid unless it meets the self-consistency constraints that a
andc are the first and second (central)moments, respectively,
of the marginal distributions of the augmented system.
Now, we wish to show the correspondence of Gβða; cÞ to

the Helmholtz free energy at its unique minimum. First, let
us look at the stationary points of −βGβða; cÞ with respect
to its parameters. We take the derivative with careful
application of the chain rule to find

∂
∂ai ½−βGβða;cÞ� ¼−λ�i −2ξ�i ai

þ
X
j

∂
∂λ�j ½−βG�

∂λ�j
∂aiþ

X
j

∂
∂ξ�j ½−βG�

∂ξ�j
∂ai

¼−λ�i −2ξ�i ai; ð25Þ

with the terms inside the sums going to zero, as the
derivatives of G with respect to λ�j and ξ�j are zero by
definition. Carrying through a very similar computa-
tion for the derivative with respect to ci provides
ð∂=∂ciÞ½−βGβða; cÞ� ¼ ξ�i . This result shows that, at its
solution, the Gibbs free energy must satisfy

ξ�i ¼ 0;

λ�i þ 2ξ�i ai ¼ 0; ð26Þ
which can be true only in the event that the solutions of the
auxiliary fields are truly λ� ¼ 0 and ξ� ¼ 0. Looking at the
inverse Legendre transform of the Gibbs free energy for
λ ¼ 0, ξ ¼ 0, we find that infa;cGβða; cÞ ¼ Fβð0; 0Þ ¼ Fβ,
which implies that the minimum of the Gibbs free energy is
equivalent to the Helmholtz free energy. This equivalence
holds, since −βGβða; cÞ is convex, as the Legendre trans-
form of a convex function is itself convex. Since the Gibbs
free energy can therefore possess only a single solution,
then its minimum must satisfy (26) and, therefore, must
be Fβð0; 0Þ ¼ Fβ.
Finally, we can now rewrite the Gibbs free energy defined

in Eq. (20) as a function of the moments a and c and
parameterized by β and the GRBM parameters W and θ:

−βGβða; c; θÞ ¼ ln
Z

dx e−βH̃; ð27Þ

where

H̃≜H−
X
i

λ�i ðβÞ
β

ðxi−aiÞ−
ξ�i ðβÞ
β

ðx2i −ci−a2i Þ; ð28Þ

where the Lagrange multipliers are given as functions of the
temperature in order to make clear the order in which we
apply β → 0 later.
As this exact form of the Gibbs free energy is just as

intractable as the original free energy, we apply a Taylor
expansion in order to generate an approximate Gibbs free
energy [34]. We make this expansion at β ¼ 0, as in the
limit of infinite temperature all interactions between sites
vanish and the system can be described only in terms of
individual sites and their relationship to the system
average and their local potentials, allowing the Gibbs free
energy to be decomposed into a sum of independent terms.
Specifically, if we take the expansion up to s terms,

−βG̃ðsÞðβ; a; c; θÞ ¼ ln Z̃βjβ¼0
þ
Xs

p¼1

βp

p!
∂p

∂pβ
½ln Z̃β�β¼0

;

ð29Þ

where Z̃β is the normalization of the Boltzmann distribu-
tion defined by H̃ at temperature β. At β ¼ 0, we can find
the first term of the expansion directly:

ln Z̃0 ¼ −
X
i

λ�i ð0Þai −
X
i

ξ�i ð0Þða2i þ ciÞ

þ
X
i

ln
Z

dxi Piðxi; θiÞeλ�i ð0Þxi−ξ�i ð0Þx2i ; ð30Þ
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where we recognize that the last term is simply the
normalization of the Gaussian-product distribution whose
moments are defined in Eqs. (B9) and (B10).
We define the TAP free energy by writing the remainder

of the expansions terms in the specific case of s ¼ 2
[34,35]:

−βG̃ð2Þ
β ða; c; θÞ ¼

X
i

lnZi(λ
�
i ð0Þ; ξ�i ð0Þ; θi)

−
X
i

λ�i ð0Þai −
X
i

ξ�i ð0Þða2i þ ciÞ

þ β
X
ði;jÞ

Wijaiaj þ
β2

2

X
ði;jÞ

W2
ijcicj; ð31Þ

where

ZiðB; A; θÞ ≜
Z

dxPiðx; θÞeð1=2ÞAx2−Bx: ð32Þ

Note that the last two terms in Eq. (31) come from the
Taylor expansion in Eq. (29) and are related to the
derivatives of λ� and ξ� evaluated at 0.
We still need to determine the values of λ�ð0Þ and ξ�ð0Þ,

which is done by taking the stationarity of the expanded
Gibbs free energy with respect to a and c:

Ai ≜ −2ξið0Þ� ¼ −β2
X
j∈∂i

W2
ijcj; ð33Þ

Bi ≜ λið0Þ� ¼ Aiai þ β
X
j∈∂i

Wijaj; ð34Þ

where we make the definitions of A and B for convenience
and as a direct allusion to the definitions of the cavity sums
for BP inference, given in Eqs. (B5) and (B6).
Conversely, by deriving the stationarity conditions of the

auxiliary fields, we obtain the self-consistency equations
for a and c, which show us that the TAP free energy is valid
only when the following self-consistencies hold:

ai ¼ faðBi; Ai; θiÞ; ci ¼ fcðBi; Ai; θiÞ; ð35Þ

where fa and fc are defined from Eq. (32) via
fa ≜ ð∂=∂BiÞ logZi and fc ≜ ð∂2=∂B2

i Þ logZi.
Substituting these values closes the free energy on the

marginal distribution moments a and c and completes our
derivation of a free-energy approximation which is defined
by OðNÞ elements versus the OðN2Þ values required
by RBP.

B. Solutions of the TAP free energy

As given, the TAP free energy is valid only when the
self-consistency equations are met at its stationary points.
Thus, only a certain set of a and c can have any physical

meaning. Additionally, we know that only at the minima of
the exact Gibbs free energy will we have a correspondence
with the original exact Helmholtz free energy.
While the exact Gibbs free energy in terms of the

moments a and c is convex for exponential family
P0ðx; θÞ such that e−βH̃ ≥ 0, the TAP free energy can
possess multiple stationary points whose number increases
rapidly as β grows [5]. Later, in Sec. VII, we show that, as
GRBM training progresses, so does the number of iden-
tified TAP solutions, which can be explained due to the
variance of the weights W growing with training. For fixed
β ¼ 1, as we use in our practical GRBM implementation,
the variance of the weights serves as an effective inverse
temperature, and its increasing magnitude has an identical
effect to the system cooling as β increases.
Additionally, while the Gibbs free energy has a corre-

spondence with the Helmholtz free energy at its minimum,
this correspondence is not necessarily true for the TAP free
energy. The approximate nature of the second-order expan-
sion removes this correspondence. Thus, it may not be
possible to ascertain an accurate estimate of the Helmholtz
free energy from a single set of inferred a and c, as shown in
Fig. 2. In the case of the naïve mean-field estimate of the

Gibbs free energy, it is true that Fβ ≤ G̃ð1Þ
β , which implies that

one should attempt to find theminima of G̃ð1Þ
β in order to find

a more accurate estimate of Fβ, a foundational principle in
variational approaches. However, while the extra expansion
term in the TAP free energy should improve its accuracy in
modelingGβ over a and c, it does not provide a lower bound,
and so an estimate of Fβ from the TAP free energy could be
an under- or overestimate.

FIG. 2. Cartoon description for estimating the Helmholtz free
energy (dotted line) via the Gibbs (blue dashed line) and TAP (red
line) free energies. For this example of a convex Gibbs free
energy, there exists one unique minimum over the moments a and
c, and the Gibbs free energy here matches Fβ. The range of TAP
free energies (gray box) gives a boundary on the location of Fβ.
Averaging the TAP free energies (dash-dotted line) provides an
estimate of Fβ.
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Instead, one might attempt to obtain an estimate of the
Helmholtz free energy by utilizing either all or a subset of
the equilibrium solutions of the TAP free energy. Since
there is no manner by which we might distinguish the
equilibrium moments by their proximity to the unknown
Fβ, averaging the TAP free energy across its solutions,

denoted as hG̃ð2Þ
β i�, can serve as a simple estimator of Fβ

[5]. In Ref. [60], a weighting is introduced to the average,
correcting the Helmholtz free-energy estimate at a low
temperature by removing the overinfluence of the expo-
nential number of high-energy solutions. The weights in
this approach are proportional to the exponents of each
solution’s TAP free energy, placing a much stronger
emphasis on low-energy solutions.
However, such an approach is not well justified in the our

general setting of Pi, where we expect large deviations
from the expectations derived for the Sherrington-
Kirkpatrick (SK) model. Additionally, while this weighting
scheme is shown across the entire set of solutions for a
particular random SK model, in our case, we are interested
in the solution space centered on the particular data set we
wish to model. Since the solutions are computed by
iterating the TAP self-consistency equations, we can easily
probe this region by initializing the iteration according to
the training data. Subsequently, we do not encounter a band
of high-energy solutions that we must weight against.
Instead, we obtain a set of solutions over a small region
of the support of the TAP free energy. Because of the
uniformity of these solutions, unweighted averaging across
the solutions seems the best approach in terms of efficiency.
In the subsequent section, we explore some of these
properties numerically for trained RBMs.

VI. RBMS AS TAP MACHINES

To utilize the TAP inference of Sec. V, we need to write
the TAP free energy in terms of the variables of the RBM.
To clarify the bipartite structure of the GRBM, we rewrite
the TAP free energy in terms of the hidden and visible
variables at fixed temperature β ¼ 1:

− FRBMðav; cv; ah; ch; θÞ

¼
X
i

�
lnZv

i ðBv
i ; A

v
i ; θ

v
i Þ − Bv

i a
v
i þ

1

2
Av
i ½ðavi Þ2 þ cvi �

�

þ
X
j

�
lnZh

j ðBh
j ; A

h
j ; θ

h
j Þ − Bh

ja
h
j þ

1

2
Ah
j ½ðahj Þ2 þ chj �

�

þ
X
ij

�
Wijavi a

h
j þ

1

2
W2

ijc
v
i c

h
j

�
; ð36Þ

where fav; cvg and fah; chg are the means and variances of
the visible and hidden variables, respectively.
As in Sec. V, solutions of the TAP GRBM free energy

can be found by a fixed-point iteration, as shown in
Algorithm 1, which bears much resemblance to the

AMP iteration derived in the context of compressed sensing
[61,62] and matrix factorization [53,55,56]. We note that,
rather than updating over the entire system at each time
step, fixing one side at a time has the effect of stabilizing
the fixed-point iteration. For clarity, Algorithm 1 is written
for a single initialization of the visible marginals. However,
as noted in Sec. V B, there exist a large number of
initialization-dependent solutions to the TAP free energy.
Thus, in order to capture the plurality of modes present in
the TAP free-energy landscape, one should run this
inference independently for many different initializations.
If the use case of the GRBM requires that we only train

the GRBM tightly to the data space (e.g., data imputation),
it makes sense to fix the initializations of the inference to
points drawn from the data set:

av;ð0Þ ¼ xðmÞ; where m ∈ f1;…;Mg; ð37Þ
cv;ð0Þ ¼ 0: ð38Þ

In order to train the GRBM more holistically, structured
random initializations can help probe modes outside of the
data space. In this work, we do not employ this strategy,
restricting ourselves to a deterministic initialization.
For a set of TAP solutions fak; ck;Bk;Akg for k ∈

f1;…; Kg at fixed GRBM parameters fW; θg, the TAP-
approximated log-likelihood can be written as

lnPðx;W; θÞ ≈
X
i

lnPiðxi; θvi Þ

þ
X
j

lnZh
j

�X
i

Wijxi; 0; θhj

�

þ 1

K

X
k

FRBMðavk; cvk; ahk; chk; θÞ; ð39Þ

Algorithm 1. TAP inference for GRBMs.

Input: W, θ
Initialize: t ¼ 0, av;ð0Þ, cv;ð0Þ
repeat

Hidden side updates

Ah;ðtþ1Þ
j ¼ −

P
iW

2
ijc

v;ðtÞ
i

Bh;ðtþ1Þ
j ¼ Ah;ðtþ1Þ

j ah;ðtÞj þP
iWija

v;ðtÞ
i

ah;ðtþ1Þ
j ¼ fhaðBh;ðtþ1Þ

j ; Ah;ðtþ1Þ
j ; θhj Þ

ch;ðtþ1Þ
j ¼ fhcðBh;ðtþ1Þ

j ; Ah;ðtþ1Þ
j ; θhj Þ

Visible side updates

Av;ðtþ1Þ
i ¼ −

P
jW

2
ijc

h;ðtþ1Þ
j

Bv;ðtþ1Þ
i ¼ Av;ðtþ1Þ

i av;ðtÞi þP
jWija

h;ðtþ1Þ
j

av;ðtþ1Þ
i ¼ fvaðBv;ðtþ1Þ

i ; Av;ðtþ1Þ
i ; θvi Þ

cv;ðtþ1Þ
i ¼ fvcðBv;ðtþ1Þ

i ; Av;ðtþ1Þ
i ; θvi Þ

t ¼ tþ 1
until convergence
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where Zh
j ðB; 0; θÞ is the normalization of the conditional

expectation of Eq. (15), since faðB; 0; θÞ ¼ fðB; θÞ.
After reintroducing an averaging of the log-likelihood

over the samples in the minibatch, the gradients of the TAP-
approximated GRBM log-likelihood with respect to the
model parameters are given by

ΔWij ≈
1

M

X
m

xðmÞ
i fha

�X
i

Wijx
ðmÞ
i ; 0; θhj

�

−
1

K

X
k

favi;kahj;k þWijcvi;kc
h
j;kg; ð40Þ

Δθhj ≈
1

M

X
m

∂
∂θhj

	
lnZh

j

�X
i

Wijx
ðmÞ
i ; 0; θhj

�


−
1

K

X
k

∂
∂θhj ½lnZ

h
j ðBh

j;k; A
h
j;k; θ

h
j Þ�; ð41Þ

Δθvi ≈
1

M

X
m

∂
∂θvi ½lnP

v
i ðxðmÞ

i ; θvi Þ�

−
1

K

X
k

∂
∂θvi ½lnZ

v
i ðBv

i;k; A
v
i;k; θ

v
i Þ�: ð42Þ

In the presented gradients, we make the point that the set
of data samples and the set of TAP solutions can have
different cardinality. For example, one might employ a
minibatch strategy to training, where the set of data samples
used in the gradient calculation might be on the order of
102. However, depending on the application of the GRBM,
one might desire to probe a very large number of TAP
solutions in order to have a more accurate picture of the
representations learned by the GRBM. In this case, one
might start with a very large number of initializations,
resulting in a very large number, K ≫ M, of unique TAP
solutions. Or, on the contrary, while one might start with a
number of initializations equal to M, the number of unique
solutions might be K ≪ M, especially early in training or
when the number of hidden units is small.
Using these gradients, a simple gradient ascent with a

fixed or monotonically decreasing step size γ can be used to
update these GRBM parameters. We present the final
GRBM training algorithm in Algorithm 2.
Besides considering nonbinary units, another natural

extension of traditional RBMs is to consider additional
hidden layers, as in DBMs. It is possible to define and train
deep TAP machines, as well. Probabilistic DBMs are
substantially harder to train than RBMs as the data-
dependent (or clamped) terms of the gradient updates
(40)–(42) become intractable with depth. Interestingly,
state-of-the-art training algorithms retain a Monte Carlo
evaluation of other intractable terms while introducing a
naïve mean-field approximation of these data-dependent
terms. For deep TAP machines, we consistently utilize the
TAP equations. The explicit definition and training algo-
rithm are fully described in Appendix E.

VII. EXPERIMENTS

A. Data sets

MNIST.—The MNIST handwritten digit data set [63]
consists of both a training and a testing set, each with
60 0000 and 10 000 samples, respectively. The data sam-
ples are real-valued 28 × 28 pixel 8-bit gray-scale images
which we normalize to the dynamic range of [0, 1]. The
images themselves are centered crops of the digits “0”
through “9” in roughly balanced proportion. We construct
two separate versions of the MNIST data set. The first,
which we refer to as binary MNIST, applies a thresholding
such that pixel values > 0.5 are set to 1 and all others to 0.
The second, real MNIST, simply refers to the normalized
data set introduced above.
CBCL.—The CBCL face database [64] consists of both

face and nonface 8-bit gray-scale 19 × 19 pixel images.
For our experiments, we utilize only the face images. The
database contains 2429 training and 472 testing samples of
face images. For our experiments, we normalize the
samples to the dynamic range of [0, 1].

B. Learning dynamics

We now investigate the behavior of the GRBM over the
course of the learning procedure, looking at a few metrics
of interest: the TAP-approximated log-likelihood of the
training data set, the TAP free energy, and the number of
discovered TAP solutions. We note that each of these
metrics is unique to the TAP-based model of the GRBM.
While it is empirically shown in Ref. [40] that CD does

indeed increase the TAP log-likelihood in the case of binary
RBMs, the specific construction of CD is entirely inde-
pendent from the TAP model of the GRBM. Thus, it is hard
to say that a CD or TAP-trained GRBM is “better” in a
general case. At present, we present comparisons between
TAP GRBMs of varying complexity trained under fixed
hyperparameter settings, as indicated in Table I.
In Fig. 3, we see a comparison of the TAP log-likelihood as

a function of training epochs for binary MNIST for binary
RBMs consisting of differing numbers of hidden units. As the

Algorithm 2. GRBM training.

Input: X, T, M, K, Rð·Þ
Initialize: Wð0Þ

ij ∼N ð0; σÞ, θð0Þ ← X
repeat

for all minibatches of size M do

aðtþ1Þ; cðtþ1Þ;Bðtþ1Þ;Aðtþ1Þ ← Algorithm 1 ðWðtÞ; θðtÞÞ × K

Wðtþ1Þ
ij ← WðtÞ

ij þ γΔWðtÞ
ij þ γϵRðWðtÞ

ij Þ þ ηΔWðt−1Þ
ij

θhj
;ðtþ1Þ ← θhj

;ðtÞ þ γΔθhj ;ðtÞ

θvi
;ðtþ1Þ ← θvi

;ðtÞ þ γΔθvi ;ðtÞ
end for
t ← tþ 1

until t > T
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gradient ascent on the log-likelihood is performed batch
by batch over the training data, we define one epoch to be
a single pass over the trainingdata:Every example is presented
to the gradient ascent once. The specifics of this particular
experiment are given in the caption. We note that, for
equal comparison across varying model complexity, this
log-likelihood is normalized over the number of visible and
hidden units present in the model. In this way, we observe a
“per-unit”TAP log-likelihood,whichgives us ameasure of the
concentration of representational power encapsulated in each
unit of the model. Increasing values of the normalized TAP
log-likelihood indicate that the evaluated training samples are
becoming more likely given the state of the GRBM model
parameters.
It can be observed that, at each level of complexity, the

TAP log-likelihood of the data rapidly increases as the
values of W quickly adjust from random initializations to
receptive fields correlated with the training data. However,
across each of the tested models, by about the 20th epoch
the rate of increase of the TAP log-likelihood tapers off to a
constant rate of improvement.
For reference, we also show a subset of the trained

receptive fields, i.e., the rows of W, for each of the tested
experiments. Since the full set of receptive fields would be
too large to display, we attempt to show some represen-
tative samples in Fig. 4 by looking at the extreme samples
in terms of spatial spread or localization and activity over
the training set. We observe that the trained GRBMs, in the
case of both binary MNIST and real MNIST, are able to
learn both the localized and stroke features commonly
observed in the literature for binary RBMs trained on the
MNIST data set [9,65]. It is interesting to note that even in
the case of real MNIST, where we are using the novel
implementation of truncated Gauss-Bernoulli visible units
(see Appendix C 2), we are able to observe similar learned
features as in the case of binary MNIST. We take this as an
empirical indication that the proposed framework of
GRBM learning is truly learning correlations present in
the data set as intended. Finally, we see feature localization
increase with the number of hidden units.
To date, understanding “what” an RBM learns from the

unlabeled data has mostly been a purely subjective exercise

in studying the receptive fields, as shown in Fig. 4.
However, the interpretation of the GRBM as a TAP
machine can provide us with a novel insight in the nature
and dynamics of GRBM learning via the stationary points
of the TAP free energy, which we detail in the next section.

C. Probing the GRBM

Given the deterministic nature of the TAP framework, it
is possible to investigate the structure of the modes which a
given set of GRBM parameters produces in the free-energy

TABLE I. Parameter settings for GRBM training.

Binary MNIST Real MNIST CBCL

Nv 784 784 361
Nh f25; 50; 100; 500g f100; 500g 256
M 100 100 20
K 100 100 20
Prior vis. B. Tr. Gauss.-B. Tr. Gauss.
Prior hid. B. B. B.
Rð·Þ l2 l2 l2

γ 0.005 ½10−2; 10−5� 0.005
ϵ 0.001 0.001 0.01
η 0.5 0.5 0.5

FIG. 3. Training performance over 100 epochs for the tested
data sets over varying numbers of hidden units, Nh. Performance
is measured in terms of the normalized (per-unit) TAP log-
likelihood estimate computed for 10 000 training data samples.
The TAP free energy is estimated using the unique TAP solutions
thermalized from initial conditions drawn from the data samples,
as in Eqs. (37) and (38). Thermalization is determined by the
convergence of the magnetizations up to a difference of 10−8 in
MSE between iterations. Solid lines indicate the average nor-
malized TAP log-likelihood over the tested training samples, and
shaded regions indicate standard error.
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landscape. Understanding the nature and concentration of
these modes gives us an intuition on the representational
power of the GRBM.
To date, observing the modes of a given GRBM model

could be approached only via long-chain sampling. Given
enough sampling chains from a diverse set of initial con-
ditions, thermalizing these chains produces a set of samples
from which one could attempt to derive statistics, such as
concentrations of the samples in their high-dimensional
space, to attempt to pinpoint the likely modes in the model.
However, the number of required chains to resolve these
features increases with the dimensionality of the space and
the number of potential modes which might exist in the
space. Because of this, the numerical evaluation we carry out
here would be impractical with sampling techniques.
The RBP and mean-field models of the RBM allow us to

directly obtain the modes of the model by running inference
to solve the direct problem. Given a diverse set of initial
conditions, such as a given training data set, running RBP or
TAP provides a deterministic mapping between the initial
conditions drawn from the data, as in Eqs. (37) and (38),

and the “nearest” solution of theTAP free energy. If the initial
point is drawn from the data set, then this solution can be
interpreted as the RBM’s best-matching internal representa-
tion for the data point.
If a large number of structurally diverse data points map

to a single solution, then this mapping may be an indicator
that the GRBM parameters are not sufficient to model the
diverse nature of the data and, perhaps, further changes to
the model parameters or hyperparameters are required.
Conversely, if the number of solutions explodes, being
roughly equivalent to the number of initial data points, then
this explosion indicates a potential spin-glass phase, that
the specific RBM is overtrained, perhaps memorizing the
original data samples during training. Additionally, when in
such a phase, the large set of TAP solutions may be replete
with spurious solutions which convey very little structural
information about the data set. In this case, hyperpara-
meters of the model may need to be tuned in order to ensure
that the model possesses a meaningful generalization over
the data space.
To observe these effects, we obtain a subset of the TAP

solutions by initializing the TAP iteration with initial
conditions drawn from the data set, running the iteration
until convergence, and then counting the unique TAP
solutions. We present some measures on these solutions
in Fig. 2. Here, we count both the number of unique TAP
solutions as well as the distribution of the TAP free energy
over these solutions, across training epochs. There are a few
common features across the tested data sets. First, the early
phase of training shows a marked increase of the TAP free
energy, which then gradually declines as training continues.
Comparing the point of inflection in the TAP free energy
against the normalized TAP log-likelihood shown in Fig. 3
shows that the early phase of GRBM training is dominated
by the reinforcement of the empirical moments of the
training data, with the GRBM model correlations playing a
small role in the gradient of Eq. (14), which makes sense, as
the random initialization of W ∼N ð0; σÞ for σ ≈ 10−3

implies that the hidden units are almost independent of
the training data. Thus, the TAP solutions at the early stage
of learning are driven by, and correlated with, the local
potentials on the hidden and visible variables.
The effect of this influence is that the TAP free-energy

landscape possesses very few modes in the data space.
Figure 5 shows this effect very clearly, as the number of
TAP solutions starts at 1 and then steadily increases with
training. Because the positive data term of Eq. (14) is
dominant, the GRBM parameters do not appear to mini-
mize the TAP free energy, as we would expect. However, as
more TAP solutions appear, the data and model terms of the
gradient become balanced, and the TAP free energy is
minimized. It is at this point of inflection that we see a
leveling off of the normalized TAP log-likelihood.
Second, we observe free-energy bands in the TAP

solutions. This feature is especially pronounced in the

(c)

FIG. 4. Subsets of the final receptive fields, i.e., the columns of
W, obtained by TAP training of GRBM models with varying
numbers of hidden units, Nh. For the receptive fields, dark blue
and yellow are mapped to −1 and þ1, respectively, and green
indicates a value of 0. Receptive fields are ranked according to
two criteria: first, spread, and conversely localization, as mea-
sured by the lp-norm of the receptive field, for p ¼ 0.1, and
second, by activation level, as measured by the mean activation of
each receptive field’s corresponding hidden unit averaged across
the training data set.
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case of the binary-MNIST experiment. Here, at all training
epochs, there exist two significant modes in the free-energy
distribution over the TAP solutions. We see this effect more
clearly in the training-slice histograms shown in the bottom
row in Fig. 5(a). In the case of the real-MNIST experiment,
we see that the free-energy distributions do not exhibit
such tight banding, but they do show the presence of some
high- and low-energy solutions which persist across train-
ing. The main feature across experiments is the multimodal
structure of the free-energy distribution. Finally, we note
that for both real MNIST and binary MNIST, in the case of
Nh ¼ 100, we do not empirically observe an explosion of
TAP solutions, a potential indicator of a spin-glass phase,
since the proportion of unique TAP solutions to the initial
data points remains less than 10%.
In order to investigate whether the modes in the TAP

free-energy distributions are randomly assigned over con-
figuration space or exist in separate continuous partitions of
the configuration space, we need to look at the proximity of
the solutions in the configuration space. Because this space
cannot be observed in its ambient dimensionality, we
project the configuration space into a two-dimensional
embedding in Fig. 6. Here, we utilize the well-known
Isomap [66] algorithm for calculating a two-dimensional
manifold which approximately preserves local neighbor-
hoods present in the original space. Using this visualiza-
tion, we observe that as training progresses the assignment
of high and low free energy to TAP solutions does not
appear random in nature but seems to be inherent to the
structure of the solutions themselves, that is, their location
in the configuration space. Additionally, in Fig. 6, we can
see the progression from few TAP solutions to many and
how they spread across the configuration space. It is
interesting to note how the solutions start from a highly
correlated state and then proceed to diversify.

We can also observe the TAP solutions with respect to
the initializations which produced them, as shown in Fig. 7.
In these charts, we use a similar approach as in Fig. 6,
mapping all high-dimensional data points, as well as TAP
magnetizations, into a 2D embedding using Isomap. This
approach allows us to see, in an approximate way, how the
TAP solutions distribute themselves over the data space.
We also show how the number of TAP solutions grows
from few to many over training and how they maintain a
spread distribution over the data space, which demonstrates
how the training procedure is altering the parameters of the
model so as to place TAP solutions within dense regions of
the data space. For the sake of clarity, we have not included
lines indicating the attribution of an initial data point to its
resultant TAP solution. However, as training progresses,
one sees that the TAP solutions act as attractors over the
data space, clustering together data points which the TAP
machine recognizes as similar.

D. Inference for denoising

Serving as a prior for inference is one particular use case
for the TAP machine interpretation of the GRBM. As a
simple demonstration, we turn to the common signal
processing task of denoising. Specifically, given a planted
signal, one observes a set of noisy observations which are
measures of the true signal corrupted by some stochastic
process. Denoising tasks are ubiquitous in signal process-
ing, both at an analog level (e.g., additive and shot noise)
and at the level of digital communications (e.g., binary
symmetric and erasure channels). The goal of this task is to
produce the most accurate estimate of the unknown signal.
In the analog case, this estimate may be a measure of the
mean-square error (MSE) between the estimate and the true
signal. In the binary case, this estimate may be a measure of

FIG. 5. Distribution of free-energy estimates of TAP solutions as a function of training epochs for the three different data sets. In the
case of the two MNISTexperiments, the number of hidden units is the same. Nh ¼ 100 and 10 000 samples drawn from the training data
are used as initial conditions. For CBCL, 2400 training samples are used. Top row: TAP free energy for all unique TAP solutions
(transparent blue dots) and the Helmholtz free energy estimate via uniform averaging (red line). The number of unique TAP solutions is
also given (green line). Bottom row: Detail of TAP free-energy distributions for slices of training. Histograms are given as bars, while
kernel density estimates of the TAP free-energy distribution are given as curves.

DETERMINISTIC AND GENERALIZED FRAMEWORK FOR … PHYS. REV. X 8, 041006 (2018)

041006-13



accuracy, counting the number of incorrect estimates, or
some other function of the binary confusion matrix, such as
the F1 score or Matthews correlation coefficient (MCC).
For a fixed set of observations and channel parameters, if

we assume that the original signal is drawn from some
unknown and intractable generating distribution, then, as
we construct more and more accurate tractable approximate
priors, the more accurately we can construct an estimate of
the original signal.
In other words, the more we know about the structure

and content of the unknown signal a priori, the closer
our estimate can be. Often, as in the case of wavelet-
based image denoising, statistics are gathered on the
transform coefficients of particular image classes, and
heuristic denoising approaches are designed by hand
accordingly [67]. By-hand derivation of denoising

algorithms works well in practice owing to its generality.
Specific a priori information about the original
signal is not required, beyond its signal class (e.g.,
natural images, human speech, radar return timings).
However, meaningful features must be assumed or
investigated by practitioners before successful inference
can take place.

1. Denoising the binary symmetric channel

For binary denoising problems, we assume a binary
symmetric channel (BSC) defined in the following manner.
Given some binary signal x ∈ f0; 1gN , we observe the
signal y ∈ f0; 1gN as xwith independent bit flips occurring
with probability p, which gives the following likelihood at
each observation:
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FIG. 6. Isomap visualization of TAP solutions for binary MNISTover training epochs for Nh ¼ 100. All TAP solutions are mapped to
the same two-dimensional embedding via an Isomap transform fitted to the TAP solutions of epoch 100. The embedding is performed on
both the hidden and visible inferred expectations av and ah. The color mapping corresponds to the TAP free-energy values of each
solution, with the range of colors normalized between the minimum and maximum free energies of the solution at each training epoch.
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PðyjxÞ ¼ ð1 − pÞ
Y
i

�
p

1 − p

�
δxi;yi

; ð43Þ

which can be shown to have the equivalent representation
as a Boltzmann distribution:

PðyjxÞ ¼ 1

ZðyÞ e
P

i
Dixi ; ð44Þ

where Di ≜ lnðp=1 − pÞð2yi − 1Þ. For a given prior
distribution PðxÞ, the posterior distribution is given by
Bayes’ rule:

FIG. 7. Comparison of initial conditions for TAP equilibration (colored dots) compared to converged TAP solutions (black dots) for
the tested data sets at different stages of training. For each data set, a two-dimensional Isomap embedding is calculated over the
initialization data. Subsequently, the magnetizations of the TAP solutions are embedded in the same space. In each case, all initial
variances are set to 0, as in Eq. (38). Also, a random selection of TAP solution magnetizations are chosen to provide some context for the
representations the RBM is learning. (a) Binary MNIST: Here, the approximately 3100 digits corresponding to the classes “3,” “6,” and
“7” are drawn from the first 10 000 training samples of the binarized MNIST data set as initializations. A reduced set of labels is used for
readability. (b) Real MNIST: The same initializations are used as in (a); however, the initializations are not binarized. (c) CBCL: All
available training face images are used as initializations.
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PðxjyÞ ¼ e
P

i
DixiPðxÞP

xe
P

i
DixiPðxÞ

: ð45Þ

By assuming a factorized PðxÞ ¼ Q
im

xi
i ð1 −miÞ1−xi ,

where mi might be per-site empirical averages obtained
from available training data, the posterior factorizes, and
we can construct the Bayes-optimal pointwise estimator
(OPE) as the average hxiiPðxijyiÞ, which is just Pðxi ¼ 1jyiÞ
for our binary problem. Thus, the OPE at each site xi is
given as

Pðxi¼ 1jyiÞ¼
1

1þ
�
1−mi
mi

�
×
�
1−p
p

�
2yi−1

¼ sigm

�
ln

m
1−m

þð2yi−1Þ ln p
1−p

�
: ð46Þ

For a given data set, the OPE gives us the best-case
performance using only pointwise statistics from the data
set, namely, empirical estimates of themagnetizationsmi.We
can see from Eq. (46) that the OPE returns either the
observations, in the case ofp ¼ 0, or the priormagnetizations
mi, in the case p ¼ 0.5. In this case of complete information
loss, the worst-case performance is bounded according to the
deviation of the data set from its mean. We present the
performance of the OPE in Fig. 8 for the binary-MNIST data
set,whichmakes theOPEavaluable baseline comparison and
sanity check for the GRBM approximation of PðxÞ. As the
GRBMmodel takes into account both pointwise and pairwise
relationships in the data, a properly trained GRBM should
provide estimates at least as good as the OPE.
The k-nearest-neighbor (k-NN) algorithm represents a

different heuristic approach to the same problem [68]. In
this case, the noisy measurements are compared to a set of
exemplars: the training data set. Then, according to some
distance metric such as MSE or correlation, one finds the k
exemplars with a minimal distance to the noisy observa-
tions to serve as a basis for recovering the original binary
signal. One can use some arbitrary approach for fusing
these exemplars together into the final estimate, but the
simplest case is a simple average. In the case that k → ∞,
the performance when using averaging is again bounded by
the empirical magnetizations. In the other limit of k ¼ 1,
the estimate is simply the nearest exemplar. It is hard to
show the limiting performance of this approach, as it is
dependent on the distances, in the chosen metric, between
the exemplars and the observations, as well as the interplay
between the noise channel and the distance metric.
However, it can be seen directly that this approach is

nonoptimal, as this approach will not yield the true signal at
p ¼ 0 unless the true signal is itself contained within the
training data. We show the performance for k ¼ 1 in Fig. 8.
The advantage of this approach is that it successfully
regularizes against noise as p → 0.5, as the nearest

exemplar is always noise-free and at least marginally
correlated with the original signal, up to the distance
metric. Additionally, we see that it performs better than
the OPE in the regime p > 0.2, which can be explained
since we can think of the k-NN approach as implicitly,
though indirectly, taking into account higher-order corre-
lations in the data set by naïvely returning data exemplars;
all the estimates trivially possess the same arbitrarily
complex structure as the unknown signal.
Using the GRBM, we can hope to capture the best points

of both approaches. First, we hope to perfectly estimate the
original signal in the case p ¼ 0. Second, we hope to
leverage the pairwise correlations present in the data set,
returning estimates which retain the structure of the data
even as p → 0.5. For GRBM denoising of the BSC, we no
longer have a factorized posterior. Instead, we have the
GRBM likelihood given in Eq. (9) summed over the hidden
units. Using the definition of the binary prior given in
Appendix C 3,

Pðx;W;UÞ ∝
X
h

e
P

ij
xiWijhjþ

P
i
Uixiþ

P
j
Ujhj : ð47Þ

FIG. 8. Average denoising performance for reconstruction from
bit-flip errors on binary MNIST over the probability of a bit to be
flipped. Denoising via inference on the binary-binary RBM is
denoised by the varying numbers of hidden units (Nh ¼
f25; 50; 100; 500g). Also shown as baseline comparisons are
the OPE given the empirical factorized magnetizations at each
site (dashed black line) and a 1-NNmatching from the training set
(solid black line). All experiments are run over the same 1000
data samples drawn from the held-out test set and compared using
the MCC. Binary estimates are obtained for the OPE and TAP
inferred estimates by rounding the resulting magnetizations.
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Since both the GRBM and the BSC channel likelihood
are written as exponential family distributions, PðyjxÞ×
Pðx;W;UÞ ∝ P

he
P

ij
xiWijhjþ

P
i
ðDiþUiÞxiþ

P
j
Ujhj . Finding

the averages hxii for this model simply consists in running
the TAP-based inference of Algorithm 1 for the modified
visible binary prior Bðxi;Ui þDiÞ. One heuristic caveat of
this approach is that we must take into account the
multimodal nature of the TAP free energy. Since we must
initialize somewhere, and the resulting inference estimate
is dependent upon this initialization, we initialize the
inference with the OPE result.
We can see that, as p → 0, Di → �∞ and the highest

probability configuration becomes observations. So, in the
limit, we are able to obtain the true signal, just as the OPE,
especially since we initialize within the well of this
potential, which is shown for binary RBMs trained with
varying numbers of hidden units in Fig. 8. In every case, for
p ¼ 0, the true signal is recovered. In the case of Nh ¼
f25; 50; 100g, we see that the TAP inference on the binary
RBM always outperforms the OPE. Additionally, we see
that, in each of these cases, the performance closely mirrors
that of the 1-NN as p → 0.5. In the limit p ¼ 0.5, we see
that the result of the TAP inference is, essentially, uncorre-
lated with the original signal, as in this case there is no extra
potential present to bias the inference, and the resulting
estimate is simply an arbitrary solution of the TAP free
energy. As this closely mirrors the exemplar selection
in 1-NN, the MCC curves for the two approaches are
similar.

In the case of Nh ¼ 500, we can see that an over-
training effect occurs. Essentially, at low values of p, the
TAP inference over the binary RBM is able to more
accurately identify the original signal. However, at a
certain point, owing to the increased number of solutions
in the TAP free energy, there exist many undesirable
minima around the noisy solutions, leading to poor
denoising estimates. One can observe this subjectively
in Fig. 9, where in the case of Nh ¼ 500, the TAP
inference results in either nearly zero modes or in very
localized ones. This result would seem to indicate that
the landscape of the TAP free energy around the
initializations is becoming more unstable as the density
of solutions increases around it. Additionally, since the
TAP free-energy landscape is probed using only data
points during training, the clustering of solutions around
noisy samples remains ambiguous. Augmenting the
initializations used when calculating the TAP solutions
for the gradient estimate with noisy data samples could
help alleviate this problem and regularize the TAP free-
energy landscape in the space of noisy data samples.

VIII. DISCUSSION

In this paper, we propose a novel interpretation of the
RBM within a fully tractable and deterministic frame-
work of learning and inference via TAP approximation.
This deterministic construction allows novel tools for
scoring unsupervised models and investigation of the
memory of trained models, as well as allowing their
efficient use as structured joint priors for inverse prob-
lems. While deterministic methods based on NMF for
RBM training are shown to be inferior to CD-k in
Ref. [38], the level of approximation accuracy afforded
by TAP finally makes the deterministic approach to
RBMs effective, as shown in the case of binary RBMs
in Ref. [40].
Additionally, our construction is generalized over the

distribution of both the hidden and visible units. This
generalization is unique to our work, as other works
propose unique training methods and models when
changing the distribution of the visible units. For exam-
ple, this construction can be seen in the modified
Hamiltonians used for real-valued data [69,70]. This
construction allows us to consider binary, real-valued,
and sparse real-valued data sets within the same frame-
work. Additionally, one can also consider other archi-
tectures by changing the distributions imposed on the
hidden unit. Here, we present experiments using only
binary hidden units, but one could also use our proposed
framework for Gaussian-distributed hidden units, thus
mimicking a Hopfield network [2]. Or, also, sparse
Gauss-Bernoulli distributed hidden units could mimic
the same functionality as that proposed by the spike-
and-slab RBM [45]. We leave these investigations to
further works on this topic.

FIG. 9. Subjective comparison of denoising estimates for a
single-digit image for p ¼ ½0; 0.5�. For the OPE and RBM
approaches, the inferred posterior averages hxii are shown, rather
than the final configurations, where white and black represent the
values 0 and 1, respectively. At each tested value of p, the same
noise realization is used for each method. As p increases, for
Nh ¼ f25; 50; 100g, the TAP inference for the RBM provides
estimates which still possess digit structure. In the case
Nh ¼ 500, the TAP inference gets caught in spurious and
undesirable minima as p increases.
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Our proposed framework also offers a possibility to
explore the statistical mechanics of these latent variable
models at the level of TAP approximation. Specifically, for
a given statistical model of the weights W, both the cavity
method and replica can begin to make predictions about
these unsupervised models. An analytical understanding of
the complexity of the free-energy landscape, and its
transitions as a function of model hyperparameters, can
allow for a richer understanding of statistically optimal
network construction for learning tasks. In the case of
random networks, there has already been some progress in
this area, as shown in Refs. [71,72]. However, similar
comprehensive studies conducted on learning in a realistic
setting are still yet to be realized. Finally, as our framework
can be applied to deep Boltzmann machines with minimal
alteration, it can also potentially lead to a richer under-
standing of deep networks and the role of hierarchy in
regularizing the learning problem in high dimensionality.
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APPENDIX A: BELIEF PROPAGATION
FOR PAIRWISE MODELS

In order to estimate the derivatives of F , we must first
construct a BP algorithm on the factor-graph representation
given in Fig. 1. We note that this graph, in terms of the
variables x, does not make an explicit distinction between
the latent and visible variables. We instead treat this graph
in full generality so as to clarify the derivation and notation.
This graph corresponds to the following joint distribution
over x:

Pðx;W; θÞ ∝ e
P

ði;jÞ ϕðxi;xj;WijÞþ
P

i
ϕðxi;θiÞ; ðA1Þ

where
P

ði;jÞ is a sum over the edges in the graph. In the
case of a Boltzmann machine, any two variables are
connected via pairwise factors,

ϕðxi; xj;WijÞ ¼ eWijxixj ; ðA2Þ

and all variables are also influenced by univariate factors
written trivially as ϕðxi; θiÞ ¼ Piðxi; θiÞ.
A message passing can be constructed on this factor

graph by writing messages from variables to factors and
also from factors to variables. Since all factors are at most
degree 2, we can write the messages for this system as
variable-to-variable messages [61]:

νðtþ1Þ
i→j ðxiÞ ¼

ϕðxi; θiÞ
Zi→j

Y
l∈∂i=j

Z
dxl ϕðxi; xl;WilÞνðtÞl→iðxlÞ:

ðA3Þ

Here, the notation i → j represents a message from variable
index i to variable index j, and ∂i=j refers to all neighbors
of variable index i except variable index j. We denote
neighboring variables as those which share a pairwise
factor. Finally, the superscripts on the messages refer to the
time index of the BP iteration, which implies the successive
application of Eq. (A3) until convergence on the set of
messages ν ¼ fνi→jðxiÞ∶ði; jÞ ∈ Eg, where E is the set
of all pairs of neighboring variables. We also note the
inclusion of the message normalization term Zi→j, which
ensures that all messages are valid PDFs. Additionally, it is
possible to write the marginal beliefs at each variable by
collecting the messages from all their neighbors:

νðtÞ→iðxiÞ¼
ϕðxi;θiÞ
Z→i

Y
j∈∂i

Z
dxjϕðxi;xj;WijÞνðtÞj→iðxjÞ: ðA4Þ

Subsequently, the Bethe free energy can be written for a
converged set of messages, ν�, according to Ref. [61] as

FB½ν�� ¼
X
i

F i½ν�� −
X

ði;jÞ∈E
F ði;jÞ½ν��

¼
X
i

lnZ�
→i −

X
ði;jÞ

ln

	Z
dxi dxj ν�i→jðxiÞ

× ϕðxi; xj;WijÞν�j→iðxjÞ


; ðA5Þ

where Z�
→i refers to the normalization of the set of the

marginal belief at site i derived from ν�.
Unfortunately, the message passing of Eq. (A3) cannot

be written as a computable algorithm due to the continuous
nature of the PDFs. Instead, we must find some manner by
which to parameterize the messages. In the case of binary
variables, as in Ref. [40], each message PDF can be exactly
parameterized by its expectation. However, for this general
case formulation, we cannot make the same assumption.
Instead, we turn to relaxed BP (RBP) [51], described in the
next section, which assumes a two-moment parameter-
ization of the messages.

APPENDIX B: RBP FOR PAIRWISE MODELS

We now consider one possible parametric approximation
of themessage set via RBP [51]. This approach has also gone
by a number of different names inparallel rediscoveries of the
approach, e.g.,momentmatching [50] and nonparametricBP
[49]. In essence, we are assuming that all messages ν can be
well approximated by their mean and variance, a Gaussian
assumption. This approximation arises from a second-order

ERIC W. TRAMEL et al. PHYS. REV. X 8, 041006 (2018)

041006-18



expansion assuming small weights Wij. By making this
assumption,we ultimately are able to close an approximation
of the messages on their two first moments, ai→j ≜ hxiiνi→j

and ci→j ≜ hx2i iνi→j
− hxii2νi→j

.

1. Derivation via small-weight expansion

Considering the marginalization taking place in
Eq. (A3), we perform a second-order expansion assuming
that Wil → 0. We start by taking the Taylor series of the
incoming message marginal for negligible weights:Z

dxl eWilxixl · νðtÞl→iðxlÞ

¼ 1þWil

Z
dxl

∂
∂Wil

½eWilxixl �Wil¼0ν
ðtÞ
l→iðxlÞ

þ 1

2
W2

il

Z
dxl

∂
∂W2

il

½eWilxixl �Wil¼0ν
ðtÞ
l→iðxlÞ

þOðW3
ilÞ: ðB1Þ

Now, we approximate the series by dropping the terms less
than OðW3

ilÞ. This approximation can be justified in the
event that all weight values satisfy jWilj < 1. Identifying
the integrals from the expansion as moments, we see the
following approximation:

≈1þ xiWila
ðtÞ
l→i þ

1

2
x2i W

2
ilhx2l iνðtÞl→i

: ðB2Þ

However, wewould like towrite this approximation in terms
of the central second moment. Through a second approxi-
mation that neglects OðW3

ilÞ terms, we arrive at our desired
parameterization of the incomingmessagemarginalization in
terms of the message’s two first central moments:

¼ exp

�
log

	
1þ xiWila

ðtÞ
l→i þ

1

2
x2i W

2
ijhx2l iνðtÞl→i


�

≈ exiWila
ðtÞ
l→iþð1=2Þx2i W2

ilc
ðtÞ
l→iþOðW3

ilÞ

≈ exiWila
ðtÞ
l→iþð1=2Þx2i W2

ilc
ðtÞ
l→i : ðB3Þ

We now substitute this approximation back into Eq. (A3)
to get

νðtþ1Þ
i→j ðxiÞ ≈ ν̃ðtþ1Þ

i→j ðxiÞ ¼
ϕðxi; θiÞ
Zi→j

exiB
ðtÞ
i→j−ð1=2Þx2i A

ðtÞ
i→j ; ðB4Þ

where

BðtÞ
i→j ≜

X
l∈∂i=j

Wila
ðtÞ
l→i; ðB5Þ

AðtÞ
i→j ≜ −

X
l∈∂i=j

W2
ilc

ðtÞ
l→i: ðB6Þ

From here, we can see that we have now a set of closed
equations due to the dependence of AðtÞ and BðtÞ on the
moments aðtÞ and cðtÞ, and vice versa. The values of these
moments can bewritten as a function ofAðtÞ andBðtÞ which is
dependent upon the form of the local potentialsϕðxi; θiÞ, i.e.,
the prior distribution we assign to the variables themselves,

aðtÞi→j ¼ faðBðt−1Þ
i→j ; Aðt−1Þ

i→j ; θiÞ; ðB7Þ

cðtÞi→j ¼ fcðBðt−1Þ
i→j ; Aðt−1Þ

i→j ; θiÞ; ðB8Þ

where

faðB;A; θÞ ≜
Z

dx x
ϕðx; θÞ

Z
exB−ð1=2Þx2A; ðB9Þ

fcðB;A; θÞ ≜ −faðB;A; θÞ2

þ
Z

dx x2
ϕðx; θÞ

Z
exB−ð1=2Þx2A; ðB10Þ

and Z is simply the normalization
R
dxϕðx; θÞexB−ð1=2Þx2A.

The inferred marginal distributions at each site can be
calculated via the same functions but instead using all of

the incoming messages, i.e., aðtÞi ¼ faðBðtÞ
→i; A

ðtÞ
→i; θiÞ and

cðtÞi ¼ fcðBðtÞ
→i; A

ðtÞ
→i; θiÞ. In Appendix C 1, we give the closed

forms of these moment calculations for a few different
choices of ϕðx; θÞ.
If one wants to obtain an estimate of the free energy for a

given set of parameters θ, it is possible to iterate between
Eqs. (B6) and (B5) and Eqs. (B7) (B8) until, ideally,
convergence. It is important to note, however, due to both
the potentially loopy nature of the network as well as small-
weight expansion, that the BP iteration is not guaranteed to
converge [41,61]. Additionally, while we retain the time
indices in our derivation, it is not clear whether one should
attempt to iterate thesemessage in a fully sequential orparallel
fashion or if some clustering and partitioning of the variables
should be applied to determine the update order dynamically.

2. RBP approximate Bethe free energy

Additionally, we can write the specific form of the Bethe
free energy under the RBP two-moment parameterization
of the messages. In this case, we can simply apply the
small-weight expansion of Eq. (B3) to the Bethe free
energy for pairwise models given in Eq. (A5):

F̃B½ν̃�� ¼
X
i

ln Z̃�
→i

−
X
ði;jÞ

ln

	Z
dxiν̃�i→jðxiÞexiWija�j→iþð1=2Þx2i W2

ijc
�
j→i



:

ðB11Þ
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Subsequently, using the final message definition given in
Eq. (B4), we can see that

F̃B½ν̃�� ¼
X
i

ln Z̃�
→i −

X
ði;jÞ

fln Z̃�
→i − ln Z̃�

i→jg; ðB12Þ

which, correcting for double counting, can also be written
as

F̃B½ν̃�� ¼
X
i

�
1 −

1

2
di

�
ln Z̃�

→i þ
1

2

X
i;j

ln Z̃�
i→j; ðB13Þ

where di is the degree at site i, j∂ij.

3. Enforcing bounded messages

While we write the RBP messages (B4) as though they
are Gaussian distributions, this is a slight, since AðtÞ

i→j ≤ 0 as

W2
ilc

ðtÞ
l→i ≥ 0 ∀ i; l. The implication of the expansion is

that, in general, the messages are in fact unbounded. This
unboundedness is a direct result of the form of the
conventional RBM pairwise factor exiWijxj.
There are a few avenues available to us to address these

unbounded messages and produce a meaningful message
passing for generalized RBMs. Let us consider the cases for
which the messages are unbounded given a specific
variable distribution. Assume that site xi is assigned a
Gaussian prior, ϕðxi; θi ¼ fVi; UigÞ ∝ exiUi−ð1=2Þx2i Vi . In
this case, the RBP message reads

ν̃ðtþ1Þ
i→j ðxiÞ ¼

1

Z̃i→j
exiðUiþBðtÞ

i→jÞ−ð1=2Þx2i ðViþAðtÞ
i→jÞ: ðB14Þ

In this case, the message is unbounded in the event that the
weighted sum of all incoming neighbor variances at i
exceeds the inverse variance of Gaussian prior on xi,

Vi þ AðtÞ
i→j < 0; ðB15Þ

Vi <
X
l∈∂i=j

W2
ilc

ðtÞ
l→i; ðB16Þ

σ2i >

	X
l∈∂i=j

W2
ilc

ðtÞ
l→i



−1
; ðB17Þ

where σ2i is the variance of the Gaussian prior. Said another
way, this condition is telling us that, when the message
passing starts to tell us that if the variance at xi is smaller than
that of its prior, the messages become unbounded and fail to
be meaningful probability distributions, and our expansion
fails. The implication is that theRBPmessage passing should
be utilized in contexts where there exists some, preferably
strong, evidence at each site, or the weights in W should be
sufficiently small. The stronger this local potential, or the
smaller the weights, the more favorable the model is to the

RBP inference. This observation mirrors those made in
Ref. [41]; however, here the authors make the observation
that, in this setting, BPbased on a small-weight expansion for
binary variables fails to converge. In our case, without taking
some form of regularization, the inference fails entirely.
Thus, large magnitude couplingsWil must be backed with a
high degree of evidence at site i and l. This property could be
utilized for the inverse learning problem, where one must
learn the couplings W given a data set, in order to constrain
the learning to parameters which are amenable to the RBP
inference.
One direct manner to create probability distributions

from otherwise unbounded continuous functions is via
truncation. Specifically, we enforce a noninfinite normali-
zation factor by restricting the support of the distribution to
some subset of R. In this case, just slightly violating the
bounded condition above induces a uniform message
distribution over the distribution support, while a strong
violation causes the distribution to concentrate on the
boundaries of the support. Another approach might simply
be to fix a hard boundary constraint on Ai→j, thus never
permitting unbounded messages to occur.

APPENDIX C: CALCULATIONS FOR SPECIFIC
VARIABLE DISTRIBUTIONS

1. Truncated Gaussian units

In general, the truncated Gaussian is defined in the
following manner:

TGðx;μ;σ2; ½α;ω�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p ·
1

Φ½ω−μσ �−Φ½α−μσ � ·e
−ðx−μÞ2=2σ2 ;

ðC1Þ

where μ and σ2 are the mean and variance, respectively, of
the original Gaussian prior to truncation, the range ½α;ω�
defines the lower and upper bounds of the truncation,
−∞ ≤ α < ω ≤ ∞, and Φ½·� is the CDF for the normal
distribution. To make things easier for us later, we define
the prior in a little bit of a different manner by making the
following definitions:

V ≜ 1

σ2
; U ≜ μ

σ2
; ðC2Þ

and writing the distribution for the parameters θ ¼
fU;V; ½α;ω�g as

TGþðx; θÞ ¼
2

eU
2=2V

ffiffiffiffi
V
2π

q
e−ð1=2ÞVx2þUx

Erf½
ffiffiffi
V
2

q
ðω − U

VÞ� − Erf½
ffiffiffi
V
2

q
ðα − U

VÞ�
; ðC3Þ

where Erf½·� is the error function and the last step follows
from the identity Φ½x� ¼ 1

2
þ 1

2
Erfðx= ffiffiffi

2
p Þ. Here, the sub-

script þ is used to indicate V > 0.
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In the case that V < 0, we write TG in terms of the
imaginary error function, Erfi½x� ≜ −iErf½ix�, and, noting
that for V < 0, V ¼ −1 · jVj,

TG−ðx; θÞ ¼
2

eU
2=2V

ffiffiffiffiffi
jVj
2π

q
e−ð1=2ÞVx2þUx

Erfi
h ffiffiffiffiffi

jVj
2

q
ðω − U

VÞ
i
− Erfi

h ffiffiffiffiffi
jVj
2

q
ðα − U

VÞ
i :
ðC4Þ

We use this negative variance version of the truncated
Gaussian to handle the special case of Aþ V < 0 first
detailed in Appendix B 3.
We now detail the computation of the partition and first

two moments of the Gaussian-product distribution of TG,
Qðx; θ; A; BÞ ¼ ð1=ZÞTGðx; θÞe−ð1=2ÞAx2þBx. The calcula-
tion of the moments as a function of A and B provides
the definitions of fa and fc, while the calculation of the
normalization Z provides terms necessary for both the
computation of the TAP free energy as well as the gradients
necessary for learning θ during RBM training.
First, we calculate the normalization of Qðx; θ; A; BÞ in

terms of all free parameters. To do this, consider the truncated
normalization of the following product of Gaussians:

ZQ ¼ 1

ZTG

Z
ω

α
dx e−ð1=2ÞðAþVÞx2þðBþUÞx; ðC5Þ

where ZTG is defined such that TGðx; θÞ ¼
ð1=ZTGÞe−ð1=2ÞVx2þUx. We need to make note of the special
case of Aþ V < 0; thus,

ZQ ¼ 1

ZTG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2jAþ Vj
r

eðBþUÞ2=2ðAþVÞ ×
�
dþ; Aþ V > 0;

d−; Aþ V < 0;

ðC6Þ

where dþ ≜ Erf½hω� − Erf½hα�, d− ≜ Erfi½hω� − Erfi½hα�,
and hx ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjAþ Vj=2Þp ½x − ðBþ U=Aþ VÞ�.
Since Qðx; θ; A; BÞ is simply a truncated Gaussian with

updated parameters, the first moment is given according to
the well-known truncated Gaussian expectation. While this
expectation is usually written in terms of a mean and
variance of the untruncated Gaussian distribution and for
the case of positive mean, we instead write the expectation
in terms of the exponential polynomial coefficients and
note the special case Aþ V < 0:

faðB;A; θÞ ¼
Bþ U
Aþ V

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πjAþ Vj

s

×

8<
:

e−h
2
α−e−h

2
ω

dþ
; Aþ V > 0;

eh
2
α−eh

2
ω

d−
; Aþ V < 0.

ðC7Þ

Next, we write the variance ofQðx; θ; A; BÞ as a function
of A and B. As earlier, since Q has the specific form of a
truncated Gaussian distribution, we can utilize the well-
known variance formula for such a distribution. As in the
case of fa, we modify this function for the special case of
Aþ V < 0. Specifically,

fcðB;A; θÞ ¼
1

Aþ V
−
�
faðB;A; θÞ −

Bþ U
Aþ V

�
2

þ 2ffiffiffi
π

p ðAþ VÞ

×

8<
:

hαe
−h2α−hωe−h

2
ω

dþ
; Aþ V > 0;

hαe
h2α−hωeh

2
ω

d−
; Aþ V < 0.

ðC8Þ

a. Gradients of the log-likelihood

To determine the gradients of the log-likelihood with
respect to the model parameters, it is necessary to calculate
the gradients of both ln TGþðx; θÞ and lnZQ in terms of the
distribution parameters U and V. We assume that the
boundary terms α and ω remain fixed. Since both of these
distributions are truncated Gaussians, we can treat them
both in terms of the derivatives of the log normalization of a
general-case truncated Gaussian:

lnZTG ¼ −
U2

2V
þ 1

2
ln jVj − ln d�: ðC9Þ

For Boltzmann measures of the given quadratic form, we
know that ð∂=∂UÞ lnZTG ¼ hxiTG and ð∂=∂VÞ lnZTG ¼
− 1

2
hx2iTG. From these relations, we can write the necessary

derivatives. For the case of ln TGþðx; θÞ, we have

∂
∂U ln TGþðx; θÞ ¼ x −

∂
∂U lnZTG ¼ x − hxiTG ðC10Þ

and

∂
∂V ln TGþðx; θÞ ¼ −

1

2
x2 −

∂
∂V lnZTG

¼ −
1

2
ðx2 − hx2iTGÞ; ðC11Þ

which we can see as just the difference between the data
and the moments of the truncated Gaussian distribution.
Next, the derivatives of ZQ, for fixed A and B, can be

written in terms of fa and fc, the moments of Q:

∂
∂U lnZQ ¼ faðB; A; θÞ − hxiTG; ðC12Þ

∂
∂V lnZQ ¼ −

1

2
½fcðB;A; θÞ þ faðB;A; θÞ2 − hx2iTG�:

ðC13Þ
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Finally, we are ready to write the gradients of the log-
likelihood to be used for both hidden and visible updates
with the truncated Gaussian distribution. For a given set of
minibatch data indexed bym ∈ f1;…;Mg and a number of
TAP solutions indexed by p ∈ f1;…; Pg, the gradients of a
visible variable are given by

ΔUi ¼
1

M

X
m

ðxðmÞ
i − hxiiTGÞ

−
1

P

X
p

ðaðpÞi − hxiiTGÞ

¼ hxiiM − haiiP ðC14Þ
and

ΔVi ¼ −
1

2
½hx2i iM − hci þ a2i iP�; ðC15Þ

where h·iM and h·iP are averages over the minibatch and
TAP solutions, respectively.
For updates of hidden side variables using the truncated

Gaussian distribution, we have the following gradients for
updating their parameters:

ΔUj ¼ hãjiM − hajiP ðC16Þ
and

ΔVj ¼ −
1

2
½hc̃j þ ã2jiM − hcj þ a2jiP�; ðC17Þ

where the moments ãjðmÞ ≜ fað
P

iWijx
ðmÞ
i ; 0; θjÞ and

c̃jðmÞ ≜ fcð
P

iWijx
ðmÞ
i ; 0; θjÞ are defined for convenience.

Using these gradients, we can now update the local biasing
distributions for truncated Gaussian variables.

b. Numerical considerations

Using the truncated Gaussian prior comes with a few
numerical issues which must be carefully considered.
While we have already addressed the cases when
Aþ V < 0, we have not addressed the case whereBþU

Aþ V

 ≫ jωj; jαj: ðC18Þ

One can see how this case complicates matters by observ-
ing the term ð1=d�Þ, which occurs in both the first and
second moment computations. When the magnitude of the
limits ω and α become vanishingly small in comparison to
the scaled joint mean term, then we see that d� → 0.
However, the numerators of both fa and fc also go to zero,
which implies that we may be able to find some method of
approximation to find estimates of these moments without,
up to numerical precision, dividing by zero.
In order to handle this eventuality in our implementation,

we make a Taylor series expansion of the ð1=d�Þ term in

the following way. First, we note that d� has the form
Erf½ηðω − μÞ� − Erf½ηðα − μÞ�, which can be rewritten as
Erf½z� − Erf½z − ϵ� for z ≜ ηðω − μÞ, and ϵ ≜ ηðα − ωÞ is a
multiple of the difference between the two boundaries of
the truncated Gaussian distribution. Since we wish to
consider the case that μ → ∞, we take the Taylor expansion
centered at z ¼ ∞, since the value of μ dominates. From
here, we find that the following approximation works well
in practice:

eh
2
α − eh

2
ω

dþ
n
≈ SðnÞðh2ωÞ
ðα − BþU

AþVÞð1 − eh
2
α−h2ωÞ

þ SðnÞðh2αÞ
ðω − BþU

AþVÞð1 − eh
2
ω−h2αÞ ; ðC19Þ

where SðnÞð·Þ is the n-term power-series representation of
the error function. In our experiments, we use n ¼ 11. A
similar approximation can be used for the variances in the
same situation. While this approximation could potentially
be computationally costly for large n, we note that it is used
only for updates on variables for which a small value of d�
has been detected.

2. Truncated Gauss-Bernoulli units

For truncated Gauss-Bernoulli distributed units, we form
the distribution as a mixture between a delta function and
TG, with an extra term (1 − ρ) which controls the density at
x ¼ 0; thus, for θ ¼ fρ; U; V; ½α;ω�g we have

TGBðx; θÞ ≜ ð1 − ρÞδðxÞ þ ρTGðx; θÞ ðC20Þ

¼ 1

ZTGB
½ð1 − ρÞδðxÞ þ ρe−ð1=2ÞVx2þUx� ðC21Þ

where ZTGB ≜ ð1 − ρÞ þ ρZTG and δðxÞ is the Dirac delta
function such that δð0Þ ¼ 1 and 0 everywhere else. By
using a construction such that the truncation is done on the
Gaussian mode alone and not across the entire distribution,
we can easily write the necessary functions of this
distribution in terms of the values we have already
calculated in Appendix C 1 as long as 0 ∈ ½α;ω�.
Additionally, it is useful for our calculations to define
the probability of x to be nonzero according to TGB:

P½x ≠ 0� ¼ ρZTG

ZTGB
: ðC22Þ

We now continue as in the previous Appendices
and write the normalization and first two moments
of the Gaussian product distribution Qðx; θ; A; BÞ ¼
ð1=ZQÞTGBðx; θÞe−ð1=2ÞAx2þBx. First, the normalization
can be written simply as a function of the truncated
Gaussian normalizationmodified byA andB, as in Eq. (C6):

ZQ ¼ ð1 − ρÞ þ ρZQ;TG: ðC23Þ
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Next, the first moment of Q can be found by recalling the
relation ð∂=∂UÞ lnZQ ¼ hxiQ and, consequently, that
ð∂=∂UÞZQ ¼ ZQhxiQ. Thus,

faðB; A; θÞ ¼ fTGa ðB; A; θÞ · P½x ≠ 0�; ðC24Þ
where the nonzero probability is calculated according to A
and B. For the second moment, we note that ð∂=∂VÞZQ ¼
− 1

2
ZQhx2iTG to find

fcðB;A; θÞ ¼ P½x ≠ 0� · ½fTGa ðB;A; θÞ2 þ fTGc ðB; A; θÞ�
− faðB; A; θÞ2

¼ ðP½x ≠ 0� − P½x ≠ 0�2ÞfTGa ðB; A; θÞ
þ P½x ≠ 0�fTGc ðB; A; θÞ: ðC25Þ

Next, we turn our attention to the log-likelihood gradients
necessary for updating the parameters U, V, and ρ during
training. First, we look at the derivatives of lnTGB required
for updates on visible units. In order to calculate these
derivatives, we split the log probability into two cases:

lnTGBðx; θÞ ¼
�− lnZTGB; x ¼ 0;

ln ρ − 1
2
Vx2 þ Ux − lnZTGB; x ≠ 0.

ðC26Þ
Consequently, the derivatives of the log probability are
written as the following:

∂
∂U ½ln TGBðx; θÞ� ¼ x − hxiTGB ðC27Þ

and

∂
∂V ½lnTGBðx; θÞ� ¼ −

1

2
ðx2 − hx2iTGBÞ: ðC28Þ

The derivative with respect to ρ is a bit more complicated, as
we cannot use the same identities. Additionally, wemust also
consider the two cases of x ¼ 0 and x ≠ 0 separately. Thus,

∂
∂ρ ½lnTGBðx; θÞ� ¼

� ρZTG − 1
ρP½x ≠ 0�; x ¼ 0;

ρZTG − 1
ρ ðP½x ≠ 0� − 1Þ; x ≠ 0

¼ ρZTG −
1

ρ
f1 − δðxÞ − P½x ≠ 0�g;

ðC29Þ

which can be rewritten in the more concise form

∂
∂ρ ½lnTGBðx; θÞ� ¼

δðxÞ − ρ

ρð1 − ρÞ ðC30Þ

by noting the complement of the support probability
P½x¼0�¼1−P½x≠0�¼ð1−ρ=ZTGBÞ¼1−ρ and making
the appropriate substitution.

We now write the derivatives of the lnZQ in terms of U,
V, and ρ. These take the same form as those written in
Appendix C 1. Subsequently, the equations for ΔUi, ΔVi,
ΔUj, and ΔVj all remain consistent, just under the
modification of all moments being taken with respect to
the TGB. We need only to write the gradients Δρi and Δρj.
Starting from the log partition and applying the same
identity used to write Eq. (C30),

∂
∂ρ ½lnZQ� ¼

PQ½x ≠ 0� − ρ

ρð1 − ρÞ ; ðC31Þ

which gives us the final gradients

Δρi ¼
1

ρið1 − ρiÞ
½hδðxiÞiM − hPQ½xi ≠ 0�iP� ðC32Þ

for visible units and

Δρj ¼
1

ρjð1 − ρjÞ
½hP̃Q½xj ≠ 0�iM − hPQ½xj ≠ 0�iP�

ðC33Þ
for hidden units, where P̃Q is calculated in the naive-
mean-field manner described in Appendix C 1, where

ÃðmÞ
j ¼ 0 and B̃ðmÞ

j ¼ P
iWijx

ðmÞ
i .

3. Binary units

We define the distribution for binary units to be the
Bernoulli distribution such that x ∈ f0; 1g:

Bðx;mÞ ¼ ð1 −mÞ1−xmx; ðC34Þ

wherem ≜ Prob½x ¼ 1� ¼ hxiB. We can also write B as the
Boltzmann distribution

Bðx;UÞ ¼ 1

ZB
eUx; ðC35Þ

where U ≜ lnðm=1 −mÞ and ZB ≜ 1þ eU. Next, we
calculate the normalization and moments of the distribution
Qðx;A;B;UÞ ¼ ð1=ZQZBÞe−ð1=2ÞAx2þðBþUÞx. For the nor-
malization, we have

ZQ ¼ 1

ZB

X
x¼f0;1g

e−ð1=2ÞAx2þðBþUÞx

¼ 1

ZB
½1þ e−ð1=2ÞAþBþU�: ðC36Þ

Subsequently, for the moments of Q, we have

faðB;A;UÞ¼ ∂
∂U ½lnZB� ¼ sigm

�
UþB−

1

2
A

�
; ðC37Þ

where sigm is the logistic sigmoid function. Subsequently,
the variance for the binary unit can be calculated directly as
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fcðB; A;UÞ ¼ faðB; A;UÞ − faðB;A;UÞ2: ðC38Þ

Next, if we wish to define the learning gradients on U,
we write the derivatives of lnBðx;UÞ and lnZQ with
respect to U,

∂
∂U lnBðx;UÞ ¼ ∂

∂U ½Ux − lnZB� ¼ x − hxiB; ðC39Þ

and, for the log normalization,

∂
∂U lnZB ¼ faðB; A;UÞ − hxiB: ðC40Þ

The resulting gradients for the distribution terms U are

ΔUi ¼ hxiiM − haiiP ðC41Þ
for visible units and

ΔUj ¼ hãjiM − haiiP ðC42Þ
for hidden units, where ãj ≜ fað

P
iWijx

ðmÞ
i ; 0;UÞ.

APPENDIX D: ADAPTIVE TAP

When performing inference, one could employ instead
of TAP a variant known as adaptive TAP (or adaTAP) [57],
which gives, in general, more accurate results, albeit being
slower to iterate. We briefly investigate here the perfor-
mance of this method in the binary case.
The adaTAP algorithm is more generally presented

without a distinction between visible and hidden variables.
We thus write the algorithm for generic weight matrix J and
bias vector H, in practice here defined by blocks

J ¼
�

0 W

WT 0

�
∈ RðNvþNhÞ×ðNvþNhÞ;

H ¼
�
b

c

�
∈ RðNvþNhÞ;

The proposed implementation Algorithm 3 uses the
recently introduced vector approximate message passing
(VAMP) [73] to find the adaTAP fixed points. After
convergence, quantities with subscripts 1 and 2 are equal
and identify with the outputs of the TAP inference
Algorithm 1,

A1 ¼ A2 ¼
�
Av

Ah

�
; B1 ¼ B2 ¼

�
Bv

Bh

�
;

a1 ¼ a2 ¼
�
av

ah

�
; c1 ¼ c2 ¼

�
cv

ch

�
;

again compactly defined by blocks over the visible and
hidden units. Here, c2 is defined as the diagonal of the C2

matrix, which gives an estimate of the correlation between
different units and must be computed at each step of the
algorithm. These quantities are then incorporated to our
training Algorithm 2.
The computational burden of Algorithm 3 lies in the

matrix inversion needed to evaluate C2, which needs to be
performed at each iteration. In Fig. 10 (right), we compare
the time needed to perform one iteration of both the
algorithms under identical experimental conditions.
This larger cost per iteration should be compensated,

in principle, by a more accurate inference procedure.
However, that does not seem to translate to improvements
in the training performance. Figure 10 (left) presents a

FIG. 10. Left: Evolution of the pseudolikelihood along the training of an RBM with 784 binary visible units and 500 binary hidden
units. Training is performed using the 5000 first images of binarized MNIST, with a learning rate of 0.001 and batches of size 100. The
different curves correspond to different strategies of estimation of the likelihood gradients, with either TAP or adaTAP. Both algorithms
are iterated for a fixed number of times (3, 10, and 100). In all cases, a damping of 0.5 is used. All methods yield comparable results in
terms of training performance, except for adaTAP with only three iterations, which shows a poorer performance. Right: Computation
time for one iteration of the inference algorithm, as a function of the batch size. Time is reported in seconds for identical experimental
settings. The need for a matrix inversion for each batch element makes VAMP 3 orders of magnitude slower than TAP.
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minimal test on 5000 MNIST training samples, where
performances are reported in terms of the pseudolikelihood.
We evaluate both algorithms for different numbers of
iterations. Results suggest that all strategies are roughly
equivalent, except for running adaTAP for a very small
number of iterations, which always leads to a poorer result.
We thus conclude that, as far as proposing a tractable and

efficient training algorithm for RBMs, the TAP inference
seems to serve the purpose more appropriately.

APPENDIX E: DEEP BOLTZMANN MACHINES

1. Model and inference

It is possible to define as well deep models of Boltzmann
machines by considering several stacked hidden layers.
These deep Boltzmann machines (DBMs) [26] consist in a
straightforward extension of RBMs. The distribution cor-
responding to a DBM with L hidden layers indexed by l is

Pðx;hð1Þ;…;hðLÞ;Wð1Þ;…;WðLÞ; θÞ

¼ 1

Z½Wð1Þ;…;WðLÞ; θ� e
P

i;j
xiWijh

ð1Þ
j þ

P
l

P
i;j
hðlÞi WðlÞ

ij h
ðlþ1Þ
j

×
Y
i

Pv
i ðxi; θvi Þ

Y
l

Y
j

PhðlÞ
j ðhðlÞj ; θhj

ðlÞÞ: ðE1Þ

Similarly to RBMs, the distribution of visible variables is
obtained by marginalizing out the latent variables:

Pðx;Wð1Þ;…;WðLÞ;θÞ

¼
Z �Y

l

Y
j

dhðlÞj

�
Pðx;hð1Þ;…;hðLÞ;Wð1Þ;…;WðLÞ;θÞ;

ðE2Þ
yielding the following log-likelihood:

lnPðx;Wð1Þ;…;WðLÞ;θÞ
¼− lnZ½Wð1Þ;…;WðLÞ;θ�þ

X
i

lnPiðxi;θvi Þ

þ ln
Z �Y

l

Y
j

dhðlÞj

�
e
P

i;j
xiWijh

ð1Þ
j þ

P
l

P
i;j
hðlÞi WðlÞ

ij h
ðlþ1Þ
j

×
Y
l

Y
j

PhðlÞ
j ðhðlÞj ;θhj

ðlÞÞ: ðE3Þ

Themajor difference betweenRBMsandDBMs lies in the
complexity of evaluating the above expression. Whereas for
RBMs only the log-partition features a problematic multi-
dimensional integral Eq. (11), here both the log-partition and
the last term are intractable. This additional complication
carries through to the computation of the gradients necessary
for training, since the data-dependent term deriving from the
last term of Eq. (E3) is no longer tractable.
This intractability follows from the fact that hidden units in

neighboring layers are now connected to each other and are
thus no longer conditionally independent. Interestingly, the

first proposal to deal with the data-dependent terms ofDBMs
consisted in using a naive mean-field approximation [26],
while keeping a Monte Carlo–based strategy to compute
gradients deriving from the log-partition. In this work, we
propose instead to use the TAP approximation for both of
them, hence improving on the NMF approximation and
avoiding any sampling of the rather complicated RBMs.
The TAP equations related to the log-partitionZ½Wð1Þ;…;

WðLÞ; θ� follow directly from the general derivation of Sec. V
for fully connectedmodels, with, however, a differentweight
matrix being used. For instance, the effective weight matrix
of a DBM with two hidden layers is defined by blocks as

W ¼

0
BB@

0 Wð1Þ 0

Wð1ÞT 0 Wð2Þ

0 Wð2ÞT 0

1
CCA: ðE4Þ

Thus, implementing the GRBM inference Algorithm 1 with
the proper weights outputs TAP solutions fa; c;B;Ag, each
of them a vector with components corresponding to the
different units in the DBM.
For the last term of Eq. (E3), we recognize the log-

partition of a model closely related to the considered
DBM, where visible units are not anymore variable but
fixed, or clamped, at values xi, and the original interaction
between visible and first hidden layer units is replaced by

an additional local field on each hð1Þj equal to
P

iW
ð1Þ
ij xi.

Finally, under this simple modification of the Hamiltonian,
TAP equations follow again from the general derivation
in Sec. V. The resultant TAP solutions depending
on data points x are said to be clamped and denoted
as fāðxÞ; c̄ðxÞ; B̄ðxÞ; ĀðxÞg.

2. Training algorithm and experiments

The gradients of the log-likelihood with respect to the
model parameters θ are similar to the RBM ones, given
by Eqs. (12)–(14). However, the first data-dependent term
cannot be analytically computed anymore, and we use the
clamped TAP solutions to approximate it. The second term
is evaluated using the data-independent TAP solutions,
similarly to our strategy for RBMs. The corresponding
expressions of the gradients are

Δθvi ≈
1

M

X
m

∂
∂θvi ½lnP

v
i ðxðmÞ

i ; θvi Þ�

−
1

K

X
k

∂
∂θvi ½lnZ

v
i ðBv

i;k; A
v
i;k; θ

v
i Þ�; ðE5Þ

Δθhj ðlÞ ≈
1

M

X
m

∂
∂θhj ðlÞ

½lnZh
j (B̄

h
j ðxðmÞÞ; Āh

j ðxðmÞÞ; θhj ðlÞ)�

−
1

K

X
k

∂
∂θhj ðlÞ

½lnZh
j ðBh

j;k; A
h
j;k; θ

h
j
ðlÞÞ�; ðE6Þ
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ΔWð1Þ
ij ≈

1

M

X
m

xðmÞ
i āh

ð1Þ
j ðxðmÞÞ

−
1

K

X
k

favi;kah
ð1Þ

j;k þWð1Þ
ij c

v
i;kc

hð1Þ
j;k g; ðE7Þ

ΔWðlÞ
ij ≈

1

M

X
m

fāhðl−1Þi ðxðmÞÞāhðlÞj ðxðmÞÞ

þWðlÞ
ij c̄

hðl−1Þ
i ðxðmÞÞc̄hðlÞj ðxðmÞÞg

−
1

K

X
k

fahðl−1Þi;k ah
ðlÞ

j;k þWðlÞ
ij c

hðl−1Þ
i;k ch

ðlÞ
j;k g for l ≥ 2:

ðE8Þ

These expressions can be plugged to a gradient
ascent algorithm, as in the RBM training Algorithm 2.
Nevertheless, this simple strategy of simultaneous training
of all the parameters of the model (joint training) usually
fails, as the magnitude of weights of deep layers typically
remains very small and the model eventually resembles
a mere RBM. Several regularizations have been proposed
to tackle this well-known problem of DBM training
[16,26,74–76]. In our experiments, we used a greedy
layerwise pretraining [26], which consists in computing
a meaningful initialization of the weights by training the

Algorithm 3. AdaTAP inference for binary-binary RBMs.

Input: J, H
Initialize: t ¼ 0, A1

ð0Þ, B1
ð0Þ

repeat
Prior updates

aðtþ1Þ
1;i ¼ sigmðBðtÞ

1;i − AðtÞ
1;i=2Þ

cðtþ1Þ
1;i ¼ aðtþ1Þ

1;i ð1 − aðtþ1Þ
1;i Þ

Aðtþ1Þ
2;i ¼ 1=cðtþ1Þ

1;i − Aðtþ1Þ
1;i

Bðtþ1Þ
2;i ¼ 1=ð1 − aðtþ1Þ

1;i Þ − Bðtþ1Þ
1;i

Interaction updates

Cðtþ1Þ
2 ¼

�
diagðAðtþ1Þ

2 Þ − J
�
−1

aðtþ1Þ
2;i ¼ P

jðCðtþ1Þ
2 ÞijðBðtþ1Þ

2;j þHjÞ
Aðtþ1Þ
1;i ¼ 1=ðCðtþ1Þ

2 Þii − Aðtþ1Þ
2;i

Bðtþ1Þ
1;i ¼ aðtþ1Þ

2;i =ðCðtþ1Þ
2 Þii − Bðtþ1Þ

2;i
t ¼ tþ 1

until convergence

Algorithm 4. GDBM training.

Input: X, Tpre train,T joint train, M, K, Rð·Þ
Pretraining

Wð1Þ; θv; θhð1Þ ← Algorithm 2(X, Tpre train, M, K, Rð·Þ)
for all hidden layers l ≥ 2 do

Hðl−1Þ ∼ PðhðlÞjHðl−1Þ;…;H1;XÞ
WðlÞ; θhðlÞ ← Algorithm 2(Hðl−1Þ, Tpre train, M, K, Rð·Þ)

end for
Joint training

Initialize: t ¼ 0
repeat

for all minibatches XB of size M do

aðtþ1Þ; cðtþ1Þ;Bðtþ1Þ;Aðtþ1Þ ← Algorithm 1ðWðtÞ; θðtÞÞ × K

āðtþ1Þ; c̄ðtþ1Þ; B̄ðtþ1Þ; Āðtþ1Þ ← Algorithm 1ðXB;WðtÞ; θðtÞÞ
WðlÞ;ðtþ1Þ

ij ← WðlÞ;ðtÞ
ij þ γΔWðlÞ;ðtÞ

ij

θhj
ðlÞ;ðtþ1Þ ← θhj

ðlÞ;ðtÞ þ γΔθhj ðlÞ;ðtÞ

θvi
;ðtþ1Þ ← θvi

;ðtÞ þ γΔθvi ;ðtÞ
end for
t ← tþ 1

until t > T joint train

FIG. 11. Training performances over 3000 training epochs for a two-hidden-layer (left) and a three-hidden-layer (right) DBM on the
binarized MNIST data sets. Both models are pretrained for 50 epochs with the same learning rate of 0.001. The training performance is
measured as the normalized (per unit) TAP log-likelihood for the test images (blue curve) and the train images (orange curve).
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RBMs layer by layer, before performing the joint training.
The complete algorithm is described in Algorithm 4.
Figure 11 shows the evolution of the TAP log-likelihood

for a two-hidden-layer and a three-hidden-layer DBM,
trained with the above-described algorithm.

APPENDIX F: COMPARISON OF THE TAP
LOG-LIKELIHOOD WITH OTHER

SURROGATES

As detailed in the main text, we consider the TAP log-
likelihood as a surrogate to the true and intractable log-
likelihood, as there are no guarantees to how close it lies to
the true value, nor does it provide any bound on the value of
the true log-likelihood—as discussed in Sec. V B, the TAP
estimate may fall either above or below. Surrogates, such as
the pseudolikelihood [77], are widely used in Boltzmann
machine learning [18]. As a surrogate for the true log-
likelihood, besides its fast convergence and deterministic
calculation, the TAP log-likelihood possesses many inter-
esting properties which we study in our experiments. For
instance, TAP machines can be used for denoising, as
demonstrated in Sec. VII D, or as priors for other appli-
cations of statistical inference.
Another piece of supporting evidence for the quality of

the TAP log-likelihood as a surrogate comes from studying
how consistent it is with other estimators and surrogates.
We present two of them here: the pseudolikelihood (PL)

and the log-likelihood estimate provided by annealed
importance sampling (AIS) [19]. For this experiment, we
compare log-likelihood estimates from TAP, PL, and AIS
over the course of 100 epochs of training performed on a
single binary-binary RBM with 500 hidden units using the
binary-MNIST data set as training data. The training is
performed by maximizing the TAP log-likelihood, and each
of the three approaches produces either an estimate or a
surrogate to the true log-likelihood at the end of each
epoch [as in Fig. 3(a)]. We show the comparison of these
surrogates over training in Fig. 12.
All three measures have the same qualitative behavior as

a function of epochs, indicating they are consistent to each
other in this particular experiment. Notably, over training,
one does not need to accurately estimate the value of the
underlying true log-likelihood but rather provide the same
quality as a metric, that is, if one set of model parameters
has a larger log-likelihood than another according to the
true log-likelihood, then it should also be larger in the
surrogate. As long as the “landscape” of the log-likelihood
is preserved by the surrogate, then it should be sufficient for
training accurate models. While the true log-likelihood is
unknowable in the context of this experiment, comparing to
the AIS estimate shows similar growth in the log-likelihood
between the TAP surrogate and AIS. Thus, we can observe
that maximizing the TAP log-likelihood does indeed appear
to produce models which improve the true log-likelihood
overtraining, indicating some correspondence between the
TAP log-likelihood and the true log-likelihood, up to the
AIS estimate.
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