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The rich variety of crystalline symmetries in solids leads to a plethora of topological crystalline
insulators (TCIs), featuring distinct physical properties, which are conventionally understood in terms of
bulk invariants specialized to the symmetries at hand. While isolated examples of TCI have been identified
and studied, the same variety demands a unified theoretical framework. In this work, we show how the
surfaces of TCIs can be analyzed within a general surface theory with multiple flavors of Dirac fermions,
whose mass terms transform in specific ways under crystalline symmetries. We identify global obstructions
to achieving a fully gapped surface, which typically lead to gapless domain walls on suitably chosen
surface geometries. We perform this analysis for all 32 point groups, and subsequently for all 230 space
groups, for spin-orbit-coupled electrons. We recover all previously discussed TCIs in this symmetry class,
including those with “hinge” surface states. Finally, we make connections to the bulk band topology as
diagnosed through symmetry-based indicators. We show that spin-orbit-coupled band insulators with
nontrivial symmetry indicators are always accompanied by surface states that must be gapless somewhere
on suitably chosen surfaces. We provide an explicit mapping between symmetry indicators, which can be
readily calculated, and the characteristic surface states of the resulting TCIs.
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I. INTRODUCTION

Topological phases of free fermions protected by internal
symmetries (such as time reversal) feature a gapped bulk
and symmetry-protected gapless surface states [1]. Such
bulk-boundary correspondence is an important attribute of
such topological phases, and it plays a key role in their
classification, which has been achieved in arbitrary spatial
dimensions [2–4]. Crystals, however, frequently exhibit a
far richer set of spatial symmetries, like lattice translations,
rotations, and reflections, which can also protect new
topological phases of matter [5–23].
However, several new subtleties arise when discussing

topological crystalline phases. For one, spatial symmetries
are often broken at surfaces, and when that happens, the
surface could be fully gapped even when the bulk is
topological. Consequentially, the diagnosis of bulk band
topology is a more delicate task as, a priori, the existence of
anomalous surface states in this setting is only a sufficient,
but not necessary, property of a topological bulk.
Furthermore, the presence of crystalline symmetries leads

to a plethora of topological distinctions even when the band
insulators admit atomic descriptions and are therefore
individually trivial [24,25]. For example, consider trivial
(atomic) insulators, where electrons are well localized in
real space and do not support any nontrivial surface states.
Suppose two atomic insulators are built from orbitals of
different chemical character, which will typically lead to
different symmetry representations in the Brillouin zone
(BZ). These representations cannot be modified without a
bulk gap closing, and therefore, the two atomic insulators
are topologically distinct even though they are both derived
from an atomic limit.
Since the mathematical classification of topological band

structures, using K theory, is formulated in terms of the
mutual topological distinction between insulators [2,
26–28], the mentioned distinction between trivial phases
is automatically incorporated. In fact, they appear on the
same footing as conventional topological indices like Chern
numbers. While for a physical classification one would
want to discern between these different flavors of topo-
logical distinctions, they are typically intricately related.
On the one hand, the pattern of symmetry representations is
oftentimes intertwined with other topological invariants, as
epitomized by the Fu-Kane parity criterion [29], which
diagnoses 2D and 3D topological insulators (TIs) through
their inversion eigenvalues; on the other hand, the topo-
logical distinction between atomic insulators may reside
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fully in their wave-function properties and, hence, is not
reflected in their symmetry eigenvalues [25,30].
In this work, we sidestep these issues by focusing on

topological crystalline phases displaying anomalous gap-
less surface states, which, through bulk-boundary corre-
spondence, are obviously topological. Unlike the strong TI,
these phases require crystalline symmetries for their pro-
tection. Typically, their physical signatures are exposed on
special surfaces where the protecting symmetries are
preserved. Such is the case for the 3D phases like weak
TI [1], the mirror Chern insulator [6,7], and the non-
symmorphic insulators featuring so-called hourglass
[14,15] or wallpaper [17] fermions, which are, respectively,
protected by lattice translation, reflection, and glide sym-
metries. While these conventional phases feature 2D
gapless surface states on appropriate surfaces, we also
allow for more delicate, 1D “hinge” surface states, whose
existence is globally guaranteed on suitably chosen sample
geometries, although any given crystal facet can be fully
gapped [9,18–23,31–33]. We primarily focus on 3D time-
reversal symmetric band structures with a bulk gap and
significant spin-orbit coupling (class AII). However, our
approach can be readily extended beyond this specific
setting. In particular, in symmetry classes with particle-hole
symmetry, the notion of hinge states can be generalized to
protected gapless points on the surface [9].
We base our analysis on two general techniques, which

are respectively employed to systematically study gapless
surface states and identify bulk band structures associated
with them. First, we describe a surface Dirac theory
approach [1,3,4,23,34]. Specifically, we consider a surface
theory with multiple Dirac cones, which may transform
differently under the spatial symmetries [23]. Such a theory
can be viewed as the surface of a “stack of strong TIs,”
which arise, for example, when there are multiple band
inversions (assuming inversion symmetry) in the BZ. When
an even number of Dirac cones are present at the same
surface momentum, the Dirac cones can generically be
locally gapped out, and, naively, one expects that a trivial
surface results. However, spatial symmetries can cast global
constraints that obstruct the full gapping out of the Dirac
cones everywhere on the surface [23]. When that happens,
the surface remains stably gapless along certain domain
walls, and hence, one can infer that the bulk is topological.
We provide a comprehensive analysis of such obstructions
due to spatial symmetries and catalogue all the possible
patterns of such anomalous surface states in a space group.
Next, we turn to bulk diagnostics that informs the

presence of such surface states. In particular, we focus
on those which, like the Fu-Kane criterion [29], expose
band topology using only symmetry eigenvalues [29,35–
37]. Such symmetry-based indicators are of great practical
value since they can readily be evaluated without comput-
ing any wave-function overlaps and integrals. In fact, a
general theory of such indicators has been developed in

Ref. [24], and the indicator groups for all 230 space groups
(SGs) have been computed.
Here, we provide a precise physical interpretation for all

the phases captured by these indicators in class AII. In
particular, we discover that the majority of them can be
understood in terms of familiar indices, like the strong and
weak TI Z2 indices and mirror Chern numbers. However,
there exists symmetry-diagnosed band topology that per-
sists even when all the conventional indices have been
silenced. The prototypical example discussed in Ref. [24] is
a “doubled strong TI” in the presence of inversion sym-
metry, which, as pointed out later in Ref. [23], actually
features hingelike surface states. Motivated by these
developments, we relate the symmetry indicators to our
surface Dirac theory and prove that, for spin-orbit coupled
systems with time-reversal symmetry (TRS), any system
with a nontrivial symmetry indicator is a band insulator
with anomalous surface states on a suitably chosen boun-
dary. These results are achieved by establishing a bulk-
boundary correspondence between the indicators and the
surface Dirac theory. Parenthetically, we note that a non-
trivial symmetry indicator constitutes a sufficient, but not
necessary, condition for the presence of band topology, and
we discuss examples of topological phases that have
gapless surface states predicted by our Dirac approach,
although the symmetry indicator is trivial.
Although the techniques we adopted are tailored for

weakly correlated materials admitting a band-theoretic
description, many facets of our analysis have immediate
bearing on the more general study of interacting topological
crystalline phases [38–42]. A common theme is to embrace
a real-space perspective, where “topological crystals” are
built by repeating motifs that are, by themselves, topo-
logical phases of some lower dimension and are potentially
protected by internal symmetries or spatial symmetries that
leave certain regions invariant (say, on a mirror plane)
[38,41]. In particular, such a picture allows one to readily
deduce the interaction stability of the phases we describe
[43], and we briefly discuss how our Dirac surface theory
analysis can be reconciled with such general frameworks.

II. SYMMETRY INDICATORS AND
BULK TOPOLOGY

In this section, we provide a precise physical meaning for
the phases captured by the symmetry-based indicator
groups obtained in Ref. [24], and we give explicit expres-
sions for each of these indicators, assuming TRS and
focusing on the physically most interesting case of strong
spin-orbit coupling.
We start by considering a band insulator of spinful

electrons that are symmetric under a SG and TRS
(class AII). In this setting, we can define topological
indices corresponding to weak and strong TI phases
protected by TRS. For centrosymmetric SGs, the Fu-
Kane formula [29] allows us to compute these indices
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using only the parities, i.e., inversion eigenvalues, of the
bands. Namely, they can be determined just by multiplying
the parities of the occupied bands without performing any
sort of integrals. This is one particular instance of the
relation between the symmetry representations in momen-
tum space and band topology.
Recently, this relation was extended to all space groups

(i.e., not restricted to inversion alone) and also to a wider
class of band topology [24]. By comparing the symmetry
representations of the bands against those of trivial (atomic)
insulators, the symmetry-based indicator group XBS was
computed for all 230 SGs [24] (and even for all 1651
magnetic SGs [44]). It was found to take the form

XBS ¼ Zn1 × Zn2 × � � � × ZnN ; ð1Þ

where N and fn1; n2;…; nNg depend on the assumed SG.
While XBS has been exhaustively computed for all SGs in
Ref. [24], the concrete physical interpretation for some of
the nontrivial classes was left unclear. We attack this
problem in the following by first recasting these topological
indices into more explicit forms, akin to those in
Refs. [29,37], and then clarifying their physical meanings.

A. Review of familiar indices

Here, we first review some well-known symmetry-based
indicators and discuss their relations with the general
results in Ref. [24]. Let us start with the inversion
symmetry. As mentioned above, for a SG containing the
inversion symmetry I, the inversion eigenvalues are related
to the strong TI index ν0 ∈ Z2 and the three weak TI
indices νi ∈ Z2 (i ¼ 1, 2, 3) [29]. Each of the three weak TI
indices gives rise to a Z2 factor in XBS when no additional
constraints are imposed. Curiously, however, the factor in
XBS corresponding to the strong TI index isZ4, notZ2 [24].
This Z4 indicator will be discussed in Sec. II B.
Next, let us discuss the mirror Chern numbers, which

can be defined for every mirror symmetric plane in
momentum space [6]. On any such plane, the single-
particle Hamiltonian H can be block-diagonalized into
H�, defined, respectively, in the sectors corresponding to
the mirror eigenvalues M ¼ �i. Since H� is not neces-
sarily time-reversal symmetric, H� can possess a Chern
number C� ∈ Z, which satisfies Cþ ¼ −C− (≡CM)
because of the TRS of the total Hamiltonian H. To be
more concrete, let us assume the mirror symmetry is about
the xy plane. For primitive lattice systems, both kz ¼ 0 and
kz ¼ π planes are mirror symmetric and can individually

support Cðkz¼0Þ
M and Cðkz¼πÞ

M . For body-centered systems and
face-centered systems, however, kz ¼ 0 is the only mirror
symmetric plane, and there is only one mirror Chern

number Cðkz¼0Þ
M .

When the SG is further endowed with an n-fold rotation
symmetry Cn (n ¼ 2, 3, 4, 6) or screw symmetry (Cn

rotation followed by a fractional translation along the
rotation axis) whose axis is orthogonal to the mirror plane,
one can diagnose the mirror Chern number CM modulo n
by multiplying the rotation eigenvalues [37]. (For simplic-
ity, in the following, we often leave the direction of a
rotation or screw symmetry implicit and, whenever neces-
sary, label that as the z axis corresponding to the third
momentum coordinate.) Naively, each CM mod n produces
a Zn factor in XBS. However, we sometimes find a
“doubled” Z2n factor in XBS. The mechanism behind this
enhancement is clarified in Secs. II D and II E.
Following the examination of these familiar indices, we

find that XBS in Eq. (1) can always be factorized into “weak
factors” and a “strong factor”:

XBS ¼ XðwÞ
BS × XðsÞ

BS;

XðwÞ
BS ¼ Zn1 × � � � × ZnN−1

; XðsÞ
BS ¼ ZnN : ð2Þ

Every factor in XðwÞ
BS can be completely characterized either

by the weak TI indices νi (i ¼ 1, 2, 3) or the weak mirror

Chern number Cðkz¼0Þ
M ¼ Cðkz¼πÞ

M , both of which can be
understood as arising from stacking 2D TIs. On the other

hand, for most SGs, the strong factor XðsÞ
BS cannot be fully

understood by these familiar indicators. We thus focus on
the strong factor in the remainder of this section.

B. Z4 index for inversion symmetry

Here, we show that the strong TI index ν0 can actually be
promoted to a Z4 index in the presence of inversion
symmetry. The refined index can capture topological
crystalline insulators with an anomalous 1D edge state,
as we discuss in detail in Sec. III.
Let nþK (n−K) be the number of occupied bands with even

(odd) parity at each time-reversal invariant momentum
(TRIM) K. Because of Kramers pairing, n�K is even. The
Fu-Kane formula [29] for the strong TI index ν0 ∈ Z2 may
be expressed as

ð−1Þν0 ¼
Y

K∈TRIMs

ðþ1Þ12nþK ð−1Þ12n−K ¼ð−1Þ12
P

K∈TRIMs
n−K : ð3Þ

We now introduce a Z-valued index [10] that is simply the
sum of the inversion parities of occupied bands (up to a
prefactor):

κ1 ≡ 1

4

X
K∈TRIMs

ðnþK − n−KÞ ∈ Z: ð4Þ

Using the total number of occupied bands n≡ nþK þ n−K ,
one can rewrite κ1 as 2n − 1

2

P
K∈TRIMsn

−
K . Comparing this

with Eq. (3), we find

ð−1Þν0 ¼ ð−1Þκ1 : ð5Þ
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Although Eq. (5) suggests that κ1 ¼ ν0 mod 2, κ1 contains
more information than ν0 as it is “stable” mod 4, in the
sense that any trivial insulator has κ1 ¼ 4n (n ∈ Z), and
adding or subtracting trivial bands does not alter κ1 mod 4
as demonstrated in Fig. 1. Weak topological phases may
realize κ1 ¼ 2 mod 4, but the most interesting case is when
κ1 ¼ 2 mod 4 while ðν1; ν2; ν3Þ all vanish. One way of
achieving this phase is to stack two copies of a strong TI
as illustrated in Figs. 1(b) and 1(c). The surface signature
of this phase was discussed in Ref. [23] and is reintroduced
in Sec. III.
The space group that contains only inversion I in

addition to translations is called P1̄ (No. 2 in the standard

crystallographic references [45]). The index κ1 can be
defined for every supergroup of P1̄ (SGs containing P1̄ as a
subgroup), i.e., for every centrosymmetric SG.

C. New Z2 index for fourfold rotoinversion

The SGs P4̄ (No. 81) and I4̄ (No. 82) possess neither
inversion nor mirror symmetry. Hence, the indicator XBS ¼
Z2 found in Ref. [24] cannot by accounted for by the Fu-
Kane parity formula [29] or the mirror Chern number [6].
Here, we propose a new index κ4 in terms of the
eigenvalues of fourfold rotoinversion S4 (the fourfold
rotation followed by inversion) and show that the Z2

nontrivial phase is actually a strong TI.

FIG. 1. The parity eigenvalues at high-symmetry momenta. (a) The common choice of coordinates in panels (b)–(s). (b,c) An example
of the parity eigenvalues for a strong topological insulator (κ1 ¼ 3, ν0 ¼ 1, and νi ¼ 0) and a higher-order topological insulator (κ1 ¼ 6
and ν0 ¼ νi ¼ 0), respectively. Diagram (c) can be realized by stacking two copies of diagram (b). (d)–(k) The parity eigenvalues of the
atomic insulators constructed by placing an s orbital at the position specified in each panel in every unit cell. (l)–(s) The same for (d)–(k)
but with a p orbital used instead of an s orbital. All atomic insulators have κ1 ¼ ν0 ¼ νi ¼ 0 except for diagram (d), κ1 ¼ 4,
ν0 ¼ νi ¼ 0, and diagram (l), κ1 ¼ −4, ν0 ¼ νi ¼ 0.
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To introduce the invariant, we note that there are four
momenta in the BZ invariant under S4, which we denote by
K4; they are (0, 0, 0), ðπ; π; 0Þ, ð0; 0; πÞ, and ðπ; π; πÞ for
primitive lattice systems and (0, 0, 0), ð0; 0; 2πÞ, ðπ; π;−πÞ,
and ðπ; π; πÞ for body-centered systems. For spinful elec-
trons, the four possible values of S4 eigenvalues are eiðαπ=4Þ
(α ¼ 1, 3, 5, 7). Let us denote by nαK the number of
occupied bands with the eigenvalue eiðαπ=4Þ at momen-
tum K ∈ K4.
The new Z-valued index is (up to a prefactor) the sum

of the S4 eigenvalues of occupied bands over the momenta
in K4:

κ4 ≡ 1

2
ffiffiffi
2

p
X
K∈K4

X
α

eiðαπ=4ÞnαK ∈ Z: ð6Þ

This quantity is always an integer in the presence of TRS,
and it is stablemodulo 2 against the stacking of trivial bands.
The stability can be proven in the sameway as we did for κ1
in the previous section, i.e., by listing all S4 eigenvalues of
atomic insulators. As we show in Appendix A, κ4mod 2
agrees with ν0. However, it is still useful to distinguish κ4
from ν0, as κ4 conveys more information than ν0 in the
presence of additional symmetries, as we discuss in the next
section.

D. Combination of κ1 and κ4
The SGs P4=m (No. 83) and I4=m (No. 87) contain both

inversion I and fourfold rotation C4, with the inversion
center on the rotation axis. The product of I and ðC4Þ2 is a
mirrorMz about the xy plane, and one can define the mirror

Chern number Cðkz¼0Þ
M . The eigenvalues of the fourfold

rotation determine Cðkz¼0Þ
M mod 4 [37]. However, XBS

studied in Ref. [24] contains a Z8 factor, which cannot
be explained by the (detected) mirror Chern number alone.
Here, we argue that the combination of κ1 and κ4 is
responsible for this enhanced factor.
Since these SGs have both inversion I and rotoinversion

S4 ¼ IC4, κ1 and κ4 can be defined separately using
Eqs. (4) and (6). Furthermore, the inversion center coin-
cides with the rotoinversion center. In this case, we find that
the difference

Δ ¼ κ1 − 2κ4 ð7Þ

is stable modulo 8, not only 4, against the stacking of trivial
bands. Hence,Δmod 8 should be understood as a new bulk
invariant, which can be reconciled with the strong factor
Z8 < XBS. To see this, recall first that the definition of κ1
and κ4 has no ambiguity, and they are perfectly well defined
as Z-valued quantities. Furthermore, an explicit calculation
verifies that, for any trivial insulator that is symmetric under
either P4=m or I4=m, the two invariants κ1 and κ4 are not
independent, and κ1 ¼ 2κ4 mod 8 always holds.

Even when all the mirror Chern numbers and the weak
indices vanish, Δ can still be 4 ≠ 0 mod 8. Depending on
the geometry, this phase may feature “hinge”-type 1D edge
states [19,23], which we discuss in Sec. III.

E. Combination of κ1 and CM under sixfold rotation,
screw, or rotoinversion

The case of SG P6=m (No. 175) is similar to P4=m. It
has a sixfold rotation C6 in addition to inversion I . The
product of I and ðC6Þ3 is the mirror Mz protecting the

mirror Chern numberCðkz¼0;πÞ
M . Although the eigenvalues of

the sixfold rotation can only detect mirror Chern numbers

mod 6, XðsÞ
BS contains a Z12 factor. In this case, the

combination of Cðkz¼0Þ
M mod 6 and κ1 mod 4 can fully

characterize this Z12 factor (thanks to the Chinese remain-
der theorem).
When the rotation C6 is replaced by the screw S63 (i.e.,

C6 followed by a half translation in z), the resulting SG is
P63=m (No. 176). In this case, the product of I and ðS63Þ3
is also a mirror symmetry. The corresponding XðsÞ

BS includes
the same Z12 factor.
In contrast, P6̄ (No. 174) generated by the sixfold

rotoinversion S6 ¼ IC6 does not have an inversion sym-
metry, and κ1 is not defined. The mirror Chern numbers

Cðkz¼0;πÞ
M protected by Mz ¼ ðS6Þ3 can be diagnosed by

threefold rotation C3 ¼ ðS6Þ2 modulo 3, and this fully

explains XðsÞ
BS ¼ Z3.

F. Summary of XBS

The eight SGs studied above (SG 2, 81, 82, 83, 87, 174,
175, and 176) play the role of “key” SGs, in the sense that
they provide an anchor for understanding the symmetry-
based indicator XBS of any other SG. Suppose that we are
interested in one of the 230 SGs G. To understand the nature
of a nontrivial XG

BS, one should first identify its maximal
subgroup among the eight key SGs. Let G0 ≤ G be the key
SG.Then,we know that (i) the topological indices character-

izingXG
BS are the same as those forXG0

BS, (ii)X
ðsÞ;G
BS andXðsÞ;G0

BS

are the same, and (iii) theweak factorXðwÞ;G
BS may be reduced

from XðwÞ;G0

BS because of the constraints imposed by the
additional symmetries in GnG0. In Table I, we identify the
keySGs for all the 230SGs.This table reproducesXBS for all
230 SGs presented in Ref. [24] but in away that renders their
physical properties more transparent.
Physically, the key space groups play the role of the

minimal SGs for which a certain nontrivial phase is
possible. This means that a nontrivial phase in a SG G
in the family of the key SG G0 will remain nontrivial even if
some symmetries of G are broken, so long as those of G0 are
preserved. For instance, consider SG P42=m (No. 84)
characterized by a fourfold screw rotation S42 and the
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inversion I . The product of I and ðS42Þ2 gives rise to a
mirror symmetry, whose mirror Chern number is diagnosed

mod 4 by XðsÞ
BS ¼ Z4. (In this case, since the inversion center

and the rotoinversion (IS42) center do not agree, κ1 − 2κ2
does not enhance Z4 to Z8.) If we break the mirror
symmetry without breaking inversion, the mirror Chern
number becomes undefined, but the phases corresponding

to the nontrivial XðsÞ
BS are still protected by the inversion

symmetry and are diagnosed by the inversion index κ1.

III. SURFACE STATES

We have seen in the previous section that some phases
diagnosed by the symmetry indicator XBS do not fall into
the standard categories of strong TI, weak TIs, and mirror
Chern insulators. This raises the question about the nature
of the possible surface states possessed by these phases.
With this question in mind, we devote this section to
developing a general approach to studying anomalous
surface states protected by crystalline symmetries. We
argue that our approach captures most, if not all, TCIs
with anomalous surface states [46]. In the next section, we
provide a precise relation between the surface analysis in
this section and the bulk symmetry indicator discussed in
the previous section.

We start by considering a sample with a specific
geometry and boundary conditions that are periodic or
open along different directions. The surface is a compact
manifold [47] described by a surface Hamiltonian hr;k,
which depends on the position on the surface r and the
surface momentum k ¼ −i∇r, a vector in the tangent space
to the surface at point r. The procedure of obtaining a
surface Hamiltonian from a given bulk Hamiltonian is
explained in detail in Appendix B. To summarize, it starts
by introducing some space-dependent parameter in the
Hamiltonian and changing it across the surface from its
value inside the sample to a different value outside it (i.e., in
the vacuum). This process is followed by projecting the
bulk degrees of freedom onto the space of states localized
close to the surface and rewriting the Hamiltonian in terms
of these surface degrees of freedom.
We then proceed to define the notion of an “anomalous

surface topological crystalline insulator (sTCI)” based on
its surface properties: We say a band insulator is a sTCI if
there exists a geometry with some boundary conditions
such that the surface Hamiltonian

(i) is not gapped everywhere,
(ii) cannot be realized in an independent lower-dimen-

sional system with the same symmetries, and
(iii) can be gapped everywhere by breaking the crystalline

symmetry or going through a bulk phase transition.

TABLE I. Summary of symmetry-based indicator of band topology. Space groups are grouped into their parental key space group in
the first column. The second column lists the key topological indices characterizing nontrivial classes in XBS. The space groups are
indicated by their numbers assigned in Ref. [45], and those highlighted by an underbar are the key SGs.

Key space group Key indices XðwÞ
BS XðsÞ

BS
Space groups

ðZ2Þ3 Z4 2, 10, 47.
ðZ2Þ2 Z4 11, 12, 13, 49, 51, 65, 67, 69.

P1̄ ν1;2;3, κ1 Z2 Z4 14, 15, 48, 50, 53, 54, 55, 57, 59, 63, 64, 66,
68, 71, 72, 73, 74, 84, 85, 86, 125, 129, 131, 132,

134, 147, 148, 162, 164, 166, 200, 201, 204, 206, 224.
0 Z4 52, 56, 58, 60, 61, 62, 70, 88, 126, 130,

133, 135, 136, 137, 138 141, 142, 163, 165, 167,
202, 203, 205, 222, 223, 227, 228, 230.

P4̄ κ4 0 Z2 81, 111–118, 215, 218.
I4̄ κ4 0 Z2 82, 119–122, 216, 217, 219, 220.

P4=m ν1;2;3, C
ðkz¼0;πÞ
M , κ1 − 2κ4 Z2 × Z4 Z8 83, 123.

Z2 Z8 124.
Z4 Z8 127, 221.
0 Z8 128.

I4=m ν1;2;3, C
ðkz¼0Þ
M , κ1 − 2κ4 Z2 Z8 87, 139, 140, 229.

0 Z8 225, 226

P6̄ Cðkz¼0;πÞ
M

Z3 Z3 174, 187, 189.
0 Z3 188, 190.

P6=m Cðkz¼0;πÞ
M , κ1 Z6 Z12 175, 191.

0 Z12 192
P63=m Cðkz¼0Þ

M , κ1 0 Z12 176, 193, 194.
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This definition includes familiar phases such as weak
TIs (protected by translation) and conventional TCIs, as
well as the recently discovered TCI with surface hinge
modes [19–23].
Given a gapped bulk, the surface region where the gap

vanishes is necessarily boundaryless since otherwise the
spatial spread of the surface states would diverge as we
approach the boundary of the gapless region, necessitating
the existence of gapless bulk states as in Weyl semimetals
[48–50]. This boundaryless region residing on the surface
of the 3D bulk could be a 2D, 1D (collection of closed
curves), or 0D region (collection of points). We show below
that the latter is impossible for an insulator in class AII, but
first, let us point out that designating a certain dimension-
ality to a gapless region generally depends not only on the
symmetries at play but also on the geometry of the sample.
For example, the hinge insulators protected by rotation
[19,23] possess 1D helical gapless modes when placed on a
sphere but exhibit gapless 2D Dirac cones when the surface
is a plane normal to the rotation axis (with periodic
boundary conditions along the two in-plane directions),
as we illustrate in Fig. 7. The relation between 1D and 2D
surface states is explored in more detail in Sec. III D.
To explore the types of possible surface states, we start by

defining a (surface) high-symmetry point as a point left
invariant by some crystalline symmetries. That is to say, the
stabilizer group of this point contains elements apart from
the identity. Let us first consider a generic point r (which is
not a high-symmetry point). Since the only symmetry at r
is TRS, the surface Hamiltonian at r can only be gapless if it
is locally identical to (i) the surface of a strong TI or (ii) a
(movable) domain wall between two different quantum-
spin Hall phases. This can be understood in terms of the
classification of stable topological defects [51], which
implies that 1D and 2D defects are topologically stable in
class AII (with a Z2 classification), whereas 0D defects are
not. The latter typically describe vortices in superconductors
and require particle-hole or chiral symmetry to be stable.
At a high-symmetry point, one extra complication arises

from the fact that the crystalline symmetry acts locally as an
on-site discrete unitary symmetry, which can be used to
block-diagonalize the local Hamiltonian. Each block can
potentially have less symmetries than the original
Hamiltonian. As a result, we need to consider the additional
possibility of class A (unitary-type) defects. Only 1D
defects, representing domain walls between two phases
with different Chern numbers, are stable in class A [51] and
have a Z classification. They will only exist if the
symmetry leaves a line or curve on the surface invariant,
which only occurs for mirror symmetry in 3D. Such a line
can host an arbitrary number of 1D gapless modes due to
the Z classification, which can be understood in terms of
mirror Chern number [6].
Our argument can be summarized as follows: A gapless

surface Hamiltonian at a certain point without fine-tuning

will be a part of (i) a single domain wall, (ii) multiple
intersecting domain walls (this could only happen at a high-
symmetry point since an extra symmetry is required to
stabilize the crossing), or (iii) the 2D gapless surface of a
strong TI. The last case does not correspond to a sTCI since
it does not require a crystalline symmetry for its stability,
while the former two cases correspond to sTCIs with
domain walls, which are either movable or are pinned to
high-symmetry points or lines. Consequently, we arrive at a
unified description for the surface states of all sTCIs in
terms of “globally irremovable, locally stable topological
defects.” Our approach is reminiscent of the approach of
Ref. [38], which argued that a symmetry-protected topo-
logical (SPT) phase protected by a point-group symmetry
can be understood in terms of an embedded SPT of a lower
dimensionality stabilized by the point-group symmetry.
Having reduced our problem to the study of globally

stable configurations of surface domain walls, the next
simplification is achieved by observing that a surface
domain wall in class AII can be generically constructed
by first stacking together two strong TIs [52] and then
adding a mass term that changes sign at the domain wall.
This is also consistent with the analysis of Sec. II and
Refs. [19,23], and it means that the surface theory of any
sTCI can be constructed by stacking strong TIs and
studying the symmetry transformation properties of the
possible mass terms. Our basic building block in the
following sections will be the doubled strong TI (DSTI),
which is constructed by stacking two strong TIs. In
particular, we note that every even entry in the strong
factor XðsÞ

BS of any space group can be viewed as the stack of
two strong TIs (e.g., by rewriting 4 ¼ 1þ 3). If the order of

XðsÞ
BS is even (say, XðsÞ

BS ¼ Z4), then the DSTIs correspond

precisely to the even subgroup of XðsÞ
BS (Table I); however, if

the order is odd, then this identification does not hold, and
any given entry could correspond to either a strong or a
doubled strong TI. We elaborate further on such identi-
fication ambiguity in Sec. IV.

A. Stacked strong TIs

As explained in detail in Appendix B, the gapless
Hamiltonian on the surface of a strong TI can be written as

hr;k ¼ ðk × n̂rÞ · σ: ð8Þ

Here, n̂r is the normal to the surface at point r, and σ ¼
ðσx; σy; σzÞ is the vector of Pauli matrices representing the
spin degrees of freedom. TRS is implemented as
T ¼ iσyK, where K denotes complex conjugation, and it
protects the gaplessness of hr;k.
A DSTI is constructed by stacking two strong TIs, whose

surface Hamiltonian can be described by two copies of
Eq. (8). The only possible T -symmetric mass term that can
gap out the surface has the form
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Mr ¼ mrn̂r · σ ⊗ τy; ð9Þ

with τx;y;z denoting the Pauli matrices in the orbital space of
the two copies.
To study the action of spatial symmetries on the DSTI

model, we start by considering a generic spatial symmetry
g ¼ fRgjτgg, where Rg ∈ Oð3Þ is a point-group operation
and τg denotes the (possibly fractional) translation in g.
Here, Rg can be parametrized by three pieces of data: θg, n̂g,
and detRg, where θg and n̂g are, respectively, the rotation
angle and axis, and detRg ¼ �1 indicates whether Rg is a
proper or improper rotation. We can construct a natural
spin-1=2 representation of the point-group action of g,
given by vg ≡ expð−iθgn̂g · σ=2Þ.
The action of a spatial symmetry g on the surface

Hamiltonian (8), derived in Appendix B starting from its
action on the bulk Hamiltonian, is given by

g · hr;k ≡ vghr;kv
†
g ¼ hg · r;Rgk; ð10Þ

which leaves the surface Hamiltonian (as a whole)
invariant for any spatial symmetry g. Clearly, the same
conclusion holds when we generalize vg ↦ ug ≡ ηgvg for
any U(1) phase factor ηg. Time-reversal symmetry further
restricts this phase to ηg ¼ �1. In addition, we demand
ηg to respect the (projective) group structure of the point
group. Specifically, for a pair of symmetry elements
g, g0, we demand ugg0u

†
gu

†
g0 ¼ vgg0v

†
gv

†
g0 , which fixes ηgg0 ¼

ηgηg0 [53].
Microscopically, different values of ηg arise naturally

since the O(3) rotational symmetry is reduced to a finite,
discrete point group in a crystal, and both spin and orbital
angular momenta contribute to the symmetry representa-
tion. Yet, when ug is traceless, say, for ug ¼ iηgσz, the sign
ηg can be removed through a basis transformation, and
hence, ηg ¼ �1 do not give rise to distinct representations.
However, such a basis transformation will simultaneously
modify the form of the surface Hamiltonian (8), which
in turn amounts to a redefinition of the helicity of the
surface Dirac cone, as we discuss later. In the following, we
say ug is a “signed representation” when we want to
emphasize the importance of the sign choice ηg ¼ �1,
regardless of whether this choice actually gives rise to
distinct representations.
Spatial symmetries may force the mass termmr to vanish

along some curve, which creates a domain wall hosting a
propagating 1D helical gapless mode. To see this, consider
a spatial symmetry operation g, which leaves the mass term
(9) invariant. The action of the symmetry on the mass term
can generally be written as

g ·Mr ≡ uτgMrðuτgÞ† ¼ Mg · r: ð11Þ

Here, uτg ≡ uð1Þg ⊕ uð2Þg is the signed representation of g

acting on the DSTI, where uðiÞg ¼ ηðiÞg vg for the two strong
TIs labeled by i ¼ 1, 2.
The invariance of the mass Mr under symmetry action

implies that

mg ·r ¼ sgmr; ðuτgÞ†ðn̂g ·r ·σ⊗ τyÞuτg¼ sgn̂r ·σ⊗ τy; ð12Þ

with sg ¼ �1. This means that, for any signed representa-
tion uτg of the symmetry group G on the DSTI, we can
define its “signature” as a map s∶G ↦ Z2, which assigns a
� sign to each symmetry operation g ∈ G according to
whether or not the mass changes sign under the action of g
(in the specified signed representation). The only condition
that should be satisfied by sg ¼ �1 is that it is a group
homomorphism, i.e., sg1sg2 ¼ sg1g2 for g1;2 ∈ G. The sig-
nature sg is not to be confused with the sign ηg. While the
former describes a representation on the DSTI specifying
the transformation properties of the mass term (9), the latter
describes the sign choice of the representation on a single
strong TI. The two are related by Eq. (13) given below.
The properties of the mass term on the surface are fixed

by specifying the signatures of the symmetry operations,

which are in turn completely fixed by the parameters ηð1;2Þg

and detRg via the relation

sg ¼ detRgη
ð1Þ
g ηð2Þg : ð13Þ

The appearance of detRg in this expression follows from
the fact that n̂ · σ is a pseudoscalar. In the following,
we usually use the terminology “a � representation for
symmetry g” for symmetry representations on the DSTI to
indicate that the symmetry g has a signature sg ¼ �.

Let us point out that, although our DSTI model with
two flavors of Dirac fermions is not sufficient for
implementing all possible sTCIs of interest—say, those
with a high mirror Chern number—it is sufficient for
constructing the “root states” that generate such states
upon stacking. To see this, consider a system consisting
of n copies of the DSTIs. In this case, there are kn
independent T -preserving mass terms mi;r, i ¼ 1;…; kn.
The crystalline symmetries act on the vector mr ¼
ðm1;r;…; mkn;rÞ as orthogonal transformations leaving
the length of the vector (which gives the magnitude
of the gap at a given point) fixed (see Appendix B). Any
crystalline symmetry apart from the mirror leaves at
most two points on any given surface invariant. As a
result, it will only protect anomalous surface states if it
enforces the existence of a domain wall between a point
r and its image under symmetry, g · r. Such a domain
wall will be irremovable if and only if there is no
trajectory connecting m and Ogm on the ðkn − 1Þ sphere,
establishing a correspondence between the zeroth
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homotopy group of the ðkn − 1Þ sphere and the stable
domain walls in a model with n DSTIs. Since the zeroth
homotopy group of the (k − 1) sphere is trivial for k > 1,
we deduce that we cannot build stable domain walls
whenever n > 1. For n ¼ 1, kn ¼ 1, and only one mass
term is possible. In this case, the fact that the 0 sphere
(just two points) has two disconnected components
implies the possibility of having Z2 domain walls,
thereby establishing a Z2 classification for sTCIs not
protected by mirror symmetry in class AII. Physically,
the Z2 classification here simply descends from that of
2D TIs in class AII.
The only exception to the previous analysis is mirror

symmetry. In this case, we need to consider the mass vector
in the mirror plane. We find that it has to remain invariant
under the action of mirror symmetry at any point in this
plane, OMm ¼ m, which is only possible if one of the
eigenvalues of OM is þ1. In a representation that does not
satisfy this condition, e.g., OM ¼ −1, the mass vector m
will necessarily vanish in the mirror plane regardless of n.
Nevertheless, the state with n > 1 DSTIs can always be
built by stacking the “root” state implemented using a
single mirror-symmetric DSTI.
Notice that, up to this point, the analysis is general and

applies to any crystalline symmetry. For instance, weak TIs
can be understood within the DSTI model by considering a
surface with a periodic boundary along the “weak” direc-
tion and choosing a “−” representation for translation along
this direction. This choice will enforce the existence of a
domain wall for every unit lattice translation along this
direction, leading to the surface states obtained by stacking
2D quantum-spin Hall systems (Fig. 2). Alternatively, for a
system without any weak index—i.e., all the lattice trans-
lations are assigned a “þ” signature—some other elements
in the SG could also be in a “−” representation and lead
to other patterns of gapless modes on suitably chosen
surfaces.
Having outlined our general framework, we now apply it

to classify all sTCIs in class AII. We proceed in two steps:
First, we focus on phases protected solely by point-group
symmetries; second, we discuss how to extend these results
consistently to cover all 230 space groups.

B. Crystallographic point groups

This subsection is devoted to the study of crystalline
point groups, whose associated sTCIs can be understood by
considering a spherical geometry with open boundary
conditions in all directions. We describe a procedure to
construct all possible sTCIs in a given symmetry group and
then use it to obtain the complete classification of sTCIs
protected by point-group symmetries.
We begin by reviewing the natural action of the indi-

vidual point-group symmetries on the physical degrees of
freedom and by discussing the types of gapless surface
states they can protect. Next, we provide a general
procedure to construct all sTCIs in a given point group
and use it to obtain an exhaustive classification of sTCIs for
the 32 crystallographic point groups.

1. Crystallographic point-group symmetries

Inversion.—Inversion symmetry acts by inverting the
position and momentum while keeping the spin unchanged,

I∶ r → −r; k → −k; σ → σ: ð14Þ

According to Eq. (13), inversion can be represented with a
negative signature by taking its action on the DSTI to be
I τ ¼ I ⊕ I ¼ I ⊗ τ0 (corresponding to ηð1Þ ¼ ηð2Þ) or
with positive signature by acting on the DSTI as I τ ¼ I ⊕
ð−IÞ ¼ I ⊗ τz (corresponding to ηð1Þ ¼ −ηð2Þ).
In the “−” representation, the mass term changes sign

between a point and its image under inversion, leading to a
“hinge” phase with a helical gapless mode living on some
inversion-symmetric curve on the sphere. The curve can be
moved around but cannot be removed without breaking
inversion. Such a phase is graphically illustrated in the Ci
entry in Fig. 4. Two copies of this state can be trivialized by
adding the mass terms mx;z

r ðn̂r · σÞτx;zμy, where μ denotes
the Pauli matrices in this additional orbital space of copies.
These additional mass terms, like Eq. (9), change sign
under inversion; however, mx;z

r can be chosen so that they
do not both vanish at a point where the original mass term,
mr in Eq. (9), also vanishes. This leads to a completely
gapped surface. As a result, gapless modes protected by
inversion will have a Z2 classification, as anticipated in the
general discussion of the previous subsection.
Cn rotation.—An n-fold rotation acts by rotating

the position and momentum as vectors and rotating the
spin as a spinor. An n-fold rotation about the z axis is
implemented as

Cnz∶ r→Cnzr; k→Cnzk; σ→e−iðπ=nÞσzσeiðπ=nÞσz : ð15Þ

A positive signature representation is obtained by taking
Cτ
n ¼ Cn ⊕ Cn ¼ Cn ⊗ τ0 (corresponding to ηð1Þ ¼ ηð2Þ),

whereas the choice Cτ
n ¼ Cn ⊕ ð−CnÞ ¼ Cn ⊗ τz (corre-

sponding to ηð1Þ ¼ −ηð2Þ) leads to a negative signature [54].

FIG. 2. Surface states for the weak topological insulator can be
understood as choosing a “−” representation for the translation
along the “weak” direction.

SYMMETRY INDICATORS AND ANOMALOUS SURFACE … PHYS. REV. X 8, 031070 (2018)

031070-9



Notice that, here, the “þ” and “−” representations are
opposite to the inversion case since det I ¼ −1 but
detCn ¼ 1 [cf. Eq. (13)].
We note that the “−” representation is only possible for

even n since it violates the condition Cn
n ¼ −1 whenever n

is odd. Thus, n ¼ 3 is only consistent with a “þ”
representation, whereas n ¼ 2, 4, 6 can have either sig-
nature. A “−” representation in this case forces the mass to
vanish at n=2 (closed) curves related by rotation and
intersecting at the two points left invariant by rotation
(the poles) (as shown in Fig. 4 PGs C2, C4, and C6). We
remark that these conclusions have already been drawn in
Ref. [23] using a slightly different language.
Similar to the case of inversion, two copies of the

described DSTI can be gapped out by adding the mass
term m0

rðn̂r · σÞτz ⊗ μy, which does not change sign under
rotation and can be chosen to be positive everywhere. This
means that rotations lead to a Z2 classification as well,
consistent with our general discussion.
Mirror symmetry.—Mirror symmetry acts by inverting

the position and momentum components perpendicular to
the mirror plane and the spin component parallel to it. For
example, the action of mirror symmetry about the xy plane
is implemented as

Mz∶ ðx; y; zÞ → ðx; y;−zÞ; σ → σz σ σz: ð16Þ

In the mirror plane, Mz flips the sign of n̂r · σ. Thus, in the
“−” representation, implemented by taking the mirror to act
in the DSTI asMτ

z ¼ Mz ⊕ Mz ¼ Mz ⊗ τ0 (corresponding
to ηð1Þ ¼ ηð2Þ), the mass termmr has to vanish in this plane.
The “þ” representation, on the other hand, is implemented
in the DSTI as Mτ

z ¼ Mz ⊕ ð−MzÞ ¼ Mz ⊗ τz (corre-
sponding to ηð1Þ ¼ −ηð2Þ), which does not impose a
constraint on the mass term in the mirror plane and leads
to a completely gapped surface.
As we noted in the previous subsection, the “−”

representation for the mirror implies that the mirror plane
remains gapless regardless of the number of DSTIs stacked
together. This can be seen from the fact that, for any
number of copies, any mass term will have the form
mrðn̂r · σÞ ⊗ Γ, where Γ denotes matrices in the orbital
space of copies, which will always vanish in the mirror
plane. As discussed previously, this implies a Z classi-
fication corresponding to the mirror Chern number in real
space [6].
Sn rotoinversion.—As Sn ¼ ICn, its action on a DSTI

can be readily understood through the corresponding
discussions for I and Cn above. Note that a “twofold
rotoinversion” is simply a mirror symmetry, which leaves a
plane invariant in 3D and is differentiated from S3;4;6,
which only leave the origin invariant. It is worth noting that
among the three rotoinversion groups 3̄, 4̄, and 6̄, 4̄ is the
only one that is not a direct product of smaller groups.

2. Classification of sTCIs in the 32 crystallographic
point groups

We are now in a position to perform a systematic
investigation of sTCIs in the 32 crystallographic point
groups. As we argued in the beginning of this section, all
these states can be built from either the DSTI model
considered in Sec. III A or copies thereof.
In Sec. III A, we propose that there is a one-to-one

correspondence between the signatures of the different
symmetries and the pattern of gapless modes on the surface.
One part of this correspondence is obvious since surface
states corresponding to different symmetry signatures
cannot be deformed into each other without changing these
signatures. We conjecture that the opposite is also true: Two
patterns of surface modes can always be deformed into
each other if they correspond to the same representation
signatures for all the possible symmetries. We have
checked this explicitly for several examples, where seem-
ingly different surface-state patterns corresponding to the
same symmetry signatures turn out to be deformable into
each other.
For example, consider the point group 4̄, where the only

symmetry is a fourfold rotoinversion. In this case, there
seems to be two distinct surface-state patterns correspond-
ing to the “−” representation for S4, given by the “equator”
state and the “hinge” state (cf. Fig. 3). These two patterns
can, nevertheless, be deformed into each other. The reason
for this is that, unlike rotation, rotoinversion does not leave
the poles fixed. Therefore, there is no symmetry constraint
on the mass terms at the poles, implying that the inter-
section of gapless modes at the poles is spurious; i.e., it is
unstable against symmetry-allowed perturbations. Thus, we
can move the hinges symmetrically away from the poles,
bringing them to the equator. This process can be seen more
clearly by adding the two phases and noting that a mass
term can be added to gap out the modes at their intersection
points (this is possible since rotoinversion does not enforce
any local constraints on the mass). The resulting surface
can be deformed into a trivial one, as shown in Fig. 3.
Alternatively, such correspondence can also be understood
in a slightly more general language (i.e., beyond the Dirac
theory analysis), as we elaborate in Sec. V.
Using our conjecture that the classification of sTCIs

reduces to classifying distinct signatures of the different
symmetries, we now proceed by constructing these phases

FIG. 3. In the presence of the fourfold rotoinversion S4 only, the
equator and the hinge state are deformable into each other since
their sum can be trivialized, as shown here.
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explicitly. We first note that two symmetries g1;2 ∈ G
related by conjugation—i.e., there is an h ∈ G such that
g1 ¼ h−1g2h—necessarily have the same signature. In the
following, we call two symmetries independent if they are
not related by conjugation, so their signatures can be
assigned independently. For two rotations (mirrors), inde-
pendence means that the rotation axes (mirror planes) are
not related by any symmetry operation in the symmetry
group G. This implies that we can classify all possible
signatures by specifying the signatures for a minimal set of
independent generators of the group (i.e., every group
element can be written as a product of powers of the
elements in the set, and the size of the set is as small as
possible). Notice that the generators in a minimal set can
always be chosen to be independent [55]. Due to the fact
that mirror and C3 rotation symmetries behave differently
compared to other symmetries in sTCI classification, we
need the generator set to satisfy the extra conditions (while
respecting the condition that the generator set is minimal):
(1) The number of independent mirror symmetries

included as generators is as large as possible.
(2) The number of independent C3 rotations included as

generators is as large as possible.
Note that these two conditions are consistent with each
other since we generally cannot increase (decrease) the
number of independent mirror symmetries by decreasing
(increasing) the number of C3 symmetries in a generator set
[56]. Notice also that a minimal generator set with a
maximal number of independent mirror symmetries
actually contains all of them, which can be explicitly
verified (cf. Table II). These conditions mean that we
should include the maximum number of independent C3

rotations in the generator set, as long as there is no other
generator set with smaller size. For example, in the PG T,
which can be generated using either two independent C3

rotations or a C2 and a C3, we have to choose the former
since it includes more C3 rotations; in contrast, in the PG
C6, which can be generated using a single C6 or a C3

together with a C6, we have to choose the former since it
contains a smaller number of generators (the latter is not
really a minimal generator set).
Once we have a minimal generator set satisfying these

properties, we can read off the classification of sTCIs as
follows:
(1) To every mirror symmetry in the generator set, we

assign a factor of Z, indicating the number of
gapless modes in this mirror plane. The phase that
generates this factor is obtained by choosing the “−”
representation for the corresponding mirror sym-
metry in the DSTI model.

(2) To every symmetry generator other than mirror and
C3, we assign a factor ofZ2. Each of theseZ2 phases
is generated by choosing the “−” representation for
the corresponding symmetry generator.

Implementing these rules leads to the classification of
sTCIs in all crystallographic point groups, which we
tabulate under SPG in Table II. The hinge states generating
the different Z, Z2 factors by choosing the “−” represen-
tation in the corresponding symmetry are graphically
illustrated in Fig. 4.

C. Space groups

In this subsection, we extend the analysis of the previous
section to space groups, which requires considering sym-
metries that do not fix any point in space (lattice trans-
lations and nonsymmorphic symmetries). We first start by
discussing the main complication arising from the inclusion
of nonsymmorphic symmetries, which requires a certain

TABLE II. Classification of point-group sTCIs SPG denotes the
classification of point-group sTCIs. The generators are chosen
according to the criteria defined in the main text. Here, n̂1 and n̂2
denote two of the four threefold rotation axes in the cubic PGs.
These describe systems with cubic symmetry with four threefold
axes along the cube body diagonal.

Symbol PG Generators SPG

1 C1 1 0
1̄ Ci I Z2

2 C2 C2z Z2

m Cs Mz Z
2=m C2h Mz, C2z Z × Z2

222 D2 C2z; C2x Z2
2

mm2 C2v Mx, My Z2

mmm D2h Mx, My, Mz Z3

4 C4 C4z Z2

4̄ S4 S4z Z2

4=m C4h C4z;Mz Z × Z2

422 D4 C4z; C2x Z2
2

4mm C4v Mx, Mxy Z2

4̄2m D2d S4z;Mx Z × Z2

4=mmm D4h Mx, Mz, Mxy Z3

3 C3 C3z 0
3̄ S6 S3z Z2

32 D3 C3z; C2x Z2

3m C3v C3z;Mx Z
3̄m D3d S3z;Mx Z × Z2

6 C6 C6z Z2

6̄ C3h C3z;Mz Z
6=m C6h C6z;Mz Z × Z2

622 D6 C6z; C2x Z2
2

6mm C6v Mx, M ffiffi
3

p
xþy=2 Z2

6̄m2 D3h C3z;Mz;Mx Z2

6=mmm D6h Mz, Mx, M ffiffi
3

p
xþy=2 Z3

23 T C3;n̂1 ; C3;n̂2 0
m3̄ Th C3;n̂1 ;Mz Z
432 O C3;n̂1 ; C4;z Z2

4̄3m Td C3;n̂1 ;Mn̂1 Z
m3̄m Oh C3;n̂1 ;Mx;Mxy Z2
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choice of the sample geometry and boundary conditions.
We then provide a few examples of sTCIs protected by
nonsymmorphic symmetries. Next, we discuss how to
consistently combine the preceding results with lattice

translations; i.e., we systematically study the spatial-
symmetry constraints on weak indices [16]. Finally, we
provide a complete classification of sTCIs in the 230 SGs.
We note that the order followed in this section, by first

FIG. 4. Graphical illustration of the surface states of the hinge phases, which generate all sTCIs for the 32 crystallographic point
groups, on a sphere. For each state, we show the operators that need to be taken in the “−” representation as well as the resulting
classification. Red circles indicate Z2 modes that would be gapped-out if two copies of the system were stacked together, whereas blue
circles indicate Z modes protected by a mirror Chern number. Rotation axes are shown with black, blue, green, or red for twofold,
fourfold, threefold, and sixfold rotations, respectively.
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considering nonsymmorphic symmetries and then trans-
lations, may seem a bit incongruous given that nonsym-
morphic symmetries are generalizations of translation. This
ordering is, however, natural within our present context in
which the strong part SðsÞ

SG of the classification (which does
not include translations) is first generalized from the point-
group case to include nonsymmorphic symmetries before

presenting a separate discussion for the weak part SðwÞ
SG

where translation plays a major role.

1. Nonsymmorphic symmetries

A nonsymmorphic symmetry arises when a point-group
symmetry is combined with an irremovable, fractional
translation, which results in a symmetry that leaves no
point in space invariant. The extension of the analysis of
Sec. III B to include nonsymmorphic symmetries is, in
principle, straightforward. As we elaborate later, to analyze
sTCIs protected by nonsymmorphic symmetries, it suffices
to first assume that all the weak indices of the system are
trivial; i.e., all the lattice translations are given a “þ”
representation. Microscopically, this is the case when we
stick with DSTI models with degrees of freedom arising
from the Γ point in the BZ, such that, in momentum space,
the fractional translation associated with a nonsymmorphic
symmetry becomes irrelevant. This restriction is justified in
Sec. IV and Appendix C.
As we can focus on the Γ point in momentum space, the

main conceptual difference in understanding sTCIs pro-
tected by point-group and nonsymmorphic symmetries,
therefore, lies in real space. Recall that, to expose the
anomalous surface states of a sTCI, one has to consider a
geometry that respects the protecting spatial symmetries. In
order to preserve a nonsymmorphic symmetry on the
surface, we need to consider a sample with periodic
boundary conditions along the directions of the fractional
translation vector of the symmetry. A nonsymmorphic
symmetry, which can either be a screw (n-fold rotation
followed by a fractional lattice translation along the rotation
axis) or a glide (mirror reflection followed by a fractional
lattice translation along a vector in the mirror plane), does
not leave any point invariant. As a result, the surface states
protected by nonsymmorphic symmetries will have a Z2

classification (see the discussion at the beginning of this
section).
The anomalous surface states protected by nonsymmor-

phic symmetries can be understood by considering a
cylinder geometry whose axis is parallel to the fractional
translation axis, along which the periodic boundary con-
dition is taken. An n-fold screw in a “−” representation
would give rise to a state with n symmetry-related hinge
states along the sides of the cylinder. This surface state is
very similar to the surface state protected by rotation, in that
the hinges can be moved around freely as long as they
preserve the screw or rotation as a set.

Extending a mirror symmetry to its nonsymmorphic
counterpart—a glide—leads to a more drastic modification
of the physics. Picking a “−” representation for a glide
symmetry gives rise to a state with two hinge modes
confined to the glide plane shown in Fig. 5. Despite looking
similar to surface states protected by mirror symmetry, this
state differs in an essential aspect, as it becomes trivial
when added to itself. The reason for this difference is that,
unlike mirror symmetry, a mirror Chern number cannot be
defined for glide symmetry since it does not act as an on-
site symmetry in the glide plane. One can also understand
such modification from a momentum-space perspective:
Unlike a mirror, the band eigenvalues �i of a glide are not
invariantly defined, as they are interchanged upon the
addition of a reciprocal lattice vector to the crystal
momentum. Consequentially, one cannot define a Z-valued
Chern number using a glide symmetry. We note here that
glide symmetry fits more naturally than a mirror within our
signed representation approach. The reason for this is that
the approach, by itself, only allows for Z2-type hinge
modes resulting from the symmetry constraints on the
surface mass term. The appearance for Z-type hinge modes
in the mirror case is an exception due to the fact that it
leaves invariant an extended (1D) region on the surface
where the effective symmetry class is reduced from AII to
A. Such an unusual property, which is not shared by any
other symmetry, is the main reason why an integer invariant
(mirror Chern number) can be defined only in the mir-
ror case.
As an example of surface states protected by a non-

symmorphic symmetry, let us consider SG P42 (No. 77),
where the only symmetry is a fourfold screw 42. On a
cylinder geometry with a periodic boundary condition
taken along the screw axis, a “−” representation for the
screw symmetry leads to the state with four hinges shown
in Fig. 5. We note that a state with domain walls at every
half-lattice translation along the screw axis is also con-
sistent with the “−” representation for the screw symmetry.
This state is gapless everywhere on the surface and looks
very similar to the surface of a weak TI shown in Fig. 2.
The main difference in this case is that such a state is

FIG. 5. Illustration for the hinge state protected by a fourfold
screw (left diagram) and a glide (right diagram) on a cylinder
geometry with periodic boundary conditions along the screw
direction.
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unstable against being gapped out everywhere except for
the four hinges. In other words, the two surface-state
configurations shown in Fig. 6 both correspond to choosing
the “−” representation for the screw symmetry, and they
can be symmetrically deformed into each other as shown in
the figure.
Another example is SG P63=m (No. 176), which is one

of the key space groups considered in Table I. This space
group is generated by a sixfold screw and a mirror about a
plane normal to the screw axis. Choosing a cylinder
geometry with a periodic boundary condition along the
screw axis, we may consider a “−” representation for either
the screw or the mirror. In the former case, we get a phase
with six hinges, whereas the latter is characterized by
gapless modes protected by a mirror Chern number in
the mirror planes. Notice that, in this case, we have several
mirror planes related by screws, which all have the
same mirror Chern number. The signatures of the men-
tioned mirror and screw are independent, and consequen-
tially, the resulting classification is Z × Z2.
While we have argued quite generally that the sTCI

classification for nonsymmorphic symmetries can be
understood from the point-group counterpart, our discus-
sion so far has one caveat: Unlike threefold rotations, a
threefold screw with a 1=3 lattice translation along the
rotation axis,S31 , does admit a “−” representation. However,
such a choice implies ðS31Þ3, a unit lattice translation, is
also assigned a “−” representation, leading to a nontrivial
weak TI index, and hence, the described phase falls outside
of our present discussion. This brings us to the last item to
consider for our classification of sTCIs: the incorporation of
weak phases.

2. Lattice translation

As we have briefly addressed at the end of Sec. III A, in
our framework, a weak TI is characterized by the set of
lattice translations taking a “−” signature. More specifi-
cally, consider a weak TI characterized by the vector
G≡ 1

2

P
3
i¼1 νiGi, where Gi denotes a reciprocal lattice

vector and νi ¼ 0, 1 is the associated weak index. The
signature of a lattice translation, characterized by the vector
t, is then given by e−iG·t.

Generally, the presence of additional spatial symmetries
leads to a restriction on the possible weak indices. For
instance, a cubic system cannot realize a weak index that
favors a particular axis, say, ν1 ¼ ν2 ¼ 0 but ν3 ¼ 1. As
discussed in Ref. [16], such restrictions are encoded in the
SG constraints on the admissible values of G, and they
originate either from a point-group or nonsymmorphic
symmetry. As we discuss below, the same problem can
be analyzed through a complementary, though equivalent,
perspective by studying the symmetry restrictions on the
signature assignments to the lattice vectors t.
Let p be a symmetry in the SG and T t a lattice translation

[57]. We then see that the signatures of T t and pT tp−1 are
necessarily identical. More generally, a weak index is
possible if and only if the corresponding signature assign-
ment to lattice translations, generated by choosing a “−”
signature for T t, is symmetric under the described con-
jugation by any symmetry in the SG. This requirement
captures all the restrictions from the point-group actions.
The presence of nonsymmorphic symmetries can further

restrict the possible weak indices. To see this, note that, for
any nonsymmorphic symmetry g, which is not a threefold
screw, gn is a lattice translation for some even integer n.
Therefore, regardless of the signature chosen for g, the
translation gn always takes a “þ” signature, and hence, any
weak index demanding a “−” signature for gn is forbidden.
These restrictions can be illustrated using the following

examples. First, consider the (symmorphic) space group
143 whose only symmetry is a threefold rotation, and
suppose the lattice vectors in the plane perpendicular to the
rotation axis are denoted by t1 and t2. The action of
threefold rotation sends t1 to t2 and t2 to −ðt1 þ t2Þ. This
means that the translations along t1;2 satisfy C−1

3 T t1C3 ¼
T t2 andC

−1
3 T t2C3 ¼ T−1

t1 T
−1
t2 . The first equation implies that

translations along t1 and t2 necessarily have the same
signature, and the second equation implies that this
signature is necessarily þ1, thereby ruling out the pos-
sibility of any weak phases for the in-plane translations.
The resulting weak classification is Z2 corresponding to
translation along the rotation axis only.
To illustrate the effect of nonsymmorphic symmetries,

we consider space group 4, which has a single twofold
screw rotation. Since this screw squares to a lattice trans-
lation along its axis, it forces translation along this axis to
have þ1 signature, ruling out the possibility of a weak
phase along this direction. The weak classification is then
Z2 × Z2, corresponding to the two independent in-plane
translations. Space groups 76 and 167 provide examples in
which both restrictions are present simultaneously. The
former contains a single fourfold screw rotation, which, in
addition to ruling out a weak phase for translation along the
screw axis, also forces the signatures for the two orthogonal
in-plane translations to be the same, leading to a Z2 weak
classification. The sixfold screw characterizing the latter
places even more restrictions by ruling out any weak phase

FIG. 6. Illustration for the two equivalent surface states
corresponding to a fourfold screw. The equivalence of the two
can be established by noting that their sum can be deformed to a
trivial state while preserving the screw symmetry.
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either in the plane (similar to the case of SG 143 considered
above) or along the screw axis, leading to the absence of
any weak phases.
Extra restrictions on the weak indices may arise because

of the type of unit cell, e.g., primitive vs body centered. For
example, SG 23, which features three orthogonal intersect-
ing C2 axes in a body-centered unit cell, has a Z2 weak
classification due to the fact that all translations can be
expressed in terms of a single body-centered translation and
the action of C2 rotations on it. We point out here that our
analysis is equally applicable to the two special space
groups 24 and 199, which are the only nonsymmorphic
space groups not containing any screws or glides. Both SGs
have a body-centered unit cell containing three noninter-
secting C2 axes and are thus very similar to SG 23, with a
single independent body-centered translation leading to a
Z2 weak classification.
While we have discussed the constraints on weak phases

utilizing the group structure of the SG, it is instructive to
connect it to the more microscopic DSTI model we
described. To this end, observe that, if the surface Dirac
cone originates from degrees of freedom around a TRIM k,
the signed representation for the lattice translation T t is
given by ηT t

¼ e−ik·t ¼ �1. According to Eq. (13), a DSTI
built from strong TIs with effective degrees of freedom
coming from the TRIMs kð1Þ and kð2Þ would then realize a
weak index of G ¼ kð2Þ − kð1Þ.

3. Classification of sTCIs in the 230 space groups

Having separately described how to extend our point-
group results to sTCIs protected by a lattice translation or
nonsymmorphic symmetry, which does not fix any point in
space, we now tackle the problem of classifying all sTCI
phases built from stacking strong TIs in all 230 space
groups. From the discussion on point groups, we see that
the desired classification can be reconciled with the differ-
ent ways to assign the signature �1 to a generating set
of the space group, which we denote by SSG.
We first focus on a subgroup SðsÞ

SG ≤ SSG classifying
sTCIs that are “not weak,” i.e., those for which the
signature sT ¼ þ1 for all lattice translations T. We now

argue that the sTCIs described by an element of SðsÞ
SG can be

readily studied via SPG. Recall that, given a SG G, a
corresponding point group Gp is defined by “modding out”
the translation part of G, i.e., Gp ≡ G=TG, where TG is the
translation subgroup of G (which is always a normal
subgroup). This procedure reduces screws or glides in G
to rotations or mirrors in Gp, The classification of sTCIs in
any given SG G is the same as the classification of Gp,
except for the fact that every mirror in Gp that derives from a
glide in G should be assigned a Z2 rather than Z factor.
More concretely, we note that, for any consistent signature
assignment on G satisfying sT ¼ þ1, any two symmetries
in G with the same point-group action will be given the

same signature. This induces a consistent signature assign-
ment on Gp. Conversely, for any consistent assignment on
Gp, one can define an assignment on G by using the
canonical projection G → Gp. This demonstrates the stated
one-to-one correspondence, up to the modification required
for mirror vs glide [58].
Next, we incorporate weak phases into our discussion.

Recall that the computation of SSG amounts to the
identification of a minimal generating set of the SG, paying
special attention to the presence of mirror and threefold
rotation symmetries (conditions outlined in Sec. III B).
Consider a weak index, generated by assigning a “−”
signature to a lattice vector t, which satisfies all the
previously outlined SG constraints. This index implies
the signature of t is not fixed by the indices contained in

SðsÞ
SG, and therefore, t must be incorporated into the gen-

erating set for the SG. In addition, if the SG possesses a
mirror m about a plane normal to t, the mentioned weak TI
is “promoted” to a weak mirror Chern insulator; i.e., the
classification is modified fromZ2 toZ. When this happens,
we should append the shifted mirror mT t instead of the
translation T t to our generator set. Following this pro-
cedure, one incorporates all the needed lattice translations
or shifted mirrors into the generator set. Each of such
additional generators for the SG then correspond to either a
Z2-valued weak TI index or a Z-valued weak mirror Chern

index, which we append to SðsÞ
SG to arrive at the full

classification SðsÞ
SG. Implementing this rule leads to

Table IV in Appendix C, which provides the sTCI classi-
fication SSG for all 230 SGs.
Finally, we comment on the meaning of adding two

phases in SSG, which is an Abelian group representing the
equivalence classes of distinct sTCI phases. The subtlety
arises if there is no geometry for which both phases exhibit
anomalous surface states. This will never be the case for
SGs containing only symmorphic elements, but it is
possible in the presence of nonsymmorphic symmetries.
However, we have to remember that elements of SSG are
distinct bulk phases despite being physically defined by
their surface signatures. This means that the possibility of
anomalous states on any given surface is completely fixed
by the bulk, as will be discussed in detail in Sec. IV.
Moreover, it is always possible to distinguish two distinct
sTCI phases by considering them on many different
geometries. For instance, given two phases 1 and 2 and
two geometries G1 and G2, such that 1 (2) exhibits surface
states onG1 (G2) but not onG2 (G1), we can distinguish the
sum of the two phases from either phase by the fact that it
exhibits surface states on both geometries G1 and G2.

D. Surface dispersion at special planes

Although the 1D surface modes shown in Fig. 4 can, in
principle, be detected by means of transport measurements,
the most experimentally accessible tool to investigate such
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surface states is provided by the angle-resolved photo-
emission spectroscopy (ARPES), which probes the energy
dispersion at a given surface. The dispersion measured by
ARPES can be readily understood from the surface-state
pattern given in real space in Fig. 4. In brief, we consider
what happens when we attach a tangent plane to the sphere
at a given point, i.e., when we consider a flat, macroscopic
crystal facet with the same surface normal as the considered
point on the sphere.
We note that the surface modes can generally be freely

moved on the surface except when they pass through a
rotation-invariant point or lie in a mirror or glide plane. As a
result, a tangent plane at a point that is not rotation invariant
or lies in a mirror or glide plane will generically have
gapped dispersion. Therefore, the analysis of surfaces
where 2D gapless modes may exist boils down to consid-
ering the cases where the normal to the surface (i) lies in a
single mirror or glide plane, (ii) lies at the intersection of
multiple mirror or glide planes, or (iii) is parallel to a
rotation axis. These three cases are illustrated in Fig. 7, and
we elaborate on them below.

1. Single mirror or glide plane

Here, we investigate the dispersion in a tangent plane
whose normal lies in a single mirror plane. The dispersion
in the plane close to the Γ point can be written as

hk ¼ kyσx − kxσy; ð17Þ

with reflection acting as Mx · hkx;ky ≡ σxhkx;kyσx ¼ h−kx;ky .
Reflection symmetry implies that any mass term has the
formmkσz ⊗ Γ, which necessarily vanishes at kx ¼ 0 since
it satisfiesm−kx;ky ¼ −mkx;ky . Therefore, it is not possible to
gap out the surface, but it is possible to move the two Dirac

cones apart by adding the T -symmetric term m1σxτy,
which shifts the Dirac cones to k ¼ ð0;�m1Þ [6]. The
glide case can be considered very similarly. A surface glide
symmetry has the form Mxeik·t for some fractional trans-
lation t. Thus, close to the Γ point, mirror and glide act in
the same way.

2. Rotation axis

This case was considered in Ref. [23]. We start with the
surface Hamiltonian (17), with twofold, fourfold, or sixfold
rotations acting as Cn ·hk≡eiðπ=nÞσzτzhkτze−iðπ=nÞσz ¼ hCnk.
The only mass term consistent with Cn and time-reversal
symmetry is mkσzτx for n ¼ 2, 6 or mkσzτy for n ¼ 4, both
satisfying mCnk ¼ −mk. This case, in particular, implies
that the mass mk vanishes at k ¼ ð0; 0Þ, so the Dirac cones
cannot be gapped. However, we can add the symmetry-
allowed term m1τz, which will move the Dirac cones away
from k ¼ ð0; 0Þ, resulting in n Dirac cones related by the n-
fold rotation. To see this, let us consider the Hamiltonian
(17) (without any mass term), which just describes two
copies of a gapless Dirac Hamiltonian. Adding the term
m1τz shifts the two cones in energy by 2m1, so they
intersect at a ring at zero energy. The Hamiltonian of this
nodal ring is given by

hk ¼ ð2m1 − k2x − k2yÞμz; ð18Þ

where μx;y;z denote the Pauli matrices in the space of the
two bands intersecting at zero (the lower band from the
Dirac cone shifted upwards and the upper band from
the one shifted downwards). Adding the mass term
mkσzτx for n ¼ 2, 6 or mkσzτy for n ¼ 4 and projecting
it to the μ basis, we find that it has the form mkμx or mkμy,
which will gap out the nodal ring except at n points, where
it necessarily vanishes because of mCnk ¼ −mk.

3. Multiple mirror or glide planes

If the normal to the tangent plane lies in the intersection
of multiple mirror planes, all in the “−” representation, we
can repeat from the case of a single mirror for each mirror
separately and conclude that any T -symmetric mass term
will necessarily vanish at k ¼ ð0; 0Þ. Similar to the case of
rotation, this does not necessarily imply that we cannot
move the Dirac cones away from (0, 0) since we can add the
term m1τz to shift them in energy and get a nodal ring
given by the Hamiltonian (18), which can be gapped by
adding the mass term mkσzτx or mkσzτy (whose projection
in the μ basis is mkμx or mkμy). This mass term vanishes
at all mirror-invariant lines because of the condition
mM·k ¼ −mk; e.g., for two perpendicular mirrors Mx and
My, we get two Dirac cones at ð0;�k1Þ and ð�k1; 0Þ. The
case for multiple glides or a glide and a mirror is very
similar since the action of a glide at the Γ point is identical
to the action of a mirror. We note here that our results agree

FIG. 7. Illustration of the surface dispersion in planes tangent to
the sphere whose normal is (a) in a single mirror plane, (b) in two
mirror planes, or (c) parallel to a fourfold rotation axis.
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with those of Ref. [17], which showed that we can only pin
two Dirac points in the vicinity of a TRIM other than Γ
using two perpendicular glides.
Note that, despite the similarity between hinge phases

protected by rotation and screw symmetries, without fine-
tuning, the latter are not detectable by studying the
dispersion at any plane on the surface. In this sense, they
are similar to hinge states protected by inversion or
rotoinversion in that they can only be observed if the
surface is considered as a whole.

IV. BULK-SURFACE CORRESPONDENCE

In Sec. II, we discussed how the symmetry-based
indicators for time-reversal symmetric systems with
strong spin-orbit coupling can mostly be reconciled
with either a Z2 TI index or a mirror Chern number.
However, as listed in Table I, there are new invariants
that indicate that certain stacks of strong TIs remain
nontrivial despite the lack of a conventional index.
These unconventional phases are expected to feature
hingelike anomalous surface states, as is discussed for
specific cases in Refs. [19–23] and analyzed thoroughly
in Sec. III. In this section, we tie the bulk and surface
perspectives together and describe a concrete bulk-sur-
face correspondence.
This case is achieved by making an explicit connection

between the specification of bulk symmetry representa-
tions and the surface mass-term analysis. In particular, we
show that all XBS-nontrivial phases have anomalous
surface states (with suitably chosen sample geometry).
However, the XBS diagnosis and our surface-state classi-
fication are not generally in one-to-one correspondence;
rather, for most SG, different sTCIs become indistin-
guishable when one focuses only on symmetry represen-
tations, and therefore, the same XBS class is identified with
multiple patterns of surface states. We discuss the general
structure behind such identification ambiguity, and in
Table IV in Appendix C, we provide the corresponding
results for all SGs.
As the relation between XðwÞ

BS and the weak TI or mirror
Chern indices has already been addressed in Sec. II, in the

following, we focus on the relation between XðsÞ
BS and SðsÞSG.

To proceed, we make a simplifying assumption: We
suppose that the topological properties of the strong TI
of interest can always be analyzed through a k · p (bulk)
Dirac Hamiltonian about Γ [1,3,4,34]:

Hk ¼ Mγz þ k · σγx; ð19Þ

where we assume the mass term changes fromm < 0 in the
bulk to m > 0 outside the system, leading to a Dirac point
localized to the surface wherem ¼ 0 (Appendix B). Here, γ
is a set of Pauli matrices describing the orbital degrees of
freedom.

We start by considering the action of a spatial
symmetry g, defined as in Sec. III A, on the bulk Dirac
Hamiltonian (19), given by g ·Hk ≡ UgHkU

†
g ¼ HRgk.

Here, Ug ≡ ug ⊕ ðdetRgugÞ, with ug defined as in
Sec. III A. Next, we connect the bulk characterization with
the surface theory. As detailed in Appendix B, for a surface
with normal n̂r, the surface Hamiltonian is given by
hr;k ¼ ðk × n̂rÞ · σ, which transforms under symmetry
as g · hr;k ≡ ughr;ku

†
g ¼ hg · r;Rgk. Recall that, in Sec. III,

we showed that when two strong TIs are stacked together,
the pattern of surface modes (if any) is determined by the
signature sg of the symmetry representation, which can be
expressed in terms of detRg and the relative sign of the
symmetry representation matrices across the two copies
[cf. Eq. (13)]. This means that, by specifying the
(signed) symmetry representation matrices ug of the two
TIs in the bulk, we can predict the pattern of the surface
modes, thereby establishing the anticipated bulk-surface
correspondence.
Such correspondence, however, utilizes more informa-

tion than that available from the symmetry representations
alone. To make connection with XBS, the symmetry-based
indicators of band topology [24], we have to study what
information is lost when we focus only on the symmetry
representations. In other words, generally, the identification
of the surface states associated with a nontrivial class ½b� ∈
XBS is not unique. Such nonuniqueness has two origins:
Either the choices ηg ¼ �1 correspond to the same repre-
sentation, or certain nontrivial stacking patterns of strong
TIs have symmetry representations compatible with an
atomic insulator and hence evades the XBS diagnosis.
We illustrate these ideas from two concrete examples.

Consider the space group P2 (SG 3), which is generated by
lattice translation and a C2 rotation about the z axis. As
discussed in Ref. [23], when we stack two strong TIs with
opposite helicities, described, respectively, by the surface
Hamiltonians h� ¼ �kyσx − kxσy and with C2 represented
by u�;C2

¼ iσz, the resulting DSTI is nontrivial and features
hinge modes when subjected to theC2 symmetric, spherical
open boundary conditions in Sec. III. To reconcile with the
analysis based on Eq. (19), we can perform a basis rotation

�
h− ↦ σyð−kyσx − kxσyÞσy ¼ kyσx − kxσy
u−;C2

↦ σyðiσzÞσy ¼ −iσz;
ð20Þ

which implies η�;C2
¼ �1 in our present framework.

Equation (13) then correctly predicts that the DSTI hþ ⊕
h− features anomalous surface states. However, as
trð�iσzÞ ¼ 0, the distinction between hþ ⊕ h− and the
trivial phase hþ ⊕ hþ cannot be diagnosed from symmetry
representations alone. This is consistent with the result
XBS ¼ 0 found in Ref. [24] for P2 (SG 3); see also Table I.
As a second example, we consider P4=m (SG 83)

generated by the lattice translations and the point group
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C4h. In Ref. [24], it was found that the strong TI generates
the subgroup Z8 < XBS, and in the following, we chart the
surface states consistent with the DSTIs, which are
described by the even subgroup in Z8. As C4h is generated
by the fourfold rotation C4 and inversion I , both of them
having nonvanishing trace, the nonuniqueness in the sur-
face signature of XBS is more subtle. Recall from Sec. III
that, for C4h, the surface classification is given by Z × Z2,
where the Z factor is generated by a DSTI with a mirror
Chern mode protected by the mirror Mz ¼ IC2

4 and the Z2

factor generated by a DSTI with only hinge modes. Let
HηI ;ηC4

be a strong TI described by Eq. (19). From Eq. (13),

we see that H−;− ⊕ H−;− has surface states described by
ð1; 0Þ ∈ Z × Z2, whereas the surface of H−;− ⊕ H−;þ is
described by (1, 1). Note that, here, the helicity of the
mirror Chern mode is fixed by ηMZ

¼ ηIη
2
C4

¼ ηI.
Now, consider stacking four strong TIs, HK ¼ H−;− ⊕

H−;− ⊕ H−;− ⊕ H−;þ. The surface remains nontrivial and
is classified by ð1; 0Þ þ ð1; 1Þ ¼ ð2; 1Þ ∈ Z × Z2; i.e., it
features two helical modes at the equator, protected by Mz,
together with the C4-hinge mode. However, the symmetry
representation of HK coincides with an atomic insulator
(Appendix C), and therefore, the nontriviality of HK is
undetected from symmetry eigenvalues alone; i.e., HK
belongs to the trivial element in XBS. In other words, XBS
could, at best, resolve the surface signature in Z × Z2

modulo the subgroup generated by hð2; 1Þi. From the line
of arguments presented in Appendix C, one can further
show that hð2; 1Þi precisely captures the nonuniqueness in
identifying the surface states associated with any XBS class.
For our present problem, a band insulator described by 2 in
the strong factor Z8 can have surface states described by,
for instance, either (1, 0) or ð1; 0Þ − ð2; 1Þ ¼ ð−1; 1Þ. Now,
if we can stack these two systems together, we arrive at a
bulk with symmetry indicator 4 ∈ Z8 and a surface
described by ð1; 0Þ þ ð−1; 1Þ ¼ ð0; 1Þ ∈ Z × Z2, which
corresponds to a system with only hinge modes but not
equatorial mirror Chern modes. This can be reconciled with
the more detailed analysis in Ref. [19] and Sec. III.
By a similar analysis, one can map out the surface-state

ambiguity of XðsÞ
BS for any space group. We perform this

study for the key space groups listed in Table I, and the
results are tabulated in Table III. In particular, by identify-
ing the surface signature of the minimal DSTI in any SG,

we see explicitly that a XðsÞ
BS-nontrivial phase is either a

strong TI or a sTCI. Together with the conventional indices
we identified for the weak factors, this result proves that all
XBS-nontrivial phases possess anomalous surface states.
Finally, we comment on the generality of the present

analysis, which relies on the Dirac model Eq. (19). In the
above, we have restricted our attention to symmetry
representations of the form ug ¼ ηgvg. This does not
represent the general case since, for instance, the valence
bands at a TRIM could furnish 4D irreps [59].

Alternatively, certain symmetry representations lead to
surface Dirac cones dispersing at approximately k3 [23]
and therefore also falling outside of the Dirac description.
Strictly speaking, the Dirac Hamiltonian approach does not
immediately inform the surface properties of such strong
TIs. However, from the analysis discussed in Appendix C,

we found that, for any class in the strong factor XðsÞ
BS, one

can choose a representative whose symmetry representa-
tions agree with some atomic insulator everywhere in the
Brillouin zone, except for the exchange of some irreps of
the form ηgvg at Γ; i.e., it can be viewed as a stack of strong
TIs satisfying the simplifying assumptions adopted in the
present analysis. In view of this, it is likely that our results
are sufficient for establishing the essential connection

between the XðsÞ
BS diagnosis and the (stable) surface sig-

natures of DSTIs, but we leave a more elaborate justifica-
tion of this completeness conjecture to future works.

V. DISCUSSION

In closing, we make several remarks concerning the
connection between our present work and other recent
ideas on the study of topological phases protected by
crystalline symmetries.
We first note that the hinge surface states discussed in

Sec. III are expected to be robust against weak perturba-
tions that break their protecting crystalline symmetries, as
suggested by Ref. [21]. The reason is that the local stability
of the hinge modes relies only on TRS. As a result, the only
way to remove them, assuming TRS is preserved, is to
deform them to a point, which is only possible if the

TABLE III. The bulk-surface correspondence for the key space
groups XðsÞ

BS denotes the symmetry-based indicator generated by a
strong topological insulator; S denotes the surface classification;
ζ0 denotes the generators of the subgroup of S, which is

consistent with the trivial entry in XðsÞ
BS; ζ2 indicates representative

surface signatures for the minimal doubled strong topological

insulator, corresponding to the entry 2 ∈ XðsÞ
BS.

SG XðsÞ
BS

S ζ0 ∈ S ζ2 ∈ S

2 (P1̄) Z4 Z2 (0) (1)
81 (P4̄) Z2 Z2 (1) ð0Þ ≃ ð1Þ
82 (I4̄) Z2 Z2 (1) ð0Þ ≃ ð1Þ
83 (P4=m) Z8 Z × Z2 (2,1) ð1; 0Þ ≃ ð−1; 1Þ
87 (I4=m) Z8 Z × Z2 (2,1) ð1; 0Þ ≃ ð−1; 1Þ
174 (P6̄) Z3

a Z (3) ð1Þ ≃ ð−2Þ
175 (P6=m) Z12 Z × Z2 (3,1) ð1; 0Þ ≃ ð−2; 1Þ
176 (P63=m)b Z12 Z × Z2 (3,1) ð1; 0Þ ≃ ð−2; 1Þ

aThe same entry can correspond to either a strong or doubled
strong topological insulator; the surface classification S is
only applicable to the latter.

bNonsymmorphic; surface states on cylinder geometry
periodic in the direction parallel to the screw axis.
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symmetry-breaking perturbation is large enough (compared
to the scale of the surface energy gap). We also note that,
when placed on a surface with planar faces, e.g., a cube, the
hinge modes are expected to be localized to the edges of the
sample, as shown in Fig. 8, since the mass term is expected
to remain constant on any flat surface.
It is worth reiterating that our classification results rely

on a conjectured correspondence between sTCIs in a given
space group and the signatures of the elements of this
group. The resulting classification captures all known
sTCIs in addition to predicting many new ones. Our results
imply that the set of sTCIs strictly contains the set of phases
that are XBS nontrivial but not strong TIs (Fig. 9). That is to
say, all the nontrivial XBS phases exhibit anomalous gapless
surface states, which are either of the form of a surface

Dirac cone, as for strong TIs, or are described by our sTCI
surface classification. The set of sTCIs also strictly contains
the set of conventional TCI phases with 2D surface Dirac
cones [6,7,14–17,23]. Note that sTCIs without such 2D
gapless surface states then feature only 1D helical hinge
modes protected by inversion, rotoinversion, or screw
symmetries, whose existence can only be observed by
considering the surface as a whole.
Next, we make connections between our results and

more general ideas concerning crystalline SPT classi-
fications. Weak TIs, which can be understood in terms
of spatially stacking 2D TIs using lattice translation
symmetry, exemplify the notion of topological crystal-
line insulators. Curiously, on more general grounds, it
has been suggested that many, if not all, crystalline
symmetry-protected topological phases can be under-
stood in terms of a similar construction, upon the
replacement of lattice translation by other crystalline
symmetries [16,23,38,39,41,42]. Here, we remark that a
similar construction is also applicable to the DSTIs. To
illustrate this, consider a space group with only lattice
translation and a mirror symmetry z ↔ −z. The z ∈ Z
and z ∈ ð1=2þ ZÞ planes are mirror invariant, and if we
pin a quantum spin Hall insulator to each of these
planes, we will arrive at a band insulator that does not
immediately yield an atomic limit. However, such an
insulator does not possess a weak index; rather, we should
view it as interlacing two weak TIs built from stacking 2D
TIs with mirror Chern number þ1, one from pinning them
to the z ¼ 0 plane and the other at the z ¼ 1=2 planes.
Computing the mirror Chern numbers, one finds that the
described band insulator has mirror Chern number 2 on
the kz ¼ 0 plane and 0 on the kz ¼ π plane; i.e., it can also
be understood as a DSTI. Schematically, we may
write “DSTI ¼ weak-0þ weak-1=2.”
The above picture is, in fact, quite general: It applies

to a large class of DSTIs arising in settings where the
real-space deformation of “weak-0” to “weak-1=2” is
forbidden by symmetry, as in the case when inversion
[24] and/or nonsymmorphic [14–16,42] symmetries are
present. In particular, we note that the glide-protected
TCI showcasing the “hourglass fermion” surface states
also falls into this category [14,15,42].
It is also conceptually revealing to abstract our sTCI

surface classification from the Dirac equation approach we
have employed. Let P be the group of spatial symmetries
respected by the open boundary condition, e.g., in the
filled-sphere geometry, P is the subgroup of the point group
that leaves the origin invariant. In essence, for every spatial
symmetry g ∈ P, we assign a signature sg ¼ �1, which
conforms to the group multiplication sgg0 ¼ sgsg0 . A differ-
ent assignment of signature can then be viewed simply as
different homomorphisms from P → Z2, which are clas-
sified by the first cohomology group of P with Z2

coefficients, H1ðP;Z2Þ.

Stable topological phases

Phases with gapless surface states
(on suitably chosen boundaries)

sTCI

Strong TI

FIG. 9. Hierarchy of crystalline topological insulators with
time-reversal symmetry and strong spin-orbit coupling (class AII)
in 3D. All nontrivial entries in the symmetry indicator XBS are
compatible with gapped topological band structures with gapless
surface states on suitably chosen sample geometries. Excluding
the strong TIs from the XBS-nontrivial phases, we found that all
the remaining phases are anomalous surface topological crystal-
line insulators (sTCIs), defined as nontrivial insulators with
anomalous surface states, but they can be trivialized upon the
breaking of some crystalline symmetries. Note that sTCIs include
all gapped topological phases with gapless surface states but are
not strong TIs (hatched region). These also include phases not
diagnosed by XBS; i.e., the topological nature is not exposed by
the symmetry eigenvalues in the bulk.

FIG. 8. Surface hinge mode protected by inversion symmetry
on a cubic geometry, assuming no other spatial symmetries are
present. The mode is confined to the edges of the cube since the
surface mass term cannot change on a flat face.
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This interpretation is similar to the dimension-reduction
approach advocated in Refs. [38,41], except that, because
of the presence of additional internal symmetries (time
reversal for the case of DSTI), we do not fully reduce the
classification to the symmetry charges at the point fixed
by P; rather, we picture the construction of the 3D phase by
interlacing 2D SPTs [23], and therefore, the 2D classifi-
cation (Z2 for class AII) enters into the coefficient of H1.
One can imagine a similar analysis for DSTI-like phases
in a more general setting, where we replace Z2 by the
appropriate lower-dimensional classification X (an Abelian
group) and incorporate a group action of P on X (orienta-
tion-reversing elements in P reverse the phase in X).
However, we caution that this provides only a partial
understanding on the full classification. For instance, in
the presence of mirror symmetries, the DSTIs can feature
Z-valued mirror Chern modes (neglecting interactions) at
the surface, whereas the H1 description captures only the
parity of the number of modes. Such discrepancy arises
because the mirror symmetry is effectively reduced to an
on-site unitary symmetry on the mirror-invariant plane,
which enriches the classification [38,41]. We leave the
analysis of the general structure of such classifications as an
interesting open problem.
Lastly, we make a few remarks about the spin-orbit-

coupling-free case (class AI), whose indicators were also
obtained in Ref. [24]. In the absence of spin-orbit coupling,
a new possibility that may be mandated by a nontrivial
indicator is a gapless (semimetallic) phase (dubbed repre-
sentation-enforced semimetals in Ref. [24]) [60–64], and
we provide an explicit example of such a scenario in the
following.
An example of a semimetallic phase diagnosed by XBS in

class AI is provided by SGP1̄ (No. 2), where the only point-
group symmetry is inversion, whose “strong factor” is Z4.
The generator of such a factor has the same inversion
eigenvalues at the TRIMs as the strong TI, and it can be
thought of as the limit of a strong TI when the spin-orbit
coupling is adiabatically switched off. The corresponding
phase is a Dirac nodal ring semimetal with so-called drum-
head surface states [62–64]. Its low-energy physics is
captured by the effective spinless two-band Hamiltonian
Hk ¼ kzγy þ ðk2x þ k2y − k20Þγz, which describes a nodal ring
centered at k ¼ 0 with radius k0. Here, γ denotes the Pauli
matrices describing the orbital degree of freedom, andHk is
invariant under spinless TRS, represented by complex
conjugation, and inversion symmetry, represented by γz.
A system constructed by stacking two copies of this
Hamiltonian can be gapped out in the bulk by a mass term
of the formmkγxτy. Inversion, however, would requiremk to
satisfy m−k ¼ −mk, which implies that the mass has to
vanish at least twice along the nodal ring, leaving behind two
bulkDirac nodes at generic, but inversion-related,momenta.
Thispair ofDiracnodes cannotbe removedwithoutbreaking
the symmetries [35,36] or changing the symmetry class (say,

by introducing spin-orbit coupling), and hence, we conclude
that the 2 ∈ Z4 entry in the XBS diagnosis is enforced to be
semimetallic by the symmetry representations. We leave the
general question of whether any of the XBS entries for any
space group realize a gapped topological phase in class AI
(with or without surface states) for future works.
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APPENDIX A: RELATION BETWEEN κ4 AND ν0

In order to establish the connection between κ4 and ν0,
let us focus on the primitive lattice case (the body-centered
case can be discussed in the same way) and introduce the
1D Berry phase for each occupied band:

zðkx;kyÞ ≡
1

2πi

Z
π

−π
dkzu�ðkx;ky;kzÞ∂kzuðkx;ky;kzÞ; ðA1Þ

which is only well defined modulo 1. The S4 symmetry
imposes the relation zðkx;kyÞ ¼ −zð−ky;kxÞ. This, in particular,
implies that zðkx;kyÞ is quantized to either 0 or 1=2 at
ðkx; kyÞ ¼ ð0; 0Þ and ðπ; πÞ. If (and only if) the two
quantized values do not agree, the Berry phase zðkx;kyÞ
has an odd winding as the 2D momentum changes along
the loop ð0; 0Þ → ðπ; 0Þ → ðπ; πÞ → ð0; πÞ → ð0; 0Þ. This
nontrivial winding indicates the strong index ð−1Þν0 ¼ −1
[67]. On the other hand, the quantized value of zðkx;kyÞ at
(0, 0) and ðπ; πÞ can be diagnosed by the ratio of S4
eigenvalues at kz ¼ 0 and kz ¼ π, suggesting that ð−1Þν0
can be basically given by the product of S4 eigenvalues of
occupied bands over all high-symmetry momenta in K4.
However, in this product form, the S4 eigenvalues have to
be restricted to those squaring into þi (or, equivalently, −i)
to avoid double counting of TR pairs, just as in the case of
the original Fu-Kane formula. All in all, we find

ð−1Þν0 ¼ ð−1Þn2
Y
K

Y
α¼1;5

½eiðαπ=4Þ�nαK ¼ ð−1Þκ4 : ðA2Þ

Again, n ¼ P
α¼1;3;5;7n

α
K is the total number of occupied

bands. The last equality can be verified from the definition
Eq. (6), in the same way as we did for κ1.
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APPENDIX B: SURFACE THEORY

In this appendix, we elaborate on the derivation of the
surface theory starting from the bulk Dirac Hamiltonian in
Eq. (19), with the aim of explicitly connecting the sym-
metry properties of the two.
Recall the Dirac Hamiltonian in Eq. (19),

Hk ¼ Mγz þ k · σγx: ðB1Þ

Note that, in principle, there is a sign ambiguity for the term
∝ k · σγx. However, one can show that this sign choice does
not affect the surface analysis in any way, and therefore, we
simply set it to þ1 in our treatment. This should be
contrasted with the helicity of the surface Dirac cone,
which, in the presence of certain symmetries, plays a key
role in the existence of anomalous surface states in a
DSTI [23].
To expose a boundary, we let themass termM be spatially

dependent, such that the surface region is defined by
Mð0Þ ¼ 0, and MðλÞ → signðλÞ quickly away from the
boundary region. Let n̂ be the surface normal, and decom-
pose k ¼ kk þ k⊥n̂ such that kk · n̂ ¼ 0. In the Dirac
Hamiltonian, we then replace k⊥ → −i∂λ, arriving at

Hkk;λ ¼ MðλÞγz þ kk · σγx − in̂ · σγx∂λ: ðB2Þ

Our goal is to find eigenstates of Hkk;λ which are exponen-
tially localized to the surface region. This can be achieved
through the ansatz

Ψðkk; λÞ ¼ e−
R

λ

0
dλ0Mðλ0ÞψðkkÞ; ðB3Þ

which gives

Hkk;λΨðkk;λÞ¼ ðkk ·σ γxþMðλÞγzð1− n̂ ·σ γyÞÞΨðkk;λÞ;
ðB4Þ

and can be solved by

� ð1 − n̂ · σ γyÞψðkkÞ ¼ 0

kk · σ γxψðkkÞ ¼ EkkψðkkÞ:
ðB5Þ

The first condition implies PþψðkkÞ ¼ ψðkkÞ, where Pþ is
the projectorPþ≡1

2
ð1þn̂·σγyÞ satisfying ½Pþ;kk ·σ γx� ¼ 0.

The two-dimensional surface Hamiltonian can then be
found by restricting kk · σ γx to the subspace defined by Pþ.
This is most easily achieved by introducing a rotation of

basis. Let V ¼ exp ½iðπ=4Þn̂ · σ γx�, such that

VPþV† ¼ 1

2
ð1 − γzÞ;

Vðkk · σγxÞV† ¼ ðk × n̂Þ · σ; ðB6Þ

where we used k × n̂ ¼ kk × n̂. This result explicitly gives
a 2 × 2 surface Dirac-cone Hamiltonian hk ≡ ðk × n̂Þ · σ.
Before proceeding, we make a few comments on the

validity of our approach. The curvature of the space enters
into our equation only through the (slow) spatial dependence
of the surface normal n̂. This might not be the only effect
resulting from the background curvature in the Dirac
equation since we generally expect both the local and global
curvature to introduce extra terms in the equation [68].
However, we argue below that such terms are not relevant for
the physicswe are considering. To seewhy, first note that the
surface states associatedwith a DSTI are confined to regions
in space corresponding to the domain walls of the mass term
in the Dirac equation. As the presence of such domain
walls is a topological property of the bulk, it is unaffected by
the surface curvature. Now, we can imagine smoothly
deforming any given surface such that all the nontrivial
curvature is concentrated in isolated regions where the mass
term is nonzero (in a symmetry-respecting manner), such
that the gapless electronic theory at the domain walls
resembles that defined assuming vanishing curvature. We
then recover the surface theory described throughout, and
hence the sTCI classification. Note that such an ability to
decouple the possibly nontrivial curvature from the gapless
surface states relies on having gapped regions on the surface
of a sTCI, which prevents the sTCI surface states from
exploring the global topology of the surface; this should be
contrasted with the Dirac theory on the surface of a regular
strong TI, which is gapless everywhere and is hence more
susceptible to the effect of a nontrivial global curvature.
Next, we connect the symmetry representations fur-

nished by the bulk and surface degrees of freedom. Let
p ¼ ð1; 0ÞT be the 4 × 2-dimensional matrix projecting
into the subspace defined by Pþ, and we generalize n̂ to a
slowly varying function n̂r, where r denotes a point on the
boundary. Then, the surface Hamiltonian can be obtained
from the bulk through hr;k ≡ pTVrHkV

†
rp. We assume the

surface is symmetric under the (unitary) spatial symmetry
g ¼ fRgjγgg; i.e., for any r on the surface, g · r is also on the
surface, and their surface normals are related by
n̂g·r ¼ Rgn̂r. Recall that in the bulk, g is represented by
a unitary matrix Ug ¼ ug ⊕ ðdetRgugÞ, where ug equals
the standard spin-1=2 representation of Rg up to a sign
ηg ¼ �1, and Hk ¼ U†

gHRgkUg. We can then deduce the
transformation of the surface Hamiltonian through

hr;k ¼ pTVrHkV
†
rp

¼ pTVrU
†
gðV†

g · rVg · rÞHRgkðV†
g · rVg · rÞUgV

†
rp

¼ ðpTVrU
†
gV

†
g · rpÞhg · r;RgkðpTVg · rUgV

†
rpÞ; ðB7Þ

where we use ½Vg · rUgV
†
r ; ppT � ¼ 0, and one can check

that pTVg · rUgV
†
rp ¼ ug. Therefore, g ·hr;k≡ughr;ku

†
g ¼

hg ·r;Rgk; i.e., the surface Dirac cone furnishes the same
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symmetry representation as the valence bands, as one
would expect.
Next, we study the general mass-term structure of

stacked strong TIs. Consider the surface theory for n > 1
copies of the DSTI, with kn > 1 symmetry-allowed
independent mass terms. The mass terms can be repre-
sented as Mi;r ¼ mi;rΓi, i ¼ 1;…; kn, with Γi chosen to
satisfy Γ2

i ¼ 1. By “independent,” we mean that the differ-
ent mass terms anticommute with each other, thus satisfy-
ing fΓi;Γjg ¼ 2δij. In addition, we assume all mass terms
anticommute with the surface Hamiltonian so that the
Hamiltonian is gapped when any of the mass terms are
nonzero. We define the mass vector mr ¼ ðm1;r;…; mkn;rÞ
whose length gives the values of the gap at point r. The
transformation properties of the mass vector can be
deduced from the requirement of the invariance ofP

iMi;r under symmetry,

g ·
X
i

Mi;r ¼
X
i

Mi;g · r;

X
i

mi;rUgΓiU
†
g ¼

X
i

mi;g · rΓi;

X
ij

Og
jimi;rΓj ¼

X
i

mi;g · rΓi; ðB8Þ

which implies that g ·mr ≡mg · r ¼ Ogmr, with Og
ij an

orthogonal matrix given by

Og
ij ¼

1

4n
trðΓiUgΓjU

†
gÞ: ðB9Þ

Thus, given a unitary representation acting on the
Hamiltonian for the stacked DSTI, we get an induced
orthogonal representation acting on the (k − 1) sphere.

APPENDIX C: BULK-SURFACE
CORRESPONDENCE FOR ALL SPACE GROUPS

In this appendix, we discuss some subtleties regarding
bulk-surface correspondence of sTCI phases. In particular,
we focus on the relation between the sTCI classification
and the information contained in the symmetry indicators.
As noted in the main text, since the symmetry indicators
only utilize data encoded in the symmetry representations,
a given nontrivial indicator is generally compatible with
more than one sTCI phases, i.e., knowing the indicator
alone does not uniquely identify the surface signature of the
nontrivial bulk. We refer to this as the “surface-state
identification ambiguity.” In the following, we describe
how such ambiguity can be systematically mapped out.
Let us first consider the simpler problem concerning

“weak” phases defined by having at least one lattice
translation taking a nontrivial signature, i.e., weak TIs
and their mirror enrichments. As discussed in the main text,
the relation between XðwÞ

BS and SðwÞ
SG , which concerns sTCIs

with either a weak TI or weak mirror Chern index, is readily

understood from the existing discussion on the familiar
topological band invariants [29,37]. The ambiguity can be
summarized as follows: First, for everyZ2 factor (i.e., weak

TI index) in SðwÞ
SG , X

ðwÞ
BS contains a corresponding Z2 if and

only if the SG is centrosymmetric; second, for every Z

factor (i.e., weak mirror Chern number) in SðwÞ
SG , XðwÞ

BS
contains a Zn factor if and only if the SG contains an n-
fold rotation about an axis normal to the associated mirror
plane. These statements completely map out the surface-

state identification ambiguity for SðwÞ
SG .

It remains to study the case of XðsÞ
BS vs SðsÞ

SG. This case
is far more complicated, as we detail below.

1. Justification for the simplifying assumption

In this subsection, we first justify the simplifying
assumption of establishing the bulk-boundary correspon-
dence for the XðsÞ

BS phases; namely, we consider strong TIs
with only band inversions at Γ involving (signed) repre-
sentations of the form ug ¼ ηgvg ¼ �e−iθgn̂g·σ=2. For brev-
ity, in the following, we refer to such a representation as
being “quasistandard,” although this terminology is by no
means standard outside of our present context.
A priori, our simplifying assumption is nontrivial as the

symmetry representations of the nonrelativistic electrons in a
crystal are not “quasistandard” in general, and the band
structures are also subjected to global connectivity con-
straints arising from, say, nonsymmorphic symmetries.
Establishing the validity of the assumption requires a more
technical discussion, which we undertake below. First, we
restate our main conclusion from this analysis: For any space
group in classAII, one can choose a basis such that the strong
factor in XBS is generated by a strong TI that satisfies the
simplifying assumption behind the Dirac analysis.
We now proceed to show this in the language of

Ref. [24], which we briefly review below. Insofar as
symmetry representations, but not the detailed energetics,
are concerned, any band structures isolated from above and
below by band gaps can be represented by aD-dimensional
“vector” (more accurately, a collection of D integers)
formed by the irrep multiplicities at different high-sym-
metry momenta. The symmetry-respecting “vectors” nat-
urally form an Abelian group fBSg, with group addition
corresponding physically to the stacking of the underlying
systems. We then denote the subgroup of fBSg, which can
arise from atomic insulators by fAIg. The symmetry-based
indicator of band topology is defined as the mismatch
between fBSg and fAIg, which is mathematically captured
by the quotient XBS ≡ fBSg=fAIg.
Quasistandard representations at Γ play a special role in

our Dirac analysis. The multiplicities of these irreps are
encoded in certain components of the “vectors” in the
description above. Let Π be a projection that projects away
these components, and suppose b1; b2 ∈ fBSg, b1 ≠ b2,
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such that Πðb1 − b2Þ ¼ 0. Physically, this case means that
while b1 and b2 are distinguishable in terms of symmetry
representations, their only distinction arises solely from
irrep exchanges involving only the quasistandard repre-
sentations at Γ. Furthermore, suppose b1 is nontrivial in
XBS but b2 is trivial; then, one can choose a representative
for the nontrivial class ½b1� ∈ XBS which satisfies the
simplifying assumption behind the Dirac analysis, insofar
as symmetry representations are concerned.
From the discussion above, we see that the kernel of the

map Π, kerBSΠ≡ fb ∈ fBSg∶Π b ¼ 0g, plays a key role
in the analysis. We can similarly define kerAIΠ by
replacing fBSg → fAIg in the definition. The mismatch
between kerBS Π and kerAIΠ then describes band inver-
sions of quasistandard irreps at Γ, which lead to a XBS-
nontrivial band structure. Again, this mismatch can be
captured by a quotient, which has to be a subgroup of XBS.
Through an explicit computation, we find that

XðsÞ
BS ¼

kerBSΠ
kerAIΠ

ðC1Þ

holds for all space groups in class AII. This result provides
a formal justification of our simplifying assumption.
More concretely, the validity of Eq. (C1) for any given

SG can be established in three steps: First, we compute an
explicit basis for fAIg and fBSg following the recipe
detailed in Ref. [24]; second, we identify the quasistandard
representations at Γ and construct the projection Π; third,
we compute the null spaces of ΠðfBSgÞ and ΠðfAIgÞ and
evaluate the quotient to check if it agrees with the strong

factor XðsÞ
BS.

Let us sketch out the described procedure for an explicit
example. Consider SG 81 (P4̄), whose point group S4 is
generated by the rotoinversion S4z. There are four maximal-
symmetry Wyckoff positions with S4 as the site-symmetry
group. As discussed in Sec. II C of the main text, the
representations of S4 furnished by spinful electrons can be
described by the eigenvalue of S4z, which takes the form
eiαπ=4 with α ¼ �1;�3. TRS pairs the representations with
α ¼ �1, and similarly for�3. On each of the four maximal-
symmetry Wyckoff positions, we can construct an AI by
having two electrons occupying the two orbitals labeled by
α ¼ �1. Similarly, we can construct another AI by putting
the two electrons into the α ¼ �3 orbitals or by localizing
them to the other Wyckoff positions. Upon stacking, these
AIs generate all the possible AIs in our symmetry setting.
In momentum space, the symmetry representations

are again given by the multiplicities of the α ¼ �1
and �3 representations at the four S4-symmetric
momenta: Γ≡ ð0; 0; 0Þ, M≡ ðπ; π; 0Þ, Z≡ ð0; 0; πÞ, and
A≡ ðπ; π; πÞ. The representation data are encoded in the
eight integers n≡ ðn�1

Γ ; n�3
Γ ; n�1

M ; n�3
M ; n�1

Z ; n�3
Z ; n�1

A ; n�3
A Þ,

where the subscript indicates the value of α. In this notation,
one can check that a legitimate choice of basis for fAIg is

a1 ¼ ð1; 0; 1; 0; 1; 0; 1; 0Þ;
a2 ¼ ð0; 1; 0; 1; 0; 1; 0; 1Þ;
a3 ¼ ð1; 0; 0; 1; 1; 0; 0; 1Þ;
a4 ¼ ð1; 0; 1; 0; 0; 1; 0; 1Þ;
a5 ¼ ð1; 0; 0; 1; 0; 1; 1; 0Þ; ðC2Þ

which arises by performing Fourier transform on five out of
the eight AIs that we constructed earlier. Note that we use
only five of them, as the remaining ones give n’s that are
linearly dependent on the ones above; i.e., the “dimension”
of fAIg is dAI ¼ 5, as was computed in Ref. [24].
The next task is to compute fBSg. More systematically,

this computation can be done via the use of the Smith
normal form; here, we simply note that the combination

1

2
ða1 þ a3 þ a4 þ a5Þ ¼ ð2; 0; 1; 1; 1; 1; 1; 1Þ ðC3Þ

corresponds to a band insulator, which cannot be atomic.
We further assert that this is the only nontrivial combination
one needs to consider. As such, we infer a possible basis for
fBSg to be

bi ¼ ai for i ¼ 1; 2; 3; 4;

b5 ¼
1

2
ða1 þ a3 þ a4 þ a5Þ; ðC4Þ

and XðsÞ
BS ¼ Z2. This concludes the first step of the analysis.

Next, we identify the quasistandard representations
at Γ. For S4, we have vS4z ¼ e−ið2π=4Þẑ·σ=2 ¼ e−iπσz=4, which
corresponds simply to the α ¼ �1 representation.
Furthermore, as e�i3π=4 ¼ −e∓iπ=4, we conclude that all
the representations at Γ are quasistandard. The projectionΠ
can therefore be constructed explicitly as

Π∶ n ↦ ðn�1
M ; n�3

M ; n�1
Z ; n�3

Z ; n�1
A ; n�3

A Þ: ðC5Þ

It remains to compute the null spaces of ΠðfBSgÞ and
ΠðfAIgÞ. One finds

b1 þ b2 − b5 ¼ ð−1; 1; 0; 0; 0; 0; 0; 0Þ;
a1 þ 2a2 − a3 − a4 − a5 ¼ ð−2; 2; 0; 0; 0; 0; 0; 0Þ; ðC6Þ

which, respectively, generate kerBSΠ and kerAI Π. We thus
conclude kerBS Π= kerAI Π ¼ Z2; i.e., Eq. (C1) is verified.
While we have provided a detailed example using SG 81,

it is conceptually more revealing to understand why
Eq. (C1) should hold, in general. We first translate
Eq. (C1) into a more physical language: Every nontrivial
class in XðsÞ

BS can be represented by a BS that differs from an
AI only by the exchange of some quasistandard represen-
tations at Γ. To establish Eq. (C1) on physical grounds, it
suffices to show that this defining property holds for the

generator of XðsÞ
BS; once a representative b0 ∈ fBSgwith the
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desired band-inversion interpretation is found for the
generator, all the other classes can be represented by
copies of b0, which will automatically enjoy the desired
property.
To this end, first note that, by definition, the generator of

XðsÞ
BS can be chosen to be a strong TI. Given any SG with a

symmetry-diagnosable strong TI (i.e., through the indices
defined in Sec. II), one can imagine building a strong TI b0
by first starting with an AI, and one can then exchange
a pair of quasistandard representations at Γ; e.g., in a
centrosymmetric SG, one can start with an AI with a
quasistandard representation at Γ, where uI ¼ 1, and then
upon a band inversion with uI ¼ −1, one arrives at a strong
TI as detected by the Fu-Kane criterion.
It then remains to show that such a strong TI b0 can be

constructed for any SG. This can be achieved in two steps:
First, we note that one can always find an AI a0 whose
representation content contains each of the quasistandard

representations at Γ. Such an AI arises from the generic
Wyckoff position, as was established in a corollary in
Ref. [24]. Second, we can always perform a band inversion
on a0 involving only the quasistandard representations at Γ
and arrive at a strong TI. The only concern here is that one
might violate some compatibility relations in performing
the desired band inversion and end up with a semimetal. As
shown in Sec. II, however, the key indices for the diagnosis
of a strong TI use either inversion or S4 eigenvalues, neither
of which is subjected to any compatibility relations as they
only leave isolated points (but not lines) invariant in
momentum space.

2. Surface-state ambiguity

Having established the formal framework, we now
derive the surface-state ambiguity in the XðsÞ

BS diagnosis.
The main result here is reported in Table IV, where we
chart out such ambiguities for all 230 SGs in class AII.

TABLE IV. sTCI classification and symmetry indicators for all space groups. The space groups are grouped by their associated point
groups. Here, SðwÞ

SG (SðsÞ
SG) denotes the sTCI classification for phases with (without) a weak index. KðwÞ (KðsÞ) denotes the subgroup of

SðwÞ
SG (SðsÞ

SG) corresponding to a trivial symmetry indicator; i.e., it encodes the surface-state identification ambiguity. In each column of
SSG=K [i.e., with superscript (w) or (s)], we write out SSG and K explicitly for most SGs. The exceptions are SGs with a trivial K, for
which we list only SSG (say, SG 2); in addition, when SSG is trivial, we denote it by a dash. For simplicity, we denote K by h…i when
K ¼ SSG, i.e., when the symmetry indicators cannot detect any phase in SSG.

Point group (generators) Space group SðwÞ
SG =K

ðwÞ SðsÞ
SG=K

ðsÞ

C1 (1) 1 Z2 × Z2 × Z2=h…i � � �
Ci (I) 2 Z2 × Z2 × Z2 Z2

C2 (C2z)
3 Z2 × Z2 × Z2=h…i Z2=h…i
4 Z2 × Z2=h…i Z2=h…i
5 Z2 × Z2=h…i Z2=h…i

Cs (Mz)

6 Z × Z2 × Z2=h…i Z=h…i
7 Z2 × Z2=h…i Z2=h…i
8 Z2 × Z2=h…i Z=h…i
9 Z2=h…i Z2=h…i

C2h (Mz, C2z)

10 Z × Z2 × Z2=hð2; 0; 0Þi Z × Z2=hð1; 1Þi
11 Z2 × Z2 Z × Z2=hð1; 1Þi
12 Z2 × Z2 Z × Z2=hð1; 1Þi
13 Z2 × Z2 Z2 × Z2=hð1; 1Þi
14 Z2 Z2 × Z2=hð1; 1Þi
15 Z2 Z2 × Z2=hð1; 1Þi

D2 (C2z; C2x)

16 Z2 × Z2 × Z2=h…i Z2 × Z2=h…i
17 Z2 × Z2=h…i Z2 × Z2=h…i
18 Z2=h…i Z2 × Z2=h…i
19 � � � Z2 × Z2=h…i
20 Z2=h…i Z2 × Z2=h…i
21 Z2 × Z2=h…i Z2 × Z2=h…i
22 Z2 × Z2=h…i Z2 × Z2=h…i
23 Z2=h…i Z2 × Z2=h…i
24 Z2=h…i Z2 × Z2=h…i

(Table continued)
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TABLE IV. (Continued)

Point group (generators) Space group SðwÞ
SG =K

ðwÞ SðsÞ
SG=K

ðsÞ

C2v (Mx, My)

25 Z × Z × Z2=h…i Z × Z=h…i
26 Z × Z2=h…i Z × Z2=h…i
27 Z2 × Z2=h…i Z2 × Z2=h…i
28 Z2 × Z2=h…i Z × Z2=h…i
29 Z2=h…i Z2 × Z2=h…i
30 Z2=h…i Z2 × Z2=h…i
31 Z2=h…i Z × Z2=h…i
32 Z2=h…i Z2 × Z2=h…i
33 � � � Z2 × Z2=h…i
34 Z2=h…i Z2 × Z2=h…i
35 Z2 × Z2=h…i Z × Z=h…i
36 Z2=h…i Z × Z2=h…i
37 Z2=h…i Z2 × Z2=h…i
38 Z × Z2=h…i Z × Z=h…i
39 Z2 × Z2=h…i Z × Z2=h…i
40 Z2=h…i Z × Z2=h…i
41 Z2=h…i Z2 × Z2=h…i
42 Z2 × Z2=h…i Z × Z=h…i
43 � � � Z2 × Z2=h…i
44 Z2=h…i Z × Z=h…i
45 Z2=h…i Z2 × Z2=h…i
46 Z2=h…i Z × Z2=h…i

47 Z × Z × Z=hð2; 0; 0Þ; ð0; 2; 0Þ; ð0; 0; 2Þi Z × Z × Z=hð1; 1; 0Þ; ð1; 0; 1Þ; ð−1; 0; 1Þi
48 Z2 Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
49 Z2 × Z2 Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
50 Z2 Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
51 Z × Z2=hð2; 0Þi Z × Z × Z2=hð1; 0; 1Þ; ð0; 1; 1Þi
52 � � � Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
53 Z2 Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
54 Z2 Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
55 Z=hð2Þi Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
56 � � � Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
57 Z2 Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
58 � � � Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
59 Z2 Z × Z × Z2=hð1; 0; 1Þ; ð0; 1; 1Þi

D2h (Mx, My, Mz)
60 � � � Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
61 � � � Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
62 � � � Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
63 Z2 Z × Z × Z2=hð1; 0; 1Þ; ð0; 1; 1Þi
64 Z2 Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
65 Z × Z2=hð2; 0Þi Z × Z × Z=hð1; 1; 0Þ; ð1; 0; 1Þ; ð−1; 0; 1Þi
66 Z2 Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
67 Z2 × Z2 Z × Z × Z2=hð1; 0; 1Þ; ð0; 1; 1Þi
68 Z2 Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
69 Z2 × Z2 Z × Z × Z=hð1; 1; 0Þ; ð1; 0; 1Þ; ð−1; 0; 1Þi
70 � � � Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
71 Z2 Z × Z × Z=hð1; 1; 0Þ; ð1; 0; 1Þ; ð−1; 0; 1Þi
72 Z2 Z × Z2 × Z2=hð1; 1; 0Þ; ð0; 1; 1Þi
73 Z2 Z2 × Z2 × Z2=hð1; 1; 0Þ; ð1; 0; 1Þi
74 Z2 Z × Z × Z2=hð1; 0; 1Þ; ð0; 1; 1Þi
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TABLE IV. (Continued)

Point group (generators) Space group SðwÞ
SG =K

ðwÞ SðsÞ
SG=K

ðsÞ

C4 (C4z)

75 Z2 × Z2=h…i Z2=h…i
76 Z2=h…i Z2=h…i
77 Z2 × Z2=h…i Z2=h…i
78 Z2=h…i Z2=h…i
79 Z2=h…i Z2=h…i
80 Z2=h…i Z2=h…i

S4 (S4z)
81 Z2 × Z2=h…i Z2=h…i
82 Z2=h…i Z2=h…i

C4h (Mz, S4z)

83 Z × Z2=hð4; 0Þi Z × Z2=hð2; 1Þi
84 Z2 Z × Z2=hð0; 1Þ; ð2; 0Þi
85 Z2 Z2 × Z2=hð0; 1Þi
86 Z2 Z2 × Z2=hð0; 1Þi
87 Z2 Z × Z2=hð2; 1Þi
88 � � � Z2 × Z2=hð0; 1Þi

D4 (C4z; C2x)

89 Z2 × Z2=h…i Z2 × Z2=h…i
90 Z2=h…i Z2 × Z2=h…i
91 Z2=h…i Z2 × Z2=h…i
92 � � � Z2 × Z2=h…i
93 Z2 × Z2=h…i Z2 × Z2=h…i
94 Z2=h…i Z2 × Z2=h…i
95 Z2=h…i Z2 × Z2=h…i
96 � � � Z2 × Z2=h…i
97 Z2=h…i Z2 × Z2=h…i
98 Z2=h…i Z2 × Z2=h…i

C4v (Mx, Mxy)

99 Z × Z2=h…i Z × Z=h…i
100 Z2=h…i Z × Z2=h…i
101 Z2=h…i Z × Z2=h…i
102 Z2=h…i Z × Z2=h…i
103 Z2=h…i Z2 × Z2=h…i
104 � � � Z2 × Z2=h…i
105 Z=h…i Z × Z2=h…i
106 � � � Z2 × Z2=h…i
107 Z2=h…i Z × Z=h…i
108 Z2=h…i Z × Z2=h…i
109 � � � Z × Z2=h…i
110 � � � Z2 × Z2=h…i

D2d (Mx, S4z)

111 Z2 × Z2=h…i Z × Z2=h…i
112 Z2=h…i Z2 × Z2=h…i
113 Z2=h…i Z × Z2=h…i
114 � � � Z2 × Z2=h…i
115 Z × Z2=h…i Z × Z2=h…i
116 Z2=h…i Z2 × Z2=h…i
117 Z2=h…i Z2 × Z2=h…i
118 Z2=h…i Z2 × Z2=h…i
119 Z2=h…i Z × Z2=h…i
120 Z2=h…i Z2 × Z2=h…i
121 Z2=h…i Z × Z2=h…i
122 � � � Z2 × Z2=h…i

(Table continued)

KHALAF, PO, VISHWANATH, and WATANABE PHYS. REV. X 8, 031070 (2018)

031070-26



TABLE IV. (Continued)

Point group (generators) Space group SðwÞ
SG =K

ðwÞ SðsÞ
SG=K

ðsÞ

D4h (Mx, Mz, Mxy)

123 Z × Z=hð4; 0Þ; ð0; 2Þi Z × Z × Z=hð1; 1; 0Þ; ð1;−1; 0Þ; ð0; 1; 2Þi
124 Z2 Z × Z2 × Z2=hð0; 1; 1Þ; ð2; 1; 0Þi
125 Z2 Z × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
126 � � � Z2 × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
127 Z=hð4Þi Z × Z × Z2=hð1; 0; 1Þ; ð0; 2; 1Þi
128 � � � Z × Z2 × Z2=hð0; 1; 1Þ; ð2; 1; 0Þi
129 Z2 Z × Z × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
130 � � � Z2 × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
131 Z=hð2Þi Z × Z × Z2=hð1; 0; 0Þ; ð0; 0; 1Þ; ð0; 2; 0Þi
132 Z2 Z × Z × Z2=hð1; 0; 0Þ; ð0; 0; 1Þ; ð0; 2; 0Þi
133 � � � Z2 × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
134 Z2 Z × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
135 � � � Z × Z2 × Z2=hð0; 1; 0Þ; ð0; 0; 1Þ; ð2; 0; 0Þi
136 � � � Z × Z × Z2=hð1; 0; 0Þ; ð0; 0; 1Þ; ð0; 2; 0Þi
137 � � � Z × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
138 � � � Z × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
139 Z2 Z × Z × Z=hð1; 1; 0Þ; ð1;−1; 0Þ; ð0; 1; 2Þi
140 Z2 Z × Z × Z2=hð1; 0; 1Þ; ð0; 2; 1Þi
141 � � � Z × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi
142 � � � Z2 × Z2 × Z2=hð1; 0; 0Þ; ð0; 1; 0Þi

143 Z2=h…i –

C3 (C3z)
144 Z2=h…i –
145 Z2=h…i –
146 Z2=h…i –

S6 (S3z)
147 Z2 Z2

148 Z2 Z2

D3 (C2x; C3z)

149 Z2=h…i Z2=h…i
150 Z2=h…i Z2=h…i
151 Z2=h…i Z2=h…i
152 Z2=h…i Z2=h…i
153 Z2=h…i Z2=h…i
154 Z2=h…i Z2=h…i
155 Z2=h…i Z2=h…i

C3v (Mx, C3z)

156 Z2=h…i Z=h…i
157 Z2=h…i Z=h…i
158 � � � Z2=h…i
159 � � � Z2=h…i
160 Z2=h…i Z=h…i
161 � � � Z2=h…i

D3d (Mx, C2x; C3z)

162 Z2 Z × Z2=hð1; 1Þi
163 � � �– Z2 × Z2=hð1; 1Þi
164 Z2 Z × Z2=hð1; 1Þi
165 � � � Z2 × Z2=hð1; 1Þi
166 Z2 Z × Z2=hð1; 1Þi
167 � � � Z2 × Z2=hð1; 1Þi

C6 (C6z)

168 Z2=h…i Z2=h…i
169 � � � Z2=h…i
170 � � � Z2=h…i
171 Z2=h…i Z2=h…i
172 Z2=h…i Z2=h…i
173 � � � Z2=h…i
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TABLE IV. (Continued)

Point group (generators) Space group SðwÞ
SG =K

ðwÞ SðsÞ
SG=K

ðsÞ

C3h (Mz, C3z) 174 Z=hð3Þi Z=hð3Þi

C6h (Mz, C6z)
175 Z=hð6Þi Z × Z2=hð3; 1Þi
176 � � � Z × Z2=hð3; 1Þi

D6 (C6z; C2x)

177 Z2=h…i Z2 × Z2=h…i
178 � � � Z2 × Z2=h…i
179 � � � Z2 × Z2=h…i
180 Z2=h…i Z2 × Z2=h…i
181 Z2=h…i Z2 × Z2=h…i
182 � � � Z2 × Z2=h…i

C6v (Mx, M ffiffi
3

p
xþy=2)

183 Z2=h…i Z × Z=h…i
184 � � � Z2 × Z2=h…i
185 � � � Z × Z2=h…i
186 � � � Z × Z2=h…i

D3h (Mz, Mx, C3z)

187 Z=hð3Þi Z × Z=hð1; 0Þ; ð0; 3Þi
188 � � � Z × Z2=hð0; 1Þ; ð3; 0Þi
189 Z=hð3Þi Z × Z=hð1; 0Þ; ð0; 3Þi
190 � � � Z × Z2=hð0; 1Þ; ð3; 0Þi

D6h (Mz, Mx, M ffiffi
3

p
xþy=2)

191 Z=hð6Þi Z × Z × Z=hð1; 1; 0Þ; ð1;−1; 0Þ; ð0; 1; 3Þi
192 � � � Z × Z2 × Z2=hð0; 1; 1Þ; ð3; 1; 0Þi
193 � � � Z × Z × Z2=hð1; 0; 1Þ; ð0; 3; 1Þi
194 � � � Z × Z × Z2=hð1; 0; 1Þ; ð0; 3; 1Þi

T (C3;n̂1 ; C3;n̂2 )

195 Z2=h…i � � �
196 � � � � � �
197 Z2=h…i � � �
198 � � � � � �
199 Z2=h…i � � �

Th (Mz, C3;n̂1 )

200 Z=hð2Þi Z=hð2Þi
201 Z2 Z2

202 � � � Z=hð2Þi
203 � � � Z2

204 Z2 Z=hð2Þi
205 � � � Z2

206 Z2 Z2

O (C4;z; C3;n̂1 )

207 Z2=h…i Z2=h…i
208 Z2=h…i Z2=h…i
209 � � � Z2=h…i
210 � � � Z2=h…i
211 Z2=h…i Z2=h…i
212 � � � Z2=h…i
213 � � � Z2=h…i
214 Z2=h…i Z2=h…i

Td (Mn̂1 ; C3;n̂1 )

215 Z2=h…i Z=h…i
216 � � � Z=h…i
217 Z2=h…i Z=h…i
218 � � � Z2=h…i
219 � � � Z2=h…i
220 � � � Z2=h…i
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The remainder of the section is devoted to an explanation
on how these results are obtained. As shown in Sec. III in
the main text, the surface states of DSTIs can be
classified by two types of indices: νM ∈ Z for every
independent mirror (not glide) plane M, and νl ∈ Z2 for
every other independent generator l of the point group
satisfying the conditions outlined in the main text.
Suppose we have a band insulator with the quasistandard
irreps χðiÞ, i ¼ 1;…; 2Nχ , and not necessarily distinct,
exchanged at Γ, where we assume each exchange can be
modeled using the Dirac approach. Let the symmetry g

be represented by uðiÞg ¼ ηðiÞg vg in χðiÞ. The surface indices
are then given by

νM ¼ 1

2

X2Nχ

i¼1

ηðiÞM ; ð−1Þνl ¼ ðdetlÞNχ

Y2Nχ

i¼1

ηðiÞl : ðC7Þ

This can be seen by first grouping the fχðiÞ∶i ¼ 1;…; 2Nχg
pairwise, applying the bulk-surface correspondence in
Sec. IV, and then adding the resulting Nχ sets of surface
indices. The resulting indices, Eq. (C7), are insensitive to the
initial, arbitrary choice on the pairwise grouping and are
therefore well defined.
To make connection to XðsÞ

BS, we now restrict ourselves to
information available from symmetry representations
alone. As described in the main text, this introduces
surface-state ambiguity as the symmetry representations
contain less data than the Dirac description. The first source
of ambiguity is when the choices ηg ¼ �1 lead to the same
irrep. For instance, consider the mirror symmetry about a
plane with surface normal n̂M, which can be represented by
the traceless unitary matrix vM ¼ in̂M · σ. Usually, this
implies that ηM ¼ �1 is unconstrained by the specification

of the symmetry representation, and hence, XðsÞ
BS does not

constrain νM, which leads to a surface-state ambiguity.
Yet, if the point group containsC4 orC6 rotation together

with inversion I , then we may have relations like ηM ¼
ηIη

2
C4

and hence, ηM becomes tied to the representations

that can detect ηI and ηC4;6
. Such is the case of P4=m (SG

83) discussed in the main text. This observation can also be
viewed as a manifestation of the detection of mirror Chern
numbers through C4;6-symmetry eigenvalues [37]. (For C2

together with I , we can only detect the parity of the mirror
Chern number, but the mirror Chern parity is always even
in a DSTI.)
However, there is a second source of surface-state

ambiguity that can be present. This originates from non-
trivial stacks of strong TIs, which, when restricted to
symmetry irreps alone, look indistinguishable from an
atomic insulator. In other words, if we are just given a
band insulator that differs from a reference atomic insulator
only by the exchange of some quasistandard irreps at Γ, it is
not automatically justified that the exchange arose from a
series of consecutive exchanges, each producing a strong TI
amenable to a Dirac analysis. Such is the case when the
irrep exchange pattern can be understood as the difference
of two atomic insulators, which is captured precisely by
kerAIΠ in our framework. Therefore, if an entry in kerAIΠ
gives rise to a nontrivial surface index according to
Eq. (C7), it implies, from representation alone, that we
cannot tell if we have an atomic insulator or a DSTI with
nontrivial surface states. The evaluation of the surface
indices on kerAI Π then gives a subgroup of the surface
classification corresponding to possible surfaces of

0 ∈ XðsÞ
BS; i.e., this subgroup captures the surface-state

identification ambiguity.
While the two mentioned sources of ambiguity have

rather different physical origins, in practice they may be
intertwined with each other. As an illustrative example,
consider the symmorphic SG P2=m (SG 10), which is
generated by lattice translations, inversion I , and a twofold
rotation C2z. Note that this implies a mirror symmetry
Mz ≡ IC2z. As shown in Table II, the surface states of the
DSTIs in this setting are classified by Z × Z2, where
the first factor corresponds to equatorial states pinned to
the mirror plane and protected by a Z-valued mirror Chern
number, and the Z2 entry is generated by a hinge mode,

TABLE IV. (Continued)

Point group (generators) Space group SðwÞ
SG =K

ðwÞ SðsÞ
SG=K

ðsÞ

Oh (Mx, Mxy; C3;n̂1 )

221 Z=hð4Þi Z × Z=hð2; 1Þ; ð0; 2Þi
222 � � � Z2 × Z2=hð1; 0Þi
223 � � � Z × Z2=hð0; 1Þ; ð2; 0Þi
224 Z2 Z × Z2=hð1; 0Þi
225 � � � Z × Z=hð2; 1Þ; ð0; 2Þi
226 � � � Z × Z2=hð2; 1Þi
227 � � � Z × Z2=hð1; 0Þi
228 � � � Z2 × Z2=hð1; 0Þi
229 Z2 Z × Z=hð2; 1Þ; ð0; 2Þi
230 � � � Z2 × Z2=hð1; 0Þi
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protected by C2z, which passes through the north and south
poles (and hence gives rise to 2D gapless surface states on
appropriate faces [23]). The quasistandard representations
for both the C2z and Mz are traceless, and therefore, from

the discussion above, XðsÞ
BS should be blind to the existence

of the mentioned surface states. Yet, the inversion sym-
metry I is not traceless, and using its symmetry eigenval-
ues, one should be able to detect the total parity of the 1D
modes on the surface. This small dilemma is resolved by
noticing that ηI ¼ ηMz

ηC2z
, and therefore, although we

cannot detect the values of ηMz
and ηC2z

individually, their
product becomes detectable. At a more technical level, in
deriving the surface-state identification ambiguity of an

XðsÞ
BS-nontrivial phase, one first has to study the “preimage”

of the consistent assignments on the ηg of the traceless
elements (in a quasistandard representation), which implies
that each element in kerAI Π is now enhanced correspond-
ingly. One then evaluates the surface indices on this
enhanced version of kerAI Π, which would reveal the
subgroup of surface signatures that are consistent with

the symmetry representations of 0 ∈ XðsÞ
BS.

3. Table for the sTCI classification and
surface-state ambiguity

The full results of SSG and its surface-state identification
ambiguity in XBS are tabulated in Table IV. Let us illustrate
how to read it through a few examples. First, consider the
weak phases in SG 1 and 2. Both of the SGs have three
independent weak TIs corresponding to the three indepen-

dent lattice translations, and hence, we expect SðwÞ
SG ¼ Z2 ×

Z2 × Z2 for both of them. However, while the weak TI
indices are detected through the Fu-Kane parity criterion in
SG 2, they are undetectable using symmetry eigenvalues in
SG 1. This difference implies that there is no surface-state

identification ambiguity for SðwÞ
SG in SG 2, whereas the

entire SðwÞ
SG is consistent with the identity in XðwÞ

BS ¼ Z1 for
SG 1. In Table IV, the latter case is denoted by a quotient
with KðwÞ ¼ h…i, while the former is denoted by the
absence of a quotient.
While the previous discussion focused on the detect-

ability of the weak phases using the symmetry indicators,
we recall that spatial symmetries can also restrict the
possible set of weak phases, as discussed in the main text.
For example, consider the SGs 3 and 4, which have the
same point group generated by C2z, but the former is
symmorphic and has C2z as a group element whereas the
latter is nonsymmorphic as the twofold rotation is extended
into a 21 screw. Correspondingly, the two SGs have

different weak sTCI classifications, with SðwÞ
SG ¼ Z2 × Z2 ×

Z2 for SG 3 but Z2 × Z2 for SG 4. The reduction of one of
the Z2 factors in SG 4 arises as the square of 21 is a lattice
translation, and this translation cannot take a nontrivial sg,

as discussed in Sec. III C 2 of the main text. Nonetheless,
for both cases, the symmetry indicators are unable to detect
any of the weak TI indices, and hence, we have
KðwÞ ¼ h…i, denoting the full group, for both of them.
As a more nontrivial example, consider SG 123, which

contains multiple mirrors extending the weak TI phases to
weak mirror Chern insulators. Besides, the C4 rotation
about (say) the z axis relates the weak index along the x and

y directions, which leads to SðwÞ
SG ¼ Z × Z. Since the Z-

valued mirror Chern numbers can, at best, be detected
mod n using an n-fold rotation [37], the surface-state
identification ambiguity will encode this modulo structure.
This result is seen in KðwÞ ¼ hð4; 0Þ; ð0; 2Þi in Table IV,
which denotes the subgroup generated by the elements
(4,0) and (0,2) inZ × Z. Physically, this means that the first
weak mirror Chern index (for phases deformable to stacks
of 2D phases along z) can be detected mod 4 using C4

about z, whereas the second weak mirror Chern index can
be detected mod 2 using (say) a C2 rotation about the
x axis.
Next, we move on to the strong part of the sTCI

classification. Recall that the strong part is tightly tied to
the generators of the point group of the SG. The chosen
generators of the point groups are listed again in Table IV.
Note that, for a couple of SGs, the generating set differs
slightly from that in Table II. The factors in SðsÞ

SG are listed in
correspondence with the generators listed in the leftmost
column. An exception is made for threefold rotations,

which do not lead to any factor in SðsÞ
SG. They are always

listed at the end of the generating set, and when they are

present, the number of factors in SðsÞ
SG will be less than the

number of independent generators. For instance, the SGs
with point group D3, generated by C2x and C3z, all have

SðsÞ
SG ¼ Z2 with the only factor corresponding to C2x.
However, depending on the SG, a mirror in the point

group may correspond to a glide in the SG, with the former
leading to a Z factor and the latter a Z2 factor. To see this

more concretely, compare the SðsÞ
SG of SGs 83 and 85. Their

point group C4h is generated by a mirrorMz and a fourfold
rotation C4z. Yet, as shown in the table, in tabulating the
sTCI classification, we instead choose S4z as a generator in
lieu of C4z. First, focus on SG 83. WhileMz leads to mirror
Chern insulators with a Z classification, S4z protects sTCIs
with a nontrivial Z2 index. AsMz and S4z are independent,
they lead to independent factors in the sTCI classification,

giving SðsÞ
SG ¼ Z × Z2. Note that the indices associated with

the other symmetries are fixed by the group structure; e.g.,
asC4z ¼ MzðS4zÞ−1, theZ2 index associated with the phase
ð1; 0Þ ∈ Z × Z2 is 1 ∈ Z2, but the index associated with
the phase (1, 1) is 0 ∈ Z2. In contrast—although sharing

the same point group—SG 85 has SðsÞ
SG ¼ Z2 × Z2 because

the would-be mirror in SG 85 has been extended into a
glide, hence the replacement Z ↦ Z2.
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Finally, we describe how to extract the surface-state
identification ambiguity from Table IV. Consider SG 83
again. As explained in the main text, the symmetry
indicators cannot differentiate between a phase with a
mirror Chern index of 2 from one with the nontrivial
C4z index, i.e., ð2; 0Þ ≃ ð0; 1Þ. [Here, (0, 1) is a phase with a
nontrivial S4z index but a trivial index for I, as I ¼ MzS24z,
and hence, it has a nontrivial index for C4z ¼ IS4z.] This
idea is represented in Table IV by KðsÞ ¼ hð2; 1Þi. For SG
85, however, one finds KðsÞ ¼ hð0; 1Þi. This result implies
that the index associated with S4z is undetectable from
symmetry representations and that a sTCI with a nontrivial
indicator of 2 ∈ Z4 in the strong part of XBS will always
have a nontrivial glide index.
As discussed above, we specify KðsÞ by providing its

generators. In writing down the group elements, we have
implicitly assumed a preferred basis. To clarify, we reiterate
our choice here: Each factor corresponds to a generator of
the associated point group, as tabulated in the leftmost
column, with the exception of C3 rotations, as they do not
protect nontrivial phases. With this choice in mind, the data
on KðsÞ can be readily converted into information about the

possible physical surface states of a given element in XðsÞ
BS.

Let us illustrate this using a nontrivial example. Consider
SG 194. As listed in Table IV, its point group is D6h, and
we choose the generators to be the three independent
mirrors Mz, Mx, and M ffiffi

3
p

xþy=2. Furthermore, we have

SðsÞ
SG=K

ðsÞ ¼ Z × Z × Z2=hð1; 0; 1Þ; ð0; 3; 1Þi. The first and
second Z factors in SðsÞ

SG correspond to “strong” mirror
Chern phases protected by Mz and Mx, respectively,
whereas the last Z2 factor implies the mirror M ffiffi

3
p

xþy=2

has been extended into a glide in this SG. The next step is to

identify the generator of the group SðsÞ
SG=K

ðsÞ, which can be
chosen to be one of the three basis vectors (1, 0, 0), (0, 1, 0),
or (0, 0, 1). Given that KðsÞ ¼ hð1; 0; 1Þ; ð0; 3; 1Þi and that
the generators should have maximal order, we can choose
the generator to be (0, 1, 0), which has order 6. This case

gives SðsÞ
SG=K

ðsÞ ¼ Z6, which, as explained in the main text,

corresponds to the even subgroup of XðsÞ
BS ¼ Z12.

The preceding analysis also informs the possible surface
states of any given entry of XðsÞ

BS. For instance, suppose a
material has the symmetry indicator of 2 ∈ Z12. Then, we
know that it could be a sTCI classified by ð0; 1; 0Þ ∈
Z × Z × Z2; i.e., it has Mx-protected surface states but not
those protected byMz or the glide. However, because of the
ambiguity ð0; 1; 0Þ ≃ ð0;−2; 1Þ ≃ ð1;−2; 0Þ ≃…, if it has a
higher Mx mirror Chern number, it could also feature the
coexistence of other surface states protected by the other
mirror and/or the glide.
In closing, we note that results concerning the physical

interpretations of XBS and its associated surface-state
identification ambiguity have also been reported in

Ref. [65]. In particular, a more explicit tabulation of the
index association can be found there.
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