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Symmetry-protected topological (SPT) states have boundary 't Hooft anomalies that obstruct the
effective boundary theory realized in its own dimension with UV completion and with an on-site
G-symmetry. In this work, yet we show that a certain anomalous non-on-site G-symmetry along the
boundary becomes on-site when viewed as an extended H-symmetry, via a suitable group extension
1 - K - H - G — 1. Namely, a nonperturbative global (gauge or gravitational) anomaly in G becomes
anomaly free in H. This guides us to construct an exactly soluble lattice path integral and Hamiltonian of
symmetric gapped boundaries applicable to any SPT state of any finite symmetry group, including on-site
unitary and antiunitary time-reversal symmetries. The resulting symmetric gapped boundary can be
described either by an H-symmetry extended boundary in any spacetime dimension or, more naturally,
by a topological emergent K-gauge theory with a global symmetry G on a 3 4+ 1D bulk or above. The
excitations on such a symmetric topologically ordered boundary can carry fractional quantum numbers of
the symmetry G, described by representations of H. (Applying our approach to a 1 4 1D boundary of
2 4 1D bulk, we find that a deconfined gauge boundary indeed has spontaneous symmetry breaking with
long-range order. The deconfined symmetry-breaking phase crosses over smoothly to a confined phase
without a phase transition.) In contrast to known gapped boundaries or interfaces obtained via symmetry
breaking (either global symmetry breaking or the Anderson-Higgs mechanism for gauge theory), our
approach is based on symmetry extension. More generally, applying our approach to SPT states,
topologically ordered gauge theories, and symmetry enriched topologically ordered (SET) states leads to
generic boundaries or interfaces constructed with a mixture of symmetry breaking, symmetry extension,

and dynamical gauging.
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I. INTRODUCTION

After the realization that a spin-1/2 antiferromagnetic
Heisenberg chain in 1 4 1 dimensions (1 + 1D) admits a
gapless state [1,2] that “nearly” breaks the spin rotation
symmetry (i.e., it has “symmetry-breaking” spin correlation
functions that decay algebraically), many physicists
expected that spin chains with higher spin, having fewer
quantum fluctuations, might also be gapless with algebraic
long-range spin order. However, Haldane [3] first realized
that antiferromagnetic Heisenberg spin chains in 1+ 1D
with integer spins have a gapped disordered phase with
short-range spin correlations. At first, it was thought that
those states are trivial disordered states, like a product state
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of spin-0 objects. Later, it was discovered that they can
have degenerate zero-energy modes at the ends of the chain
[4], similar to the gapless edge states of quantum Hall
systems. This discovery led to a suspicion that these gapped
phases of antiferromagnetic integer spin chains might be
topological phases.

Are Haldane phases topological or not topological?
What kind of “topological” is it? That was the question.
It turns out that only odd-integer-spin Haldane phases (each
site with an odd-integer spin) are topological, while the
even-integer-spin Haldane phases (each site with an even-
integer spin) are really trivial (a trivial vacuum ground state
like the product state formed by spin-0’s). The essence of
nontrivial odd-integer-spin Haldane phases was obtained
in Ref. [5], based on a tensor network renormalization
calculation [6], where simple fixed-point tensors character-
izing quantum phases can be formulated. It was discovered
that the spin-1 Haldane phase is characterized by a non-
trivial fixed-point tensor—a corner-double-line tensor. The
corner-double-line structure implies that the spin-1 Haldane
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phase is actually equivalent to a product state, once we
remove its global symmetry. However, Ref. [5] showed that
the corner-double-line tensor is robust against any local
perturbations that preserve certain symmetries [namely,
SO(3) symmetry in the case of the integer spin chain], but it
flows to the trivial fixed point tensor if we break the
symmetry. This suggests that, in the presence of symmetry,
even a simple product state can be nontrivial (i.e., distinct
from the product state of spin-0’s that has no corner-
double-line structure), and such nontrivial symmetric
product states were named symmetry-protected topological
states (SPTs). (Despite its name, a SPT state has no
intrinsic topological order in the sense defined in
Refs. [7,8]. By this definition, a SPT state with no
topological order cannot be deformed into a trivial dis-
ordered gapped phase in a symmetry-preserving fashion.)

Since SPT states are equivalent to simple product states
if we remove their global symmetry, one quickly obtains
their classification in 1 + 1D [9—11], in terms of projective
representations [12] of the symmetry group G. As remarked
above, one found that only the odd-integer-spin Haldane
phases are nontrivial SPT states. The even-integer-spin
Haldane phases are trivial gapped states, just like the
disordered product state of spin-0’s [13]. Soon after their
classification in 1+ 1D, bosonic SPT states in higher
dimensions were also classified based on group cohomology
HG,U(1)] and ‘HY G x SO(0), U(1)] [14-18] or
based on cobordism theory [19-21]. In fact, SPT states and
Dijkgraaf-Witten gauge theories [22] are closely related:
Dynamically gauging the global symmetry [23,24] in a
SPT state leads to a corresponding Dijkgraaf-Witten gauge
theory.

To summarize, SPT states are the simplest of symmetric
phases and, accordingly, have another name: symmetry-
protected trivial states. They are quantum-disordered product
states that do not break the symmetry of the Hamiltonian.
Naively, one would expect that such disordered product
states all have nonfractionalized bulk excitations. What is
nontrivial about a SPT state is more apparent if one considers
its possible boundaries. For any bulk gapped theory with G
symmetry, a G-preserving boundary is described by some
effective boundary theory with symmetry G. However, the
boundary theories of different SPT states have different
anomalies in the global symmetry G [25-28]. A simple
explanation follows: While the bulk of a SPT state of a
symmetry group G has an on-site symmetry, the boundary
theory of SPT state has an effective non-on-site G-symmetry.
Non-on-site G-symmetry means that the G-symmetry does
not act in terms of a tensor product structure on each site,
namely, the G-symmetry acts nonlocally on several effective
boundary sites. Non-on-site symmetry cannot be dynami-
cally gauged—because conventionally the gauging process
requires inserting gauge variables on the links between the
local site variables of G-symmetry. Thus, the boundary of a
SPT state of a symmetry G has an obstruction to gauging, as

’t Hooft anomaly obstruction to gauging a global
symmetry [29]. Such an anomalous boundary is the essence
of a SPT state: Different boundary anomalies characterize
different bulk SPT states. In fact, different SPT states classify
gauge and mixed gauge-gravity anomalies in one lower
dimension [26-28,30,34].

From the above discussion, we realize that to understand
the physical properties of SPT states is to understand the
physical consequence of anomalies in the global symmetry
G on the boundary of SPT states. Fora 1 4+ 1D boundary, it
was shown that the anomalous global symmetry makes the
boundary gapless and/or symmetry breaking [14]. However,
in higher dimensions, there is a third possibility: The
boundary can be gapped, symmetry preserving, and topo-
logically ordered. (This third option is absent fora 1 + 1D
boundary roughly because there is no bosonic topological
order in that dimension [37].) Concrete examples of topo-
logically ordered symmetric boundaries have been con-
structed in particular cases [39—47]. In this paper, we give a
systematic construction that applies to any SPT state with
any finite [48] symmetry group G, for any boundary of
dimension 2 + 1 or more. Namely, we show that symmetry-
preserving gapped boundary states always exist for any
d + 1D bosonic SPT state with a finite symmetry group G
when d > 3. We also study a few examples, but less
systematically, when SPT states have continuous compact
Lie groups G, and we study their symmetry-preserving
gapped boundaries, which may or may not exist.

Symmetry breaking gives a straightforward way to con-
struct gapped boundary states or interfaces, since SPT phases
are completely trivial if one ignores the symmetry. For
topological phases described by group cocycles of a group
G, the symmetry-breaking mechanism can be described as
follows. It is based on breaking the G to a subgroup G’ C G,
corresponding to an injective homomorphism : as

G'5G. (1.1)
Here, G’ must be such that the cohomology class in
HG, U(1)] that characterizes the d + 1D SPT or sym-
metry enriched topologically ordered states (SETs) becomes
trivial when pulled back (or equivalently restricted) to G'.
The statement that the class is “trivial” does not mean that the
relevant G cocycle is 1 if we restrict its argument from G
to G', but that this cocycle becomes a coboundary when
restricted to G’

Our approach to constructing exactly soluble gapped
boundaries does not involve symmetry breaking, but what
one might call “symmetry extension”:

1-K->H5G—1. (1.2)
Here, we extend G to a larger group H, such that G is its
quotient group, K is its normal subgroup, and r is a
surjective group homomorphism, more or less opposite to
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the injective homomorphism : related to symmetry break-
ing [Eq. (1.1)]. H and r must be such that the cohomology
class in H'[G, U(1)] that characterizes the SPT or SET
state becomes trivial when pulled back to H. For any finite
G and any class in H?™[G, U(1)], we show that suitable
choices of H and r always exist, when the bulk space
dimension d > 1. Physically, the gapped phases that we
construct in this way have the property that boundary
degrees of freedom transform under an H-symmetry.
However, in condensed matter applications, one should
usually [49] assume that the subgroup K of H is gauged,
and then (in the SPT case) the global symmetry acting on
the boundary is G, just as in the bulk. So, in that sense,
when all is said and done, the boundary states that we
construct simply have the same global symmetry as the
bulk, and the boundaries become topological since K is
gauged. For 2 4 1D (or higher dimensional) boundaries,
such symmetry-preserving topological boundaries may
have excitations with fractional G-symmetry quantum
numbers. The fact that the boundary degrees of freedom
are in representations of H rather than G actually describes
such a charge fractionalization.

The idea behind this work was described in a somewhat
abstract way in Sec. 3.3 of Ref. [51], and a similar idea
was used in Ref. [52] in examples. In the present paper,
we develop this idea in detail and in a down-to-earth way,
with both spatial lattice Hamiltonians and spacetime
lattice path integrals that are ultraviolet (UV) complete at
the lattice high-energy scale. We also construct a mixture
combining the symmetry-breaking and symmetry-extension
mechanisms.

We further expand our approach to construct anomalous
gapped symmetry-preserving interfaces (i.e., domain walls)
between bulk SPT states, topological orders (TO), and SETs
[53]. We will recap the terminology for the benefit of some
readers. SPTs are short-range entangled (SRE) states, which
can be deformed to a trivial product state under local unitary
transformations at the cost of breaking some protected
global symmetry. Examples of SPTs include topological
insulators [54-56]. Topological orders are long-range
entangled (LRE) states, which cannot be deformed to a
trivial product state under local unitarity transformations
even if breaking all global symmetries. SETs are topological
orders—thus, LRE states—but additionally have some
global symmetry. Being long-range entangled, TOs and
SETs have richer physics and mathematical structures than
the short-range entangled SPTs. Examples of TOs and SET's
include fractional quantum Hall states and quantum spin
liquids [57]. In this work, for TOs and SETSs, we mainly
focus on those that can be described by Dijkgraaf-Witten
twisted gauge theories, possibly extended with global
symmetries. We comment on possible applications and
generalizations to gapped interfaces of bosonic or fermionic
topological states obtained from beyond-group cohomology
and cobordism theories in Secs. VI and VIIL.

II. A MODEL THAT REALIZES THE 2+1D Z,
SPT STATE: CZX MODEL

The first lattice model that realizes a 2 + 1D SPT state
(the Z,-SPT state) was introduced by Chen et al. [14] and
was named the CZX model. The CZX model is a model
on a square lattice (Fig. 1), where each lattice site contains
four qubits, or objects of spin 1/2. For each spin, we use a
basis |1) and || ) of 6¢ eigenstates. Thus, a single site has a
Hilbert space of dimension 2*.

Now, let us introduce a Z,-symmetry transformation. An
obvious choice is the operator that acts on each site s as

4
Uxs =[], Uk, =1 (2.1)
j=1

which simply flips the four spins in site s. However, to
construct the CZX model, a more subtle choice is made. In
this model, in the basis |1), ||), the flip operator Uy is
modified with £ signs. For a pair of spins i, j, we define an
operator [58] U¢y ;; that acts as —1 if spins 7, j are both in
state || ) and otherwise acts as +1. There are various ways
to describe Ucy;; by a formula:

1 +o0;+ 05 =00’

_ J 7
Uczij = 7
_ i(ﬂ?+ﬂ§—ﬂ;6§—l)/2' (22)
Now, for a site s that contains four spins j =1,...,4 in
cyclic order, we define
4
Uczs = H Uczjj+1- (2.3)
j=1

The Z’,-symmetry of the spins at site s is defined as

UCZX.s = UX,s UCZ,S' (24)

By a short exercise, one can verify that Uy and Ucz,
commute and, accordingly, that U %ZX,S =1.The Z,-symmetry

FIG. 1. The CZX model. Each site (a large disc) contains four
qubits or objects of spin 1/2 (shown as small black dots). The
squares, formed by red links, are plaquettes, introduced later.
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generator of the CZX model is defined as a product over all
sites of Uczx -

Uezx = [ [Uczx.s- (2.5)

Clearly, this is an on-site symmetry, that is, it acts
separately on the Hilbert space associated to each site.
Being on-site, the symmetry is gaugeable and anomaly free.
We have not yet picked a Hamiltonian for the CZX model,
but whatever Ucyx-invariant Hamiltonian we pick, the Z,-
symmetry can be gauged by coupling to a Z, lattice gauge
field that will live on links that connect neighboring sites.

What we have done so far is trivial in the sense that, by a
change of basis on each site, we could have put Uczx ; in a
more standard form. However, this would complicate the
description of the Hamiltonian and ground-state wave
function of the CZX model, which we come to next.

It is easier to first describe the desired ground-state
wave function of the model and then describe a
Hamiltonian that has that ground state. In Fig. 1, we have
drawn squares that contain four spins, one from each of
four neighboring sites. We call these squares “plaquettes.”
For each plaquette p, we define the wave function

¥,) = (1/v2)([1111) + [L411)). The ground state of
the CZX model in the bulk is given by a product over all
plaquettes of this wave function for each plaquette:

) =[], = H%wm LY. (26)

This state is Ucyzx invariant,

UCZXl‘Pgs> = ‘ngs>’ (2.7)
if we define the whole system on a torus without boundary
(i.e., with periodic boundary conditions). But that fact is
not completely trivial: It depends on cancellations among
CZ;; factors for adjacent pairs of spins; see Fig. 2.

Clearly, the entanglement in this wave function is short
range, and this wave function describes a gapped state.
Moreover, if we would regard the plaquettes (rather than
the large discs in Fig. 1) as “sites,” then this wave function
would be a trivial product state. But in that case, the Z,-
symmetry of the model would not be on-site. The subtlety
of the model comes from the fact that we cannot simulta-
neously view it as a model with on-site symmetry and a
model with a trivial product ground state.

The most obvious Hamiltonian with |W) as its ground
state would be a sum over all plaquettes p of an operator
HY that flips all spins in plaquette p:

HO = "HY,
p

HY = (MM UL+ LD At (2.8)

site site

plaquette

FIG. 2. A pair of adjacent spins: To preserve the symmetry
Uczx, we choose a Hamiltonian that only flips the spins in a
plaquette if pairs of adjacent spins in neighboring plaquettes are
equal. Thus, the spins shown here at the top of this plaquette are
only flipped if the two spins just above them are equal. Both the
spins in the plaquette and the ones just above them are in different
sites, as shown.

This Hamiltonian commutes with the obvious Z,-
symmetry that flips all the spins, but does not commute
with the more subtle symmetry Uczx. To commute with
Uczx, we modify H° to only flip the spins in a plaquette if
adjacent pairs of spins in the neighboring plaquettes are
equal (Fig. 2). For a plaquette p, we define operators Pj, =
T+ [44) (L] that project onto states in which the
two spins adjacent to p in the « direction (where a equals
up, down, left, or right, denoted as u, d, [, or r) are equal.
Then, the CZX Hamiltonian is defined to be

H=Y"H,
p

Hy=—-(IMO UL+ D) M) @q P (2.9)

FIG. 3. Each plaquette Hamiltonian H, acts on the spins
contained in an octagon, as depicted in a dashed gray line in
the left subfigure (a) and also in the lower left of the right
subfigure (b). In the subfigure (b), the octagon in the lower left
contains the four spins in plaquette p and four adjacent pairs of
spins. In the case of a finite sample made of complete sites, as
depicted here, most of the spins can be grouped in plaquettes, but
there is a row of spins on the boundary—shown here on the right
of the figure—that are not contained in any plaquette. However,
the Hamiltonian acts on these boundary spins through the
projection operators P, from a neighboring plaquette.
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Thus, each H, acts on the spins contained in an octagon
[Fig. 3], flipping the spins in a plaquette if all adjacent pairs
of spins are equal. This Hamiltonian is Uczx invariant,
[UCZX’H] = 07 (210)
in the case of a system without boundary (an infinite system
or a finite system with periodic boundary conditions). The
state |¥y,) is a symmetry-preserving ground state with short-
range entanglement. However, it is a nontrivial symmetry-

protected topological or SPT state. This becomes clear if
we examine possible boundaries of the CZX model.

III. BOUNDARIES OF THE CZX MODEL

A. The first boundary of the CZX model: 1+1D
symmetry-preserving gapless boundary with a
non-on-site global Z,-symmetry

The boundary of the CZX model that was studied in the
original paper is a very natural one, in which one simply
considers a finite system with an integer number of sites
[Fig. 3]. One groups the spins into plaquettes, as before,
but as shown in the figure, there is a row of spins on the
boundary that are not contained in any complete plaquette.
We call these the boundary spins.

We define the Hamiltonian as in Eq. (2.9), where now the
sum runs over complete plaquettes only. Because the
boundary spins are not contained in any complete pla-
quette, the system is no longer gapped. However, the
boundary spins are not completely free to fluctuate at no
cost in energy. The reason is that, to minimize the energy, a
pair of boundary spins that are adjacent to a plaquette p are
constrained to be equal. This is because of the projection
operators P in the definition of H,.

Hence, in a state of minimum energy, the boundary spins
are locked together in pairs. These pairs are denoted as o;,
0.1, etc., in Fig. 3(b), and one can think of them as
composite spins.

How does the Z,-symmetry generated by Uczx act on the
composite spins? Evidently, Uczx will flip each composite
spin. However, Uczx also acts by a CZ operation on each
adjacent pair of composite spins o;, o;, ;. That is because,
for example, in Fig. 3, the “upper” spin making up the
composite spin o; and the “lower” spin making up o, are
adjacent spins contained in the same site s in the underlying
square lattice. Accordingly, in the Z, generator Ucyx  for
site s, there is a CZ factor linking these two spins.

Therefore, the effective Z, generator for the composite
spins on the boundary is

Uzz = HO-;CUCZ,iiJrl- (3-1)

The product runs over all composite spins o6;; U 7, 1s the
product of operators o} that flip o; and operators Ucyz ;i1

that give the usual CZ sign factors for each successive pair
of composite spins. Clearly, this effective Z,-symmetry is
not on-site. No matter how we group a finite set of
composite spins into boundary sites, the operator U, will
always contain CZ factors linking one site to the next [59].

With the Hamiltonian as we have described it so far, all
states labeled by any values of the composite spins ¢;, but
with complete bulk plaquettes placed in their ground state
|¥,), are degenerate. Of course, it is possible to add
perturbations that partly lift the degeneracy. However, it
has been shown in Ref. [14] that the non-on-site nature of
the effective Z,-symmetry gives an obstruction to making
the boundary gapped and symmetry preserving.

B. The second boundary of the CZX model:
1+ 1D gapped boundary by extending the
Z,-symmetry to a Z,-symmetry

The main idea of the present paper can be illustrated by a
simple alternative boundary of the CZX model. To con-
struct this boundary, we simply omit the boundary spins
from the previous discussion. This means that, now, the
system is made of complete plaquettes, even along the
boundary (Fig. 4), but there is a row of boundary spins that
are not in complete sites. As indicated in the figure, we
combine the boundary spins in pairs into boundary sites.
Thus, a boundary site has only two spins, while a bulk site
has four. In the figure, we have denoted the “upper” and
“lower” spins in the ith boundary site as ;. and o;_.

To specify the model, we should specify what the
Hamiltonian looks like near the boundary and how the
global symmetry is defined for the boundary spins. First of
all, now that all spins are in complete plaquettes, we can
look for a gapped system with the same ground-state wave
function as in Eq. (2.6):

FIG. 4. By omitting the right row of spins from the boundary
of Fig. 3(b), we get an alternative boundary of the CZX model.
Now all spins are contained in plaquettes, but on the boundary
there are “incomplete sites,” shown as semicircles on the right of
the figure, that contain only two spins instead of four. The
“upper” and “lower” spins of the ith boundary site have been
labeled o;, and o;_.
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w,) = [[1¥,) = H%wm L), (32)

To get this ground state, we define the Hamiltonian by the
same formula as in Eq. (2.9). Only one very small change is
required: A boundary plaquette is adjacent to only three
pairs of spins instead of four, so in the definition of H, in
Eq. (2.9), if p is a boundary plaquette, the product of
projection operators ®, P9 contains only three factors and
not four.

The last step is to define the action of the global “Z,”
symmetry for boundary sites. We have put “Z,” in quotes
for a reason that will be clear in a moment. Once we have
chosen the Hamiltonian as above, the choice of the global
symmetry generator is forced on us. The symmetry gen-
erator at the ith boundary site will have to flip the two spins
o;, and o;_, of course, but it also needs to have a CZ factor
linking these two spins. So, the symmetry generator of the
ith boundary site will have to be

Uezxi = 05.0;_Ucziyi- (33)
The full symmetry generator is
Uczx = HUczx,s, (34)

where the product runs over all bulk or boundary sites s,
and Ucyyx , is defined in the usual way for bulk sites and as
in Eq. (3.3) for boundary states.

We have found a gapped, symmetry-preserving boun-
dary state for the CZX model. There is a catch, however.
The global symmetry is no longer Z,. Although the
operator Uczx ; squares to 1 if s is a bulk site, this is
not so for boundary sites. Rather, from Eq. (3.3), we find
that, for a boundary site,

U%ZX,:’ = =0}, 0; (3.5)

i

This operator is —1 if the two spins ¢, and o;_ in the ith
boundary site are both up or both down, and otherwise +1.
Clearly, U,y ; # 1, so the full global symmetry generator

Uczx does not obey Uz,y = 1 but rather

Uy = 1. (3.6)

Thus, rather than the symmetry being broken by our choice
of boundary state, it has been enhanced from Z, to Z,. But
a Z, subgroup of Z, generated by U%:zx acts only on the
boundary, since Uz,y = 1 for bulk sites.

What we have here is a group extension,

l1-K—-H—->G-1. (3.7)

G =27Z,=Z7Y is the global symmetry group of the bulk
theory, H = Z4 = Z is the global symmetry of the com-
plete system including its boundary, and K = Z, = ZX

(or a different Z)) is the subgroup of H that acts only along
the boundary. In this case, we denote the exact sequence
Eq. (3.7) also as

028>z 575 > 0.

As was explained from an abstract point of view in Sec. 3.3
of Ref. [51], and as we will explain more concretely later
in this paper, when certain conditions are satisfied, such a
group extension along the boundary gives a way to construct
gapped boundary states of a bulk SPT phase. (As we explain
in detail later, the relevant condition is that the cohomology
class of G that characterizes the SPT state in question should
become trivial if it is “lifted” or “pulled back” from G to H,
or more concretely if certain fields are regarded as elements
of H rather than as elements of G.)

From a mathematical point of view, this gives another
choice in the usual paradigm that says that the boundary of a
SPT phase is gapless, has topological order on the boundary,
or breaks the symmetry. Another possibility is that the
global symmetry of the bulk SPT phase might be extended
(or enhanced) to a larger group along the boundary,
satisfying certain conditions. In 1 4 1 dimensions, this is
a standard result: The usual symmetry-preserving bounda-
ries of (1 + 1)-dimensional bulk SPT phases have a group
extension along the boundary. The novelty is that a gapped
boundary can be achieved above 1 4 1 dimensions via such
a group extension.

Let us pause to explain more fully the assertion that
what we have just described extends a standard (1 + 1)-
dimensional phenomenon to higher dimensions. In the
usual formulation of the (1 + 1)-dimensional Haldane or
Affleck-Lieb-Kennedy-Tasaki (AKLT) spin chain, one
considers a chain of spin-1 particles with SO(3) symmetry.
The boundary is not gapped and carries spin 1/2.
Alternatively, one could attach a spin-1/2 particle to each
end of such a chain. Then the system can be gapped, with a
unique ground state, but the global symmetry is extended
from SO(3) to SU(2) at the ends of the chain. What we
have described is an analog of such a symmetry extension
in 2+ 1 dimensions.

In general, a bulk SPT state protected by a symmetry G
can also be viewed as a many-body state with a symmetry
H, where the subgroup K acts trivially in the bulk (i.e., the
bulk degrees of freedom are singlets of K). For example,
we may view the CZX model to have a Z4 -symmetry in the
bulk. By definition, two states in two different G-SPT
phases cannot smoothly deform into each other via defor-
mation paths that preserve the G-symmetry. However, two
such G-SPT states may be able to smoothly deform into
each other if we view them as systems with the extended
H-symmetry and deform them along the paths that preserve
the H-symmetry. For example, the nontrivial Z$-SPT state
of the CZX model can smoothly deform into the trivial
Z$-SPT state along a deformation path that preserves the
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extended Z¥-symmetry. In other words, when viewed as a
ZM symmetric state, the ground state of the CZX model has
atrivial Z¥-SPT order. Since it has a trivial Z{-SPT order, it
is not surprising that the CZX model can have a gapped
boundary that preserves the extended Z¥-symmetry, as
explicitly constructed above. In general, if two G-SPT
states are connected by an H-symmetric deformation
path, then we can always construct an H-symmetric domain
wall between them by simply using the H-symmetric
deformation path. This is the physical meaning behind a
G-SPT state having a gapped boundary with an extended
symmetry H.

From the point of view of condensed matter physics,
however, the sort of gapped boundary that we have
described so far will generally not be physically sensible.
Microscopically, condensed matter systems generally do
not have extra symmetries that act only along their
boundary. (There can be exceptions like the case just
mentioned, which is conceivable in any dimension: a
system that, in bulk, is made from particles of integer spin
but has half-integer spin particles attached on the surface.
Then, a 27 rotation of the spins is nontrivial only along the
boundary.)

In a system microscopically without an extended sym-
metry along the boundary, one might be tempted to
interpret K as a group of emergent global symmetries,
not present microscopically. But there is a problem with
this. In condensed matter physics, one may often run into
emergent global symmetries in a low-energy description.
But these are always approximate symmetries, explicitly
broken by operators that are irrelevant at low energies in the
renormalization group sense.

That is not viable in the present context. Since the global
symmetry that is generated by Uczx is supposed to be an
exact symmetry, we cannot explicitly violate the boundary
symmetry group generated by U%:zx' Obviously, any
interaction that is not invariant under U,y is also not
invariant under Ucyx.

What we can do instead is to gauge the boundary
symmetry group K. Then, the global symmetry group that
acts on gauge-invariant operators and on physical states is
just the original group H/K = G. This way, we do not
break or extend the symmetry on the boundary. Since K is
an on-site symmetry group, there is no difficulty in gauging
it; we explain two approaches in Secs. III C and III D.

In 3 + 1 (or more) dimensions, a procedure along these
lines starting with a bulk SPT phase with symmetry group
G and a group extension as in Eq. (3.7) that satisfies the
appropriate cohomological condition will lead to a gapped
boundary state with topological order along the boundary.
The topological order is a version of gauge theory with
gauge group K (possibly twisted by a cocycle). We will
give a general description of such gapped boundary states
in Sec. IX. In 241 dimensions, the boundary has
dimension 1 + 1 and one runs into the fact that topological

order is not possible in 1 4 1 dimensions. As a result, what
we will actually get in the CZX model by gauging the
boundary symmetry K is not really a fundamentally new
boundary state.

C. The third boundary of the CZX model:
Lattice Z‘;‘ -gauge theory on the boundary

We will describe two ways to gauge the boundary
symmetry K = Z, = ZX. The most straightforward way,
although as we will discuss ultimately less satisfactory
for condensed matter physics, is to simply incorporate a
boundary gauge field.

As indicated in Fig. 5, we label the link between
boundary sites i and i+ 1 by the half-integer i +%.
Placing a Z,-valued gauge field on this link means
introducing a qubit associated to this link with operators
Vi1, Ejy1 that obey

V2

i+l = E?Jr% =1L Ei%Vi% = _VH%EH%- (3.8)

Here, V;,1 describes parallel transport between sites i and
i+1,and E; 1 is a discrete electric field that flips the sign
of Vi +% .

Now, let us discuss the gauge constraint at site i. A gauge
transformation that acts at site i by the nontrivial element in
ZX is supposed to flip the signs of Vi, the holonomies on
the two links connecting to site i. To do this, it will have a
factor E; \E; 1. It should also act on the spins as

Ut,x; = —05,07_. Thus, the gauge generator on site i is
— 2
Q; = EiEi\Uezx - (3.9)

A physical state |¥) in the gauge theory must be gauge
invariant; that is, it must obey

FIG. 5. Gauging the boundary symmetry K = Z, = Z§ of
the boundary state of Fig. 4 is accomplished by placing on each
boundary link a Z,-valued gauge field. We label the link between
boundary sites i and i + 1 by the half-integer i + % We associate
to this link a new qubit with a discrete holonomy (as discussed in
the text) and a discrete electric field E;,;.
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Q) = ¥). (3.10)

However, as El2 = 1 for all i, if we take the product of €;
2

over all boundary sites, the factors of E; i cancel out, and
we get

(3.11)

HQi = HU%ZX,I"
Hence, Eq. (3.10) implies that a physical state |¥) satisfies

HU%zx,i‘\m =|¥). (3.12)

But this precisely means that a physical state is invariant
under the global action of K, so that the global symmetry
group that acts on the system reduces to the original global
symmetry G.

The Hamiltonian H = ) H, must be slightly modified
to be gauge invariant, that is, to commute with Q;. To see
the necessary modification, let us look at the plaquette
Hamiltonian H, for the boundary plaquette shown in the
figure, which contains the boundary link labeled i + % H,
as defined in Eq. (2.9) anticommutes with Q; and €,
because the operator [ 1) (LL 44|+ [LL L) (1111
has that property. (It flips one of the spins at boundary
site i and one at boundary site i + 1, so it anticommutes
with U%ZX,i = —o7, 0;_ and similarly with U%ZX’I- 1) To
restore gauge invariance is surprisingly simple: We just
have to multiply H), by V;,i, which also anticommutes
with Q; and Q,, . So, we can take the Hamiltonian for a
boundary plaquette containing the boundary link i + %to be

Y = (AL + LD (M)

® Vi1 ® Pi. (3.13)

For a gauge-invariant and G-invariant Hamiltonian,
we can take the sum of all bulk and boundary plaquette
Hamiltonians.

This Hamiltonian H commutes with all the discrete gauge
fields V; 11,80, in looking for an eigenstate of H (ignoring for
a moment the gauge constraint), we can specify arbitrarily
the eigenvalues of the V’s. Let |v; +%> be a state of the gauge
fields with eigenvalue v;,1 for V... (Of course, these
eigenvalues are £1 since V,<2+1 = 1.) The ground state of

2

H with these eigenvalues of the V; + is simply

Vi
o TN+ o I+ Vil L)

V; .
bulk V2 bdry V2 ® [viry)

(3.14)

Let us denote this state as ||v;,1). If the boundary has L

links, there are 2% of these states.

The states [|v;,1)) are degenerate, and these are the
ground states of H. However, to make states that satisfy the
gauge constraint, we must take linear combinations of
the ||v; %)). Since a gauge transformation at site i flips the

signs of v;.1, the only gauge-invariant function of the v; 1

is their product. Assuming that the boundary is compact
and, thus, is a circle, this product is the holonomy of the Z§
gauge field around the circle. (With periodic boundary
conditions along the boundary, there are no corners along
the boundary circle; otherwise, our discussion can be
slightly modified to incorporate corners.) Thus, there are
two gauge-invariant ground states, depending on the sign of
the holonomy [[;v;,1. They are

|\Ijgs(+)> = Z (3.15)

{”H%}’Hi ”i+%:]

C{vi+%} || UH-IE»

and

‘Tgs(_» = Z

{1;i+%}’1_[i '}i+%:_l

cpo pllvigd. (3.16)

[Here, the signs Clo ) = +1 are determined by the gauge
i)

constraints. With our choice of sign in the gauge constraints
Q,, flipping two of the v; that are separated by n lattice
states multiplies the amplitude by (—1)". This could be
avoided by changing the sign of €;, but that creates
complications elsewhere.]

Now, let us study the transformation of these states under
the global symmetry group G = Z, = Z§. When we apply
Uczx to the states [¥,(4)), we find that all the sign factors
CZ;; cancel each other. This occurs by the same cancella-
tion as in the original bulk version of the CZX model.
However, the wave function is no longer trivially invariant
under flipping the spins; rather, the wave function
[1111) + Viu[d L)) for a boundary plaquette is multi-
plied by V; +1 when the spins in this plaquette are flipped.

So, taking into account all the boundary plaquettes,

UCZX|ngs(:|:)> - iI‘Pgs(i»- (3-17)
Thus, the transformation of a state under the global
symmetry Z§ is locked to its holonomy under the gauge
symmetry ZX.

The formula in Eq. (3.17) has been written as if the
boundary of the system consists of a single circle; for
example, the spatial topology may be a disc. More generally,
we can consider a system whose boundary consists of
several circles. Each boundary component has its own
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ZX_valued holonomy, and the action of Uc,x on a ground
state is the product of all of these holonomies.

Now, let us look for a local operator with a nonzero
matrix element between the two ground states [Wy(+)).
For this, we need first of all an operator that changes the
sign of the holonomy around the boundary. The simplest
operator with this property is simply E; ;/, (for some i).
Because it flips the sign of V., ,, it reverses the sign of the
holonomy. However, the operator E; ./, is invariant under
the global symmetry group Z$, and therefore, it cannot
possibly have a nonzero matrix element between the two
ground states, which transform oppositely under the global
symmetry.

Concretely, E;./, does not map [P (%)) to [Py (F))
because it anticommutes with V. ,, which appears in one
factor in the definition of the state [|v;,/,)) in Eq. (3.14),
namely,

M) + Vigo 3.

[Instead, E; i /;|¥e(+)) is a new state that has the same
holonomy as [W,,(—)), but differs from it by the presence
of an additional quasiparticle carrying a nontrivial global
Z§-charge localized near the link at i + 1/2.] However, we
can get a local operator that reverses the holonomy and
commutes with this V;_/, if we just replace E;;/, by

(3.18)

Xiy12 = Eiz1007, (3.19)
(We could equally well use o7, ,_ instead of o7, .) This
operator leaves invariant the expression in Eq. (3.18) and,
accordingly, it simply exchanges the states |y (+£)):
Xi+1/2|qlgs(:t>> = |q‘gs(:F)>‘ (3.20)
The operator X;.,, is odd under the global Z5-
symmetry, because of the factor of o7, . This, of course,
is consistent with the fact that this operator exchanges the
states |Wy(£)). However, the existence of a Z§-odd local
operator that exchanges the two ground states means that
we must interpret the boundary state that we have con-
structed as one in which the global Z§-symmetry is
spontaneously broken along the boundary. Indeed,
although (Wys(+)[X 11 /2|Wes(4)) = 0, the two-point func-
tion of the operator X, |/, in the state [Wy,(+)) exhibits the
long-range order that signals the Z§-spontaneous sym-
metry breaking. In fact,

(Wos () X1 /2X 112 Wes () = 1 (3.21)
for any i, j. Similarly, (Wo(=)[Xiy1/2X;11/2[Pes(=)) = L.

This result is somewhat disappointing, since it is
certainly already known that any SPT phase in any
dimension can have a gapped boundary state in which

the symmetry is explicitly or spontaneously broken.
However, as we will see starting in Sec. IV, similar gapped
boundary states can be constructed for SPT phases in any
dimension, and in 3 4 1 (or more) dimensions, the gapped
boundary states constructed this way are genuinely novel:
They have topological order along the boundary, rather
than symmetry breaking. What we have run into here is that
the (1 + 1)-dimensional boundary of a (2 + 1)-dimensional
system does not really support topological order. Discrete
gauge symmetry (such as the ZX considered here) can
describe topological order in dimensions >2 + 1, but not
in 1+ 1 dimensions.

By contrast, the gapped boundary state described in
Sec. I B, in which the symmetry is extended along the
boundary rather than being spontaneously broken, is
genuinely new even in 2 4 1 dimensions. But as we have
noted, such a symmetry extension along the boundary is
physically sensible in condensed matter physics only in
particular circumstances.

Going back to the case that the boundary symmetry
is gauged, where does the state that we have described fit
into the usual classification of gapped phases of discrete
gauge theories? Since the states [W, (%)) with opposite
holonomies are degenerate, this would usually be called
a deconfined phase. But it differs from a standard decon-
fined phase in the following way. Typically, in (1 + 1)-
dimensional gauge theory with a discrete gauge group, the
degeneracy between states with different holonomy can be
lifted by a suitable perturbation such as

_”ZEHI/%

with a constant u (or, more generally, —> ;u;E; /2 With any
small parameters u;; a small local perturbation is enough).
In an ordinary ZX gauge theory, such a term would induce

an effective Hamiltonian density —u({) acting on the two

states (zg‘gf)) ). The ground state would then be (for u > 0) a

(3.22)

superposition of [¥(+)) and [¥,(—)). A discrete gauge
theory with a nondegenerate ground state that involves such
a sum over holonomies is said to be confining.

In the present context, the global Z§-symmetry under
which the states [W,,(4)) transform oppositely prevents
such an effect. On the contrary, it ensures that the
degeneracy among these two states cannot be lifted by
any local perturbation that preserves the Z§ -symmetry. The
above remarks demonstrating the spontaneous breaking of
the global Z$-symmetry make the issue clear. The sponta-
neously broken symmetry leads to a twofold degeneracy of
the ground state that is exact in the limit of a large system.

The remarks that we have just made have obvious
analogs in the construction described in the emergent
gauge theory construction of Sec. IIID, and they will
not be repeated there.
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D. The fourth boundary of the CZX model:
Emergent lattice Z‘;‘ -gauge theory on the boundary

The model constructed in Sec. IIIC using lattice ZX
gauge fields reduces the global symmetry to the original
Z§. However, it has one flaw from the point of view of
condensed matter physics. In condensed matter physics, not
only are the symmetries on-site, but more fundamentally
the Hilbert space can be assumed to be on-site: that is, the
full Hilbert space is a tensor product of local factors, one for
each site. (In fact, the Hilbert space has to be on-site before
it makes sense to say that the symmetries are on-site.)

The purpose of the present section is to explain how to
construct a model with on-site Hilbert space and sym-
metries that has the same macroscopic behavior as found
in Sec. III C.

The reason that the model in Sec. III C does not have this
property is that the variables V; il and E, ., are associated to
boundary links, not to boundary sites. One could try to cure
this problem by associating these link variables to the site
just above (or just below) the link in question. The trouble
with this is that then, although the full Hilbert space is on-
site, the gauge-symmetry generators 2; are not on-site (they
involve operators acting at two adjacent sites). Accordingly,
the space of physical states, invariant under the €;, is not an
on-site Hilbert space.

By analogy with various constructions in condensed
matter physics, one might be tempted to avoid this problem
by relaxing the physical state constraint Q;|¥) = |¥) and
instead adding to the Hamiltonian a term

AH =—c) Q.

with a positive constant ¢. Then, minimum energy states
satisfy the constraint Q;|¥) = |¥) as assumed in Sec. III C,
and, on the other hand, the full Hilbert space and the global
Z§-symmetry are on-site.

In the present context, this approach is not satisfactory.
Once we relax the constraint that physical states are
invariant under Q;, the global symmetry of the model is
extended along the boundary from G = Z§ to H = Z¥, and
we have really not gained anything by adding the gauge
fields.

Instead, what we have to do is to replace the “elemen-
tary” Z, = ZX gauge fields of Sec. IIIC by “emergent”
gauge fields, by which we mean simply gauge fields that
emerge in an effective low-energy description from a
microscopic theory with an on-site Hilbert space. There
are many ways to do this, and it does not matter exactly
which approach we pick. In this section, we will describe
one simple approach.

We start with the boundary obtained in Sec. III B and add
to each boundary site a pair of qubits described by Pauli
matrices 7;, (see Fig. 6). Since each boundary site already
contained the two qubits o, this gives a total of four qubits
in each boundary site, and a local Hilbert space H? of

(3.23)

/6.0 ‘0-0 ‘00 "

- - - G(i+1)+

|
O (i+1)-
O
(i+1)-
le) i+
Oi+
|

Oi-
O

FIG. 6. The filled dots are qubits (or spin-1/2’s). A (half-)circle
(with dots inside) represents a site. The dashed blue line
connecting dots i, j represents the phase factor CZ;; in the z§
or Zi global symmetry transformation. The open dots on the
boundary are the Z) = ZX-gauge degrees of freedom E; -

dimension 2¢. However, we define the Hilbert space H; of
the ith boundary site to be the subspace of H? of states that
satisfy the local gauge constraint

OEe ) = |w), (3.24)

where

frgauge Z 2 2 2
Ui = —of o] 7} 7 . (3.25)
The constraint is on-site, so H; is on-site.

Now, we add to the Hamiltonian a gauge-invariant

boundary perturbation
- UZT§+ T?l”r -
1

with a large positive coefficient U. At low energies, this
will lock 77 = Tf - In this low-energy subspace, 7; =

(3.26)

i+1)_
1) will play the role of E; il in the last subsection. What
will now play the role of the conjugate gauge field is

Z

T

Vil =7 (i) (3.27)

which anticommutes with z; =7, , . The Hamiltonian

i+1)_
for a boundary plaquette is defined as in Eq. (3.13), but

with this “composite” definition of V;, 1, and it commutes
with the gauge constraint operator in Eq. (3.25).

The global Z,-symmetry generator on the ith boundary
site is now given by

Uy ;=0 0t U eI (3.28)
Z,i = 0;.0; Uczi i, €""-¢€ . .

We find that

Fr2 z .z .z .z __ jrgauge
Uz,;= —0; 0; T, T = Ui

(3.29)
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So, f]%z.i =1 on states that satisfy the gauge constraint.
This is true for every bulk or boundary state, so the full
global symmetry generator, obtained by taking the product
of the symmetry generators over all bulk or boundary sites,
generates the desired symmetry group Z5.

The low-energy dynamics can be analyzed precisely as
in Sec. [II C, and with the same results. The first step is to
observe that, even in the presence of the perturbation of
Eq. (3.26), the Hamiltonian commutes with the operators
Vi1 Just as in Sec. III C, one diagonalizes these operators

with eigenvalues v;, 1, finds the ground state for given v;, 1,

and then takes linear combinations of these states to satisfy
the gauge constraint.

We remind the readers that Appendix A of this paper
contains more details on boundaries of the CZX model and
their 1 + 1D boundary effective theories. For a fermionic
version of the CZX model, see Appendix B. The boundary
of the fermionic CZX model with emergent ZX-gauge
theory with anomalous global symmetry is detailed in
Appendix C.

For the generalization of what we have done to arbitrary
SPT phases in any dimension, we can now proceed
to Sec. IV.

IV. BOUNDARIES OF GENERIC SPT STATES
IN ANY DIMENSION

What we have done for the CZX model in 2+ 1
dimensions has an analog for a general SPT state in any
dimension. To explain this will require a more abstract
approach. We work in the framework of the group
cohomology approach to SPT states, with a Lagrangian
on a spacetime lattice. So we first introduce our notation for
that subject. We generically write v, for a homogeneous
d-cocycle and u,; for a homogeneous d-cochain. We
similarly write w,; for an inhomogeneous d-cocycle and
P, for an inhomogeneous d-cochain. Finally, we write V,
for homogeneous d-cocycles or d-cochains with both
global symmetry variables and gauge variables and denote
Q, as inhomogeneous d-cocycles or d-cochains with both
global symmetry variables and gauge variables.

A. An exactly soluble path integral model that
realizes a generic SPT state

A generic SPT state with a finite symmetry group G can be
described by a path integral on a space-time lattice, or more
precisely, a space-time complex with a branching structure.
A branching structure can be viewed as an ordering of all
vertices. It gives each link an orientation—which we can
think of as an arrow that runs from the smaller vertex on
that link to the larger one, as in Fig. 7. More generally,
a branching structure determines an orientation of each
k-dimensional simplex, for every k, including the top-
dimensional ones that are glued together to make the full
spacetime.

8 &

(a)

) 8
| (b)

FIG. 7. The triangles with red (blue) loops have positive
orientation s, = 1 (negative orientation s;; = —1), with an
outward (inward) area vector through the right-hand rule. The
orientation of a tetrahedron (i.e., the three-simplex) is determined
by the orientation of the triangle not containing the first vertex.
So, (a) has a positive orientation s34 = +1, and (b) has a
negative orientation sgjp34 = —1.

To each vertex i, we attach a G-valued variable g;. (Later,
we may also assign group elements g;; to each edges ij.)
An assignment of group elements to vertices or edges will
be called a “coloring.” For a discrete version of the usual
path integral of quantum mechanics, we will sum over all
the colorings. (See Sec. IX A.) On a closed oriented space-
time, the “integrand” of the path integral is given by

e sz Lpudx = Hygij"’ (gi, 9j» Jks gl).
IYE

(4.1)

The argument of the path integral is a complex number with
a nontrivial phase and, thus, it can produce complex Berry
phases. We have written this formula for the case of 2 + 1
dimensions, but it readily generalizes to any dimension.
Here, s;j; = &1 for a given simplex with vertices ijkl,
depending on whether the orientation of that simplex that
comes from the branching structure agrees or disagrees
with the orientation of M. The symbol [],s represents a
product over all d-simplices.

Finally, and most importantly, the U(1)-valued
v4(gos ---,94) is @ homogeneous cocycle representing an
element of H?[G, U(1)]. This means vy(gy, ..., g) satisfy
the cocycle condition dv,; = 1, where

[Licevena(90s -+ Gi -+ s Gas1)
(5Vd)(907~--,9d 1)E : ~ .
" Hi:oddvd(QOv coor Jiv ooon Gas1)

(4.2)

(The symbol g; is an instruction to omit g; from the
sequence.)
We regard the complex phase v as a quantum amplitude
assigned to a d-simplex in a d-dimensional spacetime.
First, the path-integral model defined by the action
amplitude Eq. (4.1) has a G-symmetry

1157 (90 950 90 ) = T [#57 (99i- 99> 99x- 990
M3 M3

g€ G, (4.3)
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since the homogeneous cocycle satisfies

v3(9i- 9 9 1) = v3(99: 995- 99k 991)-  (4.4)
Second, because of the cocycle condition, one can show
that

o= Jun Eond’x _ 115 99500090 = 1. (4.5)
M3

for any set of ¢’s, when the spacetime M? is an orientable
closed manifold. This implies that the model is trivially
soluble on a closed spacetime and describes a state in which
all local operators have short-range correlations. This state
is symmetric and gapped. It realizes a SPT state with
symmetry G. The state is determined up to equivalence by
the cohomology class of v5.

B. The first boundary of a generic SPT state: A simple
model but with complicated boundary dynamics

So far, we have described a discrete system with
G-symmetry on a closed three-manifold M3. What happens
if M3 is an open manifold that has a boundary OM? = M??
The simplest path-integral model that we can construct is
simply to use all of the above formulas, but now, on a
manifold with a boundary. Thus, the argument of the path
integral is still given by Eq. (4.1), but now, this is no longer
trivial:

e fM3 Lpud®x _ HV;W (gi’gﬁgk’gl) #+ 1. (4.6)
M3

Because of the properties of the cocycle, this amplitude
only depends on the g; on the boundary, so it can be viewed
as the integrand of the path integral of a boundary theory.

To calculate the path integral amplitude of the boundary
theory, we can simplify the bulk so that it contains only one
vertex g* (see Fig. 8). In this case, the effective boundary
theory is described by a path integral based on the
following amplitude:

2+1D space—time

FIG.8. The space-time D3, with a triangulation of the boundary
and a construction of three-simplices (or four-cells) in the bulk.
Such a triangulation is used to construct a low-energy effective
path integral for the boundary.

€_ ﬁ?M3 L:Bdfyf)M3d2x = Hy;iﬂ" (gi7 gj’ Gk g*> (47)
om?
This depends only on the boundary spins g;, g;, gi. ..., and

not on ¢* in the bulk. (This follows from the cocycle
condition for v3. Readers who are not familiar with this
statement can find the proof in Sec. IX.) Here, 5,5, = +1
depending on whether the orientation of a given triangle
that comes from the branching structure agrees with the
orientation that comes from the triangle as part of the
boundary of the oriented manifold M?>. [Symbols like d>x
and similar notation below are shorthands for products
over simplices, as written explicitly in the right-hand side
of Eq. (4.7).]

Since the path integral amplitude of the boundary theory
is path dependent and not equal to 1, the dynamics of the
simple model is hard to solve, and we do not know if the
boundary is gapped, symmetry breaking, or topological. In
fact, for cocycles v; that are in the same equivalence class
but differ by coboundaries, the boundary amplitudes are
different, which may lead to different boundary dynamics.
In Sec. IIT A, for the case of the CZX model, we have
chosen a particular cocycle in an equivalence class. This
choice of cocycle leads to a gapless boundary.

In general, given only a generic cocycle, the dynamics of
this model is unclear and possibly nonuniversal. We will
describe more fully the anomalous symmetry realization in
this boundary state in Sec. IV C, and then we will introduce
alternative boundary states in Sec. IV D.

C. Non-on-site (anomalous) G-symmetry
transformation on the boundary effective theory

1. Symmetry transformation on a spacetime
boundary in Lagrangian formalism

We continue to assume that the spacetime manifold M>
has a boundary OM? = M?, which can be regarded as a
fixed-time slice on the closed space region OM?>. The
effective theory Eq. (4.7) possesses the G-symmetry:

- E . 3d2X o Siik k
e LMs Bdry.OM = HI/3’ (g,',gj,gk’g )
om3

= 1" (99~ 995 991 5°)-
om>?

(4.8)

But this G-symmetry in the presence of a boundary is in
fact anomalous (i.e., non-on-site). The anomalous nature of
the symmetry along the boundary is the most important
property of SPT states.

To understand such an anomalous (or non-on-site)
symmetry, we note that, locally (that is, for a particular
simplex), the action amplitude is not invariant under the
G-symmetry transformation:
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v3(99:- 995 99k 9°) # v3(91- 95 9. 9°)- - (4.9)
Only the total action amplitude on the whole boundary
(here, the boundary OM?> = M? of an open manifold is a
closed manifold) is invariant under the G-symmetry trans-
formation. (Readers who are not familiar with this state-
ment can read the proof in Sec. IX.) Such a symmetry is an
anomalous (or non-on-site) symmetry.

Since the action amplitude is not invariant locally, but
invariant on the whole boundary OM> = M?, thus, under
the symmetry transformation, the Lagrangian may change
by a total derivative term:

Ly onr[99(X)] = Lpary on [9(x)] +dL'[g(x)].  (4.10)
The presence of d£’'[g(x)] is another sign of the anomalous
symmetry. To understand the symmetry transformation on
the boundary in more detail, we note that, in our case,
dL'[g(x)] is given by

Sijk —1
/ v ir»Yjs )
e—szdﬁ [g(x)]d?x _ H 3 sig;{gl 9j: 9> 9 *g ) (411)
o V3 (9095 9 9)
If we view

v3(9i. 97 9. 97 97)
y3(gi7 gj’ k> g*)

f2(9:: 950 9x) . (412)

as a two-cochain, it is actually a two-coboundary (see
Fig. 9):

v3(9i- 952 9 97 9°)
v3(9i, Gjs G g)

_ 39099979 )vs(9- 9097 97'9)
v3(9i, 9. 95, 971 9")

fz(givgj’gk) =

=df, (4.13)
with a one-cochain f| as
F1(9i.9;) = v3(9i- 99", 97" 9)- (4.14)
Thus,
g g*
gl gk
g.
g*
FIG. 9. Graphic representations of f5(g;, 9j 9) =

vs(9i 9j0 i 97'g%)/vs (9. gj» 9» 9°)], which is actually a
coboundary. See Eq. (4.13).

- "g(x)]|d?x Sij Sij
€ Jip ool _ Hfz (91 9j» 9) = Hf] (9i-95)-
M2

oOM?
(4.15)

In some sense, £’ is given by f,. When the spacetime
boundary M? = OM?, we have OM? = O’M?> = @, and,
therefore, Eq. (4.15) simplifies to

e~ Jup 4L NEx _ (4.16)
Thus, globally there is a global symmetry, as was claimed
in Eq. (4.8), though it holds only up to a lattice version of a
total derivative.

2. Symmetry transformation on a spatial boundary
in Hamiltonian formalism

In the above, we have discussed the effective symmetry
transformation on the spacetime boundary in Lagrangian
formalism. Now, we will proceed with a Hamiltonian
formalism.

What we mean by a Hamiltonian formalism is to choose
a fixed space M?, and use the path integral on M? x I to
construct the imaginary-time evolution unitary operator

e w2, where I = [0, 1] represents the time direction (see
Fig. 10). The matrix elements of the imaginary-time
evolution operator are (e_HMZ){‘(/i/w}’{g;”__}, where {¢}, ...}
are the degrees of freedom on M? x {0}, and {g/,...} on
M? x {1}. We may choose M? x I to represent just one
time step of evolution, so that there are no interior degrees
of freedom to sum over. In this case, the unitary operator is

_ Sk
) vigoy = 114" (90095 90 91)-
M?*xI

(4.17)

When the space M? has a boundary, then some degrees
of freedom live on the boundary OM? and others live in the
interior of M?. We can ask about the properties of global
symmetry transformations in two scenarios: The first is the
symmetry of the whole bulk and the boundary included
together, which is an on-site symmetry. The second is the
symmetry of the effective boundary theory only, which
turns out to be a non-on-site symmetry.

FIG. 10. M? x I representing one step of imaginary time
evolution, for the effective boundary theory. The space M? is
given by the disk.
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ey

@

For the first scenario, the symmetry of the whole
bulk and the boundary together, we have

() ot oo = ) (g1

because every homogeneous cochain satisfies
v3(99:- 99> 99k 991) = v3(9i- 9> 9i- 91)- 1 we write
the evolution operator e ~Hyp explicitly, including the
matrix elements and basis projectors, we see that

{9 1)€Y 3 oy {950}
= Uo(@) gl D) gy
x ({g, - U (9),

where U (g) generates the usual on-site G-symmetry
transformation [{g;,...}) = [{9g;,...}). Thus, the
G-symmetry transformation on the whole system
(with bulk and boundary included) is an on-site
symmetry, as it reasonably should be, as in condensed
matter.

For the second scenario, to obtain the symmetry
of the effective boundary theory, we can simplify all
the interior degrees of freedom into a single one g*;
then, the degrees of freedom on M? are given by
{91 9>, ..., 9"}, where g, live on the boundary OM?>
and g* lives in the interior of M? (see Fig. 10). Now,
the imaginary-time evolution operator is given by

(&) gty = L1937 (002959009, (4.18)

M>xI

which defines an effective Hamiltonian for the boun-
dary. Now, we are ready to ask: What is the symmetry
of the effective boundary Hamiltonian, or effectively

the symmetry of time evolution operator e *on??

The analysis of global symmetry in Sec. IV C 1 no
longer applies. The discrete time evolution operator
does not have the usual global symmetry:

-, .
(€ ) (g 1lgg} F (€7 ) gy ) g}
(4.19)
since
1147 (99995 99k ")
M*x1
= 1[4 99590 97'9")
M3>xI
# 11457 (99 91 9°).- (4.20)

M2xI
The difference between two matrix elements

(e_HaM ){gy" $A9d- ) and (e E)Mz){ e A
a U(1) phase factor

y is just

031048-14

E vy (90, 9j: 90 97'9")
M2xI Uk<gz7g/vgk g )
- H fs”k gl’g]7gk

OM?*x1I

| D)
OM?*x0I

1T #9197 97"9")
OM?*x0I

-1 %
:H(> (g g9 g g) (421)

[jvs' (g g 997" g")

where [[,,2,; multiplies over all the three-simplices
in Fig. 10, [[gue2x, over all the two-simplices on
OM? x I, and []ps2xs; Over all the one-simplices on
the top and the bottom boundaries of 9M? x I. Note
that many oppositely oriented v; terms are canceled
out in order to derive the last form of the above
Eq. (4.21). This means that the boundary time evolu-
tion operator is invariant,

R S Tl PP C (S |
= U(g)H{g. .- 1™
x ({g}, .- U (g),

") 1. 31

under a modified G-symmetry transformation

where

Uiy = | [95"(91 9997 9") (4.23)
(i)

and Uy(g) generates the usual on-site G-symmetry
transformation |{g;,...}) = [{9g:,...}). The phase
factor Uy, ., makes the G-symmetry non-on-site at
the boundary.

We have written these formulas in 2 + 1 dimen-
sions, but they all can be generalized. In d dimensions,
we have an effect boundary symmetry operator {/ (9)
acting on M~ for the effective boundary Hamil-

tonian e~ Howd-1:

U(g)=Uo(9)Uy,,. .,
7 u £ x 1, x
_UO(g) H (gl’g/v“"gfvg g g )

(ij---f)eaMd !
(4.24)
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D. The second boundary of a generic SPT state:
Gapped boundary by extending the G-symmetry
to an H-symmetry

In Sec. Il A and also in Sec. IV B, we considered the path
integral of a G-SPT state described by a homogeneous
cocyclev, € HY[G, U(1)]. The path integral that we studied
in that section remained G-symmetry invariant even on a
manifold with a boundary, where the G-symmetry is an on-
site symmetry in the bulk. However, if we integrate out the
bulk degrees of freedom, the effective boundary theory will
have an effective G-symmetry, which must be non-on-site
(i.e., anomalous) on the boundary. This anomalous G-
symmetry on the boundary forces the boundary to have
some nontrivial dynamical properties.

However, the simple model introduced in Sec. IV B has a
complicated boundary dynamics, which is hard to solve.
There are several standard ways to modify the construction
in Sec. IV B to get a boundary that can be solved exactly.
One way to do so is to constrain the group variables g; on
boundary sites to all equal 1, or at least to take values in a
subgroup G’ C G such that the cohomology class of v,
becomes trivial when restricted to G’. Given this, after
possibly modifying v; by a coboundary, we can assume
that v; = 1 when the group variables g; all belong to G’. In
this case, the action amplitudes for the boundary effective
theory Eq. (4.7) are always equal to 1 (after choosing
g € G'). So, the boundary constructed in this way is
exactly soluble and is gapped. This construction amounts to
spontaneous or explicit breaking of the symmetry from G
to G'.

In this section, we will explain another procedure to
construct a model with the same bulk physics and an
exactly soluble gapped boundary. This will be accom-
plished by extending (rather than breaking) the global
symmetry along the boundary. Then, as in our explicit
example of the CZX model in Sec. III B, we get a boundary
state that is gapped and symmetric, but the symmetry along
the boundary is enhanced relative to the bulk.

1. A purely mathematical setup on that
G-cocycle is trivialized in H

To describe the symmetry-extended boundary, let us
introduce a purely mathematical result. We consider an
extension of G,

1-K—->HLG -1, (4.25)
where K is a normal subgroup of H, and H/K = G. Here,
r is a surjective group homomorphism from H to G. A
“G-variable” G-cocycle v4(gy, ---, g4) can be “pulled back”
to an “H-variable” H-cocycle v/ (hy, ..., hy), defined by

H(hy,....hg) =vglr(hg),....r(hy)| =15[r(ho), ..., r(hg)).

(4.26)

The case of interest to us is that v is trivial in H¢[H, U(1)].
This means v (hy, ..., h;) can be rewritten as a coboun-
dary, namely,

vif (hos s hg) = Sl (ho, .., hg)
—ovent (hos o By b
= Hlfeven/’tl-dl—l( 0 - d) ) (427)
Hi:odd/’td—] (ho, ey hi? ceey hd

(The symbol fzi is an instruction to omit h; from the
sequence.)
For the convenience and the preciseness of the notation,
we can also shorten the above Eq. (4.27) to
WGlr(n)] = v (h) = oull (). (4.28)
where the variable / in the bracket is a shorthand of many
copies of group elements in a direct product group of H.
By pulling back a G-cocycle yg back to H, it becomes an
H-coboundary 5;!5_1. Formally, we mean that a nontrivial
G-cocycle
v§ e HYG,U(1)] (4.29)
becomes a trivial element when it is pulled back (denoted
as x) to H
G = =5l e HYH, U(1)). (4.30)
Saying that this element is trivial means that the corre-
sponding cocycle is a coboundary.
Here, u | (hg,...,h4_;) is a homogeneous (d — 1)-
cochain:

,leH_l (hho, ceey hhd—l) = IMZI—I (ho, ey hd—l)' (431)
The definition of 1/5[ also ensures that
UZ](Uoho, ey Udhd) = l/g(ho, ceey hd)’ U e K, (432)

since r(v;) = 1 is trivial in G for any v; € K. In particular,
vy, ...,vg) = 1,v; € K, and therefore,

Hi:evenﬂg_l (U07 ..
Hi:oddﬂg_l (vo, -

D) gy )
o Diy e Ug)
Thus, when we restrict to K, the cochain uf | (vg, ..., v4_;)
becomes a cocycle X | in HY![K, U(1)]. An important
detail is that, in general, the cohomology class of u%_, is not
uniquely determined by the original cocycle v,. In general,
it can depend on the choice of cochain ,ug_l that was used to
trivialize /.

In fact, let uf | and i | be two cochains, either of which
could be used to trivialize vf:
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v =sull | =spll . (4.34)

Then, V2 | = uf (75 )7 is a cocycle, 57 | = 1. So,
v | has aclass in H"![H, U(1)]. If this class is nontrivial,
the gapped boundary states that we will construct using
pH, and g | are inequivalent. Thus, the number of
inequivalent gapped boundary states that we can make
by the construction described below (keeping fixed H and
K) is the order of the finite group H~'[H, U(1)]. [60]

A nontrivial class in H*"'[H, U(1)] may or may not
remain nontrivial after restriction from H to K, so, in
general, as stated above, the cohomology class of X | can
depend on the choice of uf .

2. H-symmetry extended boundary:
By extending G-symmetry to H-symmetry

To construct the second boundary of a generic SPT state,
we allow the degrees of freedom on the vertices at the
boundary to be labeled by i; € H. This amounts to adding
new degrees of freedom along the boundary. The degrees of
freedom on the vertices in the bulk are still labeled by
¢; € G. With this enhancement of the boundary variables,
we can write down the action amplitude for the second
construction as

[Taev"*(90-91-- -+ 9a)
H@M"(ﬂd 1)‘01 (@-1) (h() hy,...,

where v, and ,udH_l are the cochains introduced in the last
section and M? may have a boundary. Here, if a vertex in
v4(gos> g1 ---» gg) is on the boundary, the corresponding g; is
given by g; = r(h;).

We note that, since r: H — G is a group homomorphism,
the action h: H — H, h; — hh;, induces an action r(h):
G — G, g; — r(h)g,. Therefore, the total action amplitude
Eq. (4.35) has H-symmetry:

¢ Jua Eont's (4.35)

hd—l)’

l_IM"I/dO1 d(g()7g17 ""gd)
HaMd (ﬂd l)sm '(dil)(ho’ hlv cees hd—l)

HMWSO] “[r(h)go, r(R)gy, ...
H@M"(/"d—l)sm (@1 (hhy, hhy, ...,

where & € H. In the bulk, the symmetry is G, but along the
boundary, it is extended to H. Such a total action amplitude
defines our second construction of the boundary of a
G-SPT state, which has a symmetry extension G lifted
|

J’(h)gd}
hhg_y)’

(4.36)

f (hn h)’ hk)

i (g g ™ Yl gy D) (g )

to H on the boundary. We return to more details on this
model in Sec. IX.

The bulk of the constructed model is described by the
same group cocycle v,, which gives rise to the G-SPT state.
But the boundary has an extended symmetry H. In this
case, we should view the whole system (bulk and boun-
dary) as having an extended H-symmetry, with the K
subgroup acting trivially in the bulk. So the effective
symmetry in the bulk is G = H/K.

The dynamics of our second boundary is very simple,
since the total action amplitude Eq. (4.35) is always equal
to 1 by construction:

Hl/ oL d gO,g],-.-,gd)_H( H)Sm'"d(ho hl""vhd)

_|| SOld

oM

h’O’hl""’hd—l)?

(4.37)

where g; = r(h;). Thus, the ground state is always gapped
and there is no ground state degeneracy regardless of
whether the system has a boundary or not. In other words,
the second boundary of the G-SPT state is gapped with
H-symmetry and no topological order. The gapped boun-
dary with H-symmetry and no topological order is possible,
since we have chosen H so that when we view the G-SPT
state as an H-SPT state, the nontrivial G-SPT state becomes
a trivial H-SPT state.

E. On-site (anomaly-free) H-symmetry transformation
on the boundary effective theory

Now, we show that symmetry extension, as described in
Sec. IV D 2, gives a boundary state with on-site (anomaly-
free) H-symmetry, based on the Hamiltonian formalism on
the boundary. This section directly parallels the previous
discussion in Sec. IV C, where a nontrivial G-cocycle
gives rise to a non-on-site effective G-symmetry on the
boundary. After extending the symmetry to H, the non-
trivial G-cocycle v, becomes a trivial H-cocycle v, which
in turn gives rise to an on-site effective H-symmetry for the
boundary effective theory.

Taking d =3 as an example, Egs. (4.13), (4.14), and
(4.15) of Sec. IV C 1 still hold. Furthermore, when h;, h;,
and Ay, are boundary degrees of freedom in H, Eq. (4.13)
becomes

Wl (B g Yl (B, By, Y (B, T, )1

= df,. (4.38)
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A

‘}V hi

FIG. 11. Graphic representation of  f,(h;.h;.hy) =
e iy VI oy )] o ) )
(W (hy by ) bt (hy g ™ 1h*)] =df,, again as a coboundary.
Each shaded blue triangle is assigned with a split cochain
M?- See Eqgs. (4.38) and (4.39).

See Fig. 11 for an illustration. Here, 4% is a homogeneous
two-cochain that sphts VA Tor v§({r(h)})] and satisfies

5 (hi by h="h*) = p& (hh;, hhy, h*). Now, the split two-
Cochaln f1 in Eq. (4 14) has a new form:

i (i by, )
Wl (hy h, )

i It

fi(hishy) = (4.39)

To show more clearly that H-symmetry can be made on-
site and anomaly-free in any dimension d, we note that the
action amplitude Eq. (4.35) can be rewritten as

HMd (I/g)sm”'d (l’lo, h1 s ey hd)
[ Tonse (i) )00 (ho, by, oo hg_y)
(4.40)

e fM,g Lpudx _

Each local term  (uf |)%r@n(hg, hy,....;hy_y) is
already invariant under H-symmetry transformation on
the boundary. So, we will drop it. The term
(H)$or-a(hg, by, ...,hy) may not be invariant under
H-symmetry transformation on the boundary, although
their product [[.(uf )% (hg, hy,...,hy) is. This may
lead to a non-on-site H-symmetry. Repeating the calcu-

lation in Sec. IVC, we found that the discrete time

evolution operator e ~Hywa-1 does not have the usual global

symmetry, where their matrix elements follow:

(€ ) Gy y gy F (€7 Hows- Do gy (441)

But, it is invariant

|{hh{',~-}>(e_H9Md_l){hh” S{hh.... }<{hhi}|
TR 3 o) gy 3 (L 3T (h),

under a modified symmetry transformation operator

Om=0,n) [ e b hVhe),

(ij-€)€OMd-!

(l/g)s"j"'f (hi7 hj’ ceey

(4.42)

which appears to be non-on-site. However, since v/ =

5#5—1 is a coboundary, the above can be rewritten as (see
Figs. 10 and 12)

N N i (- )sie (hhy, hhj,....hhe h*

U(h):Uo(h)H(’ ¢)edm? (ﬂd ;1) ( f* )
H(ijnf)ei)Md*‘(/’ld—l) (hl’hj’ heh )

(4.43)

After a local unitary transformation |{h;})—

W)= I{hY), with
winh = 1

(ij...) €M

ﬂd 1 (A b o e ),

we can change the above H-symmetry transformation to

U(h) — WO(R)W = Uy (h), (4.44)
which indeed becomes on-site. The on-site symmetry

Uo(h) makes the time evolution operator invariant under

hi... ) Haw-l>{hh~ IR (N

x ({h, ..} OG (h).

The subtle difference between Secs. IV C and IVE is
that the v,(g;.9;.....9,.9".g"'g") cannot be absorbed
through local unitary transformations, but its split form
/45_1 (h;. hj, ..., h*) can be absorbed. Namely, one can think
of uf | as an output of a local unitary matrix acting on local
nearby sites with input data 4;, ;, ... in a quantum circuit.

To summarize what we did in Secs. IV C and IV E, the
G-symmetry transformation on the boundary was non-on-
site and, thus, anomalous. The H-symmetry transformation
on the boundary is now made to be on-site, by pulling back
G to H; thus, it is anomaly free in H.

F. The third boundary of a generic SPT state:
A gapped symmetric boundary that violates locality
with (hard) gauge fields

In the last section, we constructed a gapped symmetric
boundary of a SPT state such that the global symmetry is
extended from G to H along the boundary. Such boundary
enhancement of the symmetry is usually [61] not natural in
condensed matter physics. Just as in our discussion of
the CZX model in Secs. I C and 11 D, the way to avoid
symmetry extension is to gauge the boundary symmetry K,
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h™'h*

FIG. 12. Geometric picture to explain the calculation from
Eq. (442) to Eq. (4.43) (for the d=3 -case).
[Liij-ycomer W) 5 (his by, .o b, h* B RY) in Eq. (4.42) is
a product over all the three-simplices in the figure.
H(ij-nf)e(?M"‘l (ulf_y )5 (g, hhj, ..., hhy, h*) = H(ij-~-f)e(‘?M‘1“ X
(uf )¢ (hi by, ... he, h™'h*) is a product over all the two-
simplices on the top surface, and [[;..comet (MY ,) 5 %
(hi by, ....he, h*) is a product over all the two-simplices on
the bottom surface.

giving a construction in which the full global symmetry
group is G (or G’ in the more general mixed breaking and
extension construction described in Sec. VIII B).

As in the CZX model, there are broadly two approaches
to gauging the K-symmetry. One may use “hard gauging,”
in which one introduces (on the boundary) elementary
fields that gauge the K-symmetry, or “soft gauging,” in
which the boundary gauge fields are emergent. Hard
gauging is generally a little quicker to describe, so we
begin with it, but soft gauging, which will be the topic of
Sec. IV G, is more natural in condensed matter physics
because it can be strictly local or “on-site.” Our discussion
here and in the next section is roughly parallel to Secs. I1I C
and III D on the CZX model.

To construct a new boundary, let us consider a system on
a d-dimensional space-time manifold M¢, with a triangu-
lation that has a branching structure. A vertex i inside M?
carries a degree of freedom ¢; € G. A vertex i on the
boundary OM? carries a degree of freedom h; € H. A link
(ij) on the boundary M9 carries a degree of freedom
v;; € K. See Fig. 13.

We choose the action amplitude of our new model to be

— | JLdix _ Sig-ig
(& fM] = H v, (gio""’gid)
(ig:-+iq)EM?
« T1 oy
(ig--iq-1)€EOM?
X (hi()’ ""hi,/,l;vl‘ol‘wvioiz’ ), (445)
where H(,» ..in 1s a product over d-dimensional simplices
0

(ig---iq) in the bulk, and [[., ) is a product over
(d — 1)-dimensional simplices (ig---iz_;) on the boun-
dary. s;..;, = £l is the orientation of the d-simplex
(ig---i4), and s;.;, = F1 is the orientation of the
(d — 1)-simplex (io - - iy_y). Finally, VX% will be defined

FIG. 13. A boundary of a G-SPT state. A vertex i on the
boundary carries i; € H, and a link (ij) carries v;; € K.

in Sec. IV F 1, using ﬂ5—1 introduced in Sec. IV D 1, as well
as “hard-gauge fields” v;; along boundary links.

In the action amplitude Eq. (4.45), v; € HY[G, U(1)] is
the cocycle describing the G-SPT state. We have assumed
that if a vertex i in v4(gy, ..., g4) is on the boundary, then
the corresponding g; is given by g; = r(h;).

1. A cochain that encodes “hard-gauge fields”
cochain fo_’lf(h,-n,...,hidfl;v,»o,»l,
Vjy,+ ---) Will be defined for boundary simplices. It will
depend on H-valued boundary spins h;, as well as
K-valued boundary link variables v;;. As usual in lattice
gauge theory, we can regard v;; as a K-gauge connection on
the link ;.

First, we assume that VH_’If(h,-O, by 0V ) =0
for any configurations v;; that do not satisfy v; ;, v;,;; = vj,,
for some iy, i5, i3. So, only the v;; configurations that satisfy

The generalized

ViyiyViyis = Viyiy (4.46)
on every triangle can contribute to the path integral. This
means that only flat K-gauge fields are allowed.

For a flat connection on a simplex with vertices

ig,.--»ig_1, all of the v;;, can be expressed in terms of
. . H.K .
Vo1s V125 V235 -+ Ug_n.q—1- S0 likewise, V., (hg, ..., hy_1;
Vo1, Vg2, V12, ---) Can be expressed as Vg_'lf(ho,..
Vo1, V12, s Vg—n.q-1)- We define V([j_"f in terms of the
homogeneous cochain pff | of Sec. IVD 1 by

whays

H K .
Vi (h()v s hg_13 001, V02, V12, )

H.K .
= Vd—l (ho, ceny hd—lv Vo15 V125 + -+ yd—Z,d—l)

= pii (ho, vorhy, vorviohy, ..). (4.47)
In other words,
V{i—l—’ll((hO’ LX) hd—l; Vo15 V125 + -+ ”d—2,d—1)
:/451—10’0,;11,;12, )y (4.48)
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where ; is given by h; parallel transported from site i to
site 0 using the connection v;;:

hi = 1)01’[]12...’[][_1’1'}1['. (449)
We note that VSI_’II( has a local K-symmetry generated by
vy, V1, ... € K:
H,K .
Vil (Uohov coos Ugm1 Mg—13 Vo1, U125 -0 ”d—z,d—l)
H.K - _
= Vd—l (l’lo, ceey hd—l’ UOIUO]U], UI]UIQ’l)z, ) (450)

Next, we will view such a boundary local symmetry as a
K-gauge redundancy by viewing two boundary configu-
rations (h;, v;;) and (hj, v;;) as the same configuration if
they are related by a gauge transformation:

h; = v;h;, v = ;007! v;eK. (4.51)
Equation (4.50) ensures the gauge invariance of the
boundary action.

Now that we have gauged the K-symmetry, the global
symmetry of the full system, including its boundary, is G.
However, viewing two boundary configurations (%;,v;;)
and (h}, o' ]-) as the same configuration makes the gauged
theory no longer a local bosonic system. This is because the
number of different (i.e., gauge inequivalent) configura-

tions on the space-time boundary M is given by [62]

N, 4
| K |l7o(OMO)] (4.52)

where N, is the number of vertices, N, is the number of
links on the boundary OM¢, and [Set| is the number of
elements in the Set. Here, we count all the distinct
configurations of vertex variables of H and link variables
of K, identifying them up to K-gauge transformations
on the vertices. We consider all higher energetic configu-
rations, which include both flat and locally nonflat con-
figurations, much more than just ground-state sectors.
Constant gauge transformations yield an additional factor

|K|1%0(@M%) The appearance of the factor | K|1%0(@") whose
exponent is not linear in N, and N;, implies a nonlocal
system. So, the third boundary is no longer local in that
strict sense. In Sec. IV F2, we show that this nonlocal
boundary is gapped and symmetric. In Sec. IV G, we will
replace hard gauging with soft gauging and thereby get a
boundary that is fully local and on-site, while still gapped
and symmetric.

2. A model that violates the locality
for the boundary theory

In the path integral, we only sum over gauge distinct
configurations:

Sioyi
V" (Gigs -+ i)

""hid—l’vioil’viliz’ ),

(4.53)

where [h;,v;;] represents the gauge equivalence classes.
(Equivalently, we can sum over all configurations and
divide by the number of equivalent configurations in each
gauge equivalence class.)

We emphasize that, since the boundary theory is non-
local with respect to the boundary sites, it is no longer
meaningful to distinguish on-site from non-on-site sym-
metry, or anomaly-free from anomalous symmetry.

However, this system does have a global G-symmetry.
To see this, let us consider a transformation generated by
h € H, given by

(hiv 'Ul'j) i (hhi, h’l)l‘jh_l) (454)
if i is on the boundary, and
gi = r(h)g; (4.55)

if i is in the bulk. Clearly, such a transformation is actually a
G transformation in the bulk. On the boundary, since
(hi,v;;) and (vh;, vv;;v~") are gauge equivalent for
v € K, h and hv generate the same transformation. So,
the transformation on the boundary is given by the
equivalence class [k] under the equivalence relation
h~hv, v € K. Since K is a normal subgroup of H, the
equivalence classes form a group H/K = G. Thus, the
transformation is also a G transformation on the boundary.
Such a transformation is a symmetry of the model, since

VI (hhy,. ... hh
= Vi (h,

o> " id—l’

hv; ; h=' o, ! L)

iol] iz

Uioi] s Ui]i27 ),

ig-1?

(4.56)

where we have used the definition in Eq. (4.47). We note
that hvijh‘l € K, since K is a normal subgroup of H. So,
the partition function in Eq. (4.53) gives us a boundary
effective theory that still has the G global symmetry.

Now we can ask whether the ground state at the
boundary breaks the G-symmetry or not. More generally,
what is the dynamical property of such a boundary? Is it
gapped? To answer such a question, we note that, on a
triangulated M, in general,

S
H l/do d(giw""gid)#l’

(ig-ig)EM?

(4.57)

since M9 has a boundary. But, we can show that if the
boundary is simply connected, then
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- [ cat
e fo’ g hi‘H;U

Sinei
H V" " (Gig» -+

(ig-ig)EM?

) gi,,) H (Vg—’ll()_SiO

(ig-++iq-1)€OM?

gl (h .

igr *v s

(4.58)

ioil’vilizv ) =1.

To show this, we first recall that only flat connections on the boundary contribute to the path integral. If the boundary is
simply connected, this means that we can assume that v;; is pure gauge. So, by the gauge transformation in Eq. (4.50), we

can set all v;; to 1 on the boundary:

1] v

(ig+ig) (ig*++ig-1)

= HV‘”" Gigr- i) I (

(io++iq) (fo*+ig-1

- H UIO ld glo" 7gld) H Iud 1 5:0 Ko ](hlov"-vljlid,l)v

(ig+ig) (fo++ig-1)

where /1; is obtained from #; by the gauge transformation
that sets the v;; to 1. But, this is 1 by virtue of Eq. (4.37).

The fact that the action amplitude of our theory on M¢ is
always 1 if the boundary of M¢ is simply connected is
enough to show that the system on M is in a gapped phase
both in the bulk and on the boundary. Such a gap state
is the K-gauge deconfined state, described by the flat
K-connection v;; € K on each link. Also, h; and g; are
strongly ﬂuctuatlng and are quantum disordered as well.
This is because the action amplitude is always equal to 1
regardless of the values of h; and g; (say, in the v;; =1
gauge discussed above). So the partition functlon in
Eq. (4.53) gives us a boundary of the SPT state that is
in the deconfined phase of K-gauge theory and does not
break the G-symmetry.

G. The fourth boundary of a generic SPT state:
A gapped symmetric boundary that preserves locality
with emergent (soft) gauge fields

In the last section, we constructed a gapped symmetric
boundary of a SPT state by making its boundary nonlocal.
In this section, we are going to fix this problem by
constructing the fourth gapped symmetric boundary of a
SPT state without changing the symmetry and without
destroying the locality. The new gapped symmetric boun-
dary has emergent gauge fields and topological order on the
boundary. By this explicit construction, we show that in
3 + 1D and any higher dimensions, a SPT state with a finite
group symmetry, regardless of unitary or antiunitary
symmetry, always [63] has a gapped local boundary with
the same symmetry.

The construction in this section is a generalization of the
construction in Sec. III D.

To construct a local boundary, we replace v;; on a link by
two degrees of freedom h;; € H and hj; € H In other

words, a link (ij) on the boundary OD? now carries two
degrees of freedom h;; € H and hj; € H (see Fig. 14). We

VHK —Siy- ldl(h
)

glo’ e gi(l) H (VZ[;II()_SiO"'fd-l (hio’ e hid—] > Vigiy» Viyiy» +» )

hi 1,1,..)

lo,..., ig_1°

(4.59)

|
regard h;, h;j, hy, ... as the degrees of freedom on site i of
the boundary (see Fig. 14). In the bulk, a site i only carries a
degree of freedom described by g;.

We choose the action amplitude for our fourth boundary

to be

_ de Sinei
e Jod g H l/d0 d(gio""7gid)
(ig--iq)€D?
I ot
(ig-+iq—1)€OD?
X (hi()’""hid—l;hioil’hilio’"‘)' (460)

In the following, we w111 define V K We introduce a new
form of cochain V- 1 X encoding ¢ soft -gauge fields” emer-
gent from the local boundary sites that we prescribe below.

1. A new cochain that encodes
“emergent soft-gauge fields”

First, we assume that VX (1 igr o Py Py

0 for any configurations /;;

igiy? t,iw"')z

that do not satisfy

FIG. 14. A boundary of a G-SPT state. A vertex i on the
boundary carries i; € H, and a link (ij) carries &;; and h;. The
degrees of freedom in a circle, h;, h;j, hy;, - - -, belong to the same
site labeled by i.
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Uij = hljhj_ll eK (461)
for every link or do not satisfy
vilizvi2i3 = Ui1i3’ (462)

for every triangle. So, only the #;; configurations that
satisfy
v

:Ui1i3’ U,‘j:h"h_l EK,

iy'tji

iriy Viyis (4.63)
on every triangle contribute to the path integral. Here, v;;
corresponds to the K-gauge connection introduced in the
last section.

The K-gauge symmetry will impose the equivalence
relation

(hi» hij) ~ (kihiv kihij)9 (4-64)

for any k; € K. The total number of inequivalent configu-
rations on space-time boundary OM? is given by

| H|N:+2N:

T (4.65)

The exponent in the number of configurations is linear in
N, and N,, implying that the system is local.

Let wus further assume that V;’_"’]( (hoy -y hg_1;
hoi, o, ...) depends on hy; only via v;; = h;h3!'. So,
we can  express Vg_’lf(ho,...,hd_l;hm,hlo,...) as

Vg_’ll((ho, ey hd—l; Vo1, Vo2, V12, -- ) We can SImphfy this
further: The nonzero VZ’_"f(ho, ey B 13 V01> Voas V12s ---)
can be expressed via Vg_'ll((ho, cees hg_13 001, V12 ey
V4_24-1). In other words, v;; on all the links of a
(d — 1)-simplex can be determined from a subset
Vo1> V125 -+ Vg-2,d-1-

At this stage, we simply define Vg_‘lf via Eq. (4.47), but
using the effective gauge fields v;; defined in Eq. (4.63) to
replace the hard-gauge fields that were assumed previously.
The resulting model is manifestly gauge invariant, just as it
was before. However, hard gauging has now been replaced
with soft gauging, making the model completely local, both
in the bulk and on the boundary. In this case, the global
symmetry G is on-site for the whole system (including bulk
and boundary). But, if we integrate out the gapped bulk and
consider only the effective boundary theory, we would like
to ask if the effective global symmetry G on the boundary is
on-site or not. Since this point is important, we elaborate on
it in the next section.

2. The locality and effective non-on-site symmetry
for the boundary theory

We have shown that the model obtained by soft gauging
is local both in the bulk and on the boundary. If we integrate

out the bulk degrees of freedom, we get an effective
boundary theory, whose action amplitude is given by a
product of terms defined for each boundary simplex.
The total boundary action amplitude is invariant under
the G-symmetry transformation on the boundary, but
each local term on a single boundary simplex may not be.
This leads to a possibility that the effective boundary
G-symmetry is not on-site. We have constructed two
boundaries that are local in Secs. IV B and IV D. The first
boundary in Sec. IV B has a non-on-site effective G-
symmetry on the boundary, while the second boundary in
Sec. IVD has an on-site effective H-symmetry on the
boundary.

In the path integral, we only sum over gauge distinct
configurations:

2= Y I 4 ea)

{gi[hishij]} (ig-iq)eD?

S | AR

(ig-+ig—1)€OD?

iy ""hid—l;hioil’hilio’ ),

(4.66)

where [h;, h;;| represents the gauge equivalence classes.

Such a lattice gauge theory with soft gauging will have
an on-site global symmetry G. To see this, let us consider a
transformation generated by 4 € H on site i. It is given by,
if i is on the boundary,

and, if i is in the bulk,

g; = r(h)g;. (4.68)

Such a transformation is a G transformation in the bulk.
On the boundary, since (h;, h;;) and (vh;, vh;;) are gauge
equivalent for v € K, h and hv generate the same
transformation. So, the transformation on the boundary
is given by the equivalence class [k] under the equiv-
alence relation i ~ hv, v € K. Since K is the normal
subgroup of H, the equivalence classes form a group
H/K = G. Thus, the transformation is also a G trans-
formation on the boundary. Such a transformation is on-
site and is a symmetry of the model, since each term in

the action amplitude, such as y;""'”’ (9iys---»9i,) and

(V) o at (g, 3 B,
. Sinyei

the G-symmetry transformation: v,°"(gg;,.....99;,) =

Sioei
vy" " (iy»--+»9i,) and

i3 Migi, »Pi iy»- ), 1s invariant under
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H.K )
Vi (hh. ... hhy, shhg  hhg .
= VIR (hhiy. o kb shog s B o YL
[used the definition in Eq. (4.61)]
= Vg—’ll((hlo’ ceey hid—l 5 vioil s Ui]iz, )

[used the definition in Eq. (4.47)]
=V (higs oo by s ).

To see if the effective boundary G-symmetry is on-site or
not, we first note that the term in the total action amplitude,
H(io'~-id—1)€8D" (VdH—.If)S"O“-[(LI (hi07 cees hi(H ; hioil ’ hiliﬂ’ N ')’ is
purely a boundary term. Each contribution from a
single boundary simplex is already invariant under the
G-symmetry transformation [see Eq. (4.69)]. So, such a
term will not affect the on-site-ness of the effective
boundary symmetry, and we can ignore it in our discussion.

The other term [ [(; ...; yepe v (9iy» ---» gi,) may lead to
non-on-site effective boundary symmetry. But the calcu-
lation is identical to that in Sec. IV C. We find that the
resulting effective boundary G-symmetry is indeed non-on-
site if the G-cocycle v4(g;,. .--» g;,) is not a coboundary.

So, the partition function Eq. (4.66) gives us a boundary
effective theory that still has the G-symmetry, as well as a
local Hilbert space. (The boundary does not break or extend
the G-symmetry.) But, the effective G-symmetry on the
boundary is non-on-site (i.e., anomalous).

The dynamical properties of the soft gauging model in
Sec. IV G are the same as in the hard gauging case in
Sec. IV F, since the two path integrals are manifestly the
same. In particular, this is a physically satisfactory con-
struction of a symmetry-preserving gapped boundary of a
bulk SPT phase with global symmetry G. The boundary is
topologically ordered with emergent K-gauge symmetry.
The K-gauge theory is in a deconfined phase, which we
discuss further in Sec. IV H. The boundaries of the CZX
model discussed in Sec. IIID and Appendix A2 are
examples of this general construction.

igr o id—l; igiy» (469)

H. Gapped boundary gauge theories: G-symmetry
preserving (2 + 1D boundary or above) or
G-spontaneous symmetry breaking (1+ 1D boundary)

To identify the boundary K-gauge theory, we look more
closely at the boundary factors in the path integral in
Eq. (4.45). To understand the boundary theory in isolation,
it is convenient to consider the case that all g; are equal to 1,
which ensures that the boundary spins are K valued. The
boundary theory is now just a theory of K-valued variables
with an action amplitude that is given by the product over
all boundary simplices of the generalized cochain V{J_’If that
was defined in Eq. (4.47).

If we choose the spacetime to be a d-ball D?, then the
action amplitude in Eq. (4.66) is always equal to 1
regardless the values of {g;} in the bulk and {h;, h;;}’s

on the boundary [that satisfy Eq. (4.63)]. Thus, the system
on a spacetime D? is in a gapped phase both in the bulk
and on the boundary. Such a gapped state is the K-gauge
deconfined state, since the K-connections v;;=h; jh]Til eK
are always flat and v;;v;v,; = 1.

Does such a K-gauge deconfined state spontaneously
break the G-symmetry? We note that, except the combi-
nations v;;v;;vy; that are not fluctuating, other combina-
tions of h;;’s are strongly fluctuating and quantumly
disordered. Also, h; and g; are strongly fluctuating and
quantumly disordered. In fact, the model described by
Eq. (4.66) has a local G-symmetry [64]: The action
amplitude for configuration (g;,h;, h;;) is the same as
the action amplitude for configuration (g, h;, hj;) =
[7(h;)g;, iy, ﬁihij}, where h; € H generate the local
G-symmetry on gauge-invariant states. This is because
the action amplitude is always equal to 1 regardless of the
values of h;, g;, and h;; on a spacetime D4 (as long as
;iU = 118 satisfied). This local G-symmetry allows us
to show that any G-symmetry-breaking order parameter
that can be expressed as a local function of (g;, h;, h;;) will
have a short-range correlation.

However, such a result is not enough for us to show all
G-symmetry-breaking order parameters that are local
operators to have short-range correlations. This is because
some local operators are not local functions of (g;, h;, h;;),
such as the operator that corresponds to a breakdown of the
flat-connection condition v;;vv,; = 1. On a 1+ 1D
boundary, such kinds of local operators can change the
holonomy of the K-gauge field around the space S' of the
boundary. As discussed in Sec. IIID, it is the order
parameter that changes the holonomy that acquires a
long-range correlation.

Therefore, we need to find a more rigorous way to test
the spontaneous breaking of the G-symmetry. One way to
do so is to calculate the partition function in Eq. (4.53) on a
spacetime M9, which is given by the number of configu-
rations that satisfy that the flat-connection condition
v;jVxV,; = 1 and the condition v;; € K. When K is
Abelian, we find the partition function to be [65]

Bdry

|GV | H M sy
Z(M?) = |K e \HV:
K
Wmom[m(aMd),K”_ (4.70)

Let us explain the above result. The g;’s on the vertices in
the bulk contribute the factor |G|V to the total configu-
rations, where NBUX is the number of vertices in the bulk
(not including the boundary). The %;’s on the vertices on the
boundary contribute the factor |H IV to the total con-
figurations, where NBIY is the number of vertices on the
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boundary. The (h;;, ;) of the link on the boundary can be
labeled by (h;;, v;;), where h;; € H and v;; € K. The h;;’s
contribute the factor [H|"!", where N 29 is the number of
links on the boundary. The v;; € K needs to satisfy the flat-
connection condition v;;v;v;; = 1, and the counting is
complicated. When K is Abelian, v;;’s contribute to a factor
Bdry INgd .
[|K|V /| K|7@MOl] which comes from v;; of the form
vij = 1},-11171, v;, v; € K. But, those are only contributions
from the “pure gauge” configurations. There is another
factor [Hom(rz| (OM?), K]|, which is the number of inequi-
valent K-gauge flat connections on M. Last, we need to

divide out a factor |K| " due to the K-gauge redundancy
in Eq. (4.64).
The volume-independent partition function is given by

_ |Hom[, (917). K|

1op (144
Z°P(M9) K[ @) ;

(4.71)

which is a topological invariant on spacetime with a
vanishing Euler number [66]. If we choose M4 =5 x
D1 then Z'°(S' x D) will be equal to the ground-state
degeneracy on DY~ space:

GSD(D41) = Zp(S! x D)
_{Km if d=3(2+ 1D);
1

if d> 3.

Our strategy here is to test the ground-state degeneracy
caused by spontaneous symmetry breaking, based on the
degeneracy of a spatial sphere S92 on the boundary of a
spatial bulk D', Namely, we compute GSD(D!) =
Z©P(S! x D41, Our argument relies on the fact that no
ground-state degeneracy on a spatial boundary sphere S92
means no spontaneous symmetry breaking.

Here, we show that on a 1 + 1D spatial boundary S' of a
2+ 1D bulk, the GSD is |K|, and we cannot exclude
the possibility of spontaneous G-symmetry breaking. On a
2 + 1D spatial boundary S of a 3 + 1D bulk, or any higher
dimensions, the GSD is 1, and there is no spontaneous
G-symmetry breaking.

We note that our result here on the spontaneous
symmetry breaking of 1 + 1D deconfined K-gauge theory
is consistent with other independent checks from the
Hamiltonian approach of Sec. Il C and Appendix A 2d,
and the field theory approach of Appendix D 22.

As explained in Sec. IV D 1, once all the variables are
K valued, pff | reduces to a cocycle uX_, appropriate for
a K-gauge theory. As a result, the boundary factor in the
path integral in Eq. (4.53) or (4.66), when the g; are 1, is
just the action amplitude of a K-gauge theory deformed
with the cocycle uX_|, as in Dijkgraaf-Witten theory. This is

(4.72)

the boundary state that has been coupled to the bulk
G-SPT phase to give a gapped symmetric boundary.

In general, not all variants of K-gauge theory can occur
in this way, because there may be some /45_1 that do not
come from any uff . Restriction from H to K gives a
map s:H'[H,U(1)] - H'[K, U(1)]. The versions of
K-gauge theory that arise in our construction are the ones
associated to classes that are in the image of s. In general,
if a given version of K-gauge theory can arise by our
construction as the gapped boundary of a given G-SPT
state, it can arise in more than one way. The number of
ways that this can happen is the kernel of s, which equals
the number of classes in H*~![H, U(1)] that map to a given
class in HY7'[K, U(1)].

V. FIND A GROUP EXTENSION OF G THAT
TRIVIALIZES A G-COCYCLE

A. Proof: Existence of a finite K-extension trivializing
any finite G’s d-cocycle in H for d > 2

The construction in the last section gives a symmetric
gapped boundary for the G-SPT state associated to a
G-cocycle v, € HY[G,U(1)], provided that we can find
an extension of G,

1-K->HLG—1, (5.1)
such that the G-cocycle v, becomes trivial when pulled
back to an H-cocycle by r. In this section, we will give an
explicit construction of such an extension for any finite
group G and for any G-cocycle v; when d > 2. This
approach works for d-cocycles with d > 2; thus, the bulk
dimension of the G-SPT state has to be greater than or equal
to 1 + 1D. Based on this method, below we show that a
suitable group extension always exists; thus, we prove that
within group cohomology construction,

Statement 1: Any bosonic SPT state with a finite on-
site symmetry group G, including both unitary and anti-
unitary symmetry, can have an H-symmetry-extended (or
G-symmetry-preserving) gapped boundary via a nontrivial
group extension by a finite K, given the bulk spacetime
dimension d > 2.

To motivate the construction, we start with the non-on-
site symmetry discussed in Sec. IV. We can make the non-
on-site symmetry be on-site by splitting g; on each vertex
on the boundary into several variables g}, g%, ..., etc., one
for each attached simplex (see Fig. 15). In the Euclidean
signature, we take the new evolution operator

(e—HBdry){gi_n”“}‘{g?”,_,,} (5.2)

to be nonzero only when g! =¢? =g’ =--- on each
vertex. In other words, if the condition g} = g7 =¢> =---
is not satisfied on some vertices, then the configuration will
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FIG. 15. On the boundary, we can split g; on each vertex into
several g}, g7, - - -, etc., one for each attached simplex.

correspond to high-energy boundary excitations on those
vertices.

In the new boundary Hilbert space spanned by ®; ,,, [¢"),
the symmetry transformation

U(g) =[] Oolowy/ " (g". g ... 9" 97" ") (5.3)
(i)

becomes on-site (or on-cell, or on-simplex). On each
simplex, the symmetry transformation [/ (g) is given by

U919 gjs - ai)
= Uo(9)v) " (9i Gjo s 9 G 97 9|90 G s 01)
=" g gjo o 96 2 9791990 9951 - 991) . (5.4)

Thus, we can make any non-on-site symmetry on the
boundary into an on-site symmetry, by redefining the
boundary sites. This seems to contradict our picture that
the non-on-site symmetry on the boundary captures the
bulk SPT state, which should not be convertible into on-site
boundary symmetry by any boundary operations (that have
the local site structure).

In fact, there is no contradiction, since U(g), g € G may
not generate the group G. They may generate a bigger
group H—an extension of G by an Abelian group K. So,
after we split g; into g}, ¢?, etc. on the boundary, the
symmetry of our model is no longer G. It is changed into H.
Since the symmetry transformation generated by H is on-
site, such a symmetry transformation is not anomalous.
The bulk G-SPT state can also be viewed as an H-SPT
state. But, as an H-SPT state, it is the trivial one, since the
H-symmetry is on-site on the boundary.

So, we have found an extension of G, under

1o K->HLG— 1, where K is an Abelian normal
subgroup of H, such that

H(hg,....,hy) € HYH, U(1)], (5.5)

defined as

8

g

et

8i

FIG. 16. Visualization for guiding the calculation in Eq. (5.7),
shown here as three symmetry transformations [say, &, f, and
(fh)™"1on a 1 + 1D boundary of a 2 + 1D bulk.

I/sl(h(), N hd) = l/d[r(l’lo), N r(hd)],
is trivial in HY[H, U(1)]. We also note that K is a local
symmetry (on each simplex) of the effective boundary
Hamiltonian.

To calculate K from v,(g; ;... 9. 9% 97'g"), we
consider three symmetry transformations 4, f, and
(fh)~'. We find that (see Fig. 16)

(5.6)

Ul(fh)=0 ()T (h)
= vq(fhg;. fhg;. ..., fhgr. g°, fhg")
x vy(hg;, hg;, ... hgi, g°, ' g")
X Vg(Gis Gjs - G0 G 171G
=v4(9ir Gjs - G B TG 0)
X Va(Gis Gjs s G K1 T )
X Vg(Gis Gjs - G 9 ' g7)

=Dy 1(gis gj -2 Gk)- (5.7)

The above phase factor @, ¢(g;. ;. ---. gk) as a function of
9isGj» > G- 18 @ generator of the group K. We can obtain
all the generators by choosing different 4 and f and, in turn,
obtain the full group K. We note that the above construction
is true only for d > 2.

Thus, this concludes our proof of Statement 1. We can
rephrase it to the equivalent proved statements:

Statement 2: Any G-cocycle 1§ € HG,U(1)] of a
finite group G (a bosonic SPT state with a finite,
on-site, unitary or antiunitary symmetry, symmetry group
G) can be pulled back to a finite group H via a certain group
extension 1 - K - H.5G — 1 by a finite K, such that
rvS = =sult | € HYH, U(1)]. Namely, a G-cocycle
becomes an H-coboundary, split to H-cochains /|, given
the dimension d > 2 (q.e.d.).

Statement 3: Any G-anomaly in (d —1)D given by
v§ € HY[G, U(1)] of a finite group G can be pulled back to
a finite group H via a certain group extension 1 — K —

HLG -1 by a finite K, such that G-anomaly becomes
H-anomaly free, given the dimension d > 2 (q.e.d.).
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Unfortunately, we do not have a systematic understand-
ing of what K will be generated by this construction. In
particular, K may be different for cocycles v, that differ
only by coboundaries. Another drawback of this method is
that we cannot obtain the exact analytic function of the split
H-cochain easily.

However, we provide a different method that helps
to derive the analytic H-cochain, based on the Lydon-
Hochschild-Serre spectral sequence in Appendix D 3.
Readers can find more systematic examples in
Appendix D. Finally, we remark that very recently
Ref. [67] has proven statements related to ours in a more
mathematical setup [68].

B.2+1/1+1D and d +1/dD bosonic SPTs for an even
d: The dD ZX-gauge theory boundary of d + 1D bulk
invariant (- l)f (@)

We would like to apply the above method to some
cocycles that describes SPT states. For example, we can
consider a nontrivial cocycle in v3 € H3[Z,, U(1)]:

via0—>272,>7Z,—>27Z,—0

v3(—,+,—+)=v3(+,—,+,—) =—1, others=1, (5.8)
where Z, = {+, —}. Choosing ¢* = +, h = —, and f = —,
we find

®__(g:,9;) = v3(9i» 95— Hvs(gi g9 +.—). (5.9)

In fact, (I)——(givgj) = ‘D—+(Qi79]’) = ‘D+—(9i79j)’ and

others=1. (5.10)

q)h,f(_’ +) - (I)h,f<+’ _) - —l,
So, K=Z, and H=Z2,. The short exact sequence 0 — Z, —
74— Z, — 0 trivializes the cocycle v3 € H3[Z,, U(1)].

See Appendix D4 for further illumination of this
example. In general, we find that, in any odd spacetime
dimension, there is a Z,-SPT phase and that a gapped
symmetric boundary for this phase can be obtained from
the extension 0 — Z& — Zi — 7§ — 0. See Appendix D 5.
The bulk SPT phase is associated to the invariant
exp(iz [a; Ua; U...Ua) =explir [(a)?"!], with a
cup product form of a;Ua;U...Ua;, a nontrivial
element in H9*![Z,, U(1)] for an even d. The a, here is
a Z,-valued one-cocycle in H!(M?!,Z,) on the space-
time complex M4+!,

C.3+1/2+1D and d +1/dD bosonic topological
superconductor with ZI' time-reversal symmetry
for an odd d: The dD Zf -gauge theory boundary

of d+1D bulk invariant (-1)J™

via0 -2, -2 -7 >0
Next, we consider a nontrivial cocycle v4€
H4ZE,Ur(1)]=2Z, [15]. The v, represents a nontrivial

)d+1

class of bosonic SPTs with an antiunitary G = ZI time-
reversal symmetry. This SPT is also named a bosonic
topological superconductor or bosonic topological para-
magnet with G = ZI. Here, Z, and Z¥ are the same group
mathematically. However, the generator in ZI' provides a
nontrivial action on the G-module U(1), denoted as U7 (1).
The subscript 7 in the module U7(1) indicates that the
group Z! has a nontrivial action on the module.

More generally, when a group G contains an antiunitary
operation such as time-reversal ZZ, we define a nontrivial
G-module U(1) as Uz(1). We stress that U(1) and Uy (1)
are the same Abelian group. The group action is only
nontrivial when g-v =1, for g€ G, v € Uz(1), such
that s(g) = —1 if g contains an antiunitary element, and
s(g) = 1 if g contains no antiunitary element. The formal-
ism developed in this paper up to this point is applicable to
this case, for models that fit in the group cohomology
framework.

The group cocycle of this SPT phase is given by

others =1,
(5.11)

V(= 4, =+, =) =v4(+, -+, —,+) =—1,

where ZI = {+, —}. Choosing g* = +, h = —, and f = —,
we find

D__(9,.9.9x) = va(9i- 9> G» = +)Va (902 9j» Goo +2 =)
(5.12)

and ®__(g;, gj, i) = P_1(9:- 9j» &) = P4 _(9i, 9j, 9)- In
fact, we obtain
@) p(=.+.—) =@y p(+.,—.+)=-1, others=1. (5.13)
So, K=Z, and H=Z1. The short exact sequence 0—Z, >
ZI' - 7% >0 trivializes the cocycle v, € H*[ZT, U (1)].
This means that v, becomes a coboundary in
HHZT, Up(1)] for a larger group H = ZI. Thus, we find
that the 3 + 1D bosonic SPTs with Z}-symmetry (the
bosonic topological superconductor of G = Z!) has a
2 4 1D symmetry-preserving surface Z, topological order.
For the boundary K-gauge theory of a G-SPT state, the
gauge charge excitations are labeled by Rep(H ) =Rep(Z1),
with H/K=G=2Z}/Z,=Z71, instead of Rep(K x G) =
Rep(Z, x Z¥). H is a “twisted” product of K and G, the
so-called projective symmetry group (PSG) introduced in
Ref. [69]. When a gauge charged excitation is described by
Rep(H) instead of Rep(K x G), it implies that the particle
carries a fractional quantum number of global symmetry G.
We say there is a fractionalization of the symmetry G.
We note that the epmy surface topological order
first proposed in Ref. [39] on the surface of a 3+ 1D
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ZI-bosonic topological superconductor is also a 2 + 1D
deconfined Z, gauge theory.

See Appendix D6 for further illumination of this
example. In general, we find that the 0 —» ZX - ZI' —
ZI' — 0 construction can provide a boundary dD ZX gauge
theory on d + 1D bosonic ZJ-SPTs, when d is odd; see
Appendix D 7. The bulk SPT invariant is equivalent to the
partition function exp(i2z [1w{*!) for an odd d, a non-
trivial element in H*"'[ZZ, U, (1)] = Z,. The w; here is
Z,-valued, the first Stiefel-Whitney (SW) class in
H' (M1, Z,) on the spacetime complex M?!. Here,
wi = w; (TM?1) is the w; of a spacetime tangent bundle
over M4*! w, # 0 holds on a nonorientable manifold.

More examples of symmetry-extended gapped bounda-
ries are provided in Appendix D.

VI. BOUNDARIES OF SPT STATES WITH
FINITE OR CONTINUOUS SYMMETRY GROUPS
AND BEYOND-GROUP COHOMOLOGY

In the above Sec. V, we described a method that
constructs an exactly soluble boundary for any within-
group-cohomology SPT states with a finite symmetry
group G, via a nontrivial group extension by a finite group
K. Those boundaries preserve the G-symmetry and have
topological orders if the boundary dimension is 2 + 1D and
higher. Such a result can be generalized to SPT states with a
continuous compact symmetry group G, provided that the
group cocycle that describes the G-SPT state can be
trivialized by a finite extension 1 - K - H —- G — 1,
namely, with a finite group K. This is because, even for a
continuous compact symmetry group G, the action ampli-
tude in Eq. (4.53) is still always equal to 1 regardless of the
values of {g;} in the bulk and {;, ;;}’s on the boundary.
Thus, Eq. (4.70) is still valid if we treat |H| and |G| as the
volumes of the continuous group H and G. When K is
finite, the flat condition v;;v; vy = 1 makes the K-gauge
theory in a gapped deconfined phase. Therefore, for
both a finite group G and a continuous compact group G,
a d + 1D G-SPT state within group cohomology can have a
symmetry-preserving gapped boundary if the G-group
cocycle can be trivialized by a finite extension of G and
when d > 3.

The SPT states within group cohomology have pure
gauge G-anomalies on the boundary corresponding to
the global symmetry group G. More general SPT states
exist that have mixed gauge-gravitational anomalies on the
boundary [17]. Those SPT states are referred to as beyond-
group-cohomology SPT states [39]. Those beyond-group-
cohomology SPT states can be constructed using the
group cohomology of G x SO(c0). More precisely, using
the action amplitude constructed from the group
cocycle vy, | € HY G x SO(0), U(1)], we can construct
models that realize the beyond-group-cohomology SPT
states (as well as within-group-cohomology SPT states)

in d+ 1D [17]. However, the correspondence between
G x SO(0)-cocycle vy, and a d+ 1D G-SPT state is
not one to one: Several different cocycles can correspond to
the same SPT state.

We note that [17]

HHG x SO(o0), U(1)]
= H*[SO(e0), U(1)]
d+1

® P HXG

k=1

HEIHSO(00), U(1)]).

(6.1)
The cocycles in the first term H!'[SO(c0), U(1)]
describe invertible topological orders that do not need
the symmetry group G. The cocycles in the second term
DIHHK(G, HH1F[SO(o0), U(1)]) will describe G-SPT
states in a many-to-one fashion.

When G is finite, a cocycle in @7 IHK(G, HH~Fx
[SO(0), U(1)]) can always be trivialized by an Abelian
extension K: 1 - K— H —- G — 1. This is because,
when H1=*[SO(o0), U(1)] = Zy, then the H*(G, Zy)
can be viewed as a part of H¥[G, U(1)], and we can use the
approach in Sec. V to show that the cocycles in H¥(G, Z )
can always be trivialized by a finite extension of G. When
HIH1K[SO(0), U(1)] = Z, we note that HX(G,Z) =
H*'[G,U(1)]. Using the approach in Sec. V, we can
show that the cocycles in H*"!'[G, U(1)] can always be
trivialized, which, in turn, allows us to show that the
cocycles in H¥(G, Z) can always be trivialized.

This allows us to conclude that the bosonic d + 1D
beyond-group-cohomology G-SPT states described by
DI H (G, ' F[SO(0), U(1)]) always have a sym-
metry-preserving gapped boundary when G is finite and
when the bulk space dimension d > 3. Here, G can
contain antiunitary symmetries, including time-reversal
symmetry.

VII. BOUNDARIES OF BOSONIC OR FERMIONIC
SPT STATES: COBORDISM APPROACH

In principle, the philosophy of our approach should
also work for the cobordism group description of topo-
logical states. For example, based on Ref. [19], one can
consider bosonic SPTs in a (d + 1)-dimensional spacetime
with a finite internal on-site symmetry group G via a
cobordism theory. Such a SPT state is proposed to be
classified by

QiPCIBG. U(1)] = Qi+1SO[BG, U(1)] /im(e)

— Hom[Q%¢, . (BG).U(1)],  (7.1)

d+1.tors

which is called the Pontryagin-dual of the torsion subgroup
of the oriented bordism group Q3¢ (BG). In the first
equality of Eq. (7.1), the Q*1S9[BG, U(1)] is called the
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oriented cobordism group of BG with a U(1) coefficient; it
is defined as Q*S9[BG,U(1)] = Hom[Q$?, (BG).U(1)],
the space (here, an Abelian group) of homomorphisms
from Q32 (BG) to U(1). The e is a map defined as
e :Hom[Q59, (BG), R] - Hom[Q}¢,(BG), U(1)]. The
image of the e; map is composed by elements of
Q1S0IBG, U(1)] that vanish on the torsion subgroup
of the bordism group, Q3¢  (BG). Effectively, this

d+1,tors

yields the second equality; the QIHSC[BG,U(1)] is

equivalent to Hom[Q}¢, . (BG),U(1)], namely, the

space (here, again, an Abelian group) of homomor-

phisms from the torsion subgroup of the bordism group
Qggl,tors(BG) to U(l)

To determine the symmetry-extended gapped interface

of a G-SPT state, we need to find a larger total group H

that forms a group extension 1 - K - H-—>G — 1 by a
finite group K. By pulling G back to H, we require

that the nontrivial element in Q2 SC[BG, U(1)] specifying

a G-SPT state become a trivial identity element
in the cobordism group QLISC[BH, U(1)]=
QMSC[BH. U(1)] /im(eyy) = Hom[Q32, o\ (BH). U(1)],

where ey : Hom[Q)?, (BH),R] —» Hom[Q$?, (BH),U(1)].
In short, the G-SPT state within cobordism group
QI 1S9(BG, U(1)] becomes a trivial H-SPT state (a trivial
vacuum in H) within cobordism group Q&L SC[BH, U(1)].
The boundary of such a G-SPT state should allow G-
symmetry-preserving gapped interfaces with a deconfined
topologically ordered K-gauge theory (where K is a finite
discrete group), if the spacetime dimensions of bulk
dimension d + 1 > 4, above or equal to 3 4 1D.

The above procedure is for bosonic SPT states includ-
ing only fundamental bosons. For fermionic SPT states
including fundamental fermions, in principle, we can
replace the oriented SO in cobordism groups
Q1SOIBG, U(1)] and Q¥*'SO[BH, U(1)], to the Spin
version of cobordism groups for the fermionic SPT states
[namely, Q4T1'SPn[BG, U(1)]] and Q4+1SPin[BH U(1)]],
and to the Pin® version of cobordism groups for the
fermionic SPT states with time-reversal symmetries
[namely, Q4+'"Pin"[BG, U(1)] and QP [BH U(1)]],
where T? = (—1)F for Pin* or T? = +1 for Pin~, respec-
tively [21]. The F is the fermion-number parity. In this
setup, our approach for symmetric gapped interfaces
should be applicable to both bosonic and fermionic
SPT states. The underlying idea again is related to the
fact that a certain global anomaly associated to G on the
boundary of G-SPT states becomes anomaly-free in a
larger group H.

It will be interesting to find more concrete examples and
figure out the explicit analytic (exactly soluble or not)
lattice Hamiltonian construction for such symmetry-
preserving gapped boundaries within the cobordism setup
in the future.

VIII. GENERIC GAPPED BOUNDARIES OR
INTERFACES: MIXED SYMMETRY
BREAKING, SYMMETRY EXTENSION,
AND DYNAMICALLY GAUGING

In this section, we will give an overview of how the
symmetry extension construction we have described is
related to what may be more familiar gapped boundary
states. We will also describe the generalizations of the ideas
to interfaces between SPT states, and to the case that the
bulk phase has intrinsic topological order. We will further
develop their path integrals, lattice Hamiltonians, and
wave functions suitable for many-body quantum systems
in Sec. IX.

A. Relation to symmetry breaking

The most familiar type of gapped boundary state for a
G-SPT phase is obtained by explicitly or spontaneously
breaking the G-symmetry on the boundary to a subgroup H
of G. Here, H must have the property that the cocycle
defining the G-SPT phase becomes a coboundary when the
variables are restricted from G to H. For the notational
distinction, we call this unbroken subgroup H of G
as H=G_".

From the point of view of this paper, the statement that
G’ is a subgroup of G means that there is an injective
homomorphism 1: G’ - G. A gapped boundary state can
be constructed if the given cohomology class in yfj €
H?G,U(1)] is trivial when pulled back to G'. See
Appendix F 1 for explicit examples.

B. Symmetry extension and mixed symmetry
breaking or extension

Our construction on the symmetry extension in this
paper is instead based on a surjective, rather than injective,
homomorphism r:H — G. Because r is surjective, the
symmetry is extended (from G to H) along the boundary,
rather than being broken. By gauging K = H/G, one can
arrange so that the global symmetry of the full system is G.
Many examples of symmetry-extended gapped boundaries
are shown in Appendix D.

It is straightforward to combine the two cases. We can
construct a gapped boundary state associated to any
homomorphism ¢ : H — G, such that the cohomology class
in H[G, U(1)] becomes trivial when pulled back to H. The
construction proceeds exactly as we have explained in
earlier sections of this paper, without any substantial
modification. In this boundary state, G is spontaneously
or explicitly broken to the subgroup G’ = ¢(H), and then
G’ is extended to H.

More explicitly, one could also imagine arranging the
above procedure in a two-stage process. Assume that, in a
layer within a distance # from the boundary, G is sponta-
neously broken down to G’. Then, near the boundary, the
global or gauge symmetry is only G’, and the boundary
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condition is defined by the choice of a group H, with a
surjective map r to r(H) = G’, such that the cocycle of G’

becomes trivial by lifting to H: vial - K' - H LG > 1.
In other words, to construct a boundary condition in a
mixed symmetry-breaking or extension case, what we need
is that the cocycle of G that defines the bulk topological
state, when restricted to G’ and then pulled back to H,
becomes trivial.

In all of these cases, one has to actually pick a triviali-
zation of the pullback of ug to H. The possible choices
differed by a class in H"'[H, U(1)] correspond to an H-
topological state on the boundary. This corresponds roughly
to appending an H-topological state on the boundary.

C. Gapped interfaces

One can similarly consider the case of an interface (i.e.,
domain wall) between two SPT phases. In general, we may
have one symmetry group Gj on one side of the interface,
with a cohomology class vy, and a second symmetry group
Gy on the other side, with its own cohomology class vy;.
(The gapped boundary of a G-topological state can be
regarded as a gapped interface between a G-topological
state and a trivial vacuum.) We shall describe gapped
interfaces between these two states.

Interfaces can be reduced to boundary states by a well-
known folding trick. Instead of saying that there is Gj
on one side and Gy on the other side, one “folds” along the
interface and considers a system with a combined sym-
metry group G = Gyx Gy and a cohomology class
vy x vy, (Folding inverts one of the two cohomology
classes.) Then, we can construct gapped interfaces asso-
ciated as above to any homomorphism ¢: H — Gy X Gy;.

An interesting special case is that the same group G is
supposed to be unbroken on both sides and also along the
interface. This means that G; = Gy = G, and that the
unbroken subgroup ¢(H) is a diagonal subgroup G’ of
G x Gy. The cohomology class vy x vy' of Gy x Gy =
G X G restricts to a class of G’ that we can denote by the
same name. H can be any finite extension of G’ = G that
trivializes this class.

D. Intrinsic topological order

Though our emphasis in this paper has been on gapped
boundary states for SPT phases, a similar construction
applies to bulk phases with intrinsic topological order.

We can construct such a phase simply by gauging the
G-symmetry of a given G-SPT state. Then, since G is
extended to H along the boundary, for consistency, we have
to gauge the full H-symmetry along the boundary. All our
formulas make sense in that context.

SET phases can be treated in a similar way. For this, we
gauge a subgroup G, of G. The most significant case is that
Gy = N is anormal subgroup of G. Then, gauging N gives
a state with intrinsic topological order of an N-gauge

theory, in which Q = G/N is a quotient group of global
symmetries. Along the boundary, we have to gauge the
inverse image of N in H. If the map ¢ : H — G is surjective,
then the Q-symmetry remains as a symmetry of the
boundary state and is extended along the boundary to
the inverse image of Q in H. For details, see again Sec. [X.
It is again possible to consider more general cases in which
the O-symmetry may be partly broken along the boundary
and partly extended.

There is no essential loss of generality in assuming here
that G, is a normal subgroup N of G, for the following
reason. If G is not normal, then gauging G, will explicitly
break G to a subgroup G*, the normalizer of G, in G. Then,
G, is normal in G*. After replacing G by G*, everything
proceeds as before.

We provide other details of path integral or Hamiltonian
models in Sec. IX. Many examples of dynamically gauging
gapped boundaries or interfaces are provided in
Appendix F.

IX. GENERAL CONSTRUCTION OF EXACTLY
SOLUBLE LATTICE PATH INTEGRAL
AND HAMILTONIAN OF GAPPED
BOUNDARIES OR INTERFACES FOR
TOPOLOGICAL PHASES IN ANY DIMENSION

We consider the spacetime-lattice path integral formu-
lation in Sec. IX A and the spatial lattice Hamiltonian
formulation in Sec. IX B for a systematic construction of
gapped boundaries or interfaces for topological phases in
any dimension.

A. Path integral

In the following subsections, we systematically construct
the path integral Z defined for various topological phases
(including SPT, gauge theory, SET, gapped boundary or
interfaces, etc.) and contrast their properties. We shall clarify
the gauge equivalent configuration briefly mentioned in
Eq. (4.53) and the precise mod-out factor to remove the
symmetry or gauge redundancy. In Sec. IV G, we showed
the construction of cocycle (Vg_’lf )Sioia (h,»o, chy,
hisi,» hii,» ---) that contains the emergent gauge fields.
We call this type of gauge field “soft gauged,” which means
that the Hilbert space of the gauge theory is still a tensor
product form defined on each local site. H, = ®; H,,
because the h;, h;;, h;; are variables assigned to the site i (see
Fig. 14). Below, we discuss the hard-gauged theory, where
the total Hilbert space H,, # &; H; is not a tensor product
form of Hilbert spaces H; on each local site i, since we
require additional link variables.

We should note that we can easily formulate a soft-gauge
theory from a hard-gauge theory, based on Sec. IV G. One
reason to consider the hard-gauge theory in the following
Secs. IX A 2 and IX A 3 is for the simplicity of notation and
calculation, and for its smaller Hilbert space.

ioly?
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SPTs: v§ 7, SPTs: Hi-1
SETs: V‘?’N RN SETS: N;I_’]II*K RN
FIG. 17. In Sec. IX A, we define a lattice path integral on a d-

dimensional spacetime manifold by triangulating the manifold to
d-simplices. If the spacetime is closed, as in Secs. IX A 1, IX A 2,
and IX A 3, we assign d-simplices with cocycles v for SPTs or
with VdG’N for SETs. In this figure, the spacetime M is obtained as
the gluing of two manifolds M{ U M¢& with a common boundary
OM{. For simplicity, we draw the d = 3 case. One example of the
M3 = $% is a three-sphere; then, we can choose M; = D3 and
M3, = D3, where the gapped spacetime boundary is on a two-
sphere OM3 = 5. We would like to define the path integral on an
open manifold M¢ with a gapped boundary OMY, details of which
are discussed in Sec. IX A 4. In our construction, we assign lower-
dimensional split cochains ,uff_l (or Vg_‘lf) for SPTs and /45_‘};]']( for
SETSs to (d — 1)-simplices paved onto a gapped boundary oM.

Schematically, Figs. 17 and 18 summarize how to define an
exactly soluble partition function or path integral on a tria-
ngulated spacetime complex. Normally, a path integral of a
gapped topological phase is well defined on a closed space-
time manifold. However, here in particular, some path integral
of a fully gapped topological phase is also well defined in the
gapped bulk on M{ with a gapped interface OMY.

1. SPTs on a closed manifold

We start from reviewing and strengthening the under-
standing of a SPT path integral defined by homogeneous
|

Sinei
H vy d(gio’-'-vgid) =

(ig--ig)EM? (ig--iq)EM?

- I

(igiq)em?

=TI G (G 0 1)) =

(ig--ig)EM

The first equality computes the amplitude from all vertices
on M? and g, We use the fact that there are two terms under
the same form v,(g;,.....g;, ,-90) overlapping the same
d-simplex, with opposite orientations that cancel out. The
second equality takes the product of each d-simplex, where

Sinei
H v, d(giov-“’gid)

y;"O”';""‘dO(

SPTs: v§
SETs: o~ i

FIG. 18. Following Fig. 17, panel (a) shows the filling of d-
cocycles into the gapped bulk in M¢, and the filling of (d — 1)-
cochains onto a gapped boundary OM{. The combined result
contributes to the topological amplitude shown in panel (b). Then,
we need to sum over all the allowed group element configurations
onto each vertex or link (the so-called “sum over all the colorings™)
to obtain the path integral Z. The explicit formula is derived in
Sec. IX A 4.

d-cocycles  vy4(gj,....,g;,) of a cohomology group
H?G,U(1)] for a global symmetry group G [15] on a
closed manifold,

1 Sigi
Z:WZ H Yy’ d(gio""’gid)‘

{9i} (ig--ig)eM?

9.1)

We first assign the ordering of vertices as the branching
structure; then, we assign a group element for each vertex
as coloring. The sum over all possible colorings, by
summing over all assignments of group elements, is done
by > {g;}- On any closed manifold M4, say, with a number
of vertices N,pux, We can prove that the amplitude
H(l-o,,,id)eMdu;")""" (9iys ----gi,) = 1 for any choice of {g;}.
Here is the proof: First, recall that the cocycle condition
imposes that the cocycle Hyf;”'"id (9iy»---»9i,) = 1 on any
closed sphere S¢. Second, we can simply connect every
vertex g; on M 4 to an additional new point assigned with g,
through a new edge 0], and we can view the amplitude as

AYjO...jd7140
H by (gjo’ ""gjti—l’g())
(jo++ja—1)EM?

gio’ .--,gi, ceey gid7 90)

IT =1 (9.2)
(ig++iq)EM?
I
g; is a removed entry, where i ranges from {i, ..., i;,0}.

Moreover, the vertices {ig, ..., iy,0} and their connected
edges also form a d 4 1-simplex. There are d + 1 number of
d-cocycles v, assigned to d-simplices paving on the surface
of the d + 1-simplex. Effectively, the surface d + 1-simplex
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is a closed S?*! sphere, and the amplitude on S%*! yields a
d-cocycle condition [60," " (g;, ..., Gis s Gi s G0)] = 1
in the third line. In Eq. (9.1), the product of amplitudes is
1, and the summation ), yields a factor |G|N«sx exactly
canceling with the mod-out factor. We thus show that
Z =1 on any closed manifold for SPT defined by homo-
geneous cocycles.

Global symmetry: We note that the global symmetry of
SPT also manifests in the path integral. We first define the
global symmetry transformation g € G of SPT as sending
each group element g; — gg; on every vertex i. Through
the homogeneous cocycle condition, g - v,4(g;,.-.-»9;,) =
va(8 - Gig -8 9i,) = Yaliy» -+ 93,) (1515 thus, Z s
invariant under the global symmetry transformation.

2. Gauge theory with topological order
on a closed manifold

The gauge theory of a gauge group K in this subsection
is a topological gauge theory [22], suitable for certain
topological orders. The path integral defined by inhomo-
geneous d-cocycles wy(k; ki ) €HIK, U] is

lOil L A} )

N, Bulk Z H w N (kloll

{kijijy ) Gioia)eM?

ki) (93)

on any closed manifold M. Each triangle (more generally,
any contractible two-face or two-plaquette) must satisfy
ki2ky3ks; = 1 as a trivial element in K, which means a zero
flux through a two-surface.

We note that the gauge theory Z is not equal to 1 in
general. The reason is that, on a manifold with non-
contractible cycles such as S' circles, the inhomogeneous
cocycles allow distinct gauge group elements winding
through each cycle (that does not occur in homogeneous
cocycles). This fact also reflects in nontrivial holonomies
along noncontractible cycles for gauge field theory.
However, we can show that Z=1 on §%!x S'. By
considering the minimum triangulation that S%! is the
surface of a d-simplex, another S' connects each point back
to itself. Each cocycle amplitude turns out to be 1, but the
> (k) sums over group elements. The minimum triangula-

tion of S9~! x S' has N, = d + 1 verticesand N, = d + 1
independent edge variables; thus, Z = |K|Y¢/|K|¥» =1
on S9! x S'.

Gauge symmetry. — We note that the gauge symmetry
also manifests in the path integral. We first define the local
gauge-symmetry transformation k € K on a particular site
J, sending each group element on all the neighbor links
through

kij_li,-<k)-

Effectively what we do is equivalent to a Pachner move

shifting the vertex i; to a new vertex iy with a new

-1
o= (K7 NN
Litj+ k Litjsr? k’.f—l L

triangulation near this vertex, and we assign the link W
with a gauge transformation variable k = kijij, € K. We
can focus on a local gauge transformation on a single
site i;; one can easily generalize to apply gauge trans-
formations on every site. To prove that Z is gauge invariant,
we show that [ . eMdCUd T (kiiys oo ki, i) is gauge
invariant. The rat10 of amplitudes before and after gauge
transformations is

H(lo ld)Eded‘ ld(kioil""’ki.z 147 i/iﬁrl"”’kid—lid)
H(io-ni,,)EM"wdl Id[ki()i]""’kij—lij(k) (k) lk1111+1""’kid—1ici]
= I woi¢)=0o),=1 (94)
(ijipe -)esd

In the first equality, we find that amplitudes around the
vertex i; and iy are left over that cannot be directly
canceled. There are two local patches centered around i;
and i; as two d-dimensional disks D? and D“. The two
disks share the same boundary and can be glued to a sphere
S?. Thus, we can apply the d-cocycle condition dw, = 1
that the amplitude on S¢ is 1, to prove that each amplitude
in Z is invariant. Local gauge transformation can be applied
on every site, and the Z is still gauge invariant by the same
proof above.

3. SETs on a closed manifold via1 - N - G - Q — 1,
and a relation between SPTs and topologically
ordered gauge theory

Consider an anomaly-free SET path integral on a closed
manifold under 1 - N - G - Q — 1 [24,69]. Here, G is
a total symmetry group named a projective symmetry group
(PSG), N is a normal subgroup that can be dynamically
gauged, and Q is a quotient group of the remaining global
symmetry [69]. We can regard the anomaly-free SET (well
defined in its own dimensions) as gauging the N normal
subgroup in G-SPT in Sec. IX A 1:

G.N\s; i
|G|N1Bulk NlNzBulk Z H (Vd )i
gr n!]} l() ld EBM“
X (Qiov coes G Migiy s Miigs o ees nid_lid)’ (9.5)

with hard-gauge variables nij., €N defined on the
link or edge. The cocycle VOV can be rewritten in terms
of homogeneous G cocycle v and inhomogeneous G
cocycle w:
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G.N .
Vg (Qio, s Gigs Migis My s “wnid_lid)
=V, glo’ lollgll’ ioly 11129127 s iy e ld_lldgld

_ G~ -1 -1
=y (91‘0 i, 9iy» 9i, Tiiy Jiy» ---,gi,,_,nid_lidgid)- (9-6)

Gauge symmetry: — The cocycle Vg‘N is invariant under
the local gauge-symmetry transformation n; € N on each
site for a gauge group N:

gij - (ni/-) ' gijs nl-/'l-/url - (nij)nijij+l(nij+l)_l,
ni i, —~ (i )ng (mg)7h (9.7)

So, the Z is invariant under the local gauge-symmetry
transformation.

Global symmetry. — The cocycle VdG’N is invariant
under a fotal symmetry transformation g of the symmetry
group G:

9i;, = 8 Yi,» Mg, = (@)nii, (@) (9.8)

So, the Z is invariant under the global symmetry trans-
formation. The true global symmetry that does not include
the gauge symmetry is the quotient group G/N = Q.
The normalization in Eq. (9.5) has the (|G|Nesux)=!
modding out the site variables to make the path integral
independent of the number of sites. The additional
(|N|N+sx)=! mods out the gauge transformation on each
site through V (n;) € N to remove the gauge redundancy.
It is easy to check that Z[S9~! x S'] as a path integral on
§9=1'x S' is always 1, but, in general, Z # 1 for generic
closed manifolds. If we choose that N = 1 is trivial, then
we reduce to a G-symmetric SPT in Sec. IXA 1. If we
|

1
zZ= Z 11
|G Nypuk | | |No Bdry+N v.Complt

gr h; } (10 ld)eMd
(o /d)Ede or Md\md

1
|G|Nx Bulk |H|N1 Bdry+N1)C0mpll Z H

{gi.hi}y  (igig)eM?
(g eom® or A\ M4

1 S,'O...,'d
|G|N1 Bulk |H|N1 Bdry Z H Va (gio""

{9i-hi} (ig-ig)EM?
(Go-ig—1)€om?

Above, we applied Eq. (4.27), and the fact that
the  homogeneous  cocycle v (hg,....,h;) =
vy[r(hy),...,r(hy)], which then split it to lower-
dimensional homogeneous cochains uff . Here,
(ig---iy) € M? means the vertices in the bulk M?¢
(with a total number N,p,x), as well as on the
boundary (with a total number N, pqy). Here,
(o Jjq) € OM? or MY\ M? means the vertices

choose that all g; = 1 are trivial, then we reduce to the
gauge theory in Sec. IX A2 of a gauge group N.

We can find a mapping between a G-symmetric SPT
and a topologically ordered G-gauge theory, by the above
1 > N—- G- Q—1 construction. For a G-symmetric
SPT, we choose N = 1 and Q = G. For a G-gauge theory,
we choose N =G and Q = 1. This is a more general
version of the relation between SPTs and topological order
studied by Levin and Gu [23].

4. Symmetry-extended boundary of a G/N-SET state via
1-N-G-Q—-1and1 - KxN-H—->0-1

Consider the 1 > K > H-> G — 1 formulation with
H/K = G in Appendix D 1.
(1) Bulk G-SPTs on an open manifold with gapped
boundary with extended H-symmetry action:

We consider a closed manifold M9 glued from
two open manifolds: M¢ and its complement space
MAM?. Namely, M? U (MIN\M?) = M4, with a
common (d—1)D boundary OM? We denote
N, puk as the number of vertices in M? but not
on the boundary OM? nor on the complement
(MI\M?); each of these vertices has a dimension
of Hilbert space |G| on each site. We denote N, gy
as the number of vertices only on the boundary OM¢;
each of these vertices has a dimension of Hilbert
space |H| on each site. We denote N, compy as the
number of vertices on the complement (M?\M?)
but excluding the boundary OMY; each of these
vertices has again a dimension of Hilbert space |H|
on each site. The path integral is

10 Ld(glo’ . 'mgid)( d) qo M(hjo’ : "hjd)

Si ‘g S
l/do I(gi07 cees gid)(/"g—l) -l (hjo’ e h.i(l—l)

) gid)(:ug—l )Sjomjdil (hj()’ e hjd,l ) (99)

on the boundary OM? or in the complement
MAM? with a total number N, pgry + N, compi-
The cochains inside the volume of the comple-
ment MY\ M? cancel out to 1 due to overlapp-
ing terms with opposite orientations. An overall
sum (jo---js) € MN\M? contributes a factor
|H[Necomp canceling with a normalizing factor
to obtain Eq. (9.10).
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@

Bulk G-SPT on an open manifold with gapped
boundary anomalous SET (with a G-anomaly) of

gauge group K:
Consider a SPT path integral on an open manifold
M¢? with gapped boundary anomalous SET on the
|

i > Il v
_|G Nopuk | zBdry‘K LBdry g’U’
{gi-hihij} (igig) EM"
The V ( Joo e hj(l—l;kjojl’ kjljz’ e kjd—zjd—l) =
yd l(h Jo? k]OJ]hJI’ o Rjoi M jd—l) can be evalu-

3

“

ated as homogeneous cochains by absorbing link
variables to site variables.

Bulk G-gauge theory on an open manifold with
gapped boundary anomalous H-gauge theory:

We can gauge the global symmetry G of
Eq. (9.10) in the bulk to obtain the bulk G-gauge
theory, while the boundary has an H-gauge theory
as an anomalous gapped boundary:

=[GV [V

XZ de’

{g,, u} (ig-ig)EM?

X H (QH_)iowiar (h; ;  h

Jodi2 "2t
(or+ja-1)€OM?

glnll ’gid—lid)

h

(9.11)

The w,; and Q,_; are an inhomogeneous cocycle
and cochain suitable for gauge theories.
Bulk SET on an open manifold with gapped boun-
dary anomalous SET:

Alternatively, we can partially gauge a normal
subgroup N C G in the bulk G-SPTs and also on the
boundary. Let us name the quotient group

H G
KxN N

0.

This gives us a bulk SET with global symmetry Q
and gauge symmetry N via
I-N->G->0-1. (9.12)

The boundary anomalous SET with global symmetry
Q and gauge symmetry K X N is

I >KxN—o>H-Q—1  (9.13)

agid)

W jaaja-1 )

OM?. We can directly start from Eq. (9.9) and
introduce gauge variables k;y € K on the links

between boundary sites on M. After properly
modding out the gauge redundancy, both obtain

(VZI—.II()WO”M_I (h/o’ . "hjd—l ;kjojl ’kjljz’ e ’kjd—zjd—l
(orJa-1)€OM?
(9.10)
[
Note that ] = K - H - G — 1. (9.14)

5. Symmetry-extended interface between two
topological phases Gy and Gy

We construct a path integral of topological phases G; and
Gy following Appendix D2a under 1 - K - H N Gy x
Gy — 1. First, consider a closed manifold M? glued from
two open manifolds: M? and its complement space
MANM?, with a common (d — 1)D boundary OM?. The
M is assigned with a Hilbert-space dimension G; x Gy; on
each degree of freedom (on site or edge). The MY\ M is
originally assigned with Gy x Gy-cocycles, but lifted
to H to become trivial coboundaries. Using the folding

ka given wg‘xc“ (9) = oy D) - wIGIH (gn)™"

a)H (gH) to —M? with an opposite orientation, while we
keep . (g;) to M?. The M¢ U (=M¥) can be glued to a
closed manifold because they share the same boundary. We
can define the path integral on a closed M? U (—=M“). More
generally, we can call M? as M{, while we can modify the
amplitude on —M? to a new amplitude on any open
manifold M{j, provided that OM{ = OM{; = OM? is the
same common boundary. We denote the number of vertices
N, on M{, but not on OM{, and the similar definition for
N, with I — II. We denote the number of vertices N, 5 on
OM{ = OM¢{. We define this path integral on a closed
spacetime M¢ U M¢ below.

(1) Bulk GI- and Gy-SPTs with gapped H-interface:

we can fold

1
Z pu—
|GI|N1,.I |H|Nld |GH|N"‘”
Grs;..i
X vy o (Grigs - 91i,)
Lot Ay dgnit (ig-ig)eM?
HSi i g
x H d—lo - <hio’ s hid—l)
(ig-+iq-1)€OM?
Gus. -
X H vy 0 (G s oo G, )- (9.15)
(io--iq)EMY
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(i) Bulk G- and Gy-SPTs with gapped boundary
anomalous SET of gauge group K:
1

Z
HN2|Gy

N1 Nyn

Gy

G ineei
X Z H I/d'S'O d(gl,iow--»gl.id)
{guitAhit Ao} Go-ig)em?

T e

(o-ja—1)€OM?
x (hjo’ st hjd—l ; kj()jl ’ kjljz’ st kjd—2jd—l)
G sjy..;
X H vy "0 (G o - os G, )- (9.16)
(ig-+iq)EME

Here, we dynamically gauged the normal subgroup
K = H/(G; x Gy) on 9M“ by introducing the link
variables along OM?; thus, we rewrote ,ug_l
into (V1X).

(3) Bulk SETs with gapped interface anomalous SET of
enhanced gauge symmetry:

Developed from the above case 2, bulk Gi- and
Gy-SPTs with gapped boundary anomalous SET
of gauge group K, we can partially gauge normal
subgroups of Gy- and Gy-SPTs, so that the bulk has
SETs while the interface has an anomalous SET.

B. Wave function and lattice Hamiltonian

We would like to formulate a lattice Hamiltonian on the
space lattice, whose time-dependent Schrédinger equation
gives rise to the same low-energy physics governed by the
path integral definition in the previous Sec. IX A. We
motivate the Hamiltonian construction by thinking of
ground-state wave functions. The lattice Hamiltonian below
will be a SET generalization from the SPTs of Ref. [15] and
the topological orders or gauge theories of Refs. [70,71]. Our
Hamiltonian in Sec. IX B 2 is also a generalization of SETs
of Ref. [72] to include a projective symmetry group under
G/N = Q. We further implement anomalous SET gapped
boundaries or interfaces in Sec. IX B 3.

Schematically, Figs. 19 and 20 summarize how to define
an exactly soluble lattice Hamiltonian and wave function
on a spatial manifold. Normally, a wave function of gapped
topological phase is well defined on a closed spatial
manifold. However, here in particular, some wave function
of fully gapped topological phase can also be well defined
in the gapped bulk on R; with a gapped interface OR.

1. Trivial product state and lattice Hamiltonian

We can consider a total trivial product state wave
function, where {g;} specifies the group element in a
symmetry group G and its assignment to a local site i on a
regularized dD spatial manifold M; the wave function has
its coefficient: ®y({g;},,) = 1. Its wave state vector in the
Hilbert space is

OR
R Ry
SPTs: v§ “:\:\: | \ SPTs: i1 <~
SETs: v&Y SETs: MK N

‘\\\\ \“ h*
N

FIG. 19. 1In Sec. IX B, we define wave functions and lattice
models on a (d — 1)-dimensional space manifold by triangulating
the manifold to (d — 1)-simplices. If the space is closed, as in
Sec. IXB2, we assign (d— 1)-simplices together with an
extended vertex h*, with cocycles v§ for SPTs or with VG
for SETs. In this figure, the space is obtained as the gluing of two
spatial manifolds R; U Ry with a common boundary OR. For
simplicity, we draw the d = 3 case. One example of the R; U
Ry = §? is a two-sphere; then, we can choose R; = D? and
Ry = D?, where the gapped spacetime boundary is on a one-
circle OR = S'. We would like to define the wave function on
an open manifold R; (shown in gray) with a gapped boundary
OR (shown as a dotted curve), where details are discussed in
Sec. IX B 3. In our construction, we assign lower-dimensional
split cochains uf | (or Vg_’lf ) for SPTs and y{f_‘l;] & for SETs to
(d — 2)-simplices connecting to the additional vertex h* paved
onto a gapped boundary OR.

h SPTs: Hit
SETs: 5% h™%  SETs: i

(a)

FIG. 20. Following Fig. 19, panel (a) shows that a wave
function amplitude is the product of two contributions. The first
contribution is the filling of d-cocycles into the gapped bulk in R;
connecting to i*. The second contribution is the filling of (d — 1)-
cochains onto a gapped boundary R connecting to 4* and into
the surface of the other complement bulk Ry. The combined
result contributes to panel (b), where the (d — 1)-cochains on the
region Ry can be deformed to a trivial product state (as a trivial
gapped vacuum) under local unitary transformations without
breaking the global symmetry. We can remove the wave function
amplitude on Ry after a proper amplitude normalization. Thus,
the wave function is well defined simply in R; and on OR. The
explicit formula is derived in Sec. IX B 3.
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@) o Z Do({g:} ) {9i}u) = Z 1{9itm)

o {om
(S e (Sie) -2 (S ) ..
gl m gl (9.17)

which we can properly normalize to have (®y|®y) = 1.
Note that |{g;},,) has a tensor product structure,
Hoity) =-.- ®]9;) ® ...; here, i is the site index for
some site i distributed around the spatial manifold M. To
see that the state vector is a trivial product state, we notice
that it is indeed a tensor product of (}_, [g;)) on each site i,
where (), [g;)) sums over all group element bases. The
Hilbert space on each site j is ‘H; with a Hilbert space
dimension |G| spanned by |g;). The total Hilbert space is
also a tensor product structure: Hyy = &; H;.
Considering the site index j, we can write down the
exactly soluble Hamiltonian whose ground state is |®g):

D) (@) == lo) Do (el == 3 lagl
9,€G  g€G 9;.9,€G
(9.18)
Here, H ; = —|¢#;) (| is alocal operator on each site j, and

;) = ZgjeG| g;) is an equal-weight sum of all states of all

—|¢j><¢j| is

group elements g; on each site. Thus, H,» =

proportional to a constant matrix | 1 1 in the

group element basis |g;) acting on each site. Thus, we
construct a trivial product state and lattice Hamiltonian for
a trivial insulator with a finite energy gap.

2. Short-range or long-range entangled states and
SPT or topologically ordered or SET lattice Hamiltonians

Now, we consider gapped short-range or long-range
entangled states for an anomaly-free Hamiltonian on a
closed space that is well defined in a d — 1D spatial lattice.
We can consider (1) a G-SPT for a cocycle l/g inSec. IXA 1,
(2) an N-gauge theory with intrinsic topological order
for a cocycle wy in Sec. IXA 2, or (3) a SET prescribed
byl = N — G — Q — lforacocycle V§™" in Sec. X A 3.

The SET state in Sec. IXA3 is the most general,
containing all other cases by Eq. (9.6); thus, we focus
on the SETs below. For a nontrivial, nonproduct state wave
function of SETs, we define a particular wave function
coefficient on a closed space M as

O ({g;,n ij}M)

G,Ns;
_ 0 u *.
HV lo,...,g ,n,»oil,ni]iz,...,n,»dill-*), (919)

where {g;,n;;},, are a set of site (i) and link (ij) variables
on M, for g; € G and n;; € N. Conventionally, VdG’N is a
U(1) phase, except that we set Vg'N as zero if and only if
any face of its simplex violates nj,ny3n3; = 1. The ¢* is
fixed and assigned to an additional fixed point i, outside M.
There are link variables nii, from any site j on M to i,.

Given a wave function input parameter {g;, 7}y, to
determine the wave function ®({g;,n;;},,), the only input
data we need are these two:

*
g, My, -

We only need to provide another input data n; ; , as a link
variable connecting a particular site iy to i,. Any other
variables n;; are determined by a zero flux condition

through any closed loop n; PRUNRUNE 1,
Here, [[; ,isa product over all simplices

namely,
niji* =n; o l(,l
assigned with cocycles. The zero flux condition through
any closed loop constrains that the wave function has a
trivial holonomy around any cycle of the closed manifold.
Thus, we only generate a unique ground state so far. (We
will comment how to generate other ground states with
nontrivial holonomy for topological orders or SETs later.)
This ground state as a vector in the Hilbert space is, up to a
normalization,

@) o Y @({ginghu){gnibu)- (9.20)
{!/[e”[/}M

The [{g;.n;j}y) has a tensor product structure,

Hgimijtu)=-..®lg:)®...®nyj) ®... =®; |g;) ®yj|nij)-

Now, we construct an exactly soluble Hamiltonian for
the above gapped ground state as

f—-3"4,- B,
v 7

The first term, AU, acts on the wave function of a constant-
time slice through each vertex v in the space by lifting the
initial state through an “imaginary time” evolution to a new
state with a vertex v’ via

(9.21)

.1 o
A, = |GHlZA-;. (9.22)
ugellC?N
Ag,n|gv’ Ny, 1j7"‘>
= HVGNS (9 Gpsining - ony )
X gy -non™ong, ). (9.23)

We define the A%" operator above by its operation on a state
Vector g, 1y, 1y, ...). Under the A9" operation, the group
element assigned to v as |g,,) has evolved to ¢/ as |g), the link
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element assigned to iv as |n;,) has evolved to |n;,) =
n;, - n), and |n,;) has evolved to |n,;) = [n7" - n,;).

In any dimension, we can construct (d — 1)-simplices
(that can be of irregular sizes) as a lattice to fill the space.
|

Ag.n
A7

9vs 915925 935 94, 955 G6s Nyt > Nys N3y5 Mgy s Rsy, ”m>

More explicitly, consider, for example, a 2 + 1D SET; A%"
acts on a Hilbert space state vector for a 2D spatial lattice
system in Fig. 21, centered at the vertex v and its six
nearest-neighbor links:

G,N . G.N . -1 G.N . -1
_V3 (g4795’g111g’n45’n51)’n)v3 (95790’9796”151/‘7”’” nv6)v3 (gﬁ’g!gﬁvgl’n’n nﬂﬁ’nﬁl)

~ y,G,N . -1 G.N . -1 G.N .
VS (gwgvgbgl?n?n nv2vn21)v3 (9379U79792’n31)7nvn nvZ)V3 (94793791”99”43’”31””)

X

.1 -
9,91, 92,93, 94595, 9o 0~ = 1y1, 1N

We design the Bf term as the zero flux constraint on each
face or plaquette. More explicitly, consider a face f (in
Fig. 21) with three vertices (assigned ¢;, ¢», g,) and three
links (assigned n,,, n,;, n,), the B; acts on the corre-
sponding state vector | gy, g, Gy s Nops Myp ) @S

Bf|gl » 92, Gy Ny, Mo, nvl>

= (5n,,2n2]n|1,:l ) : |gl » 925 Gus Ny, M2, Ny > (925)

The 6, n,n,,—1 is @ Kronecker delta, which gives 1 if
Ny, Ny iy, = 1 is trivial in N; thus, the flux through the
face f is zero. The 6, , ., —1 gives O otherwise. Even for
SETs, the explicit zero flux condition is reduced to

(90" 1292) (95 12191) (97 ' 11090) = Mupnoing = 1,

the same as in the pure N-gauge theory of topological order.
For SPTs with a nontrivial G but a trivial N = 1, the zero
flux always manifests, and (g;'9,)(95'91)(g7'g,) = 1.
Some more remarks on the system are given as follows:

FIG. 21. The effective expression of A({” operation. Here, we
show that Ag-" acts on a 2D spatial lattice on a site v and its
neighbor links. The explicit form is given in Eq. (9.24). The
volume enclosed by dashed links contributes an amplitude filled
by cocycles VY. A more general expression for any dimension
is given in Eq. (9.23).

1 -1
TNy, N3y - 1 Ny " N, N5y - 1, 1

. nv6>' (924)

(1) All A?" and Bf have mutually commuting and self-
commuting nice properties. In principle, our model
is an exactly soluble lattice model.

(2) Since the SPT always satisfies the zero flux on every
face f, we can simplify the Hamiltonian without the
B ¢ term: Hgpr = =3, A,. The additional B ¢ term in
Eq. (9.21) for SETs and topological orders imposes
the zero flux constraint at low energy. However, at
high energy, at the cost of an energy penalty, the
zero flux condition does not hold at those faces f
with energetic anyon excitations. The anyon exci-
tations are created at the end points of extended
operators (e.g., line operators in 2 4 1D). See also
Remark 8.

(3) Hilbert space: The Hilbert space on each site j is H;
with a Hilbert space dimension |G| spanned by |g;)
for g; € G. The Hilbert space on each edge ij is
H;; with a Hilbert space dimension |N| spanned by
|n;;) for n;; € N. For our lattice Hamiltonian in
Eqg. (9.21), the total Hilbert space is a tensor product
structure:

Hioa = ®; H; ®;j Hjj (9.26)
When we limit to a symmetric G-SPT, with N = 1,
we have a tensor product H,,,y = ®; H; defined on
sites. When we limit to a gauge group N-topological
order, with G = 1, we have a tensor product H,, =
®;; H;; defined on links. Naively, one may ask, “Is
it not that the discrete gauge theory description of
topological order has no tensor product Hilbert space
Hior # ®;j H;i;7” The answer is that the gauge
theory description of topological order for our
Hamiltonian in Eq. (9.21) only occurs at the lowest-
energy ground states, when Bf =1 as zero flux on
every face. For those ground states of topological
order, indeed, the Hilbert space is not a tensor
product, H, #®;; H;j, due to the requirement
of projection constrained by B = 1. Thus, our
Hamiltonian as a local bosonic lattice model at
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higher energy contains more than a discrete gauge

theory. The same argument holds for SET states.

Gauge and global symmetries for Hamiltonians:

The Hamiltonian in Eq. (9.21) is apparently invariant

under the N-gauge [Eq. (9.7)] and G-global sym-

metry [Eq. (9.8)] transformations. For SETs and

SPTs, each individual of A%" and Bf terms is both

N-gauge invariant and G-global invariant. On the

other hand, for a topological order of gauge group N

without any global symmetry (i.e., G = 1), the

individual A” is not gauge invariant. For example,
under a local gauge transformation n,, applied on the
vertex v, it transforms A'L' — AS,""')'". If a local gauge
transformation is applied on a neighbored vertex
next to v, then A’Z, is invariant. However, the overall

A, = W”Z[w’hneN A" is gauge invariant.

Gauge and global symmetries for wave functions:

For the SET state vector |®) of Eq. (9.20), we can

apply symmetry transformations on either the wave

function coefficient ®({g;,n;;},,) or on the basis

[{9i.ni;} m); the two transformations are equivalent

by an inverse transformation on another. Thus, we

focus on the transformations on the wave func-
tion D ({g;.n;;}p)-

(1) If G is nontrivial, then we have either SPTs or
SETs. It is easy to check that the cocycle VOV
is both gauge and global symmetry invariant
under N-gauge [Eq. (9.7)] and G-global sym-
metry [Eq. (9.8)] transformations. Thus, appa-
rently, the wave function

D ({g;. n;j}y) = P{(M;)g;, (n)n;;(m;)~" 1]
= ®[{(g)g:, (g)ni;(8) ™"l

is gauge and global-symmetry invariant under
transformations of Eqs. (9.7) and (9.8).

(i) If G =1 is trivial and the gauge group N is
nontrivial, then we have a pure gauge theory with
topological order. The reduced inhomogeneous
cocycle V&N = @V alone is not gauge invariant;
the wave function ®({n;;},) is not gauge
invariant, either. Even the ground state vector
@) o< >0,y PUnijba) {nij}ae) is not gauge
invariant and is nor gauge invariant up to a U(1)
phase. Namely, each wave function obtains a
different U(1) phase e®{"iihum:) that depends on
the input {n;;},, and gauge transformation n,,
ie, ®{ny}y) = b0 {n,},).
define such a gauge-transformed state vector
as |@) — |®(n;)). However, as long as any
physical observable (0) = (®|O|®) is strictly
gauge invariant as we show below [73], the
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theory is well defined. We find that (O) is indeed
gauge invariant,

(@|0@) =3~ >~ & ({n}y)e, | (Lt har)
{nii{ag;}
— (®(n;)|0]®(n,)). (9.27)

where we have considered a generic operator 9
defined by its operation on |®):

O|l®) =0 Z O ({n;jtv){nijtm)
{nij}

= >N e @) )
{ni;} i}
(9.28)

with generic c} ”i coefficients.
nij

(6) Wave functions and their independence of input g*

and n;; : Consider a wave function on a closed

space M defined in Eq. (9.19).

(i) The SPT wave function ®({g;})spr is inde-
pendent of the input choice ¢g*. Namely, chang-

ing g* to ¢* = (g)7'g",

Gsiy...iy %
q)({gi}M)SPT = Hyd 0 (gio’ "”gid—]’g )

.
=155 1(8)gi. - (8)gi, . 9]
.
- yd [glo" '7gid,]’(g)_lg*]
.
=T1255 (9500, 07).
)
(9.29)

Here, we use the fact that ®({g;}))spr
is G-global symmetry invariant in the second
equality. This proof, [(®[{(8)g:}ulser)/
(®({gi}s)spr)] = 1, requires the use of a G-
cocycle condition, and we will show a complete
proof in Sec. IX B 4, even in the presence of a
gapped boundary or interface. We also use that
v§({g:}) = v5({(2)™'9;}) due to the property
of a homogeneous cocycle in the third equality.
One quick way to visualize this proof
[Eq. (9.29)] is that the ratio [(D[{(g)9g: } mlspr)/
(©({g;}y)spr)] yields a term equivalent to a
product of coboundary terms; fortunately, the
overall coboundary terms on a closed space M
must cancel out to be 1.
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(i) The topological order and SET wave function
®({g;, n;;}y)ser can be defined in such a way
thatitis independent of the input g* and n; ; . Itis
easier to prove that if we design and evaluate
Eq. (9.19) in terms of homogeneous G cocycles.

|

)

Gs;

Below we show that replacing ¢*—¢*=
(g)"'g" and n; ; = nj; =(n)n; ,; , with a slight
reorderlng of vertex indices and branch structure
for our convenience, the ®({g;. ;; } /) sgr is still
invariant:

i, iy

_ weld] ok
‘I’({gn”:‘j}M)SET = Vg (g s MiigGig> Wi igMigiy Giys -+ T ig Mg -'-ni,,_zid_lgi,,_l)
{3
Gs..[
= vy lgts (g)ni*iogiov (g)ni*ionioilgila cees (g)ni*ionioil ---nid,zid,lgid,,]
{-}
_ Gs . *
vy o (d s i igGios Wi igMigiy Giy s -+ i i Wiy ---nid,zi,,,]gi,,,]) r=(g)" g (9~3O)
{}
Gs;
. bl *
o iy M J)SET — d s Wi ig i i ig Vgl  Jiy s o Mg gty g tgo Sy
{1
Gs. 1 %
= Vd lg ’(n)ni*iogioa (n>”i*i0ni0i19i,7 (n>”z;i0”ioil-~-"id,2i,l,,gid,l]

— Hygs... <g*’ n
-

i,ig9ig> MiigMigi, Giy> -+

!/
s ni*ion,-nil .

nil,,zid,]gid,] )|n;*iOE(n)ni*,0' (931)

The ®({g;.n;;}))segr becomes that of topological
order ®({n;;})ro if we set all g = 1 for the trivial
G. The proofs in Egs. (9.30) and (9.31) again require
the use of a G-cocycle condition and the property of
a homogeneous cocycle.

Local unitary transformation and the Hamiltonian:
We can define a unitary transformation U as

U: Z HVS’N(giO,...,g*;nioil,niliz,...,n,-d_ll-*)
{gi’”ij}M{“'}
X {gisnij} ) ({gini} - (9.32)

We can view that the above V5" is a U(1) complex
phase determined by local input data {g;.---;
n;;,---} that are given within a local (d—1)-
simplex. Since the U sends the input state
[{gi-n;;}y) to the same output state, the overall
U(1) phase is determined by || {_”}VjN,
product of U(1) phases assigned to each (d — 1)-
simplex.

(i) For SPTs, it is

Z Hud(g,,...

{g!}M {

which is a

|{gl}M><{gl}M|

(9.33)

For SPTs, actually, this U is a local unitary
transformation (LUT), because this U is formed
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by a local circuit of many independent v,, | on
each local simplex. Overall, U is a unitary
diagonal matrix acting on the full Hilbert space
with diagonal elements assigned with distinct
U(1) phases. Under this LCT, the SPT |®) is
deformed to UT|®) = |®,) of Eq. (9.17) as a
trivial product state. However, such a LCT
locally breaks the global G-symmetry of SPTs,
because each v5(g- g;. ..., g*) is not g-invariant
with a fixed ¢g*. The LUT can deform such a
short-range entangled state of SPTs to a trivial
product state, at the cost of breaking its global
G-symmetry.

The SPT Hamiltonian (without the f%f term)
can be rewritten as

ZUH UT_—ZU|¢, (g;| 0

—ZA( > o) )0

i 9;-9;,€G

(9.34)

The [¢;) = >_4.ecly;) is an equal-weight sum
of all states for all g; on each site.

(ii) For topological orders or SETs, the U defined
in Eq. (9.32) is not unitary for the total
Hilbert space Ho = ®; H; ®;; H,;, because

Vg'N(nlz,nB, ...) is defined to be 0 when a
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closed loop nj,ny3ns; # 1. We can artificially
redefine U to design those zero Vg’N terms to be

1 by hand, and make U/’ a new unitary matrix. For
example, one such unitary deformation sends to

U'@) = P{ > |{gi’nij}M>:|

{ginitu
Hfor (5m) @ (00)]

where P is a projection operator imposing
the zero flux condition through a closed loop
as nphpni =1, and P projects out any
nipnyzng # 1 state. However, this final state is
very different from a trivial product state, e.g.,

®; (224,19:)) ®ij (22, |nij))-  Regardless  of

how we design a unitary U’ matrix, we cannot
deform the ground state |®) of topological orders
or SETs to a trivial product state through any local
unitary transformation. This reason is due to
superposed extended loop states, as ground states
of intrinsic topological orders are highly long-
range entangled—their information encoded in
the projection P on the zero flux condition is
incompatible with a trivial product state. The
LUT cannot deform a long-range entangled state
to a trivial product state. Thus, the topological
orders or SET Hamiltonian cannot be rewritten as

H= ij]’lfljf]’*, for any unitary U’ and for
some local Hamiltonian ) ;H; whose ground
state is a trivial product state.

(8) Degenerate ground states with holonomies around

noncontractible cycles: So far, we have focused only
on a ground state |®) that has no holonomies around
noncontractible cycles and that can be deformed to a
trivial product state. However, for gauge theories of
topological orders and SETs, we have distinct
degenerate ground states when the spatial topology
is nontrivial (e.g., a 2D spatial torus T}%y). Starting
from |®), we can generate other degenerate ground
states by inserting extended operators as holonomies
around noncontractible cycles. Without losing gen-
erality, let us consider a 2 + 1D system; we have

generic line operators Wf{] in a 2D spatial torus T?Cy
with coordinates x and y. We can fully generate
distinct ground states spanning the dimensions of
Hilbert space on T3, by
A 81 ~ {nf,‘;),ng‘f)}
Wylo)y=TJu, " @) (935)
{9097}
. S .
Here, S_é in W,/ means that the line operator
has a cycle around S!, so the [], means a series
of vertices v spanning around the S;,-cycle, for

U

A A~ n(‘.),n(.z')

FIG. 22.  An example of line operator WZ‘I' = HDL{E " (U;’} /
90:9;

along the blue dashed line. The product of v spans along all the

vertices on the blue dashed line. One of the most generic

A

operators U " I

909}

on a local Hilbert space of 7 G-vertices and 12 N-links on a

shaded honeycomb region; thus, it acts on a Hilbert space of

dimensions |G|”|N|'2.

acts

on this lattice centered at a vertex v acts

example, along the blue dashed line in Fig. 22.

N {n(_?),n(.?)}

The U "
¢ {909}

() ) pf0) ) ) J(0) ) o) (0) ) o) (o)

ot My My gy s,y gy g g ngd ngy ;
W) 0 o) 1) o) () » which acts
909”9, 95”9, 95" 95

on the honeycomb shaded region in Fig. 22. Exam-

~ {nfj),nff.’)}
plesoftd ./
{909, }

example, for a Z, toric code [74] on a T? torus, the

is a shorthand expression for

7~

include the A%" and Bf terms. For

. ~ S
expression for degenerate ground states W,;|®)
boils down to

1) (11o)

where o, and o, are the rank-2 Pauli matrices. The
product [T is along the S} line operator. The (g, m)
are integer mod 2 values, and (g,m) = (0,0),
(1,0),(0,1),(1,1) are four distinct ground states.

D),

(v) (v)
. oa~An Y}
Moreover, a generic U " '~ does not need to
{909}
commute with A%" and By, and it can violate the zero

N
flux condition of Remark 2. Thus, such a L{in“ (n)f} }
gL'-g,'
can create anyon excitations that cost higher energy.
We can easily generalize the above discussion (2 + 1D)

to any spacetime dimension.

3. Anomalous symmetry-preserving gapped
boundary or interface of bulk SPTs and SETs

Continued from Sec. IXB2, we develop further to
formulate a lattice wave function and Hamiltonian for

031048-38
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topological phases with gapped boundaries or interfaces.
We first focus on a bulk G-SPT on an open manifold, while
the gapped boundary has an anomalous H-SPT that cannot
exist without an extended bulk, via a group extension
H/K = G, in Sec. IX A 4. Along the way, we comment on
how to easily generalize to a bulk with SETs.

(i) Wave function: For the wave function, we can

simply adopt the G-SPT limit of Eq. (9.19) as
O({g;}y) = H{.A.}VSSIO”J* (Giys ---»g), defined first

on a closed space M =M% of (d— 1)-spatial

dimensions. The g* is again some fixed value outside
the M?'. We would like to keep the degrees of
freedom on each site with Hilbert space dimensions
|G| on the gapped left region R; and extend the
site’s Hilbert space dimensions to |H| on the gapped
right region Ry, as well as on the interface OR
(=0R; = ORy; up to an orientation). We denote the
group element in H assigned along OR as h” € H.
We also extend the Hilbert space dimensions of i,
from |G| to |H|, and we choose r(h*) = g*. The
modified wave function defined on M = R} U Ry is

®({gi h;}) = D({gia,» 11 Yors {hi}r,)
- H “Hai o rh)] - TTve ™ Ui, Yo Ar(h2) Yoms r(h))
{3

: vab {r(h ) Yors {r(hj,)} gys r(H°)] (9.36)
!

(H [ )] TL6™ i 02 o 1))

{3}
(Hﬂ”% 0 Jaro ] ) u’“'w1<{h0}8R,{h,h}RH>) 937)
L
= O, ({91}, () Do (A1), (7). [, 9.38)
Lot (T o b i I TLE™ b 0 w0 ) - (TLw L0 Do) 939
{3 {}
= 0, (g} (Do ({A)) (9.40)

where we have split the above H-coboundary 1§ [r(h)] = v (h) in Eq. (9.36) into H-cochains p/f | in Eq. (9.37). We define

@r,({g:}. {h7}) = (HVGS'“ “Hgi }r,r(h )]‘Hvdcsi“j”"'i* [{gia}RI,{r(h?,,)}amr(h*)])
{3

Dor({h}) = (H/"fa 0 e ).
@u, (0. 1) = (TR (0 o U b)) 9.41)
{.}

Notice that @y ({h;)} {h;}) is simplified to no dependence on h* because those x//_ | that depend on h* are pair canceled
out due to overlapping on the same (d — 1)-simplex with opposite orientations 1. From Eq. (9.38) to Eq. (9.39), the
notation “LUT” means that we do a local unitary transformation (LUT) to deform @ to a gapped trivial product state

—

®p, = 1 without breaking any symmetry. Thus, the simplified nontrivial wave function only resides on R; and OR as

({gi. h}) = g, ({g:}. {h]})Por({A]}).
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For example, more explicitly in 2 + 1D,

(I)<{givhj}) Eq)RI({gi} {ha}m’aR({hj?})

- HV gll Yiy>Yis> (h*)]yg;s[r(h?])?giz’giyr(h*)]l/g

x ull (hj?],h?z,h*) S(h9 09 b, )l (hf],hh,hM

g1 s

LET{I_[}V?[QI',»9i2,9i3»”(h*)]’/3‘ [r(hjl)agizvgi3’r(h )]’/3‘

Here, the shorthand s = +1 depends on the ordering of each
assigned simplex. We see that those 4% that do not depend on
h* can be deformed to a gapped trivial product state by local
unitary transformation without breaking any symmetry
(again, we denote the procedure as “LET”), because

the homogeneous cochain satisfies u,({(h) - h;}) =

il ({h;}). Thus, keeping only 4 (hf . hf , h*) but remov-
ing other uf, we obtain the last simplified equality. In
generic dimensions, we have Eq. (9.40).

1} |H|

v (r(h). r(hy), {r( ha}{gz})Hﬂ (h, by {ROY) A,

Agl’%)? {hja}7 {gl}> =
{3

[r(h§).r(h,). giyr ("))

S(h; h; .h;)

J3277J4a s

[r(h?). r(h?).gi,.r(h")] HMH‘ (h9 .h2 . h*).

(9.42)

(i1) Lattice Hamiltonian: The Hamiltonian for the above

gapped ground state has the same form in the bulk
region R as H ==Y A, Zfo in Eq. (9.21).
However, we need to modlfy the boundary term on
OR. The first term A, on the boundary acts on the
wave function of a constant-time slice through each
vertex v in the space by lifting the initial state
through an “imaginary time” evolution to a new state
with a vertex v’ via

(9.43)

Wy Agl.). (944)

More specifically, the effective 2 + 1D Hamiltonian term along the 1 + 1D gapped boundary R, shown in

Fig. 23, is written as

p3 (hys b h)ps! (ha by )

N )
Avllto 0295 ha) = L S g ) () g2 T Ce). 5. P (). P ()

The B ¢ term imposes trivial G- and H-holonomies
for the contractible loop. But here, Bf does not play
any role for SPTs, because SPTs always have trivial
holonomy regardless of whether the loop is con-
tractible or not.

(ili) More generic bulk or gapped boundary SET wave
function and Hamiltonian: We can consider more
generic bulk SETs and boundary anomalous

|

hvhng’ g37h4>‘

(9.45)

SETs as in Sec. IX A 4, Remark 4—a bulk SET
with global symmetry Q and gauge symmetry N via
1->N5G - QO — 1, and a boundary anomalous
SET with global symmetry Q and gauge symmetry
KxN via 1->KxN->H->Q—-1, where
(H/KxN)=(G/N)=Q. This also implies 1 - K —
H-5 G—1. The generic wave function is

O({g;.n; ;. by, kjaj,,})LET‘DRI({gi}» {nii, 3 ARI ) @or({hF}. {nj 5, 3 {k; 1)

where

®r, ({91} ni ) (7)) = (Hv‘”‘ “({gihnn ?)}OR,r(h*>;{n,-,,i,,}Rl,aR>),

H,N.Ks

Gor( (K}, - ki) = ( P
{..}

031048-40
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FIG. 23. (a) We consider a G-SPT on the spatial region R; with
a lattice. We set a trivial vacuum on the spatial region Ry; and the
gapped boundary of H-anomalous SPT on the boundary OR. The
Hamiltonian A" acts on the state |/, 11, g. g5, h4) and is given in
Eq. (9.45), which sends it to a new state |k, 1, g5, g3, hy) With a
U(1) phase. (b) Now consider a G-SET on the spatial region R;
lattice with a gapped boundary anomalous SET; the Hamiltonian
Ak s given in Eq. (9.49).

Its Hamiltonian has the same form in the bulk region
Ras H=-3",A, -5 B, in Eq. (9.21). But, we
need to modify the boundary term on OR to

A 1 Ahnk

P — (9.47)
U HIINIK] e 2 ek

Ah.nk .
Av |hv,]’l1,92,g3,h4, Ulkl}l’ w2, v3’n4tk4v>

Alnkip {hf?} {gi}' {nii, b Ak 1)
_ HVG Ns__ ,r(hy), {r(h?)}, {gitsn{n;;, 3

X ,“Id”;”("(h’hv’{h?};{nj(,jb}7{kjajb})‘h’
{}

< {7} Agitni,i, b Ak, - (9.48)

Here, n; ; and k) ; are some modified link variables
that may have n and k variables inserted.

The Bf term imposes trivial holonomies for the
contractible loops; here, B + plays an important role
to constrain ground states of SETs. The bulk Bf
imposes trivial G- and N-holonomies for the con-
tractible loops. The boundary B + imposes trivial H-,
N-, and K-holonomies for the contractible loops.
Similar to Eq. (9.25), the bulk Bf constrains that
(84,,15,n,,~1)» and the boundary Bf constrains that
(8n,0m0,m,,=1) (Bk ok k,,—1) ON €ach state vector asso-
ciated to a two-simplex triangle.

For example, more specifically, an effective
2 4+ 1D Hamiltonian term A" along the 1 + 1D
anomalous SET gapped boundary OR, shown in
Fig. 23, is written as

Hy (hl ’ I’lkh nmn, 1kkv] h )ﬂgl(h4’ n4vk41:h11’ n41/‘nk41;kh)

_ug[r(hv),a(n) (h),a(n,)gs, a(ny ) r(hy )]Vsc[gs,a(nsv)r(hv),a(n3vn)r(h),a(n3vnvz)gz]

1

) a(ng,n30) g3, () r(h,), a(ng,n) ()]

V5 [r(hy),

Here, r(h) € G and r(h; ) € G are aimed at empha-
sizing that they are obtained via the epimorphism

H-5 G.Thea(n) € G and a(n; ;) € G are aimed at
emphasizing that they are obtained via the mono-

morphism N-5G. Since N is a normal subgroup
inside G, previously we have been abbreviating
a(n) =ne€G for Vn e N.
In the next section, we analyze the symmetry-preserving
property of such a gapped boundary system.

4. Proof of the symmetry-preserving wave function with
gapped boundary or interface

Following the setup in Sec. IX B 3, here, we rigorously
prove the wave function in Eq. (9.40) of a bulk G-SPT on
an open manifold, while the gapped boundary has an
anomalous H-SPT via a group extension H/K = G (in
Sec. IX A 4). See Fig. 24 for a geometric illustration for
the proof.

92, 93, hasnyn~ kmk n- ”1)27 v3”’”4v”k4vk>- (9-49)

|

We would like to interpret that the spatial bulk has
two sectors RIERf’ and RHERﬁ, while the whole
closed space is RY UR¢ = M?. The SPT of symmetry
group G is on the R; side, a trivial vacuum is on
the Ry side, while the gapped interface (=JR) between
the two phases is symmetry enhanced to H. This
gapped H interface can be viewed as a gapped boundary

for the bulk G-SPTs. Under the construction 1 —» K —

H-5 G — 1 of cocycle splitting, below, we can have
an exact global H-symmetry transformation acting
along the gapped interface, together with an exact
global G-symmetry transformation acting on the gapped
left region R;, and no symmetry transformation on the
trivial right region Ry;. We consider the following setup:
(1) We assign a Hilbert space dimension |H| on each site
along the interface OR between the R; and the Ry
regions, while the Ry region of the SPTs has a Hilbert

space dimension |G| on each site.
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" ~
e SPTs: i
SETs: vk

(e)

FIG. 24. We show geometry pictures how to understand the
symmetry-transformation phase cancellation for the overall
symmetry invariance in 2 + 1D/1 + 1D, which can be easily
generalized to any higher-dimensional spacetime. Panel (a) shows
how two pieces of v; in Eq. (9.55) contribute to the left-region
wave function ®p and then convert to the splitting of a v3 into
four pieces of two-cochains in panels (b) and (c) as in Eq. (9.57).
Panel (d) shows how two pieces of u, in Eq. (9.59) contribute to
the interface-region wave function ®@y. Panel (e) shows how, on
a closed interface OR (here, an S'), the symmetry transformation
on the combined wave function ®@p - @y, canceling with each
other to 1 as the symmetry invariance achieved in Eq. (9.60).

(2) We require the dimension of Hilbert space on the
additional site i, assigned with #* outside M? has a
Hilbert space dimension |H|. We also have an
additional virtual site i/ assigned with h='A* for
Vh € H, such that r(h) =g, r(h*) = ¢g*, and

P00 ) = r(h () = g7

We also set that the site i’ has a Hilbert space
dimension |H|. The condition (2) is important in
|

order to split the cocycle on the R; region that
touches the interface.

(3) We consider the algebraic-structure-preserving map

from H to G with r(h) = g, the same map of H - G.
The symmetry transformation sends |g;) = |r(h)g;) =
|gg;) when the dimension of Hilbert space is |G|
on the site j. The symmetry transformation sends
|h;) = |hh;) when the Hilbert space dimension s |H|
on the site j.

The exact global G-symmetry transformation on the left
region R; and the exact global H-symmetry transformation
along the interface yield global U(1) phases to the wave
function, and the global U(1) phases need to cancel out to
1. The cancellation of global U(1) phases of G-symmetry
and H-symmetry transformations may be viewed as
anomaly free for the whole bulk and the interface. The
wave function is only symmetry invariant if we consider the
whole system together.

Now, consider the group manifold that has the left (Ry)
sector of group G and the right sector of a trivial vacuum,
and all sectors can be lifted to the larger group H. Again,
we set that gf = gjj = ¢ = ry(h*) = h* = 1. In general,
we can easily generalize our result to any dimension.
Without losing generality, let us take a specific example in
2+ 1D, and let us consider the two-dimensional space
lattice defined on a two-sphere S2. The S? can be regarded
as two two-disks D? glued together along the S' boundary.
Let us call the two D? disks Dy assigned with Gy on each
site and D%H assigned with Gy on each site. Along the S!
boundary, we assign H on each site. The wave function on
the whole S? surface is evolved from an additional point i*
assigned ¢* = r(h*). Thus, the wave function can be
determined by assigning the three-cocycle into this space-
time volume of the D3 ball (whose center is i* and whose
spatial sector is S?).

For SPTs, we use the homogeneous cocycle denoted 1/3"
and cochain /45_1, and we follow the wave function
®({g:.h7}) =P, ({9} {21 @or({A2}) in Eq. 9.42).
Here, we arrange the wave function separated into a few parts:

O, ({9}, {h?}) = H’/sGs (95, 95y iy r(h*)]z/gs[r(h?] )s Gis» Gis s r(h*)}ug;“[r(h?l ) r(h?z), 9i,» ()],
{3

®9R<{hja}) = H,ué”(h?, h?+1’h*)-
J

Again, there are orientations s = =1 for each term.
Below, we verify that the wave function ®({g;, h‘?}) is

invariant under the global-symmetry transformation Sqy,. It
means that we can show that ®({g;, hf}) is equal to

Sam®({g:-h7}) = @[ (r(h) - g;). (h- AN}, (9.51)

(9.50)

We also denote the change r(h)=g in G.
The above shows the symmetry transformation
acts on the wave function. Conversely, we can

consider the equivalent dual picture that the symmetry
transformation acts on the state vector in the
Hilbert space. Either way leads to the same conclusion.
Since
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®[{(r(h)-g,).(h-h))}]

Sym®({g:.h7}) = o({g:.h7})

®({g;,h7}),
(9.52)

we need to show that the factor in the bracket [...] is 1
to prove the global symmetry preservation. The
G-symmetry on the region R; must be able to be lifted
to some H-symmetry on the whole regions R; including

the interface OR, based on the fact that H LG is
surjective. We remind the readers that g = r(h),
g =r(h*). Namely, it is effectively the H-symmetry
transformation on the whole system.

In region Rj, the wave function change [v3(g- g,
9°92.9°93.9)/v3(91.92.93.9)] = v3(91.92.93.97" - 9°)/
v3(91, 9, 93,9%)] can be simplified further based on a
d-cocycle condition,

(6v3)(9i- 959" 87" - g) =1 (9.53)
DS(glngvg.’svg_] g*)
v3(915 92: 93, 9°)
_ y3(g2’ 93, g*v g_l . g*)l/3<gl,92, g*’ g_l : g*) (9 54)

1/3(917937 9*7 g_l . g*)

Here, for convenience, let us denote g;g; as a link con-
necting two vertices i and j, where two vertices are
assigned with g; and g;, respectively. Notice that the
three-cocycle v3(g;. ;. g*. 8" - g*), which contains a link
9:9;. 1s canceled out, because there exists a neighbor term
that shares the same link g;g; and that contributes the same
factor with opposite orientation, and thus, opposite sign for
s = %1. The only subtle type of terms that survive and that
require further analysis is v3[r(h?), r(hf), g.g g,
which contains a link with two vertices h? h;? on the
interface OR. If we approach from the region Ry, we see that

v3 (r(hy).r(h9).g5.87" - ")
v3(r(h)), r(h9).93.9°)
_va(r(h9).gs. 9" 87 - s (r ), ()" 8™ - g)
v (r(h)). 95,987 9) '

(9.55)

All the terms on the right-hand side cancel with some other
terms in the product [] tily which share the same links

connecting g, {93 and he ) on the same region R;, except for
the v3[r(hY), r(h9),g*,g~" - g*] term that touches the link

h9h3. We would like to split the three-cocycle 1§ that

touches the link h?h‘;’ into two-cochains '

WG[r(h). r(R3). ("), r(h=) - 1))
= VH (k0 hY, h* - )
= (@) (. h. e )
O )
AN R BTN EN A

(9.56)

We shall consider all such splitting terms along the
interface. As an example, for the 1 + 1D interface on a
spatial ring with a total number of N sites and N links

(hah]+l) where i = 1, ..., N (mod N), we obtain

[T 51 (hd). r(h? ) (). r(0" - )]

j=1

) (AUHLELNSR) AL TR
=1 psl (hf. h* =t ) =1 (hf’hfw h*)
VAR

_ AT (9.57)
j=1 (/’ J+ )

The first is based on Eq. (9.56) on a ring. For the second
equality, we use the fact that [T, [u (h? |, h*, h7" - h*)/
8 (h9, h*,h=' - h*)] = 1 cancels out on a closed ring.
Combined with the fact that a homogeneous cochain does
not change under symmetry transformation if inputs do not
contain £*, because the homogenous cocycle satisfies
Wi (b hyh- by hy) /ud (hi by b)) =1, so far we
derive that

@, ({r(h) - g;}, {h-h7}) _ ﬁ S (h hf. =t b
O, ({g:}. {h7}) A

(9.58)

We can also see that the remaining part of the wave func-

con oy 9 10 -1

tion is Pyp({h5}) = J | M5 (hj,h]+1,h*) , where the
inverse with s = —1 is due to the opposite orientation
accounted for from the other side Ry;. Its symmetry trans-

formation becomes

M_ﬂ( <h?’hf+wh‘“’“*>)“ 959

q)BR({h?}) a j=1 (h;)7h?+l’h*)

Thus, the phases in Eqs. (9.58) and (9.59) cancel perfectly,
and the whole wave function (I)({gi,h;? ) = P ({9:},
{h?})®yg({h}) is invariant under the symmetry trans-
formation:
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@g,({r(h) g} {h-h7}) @or({h-h?})
@, ({g:}.{h]}) Dor({h]})
({g;.hj}) =1-@({g;.h7}).  (9.60)

sym ({gnha})

In Fig. 24, we show a neat geometrical way to understand
the symmetry-transformation phase cancellation for the
symmetry invariance. For any higher d-dimensional space-
time, we can give the same proof by replacing uf in
Egs. (9.58) and (9.59) with uf7 . It is easy to confirm that
our proof on a symmetry-preserving gapped interface holds
for any higher-dimensional generalization (q.e.d.).

We can apply a similar proof for the global-symmetry-
preserving property of the SET version of the wave
function in Eq. (9.46) to show

Ssqu)({gi’ iy ,/’k/a./b})
= ®({r(h) - gi.n;,;,.h
= ®({g;. n Jips Mo /a]b})

J’ Ja/b})
(9.61)

To prove this, we may regard that h - i; = h; - h’, where
W = h;'hh;. Similarly, r(h) - g; =g - g; = g, - g, we find
that g'= gjlggj = r(h;l)r(h)r(hj) = r(h;lhhj) =r(h’).
Regardless of the branch structure for vertex ordering,
we can convert the symmetry transformation, from acting
on the left of the group elements to that acting on the right
of the group elements. This trick can facilitate the proof that

the SET wave function is invariant under global symmetry,
even in the presence of gapped interfaces.

5. More remarks

Here are a summary and some more remarks:

(1) Global enhanced H-symmetry invariant: We have
shown that the SPT wave function on a whole system
is invariant under G-symmetry transformation in the
bulk R; together under H-symmetry transformation
on the interface OR. The symmetry transformation is

fixed by H L G, and we may view that the symmetry
is enhanced to H for the whole system.
(2) Global K-symmetry on the boundary or interface:

Under the construction 1 - K - H-5>G — 1 for
G-bulk SPTs and anomalous boundary H-SPTs, the
K is trivial in the bulk as r(k) =1 € G for k € K.
How about K-symmetry transformation on the inter-
face? It is easy to check there is no local K-symmetry
on the interface, since @ ({k; - h?}) # (DaR({hj?})
for arbitrary local k; € K transformation on each
site j. However, below we can prove that there is a
global K-symmetry applying on the boundary or
interface, namely,

¢’8R({k : hj?}> = q’aR({h?})'
Proof: Without losing generality, consider the 141D
boundary of 2 + 1D SPTs. We see that

(9.62)

N 0 * —1 7%
ubl kh Jkh 1,h) ull 9 k~'h¥) . .
Panl{k-n1) =11=7 ar ey Pt =112 ha]Za iy Cor () =@ar({(10)). (9.63)
Jj=1 Jj+1 Jj+1
where in the last equality we use the fact of three-cocycle splitting and r(k) =1 € G, so
h ke kT ) py (9 hY, ke
RN R s B S B S gt AL LR L AL STLESLE
y(hj,h,k - h*) (hj,hﬁ],h)
N N oo (R, b kY b (R, h? kR
= 1= IZH”<J:‘;1* o1 *)H (jdﬁla " :
N oo (R hd k- ke
= 1= 1.H”2( L ) (9.64)
Jj=1 (hJ’h/+1’h )

(3) Gauging SPTs to SETs: Since there is a global
K-symmetry on the boundary or interface, we can
partially or fully gauge this K-symmetry. We can
also gauge a normal subgroup N of the global
G-symmetry of G-SPTs—however, to gauge N in
the bulk, we also need to gauge the N for the
anomalous H-SPTs on the boundary or interface. By
gauging the normal subgroups N and K, this gives
rise to SETs of Sec. IX A 4, Remark 4.

(4) Degenerate ground states and holonomies for the
boundary anomalous SETs: If the gapped boundary
is on a compact space with nontrivial cycles, there
can be nontrivial holonomies for the gapped boun-
dary anomalous SETs. For example, for a 2+ 1D
SPT on a two-disk D? and its 1+ 1D anomalous
SETs on a one-circle S!, or, fora 3 + 1D SPTs on a
solid torus D* x S' and its 2+ 1D anomalous
SETs on a two-torus 72, their nontrivial boundary
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®

holonomies imply the ground-state degeneracy
(GSD). We will explicitly compute such GSDs for
some examples in Appendix D, such as 0 - ZX —
ZH - 7§ - 0in Sec. D4aand 1 - ZX - 0Ff —
Z§ - 1in Sec. D10 a.

Gapped interfaces by folding trick: Again, based on
the folding trick, we can construct a wave function
and lattice Hamiltonian of gapped interfaces between
two topological phases in Sec. IXA 5, and we still
can prove the symmetry-preserving wave function.

X. CONCLUSION

Some concluding and additional remarks follow:

)

2

3

“4)

We provide a UV complete lattice regularization of
the Hamiltonian and path integral definition of
gapped interfaces based on the symmetry-extension
mechanism, partly rooted in Ref. [51]. Presumably,
some of the other phenomena studied in Ref. [51]
could also be examined based on our lattice regu-
larized setting.

The anomalous non-on-site G-symmetry at the boun-
dary indicates that, if we couple the G-symmetric
boundary to the weakly fluctuating background
probed gauge field of G, there is an anomaly in G
(in the same language as in particle physics and high-
energy theory) along the boundary. The G-anomaly
can be a gauge anomaly (e.g., for an internal unitary
G-symmetry) or a mixed gauge-gravitational
anomaly (e.g., for a G-symmetry that contains an
antiunitary time-reversal symmetry ZI). The key
ingredient of our approach is based on the fact that
certain nonperturbative global anomalies in G at the
boundary become anomaly free in H, when G is
pulled back to H (see Sec. IV E).

Given some bulk G-SPT states, our formulation
finds their possible H-symmetry-extended and
G-symmetry-preserving gapped boundaries, via a
suitable group extension 1 - K-> H - G — 1
[75]. To construct an H-symmetry-extended gapped
boundary, we actually require a weaker condition on
the group extension that K may be a finite group or a
continuous group, in any bulk dimension >1 + 1D.
To construct a G-symmetry-preserving topologically
ordered gapped boundary, we further require a
stronger condition on the group extension that K is
a finite group, in order to have a boundary deconfined
K-gauge theory, for a 3 + 1D bulk and above.
When G, H, and K are finite groups, we can prove
that there always exist H-symmetry extended
gapped boundaries (in any bulk dimension
>1+ 1D) and there always exist G-symmetry-
preserving gapped boundaries (for 3 4+ 1D bulk
and above). The gauge anomaly associated to a
finite symmetry group G must be a nonperturbative
global anomaly. The cohomology or cobordism

&)

(6)
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group of a finite G only contains the forsion part,
which indicates the nonperturbative anomalies.

We believe that the argument remains valid, even
when G and H are infinite continuous compact
groups, but K remains a finite group. In this case,
the boundary dynamics still yields a deconfined
K-gauge theory, given that the bulk dimensions are
larger or equal to 3 4 1D (see Sec. VI). (When the
bulk is 2 + 1D, we comment in the next remark.)

When G is a continuous group for the bulk
G-SPTs, the boundary could have both perturbative
anomalies (e.g., captured by a one-loop Feynman
diagram) and nonperturbative global anomalies,
detected by coupling the boundary to G-gauge fields
[77]. The perturbative anomalies do not offer any
symmetry-preserving surface topological orders. In
contrast, some of the nonperturbative global anoma-
lies can offer a symmetry-preserving surface topo-
logical order as long as our construction trivializes
the G-anomaly in H.

We apply our symmetry-preserving gapped interface
construction to the 2 + 1D bulk and 1 + 1D boun-
dary. For the 1 4 1D topologically ordered K-gauge
theory on the boundary of a finite or continuous
group symmetry of 2+ 1D G-SPTs, we find an
interesting phenomenon that the 1 4+ 1D boundary
deconfined K-gauge theory states develop long-
range orders that spontaneously break the G-
symmetry (see Sec. IV H). The 1+ 1D boundary
deconfined and confined gauge theory states belong
to the same phase; namely, they are both symmetry-
breaking states connected without phase transitions.

Examples include those of a finite gauge group K,

and a global symmetry G containing discrete unitary
or antiunitary global symmetry sectors that can be
spontaneously broken. For instance, in Sec. I1I C and
Appendixes D2d and D22, we show that the
unitary Z§-symmetry of a 1 + 1D ZX gauge theory
is spontaneously broken, on the boundary of 2 + 1D
Z§-SPTs. In Appendix D 22, we also show that the
antiunitary time-reversal ZZ-symmetry of a 1+ 1D
ZX gauge theory is spontaneously broken, on the
boundary of a2+ 1D bosonic U(1) X ZZ-topological
insulator and a Z, X ZI-topological superconductor.
This is, so far, consistent with the fact that there is no
robust intrinsic topological order in 1 4 1D robust
against any local perturbations.
Our approach shall be applicable to obtain gapped
interfaces of more generic bosonic and fermionic
topological states (other than the fermionic CZX
model in Appendix B), including topological states
from the beyond-symmetry-group cohomology and
cobordism approach (Secs. VI and VII). It will be
interesting to establish this result with more concrete
examples.
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(vii) In Appendix D, we systematically construct vari-
ous symmetry-extended gapped boundaries for
topological states in various dimensions (choosing
homogeneous cocycles for SPTs and inhomo-
geneous cocycles for topological orders). We can
also combine results in different subsections in
Appendix D and use the folding trick to obtain the
gapped interfaces between topological states.

The previously known gapped interfaces for
the Z, toric code and Z, double-semion model
can be achieved by certain (gauge-)symmetry-
breaking sine-Gordon cosine interactions at
strong couplings. The previously known gapped
interfaces of 2+ 1D twisted quantum double
models D?”(G) and Dijkgraaf-Witten gauge
theories can also be obtained through such a
(gauge-)symmetry-breaking mechanism or anyon
condensation [78—84]; see Appendix F. It is known
that there are two types of gapped boundaries
for the Z, toric code, one type of gapped boundary
for the Z, double-semion model, and two types of
gapped interfaces between the Z, toric code and Z,
double-semion model [84]. More generally, we
systematically show gauge-symmetry-breaking
gapped interfaces in any dimension, in Appendix F,
including 2 4 1D (ours reproduce the results in the
previous literature) and the less-studied 3 4 1D.

However, we can construct other new types
of gapped interfaces between Z, toric code and
Z, double-semion models via a symmetry-
extension mechanism, such as the examples given
in Appendices D 4’s2+1/1+ 1D under 0 — Z§ —
ZH - 7§ -0, Appendix D10’s 2+1/1+ 1D
under 1 - ZK - Q0 - Z% - 1, and more. Our
new gapped interface has an enhanced Hilbert space
and to a certain degree an enhanced gauge sym-
metry; the first new type of gapped interface has
H = Z,, and the second new type of gapped inter-
face has H = Qg. Through a symmetry-extension
mechanism, we can construct new types of gapped
boundaries or interfaces in 2 + 1D, 3 + 1D, and any
higher dimensions [85].

More generally, our framework encompasses the
mixed symmetry breaking, symmetry extension,
and dynamically gauging mechanisms to generate
gapped interfaces.

(8) Future application: Gapped interfaces via gauge-
symmetry breaking or anyon condensations have
recently found their applications in topological
quantum computation (see Ref. [87] and references
therein for 2 4 1D bulk systems). We hope that our
new types of gapped interfaces via global or gauge
symmetry extensions in any dimension have analo-
gous potential applications, for science and technol-
ogy, in the future.
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APPENDIX A: LOW-ENERGY EFFECTIVE
THEORY FOR THE BOUNDARIES
OF THE CZX MODEL

1. Low-energy effective theory for the second
boundary of the CZX model: A 1+1D
model with an on-site Z-symmetry

In Sec. Il B, we described a gapped boundary state of
the CZX model in which the Z§ bulk symmetry is extended
to a Z{-symmetry along the boundary. The model as
described there is gapped in both bulk and boundary,
and there is no hierarchy of energy scales: The energy gaps
in bulk and along the boundary are comparable.

This is a physically sensible state of affairs in condensed
matter physics, but nonetheless one might ask what sort of
model would have such a hierarchy of scales. In this
section, we will describe several possibilities. As a result,
we obtain several pure 1+ 1D models as the effective
boundary theories for the CZX model.

One approach is simply to reduce the coefficient of the
boundary plaquette term H?,dry in the Hamiltonian. In this
limit (see Fig. 4), the low-energy degrees of freedom at the
boundary are described by three spins per unit cell: 6; , o, ,
and a composite spin described by the two spins on the
black dots next to 6; and o; , which are locked due to the
projector P), from the neighboring Hamiltonian.

Here, we would like to reduce the boundary degrees of
freedom further. To do so, we will consider a slightly
different boundary, by omitting the H?,dry terms in the
Hamiltonian and, at the same time, including some pro-
jectors at the boundary. This gives us another description of
the second boundary of the CZX model (see Fig. 25). The
bulk Hamiltonian of the model is still given by H, for each
complete octagon in the bulk, with addition terms that force
the boundary spin 6;,’s to have the same ¢° value as the
bulk spins connected by the green lines. However, notice
that the shaded squares are not complete octagons, since the
two spins to the right of the shaded squares do not need to
be parallel. So, the Hamiltonian for the shaded squares
needs to be modified:

H;haded — _HO P PdPl P+ f{O Pu PdPl

ptptptptp pppp(l_P;)’ (Al)
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FIG. 25. The filled dots are qubits (or spin-1/2’s). A circle
(with dots inside) represents a site. The bulk Hamiltonian
contains terms that force the dots connected by red and green
lines to have the same o at low energies. The dashed blue line
connecting dots i, j represents the phase factor CZ;; in the bulk

22G global symmetry transformation.

where HY is given by

Hy =i DM =ML, (A2)

The above Hamiltonian has a Z, = Z% global symmetry.
The ZH-symmetry is generated by

6’;_0"[: UCZ,i_,[A? (A3)

when it acts on a boundary site, and by

UxsUczs = 0;01,0;,0.Uczi ,Uczi,i;Ucziyi,Ucziy i,
(A4)

when it acts on a bulk site, where i, i,, i3, and i, label the
four spins on the bulk site. Note that the Z,-symmetry is
actually a Z,-symmetry in the bulk, since

(UX,SUCZ,S)z =L (AS)
So here, we are actually considering a model with on-site
Z§-symmetry in the bulk, and the symmetry is promoted to
ZM_symmetry on the boundary, since

(O’f,o'ﬁ UCZ,i,,i+)2 = —Ufﬁﬁ # 1. (A6)
The total symmetry generator is given by
024 = Hgf,aﬁ Uczi_i, H UxsUczs- (A7)

bulk sites s

To see that 54 js invariant under U z,» we first note
that HP4P4PLPY is invariant under Ug,. Rewriting

HSPyPIPL(1 - P,) as iHS Py POPL(1 - P,)ot , we see

: o 0 pu pd pl
that of anticommutes with Uy,. H, Py P, P,(1 — P},) also
anticommutes  with Uz, Thus, H3™* js invariant

under U, "
The low-energy boundary excitations have a basis
labeled by o7, values of the boundary spins:

{07, 1) whote = 1107 Hpary X [bUIK). (A8)
Now, |bulk) is given by

|bU1k> = ®squares |square> ®shaded—squares |shaded—square),
(A9)

where [square) = (1/v/2)(|1111) + [} 1 1)) is the spin
state for the four spins connected by a red square in Fig. 25,
as determined by H, and

_+ D

|shaded-square) = NG if o o7y =1,
|shaded-square) = |TTTT>\;%N”N¢> if aiafiﬂ)_ =1,
(A10)

is the spin state for the four spins connected by a shaded red
square in Fig. 25, as determined by H?,dry.
Under the Uy,, (|1111) + [ 11)/V2) is unchanged

for o7 o{;,,) = 1. But for 6; o(;,,) = —1, Uz, changes

1) = L) and [LLLL) — =[1111). The extra —
sign comes from the two uncanceled CZ factors to the
right of the plaquette (see Fig. 25, where the CZ factors

are pointed out by arrows). Therefore, under the 024,

(11111) =il 44 1)/V2) is changed to
NHD it LMD —i D

V2 V2

So, under the Z, on-site transformation to the whole
system, the bulk state |bulk) changes into itself up to a
phase factor:

(Al1)

Ibulk) — e|bulk). (A12)

The phase factor e depends on the boundary spins ¢¢ and
is given by

e = [[i"' " er-"2Ucy, .. (A13)
The CZ; ;. factors in Eqs. (A13) and (A3) cancel each

other. Therefore, the effective ZZ transformation on the
boundary low-energy subspace is given by
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’+l) )/2

A o_z
Uz, = Ho o} 1 i+
l ”1+”(:+1 )/2

z+1 ’

which is an on-site symmetry if we view [i, (i +1)_] asa
site. This means that if we view the CZX model as a model
with Z,-symmetry, it is actually a trivial H = Z¥-SPT state
(since the effective Z4 transformation on the boundary is
on-site and anomaly free).

To summarize, the original model in the Sec. III B
descrlbes a gapped boundary, where the boundary plaquette
term H" » Y has the same order as the bulk plaquette term.
Now in this Sec. A1, we reduce the boundary plaquette

term H ';,dry to only some newly introduced projectors on the
green links in Fig. 25. For certain small or zero H}f,dry, the
boundary spins may have no constraint in the whole wave
function [{of }) . .= H{oi b, ary [bulk), which can
describe a gapless boundary. We have also obtained the
effective Z¥-symmetry transformation on the boundary.

(Al14)

2. The low-energy effective theory for the fourth
boundary of the CZX model: A 1+1D
exactly soluble emergent ZX-gauge theory

In the last subsection, we have constructed a boundary of
the CZX model that has a Z¥-symmetry. In this section, we
are going to modify the above construction to obtain a
boundary that has the same Z$-symmetry as the bulk. We
will obtain a low-energy effective theory for the fourth
boundary of the CZX model discussed in Sec. III D.

a. The boundary Zf -gauge theory with an
anomalous Zg global symmetry

We start with the boundary model obtained in last Sec. A 1
and add qubits described by z;, (see Fig. 26). However, the
boundary physical Hilbert space is the subspace that satisfies
a local gauge constraint
(A15)

0, 0; 7%

U?ﬂUgeE_z Sqps s g

The symmetry generator is the same as before when
acting on 6;, spins. The symmetry generator acts on the z;,
spins as

(A16)

[ i
| |elzf,-_e 4T,

i

As we have discussed in Sec. IIID, such a symmetry
generator generates an on-site global Z$-symmetry, in the
ZX-gauge-invariant physical Hilbert space.

Using the effective boundary Z¥ -symmetry calculated in
Appendix A1 [see Eq. (A14)], plus an additional term

(i+1)+
O (i+1)+

FIG. 26. The filled dots are qubits 71, | (or spin-1/2’s). The
open blue dots are qubits &1 representing ZX-gauge degrees of
freedom. A circle (with dots inside) represents a bulk site. The
bulk Hamiltonian contains terms that force the dots connected
by red and green lines to have the same o7 at low energies. The
dashed blue line connecting dots i, j represents the phase factor
Ucyz,j in the Z§ global symmetry transformation. The open dots
on the boundary are the qubits z;

el e acting on the new 7, spins, we find that the
boundary effective symmetry generator is given by

Uz, = 193,00 1 i(177 e e TR (A17)
Uzz satisfies
IAJ%Z = Haiaﬁiﬂ)_irf_ (—i)7i,
=[[(=ei oty e[ [(-D =1 (A18)

in the constraint ZX-gauge-invariant subspace. Here, we
encounter the even-odd lattice site effect again; we assume
that the total number of the boundary sites is always even,
[[;(=1) = 1, including the example that the whole system
is on a disk with only a single boundary. We have turned the
ZH-symmetry in the last subsection into a ZS-symmetry.

Next, let us include a boundary interaction term
U,y 7 T, +1 . In the following, we will take the U, —
+0o0 11m1t In this case, the interaction locks 7; = 7., .In

the low-energy subspace, we introduce
By =7 =T Vit = T, i) (A19)

that satisfies

Ei+%vi+% ==V, +1E1+—- (A20)

Now the ZK-gauge constraint becomes
—E;_i07 0] E;pi= 1. (A21)
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The effective ZS-symmetry generator becomes

UZ - H l+l

1 O' O'<,+1)7)/2. (A22)

After obtaining the effective Z$-symmetry on the
boundary, we can write down a global Z$-symmetric
[under Eq. (A22)] and local Zf -gauge-symmetric [under
Eq. (A21)] boundary effective Hamiltonian:

= —Zm AL+ DD o).
—JZG o’l+1 UZE1+‘
= _Zvi+ o O-(H-l)_ + 6i—+6(_i+1),)

—JZG 0',+1 UZEz+"

(A23)

This is our fourth boundary of the CZX model discussed in
Sec. III D, but now it becomes a 1 + 1D lattice ZX-gauge
theory with an anomalous (non-on-site) global Z§-symmetry.

b. Confined Z§ -gauge state: A spontaneous
symmetry-breaking state

In general, a large U in the above Hamiltonian will give
us a ZX-gauge confined phase (which will be discussed
later in more detail). In the ZX-gauge confined phase
induced by a large U, we have E; o= 1. In this case,
because of Egs. (A19) and (A21), 6 6; = —1 on every
site, which reduces two spin 6; and 6;, into one spin 6;.
This reduces the Z§-symmetry transformation into

Uzz HUXHI ’“

(A24)

which is a non-on-site (anomalous) Z$-symmetry trans-

formation. Here, &7 is a redefinition of o7 o7 for the

composite spin. More precisely, because of the gauge
constraint o; o; = —1, &7 flips the composite spin as
5?|T>i,|ii+ =1[});[1); and 5?‘¢>,’_|T>i+ = |T>i,‘¢>i+-
Since the two spins are locked, 67 67 = —1, in the same
site, we can also simply define &; =07, so that
Gy Eafmp = —0(;yy)_- So in the large U limit, the
lattice ZX-gauge theory, at low energies, reduces to the
boundary of the CZX model constructed in Sec. IIT A.
When J > 0, the confined Z§-gauge state is a ferromag-
netic state that spontaneously breaks the global Z9-
symmetry.

c. Deconfined ZX-gauge state in 1+1D

The model in Eq. (A23) is exactly soluble. This is
because, in the big Hilbert space before projecting
into the ZX-gauge-invariant subspace, the Hamiltonian H
in Eq. (A23) is a sum of nonoverlapping local terms:
H =3 H,;, with

Hiip1 = _ViJr%[JIG(t-q-l) + 07, 041). ]

—Joi o(;y) —UE; L. (A25)
So, the energy spectrum of H can be obtained exactly from
that of H,,,,. The Z§-gauge transformation

UF™* = ~(E;_y07 )(0} Eip1) (A26)
commutes with H. So, the energy spectrum of H in the ZX-
gauge-invariant subspace is a subset of the spectrum in the
big unconstrained Hilbert space.

In the deconfined state at U =J =0, V; i = +1 and
does not fluctuate before we apply the ZX-gauge constraint
(ie., V; il does not fluctuate in the big Hilbert space before
projecting into the ZX-gauge-invariant subspace, since
[V, H] = 0). The ground-state wave function on each
link is (1) + 0541101y, ® [07.1). where |1, =
+1) are the eigenstates of V1. The gauge-invariant ground

states |¥,(4)) are two distinct holonomy sectors labeled
by [[;vis = +£1, explicitly as

ENCHENEDS

{viA%}V];[vH%zil

o, 1}®(|TT>+Ut+5|\L\L>) (i+1)_

®v;,y)- (A27)

Here, the coefficient ¢y, |, is determined in the same way as
it3

Egs. (3.15) and (3.16) with alternating +1 signs set by the
gauge-invariant constraint on the ground states |y (+£)).
Under the U 2, global symmetry operation in Eq. (A22),

1) +vigLd) = v (1) + vl ).

Thus,

(A28)

UZZ |Tgs<i)> = H(UH-%) |1Pgs(j:)>‘

1

(A29)

From the above results, we see that the global Z§ charge
and the ZX-gauge flux [];v; 11 are locked. In other words,
the deconfined state has two degenerate ground states
on the ring and a finite energy gap. One ground state carries
the global Z§ charge 0 and no ZX-gauge flux through the
ring. The other carries the global Z§ charge 1 and the zZX-
gauge flux through the ring. Near the end of the next section,
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we will show that the above deconfined states spontaneously
break the global Z$-symmetry, which is another way to
understand the two degenerate ground states on the ring.

d. Deconfined and confined Z‘;‘ -gauge states
belong to the same phase that spontaneously
breaks the Z$ global symmetry

We note that,

T+ 1),

eigenstates of o-j:a(*

for the following four spin states,

1) = [44). 114). and [ 1), are common
i+1). T 07,044 and oj o with
eigenvalues (1,1); (=1, 1); (0,—1); and (0, —1).

For U, J > 0, the ground states have a twofold degen-
eracy, which is given by

W=D+ WD 1) @ cos(O)[ 1)+ sin(0) 1), .
|1//2>:(|TT>—|\L\L>)i+.(i+1)_®[Sln(9)|1>+COS<9)|—1>],-+%,
(A30)

i+1)_

where | + 1) are eigenstates of V, 11 with eigenvalues £1. In
order to have the two states as ground states, € is con-
strained to be the function of U as 6 = Jtan™' U.

The energy of the two ground states is E =—v/'1 + U? —
J. Also, = 0 for U = 0 (the ZX-gauge deconfined case)
and 0 — 7/4 for U — 400 (the ZX-gauge confined case).
The first excited states also have a twofold degeneracy,
which is given by

|T\L> (i)
and |*LT> (i)

® (1) + = )iy
® (1) + = 1),y

with energy E = —|U|+J, which is higher than the
ground-state energy by at least 2J (note that we have
assumed J > 0).

We note that

(A31)

(M) +[11) @ [cos(O)[1) + sin(6)] — 1)]
(1) =) @ [sin(6)[1) + cos(6)] — 1)]
=|++) (A32)
is a common eigenstate of (o} E1. Ei100.) ) with
eigenvalues (+1,+1), and we denote it as | ++) or
|+ )i, st (is1) - Similarly,
(M) +[11) @ (cos(O)]1) +sin(0)| — 1))
=(111) = L)) ® (sin(0)]1) + cos(0)| — 1))
=|--) (A33)
is a common eigenstate of (o7 EH] E,#o-(lﬂ)i) with
eigenvalues (—1,—1), and we denote it as |——)

or [ — _>i+,i+%,(i+l)_'

A ZK-gauge-invariant ground state (i.e., UF"* =1
state) on a ring is given by the tensor product of those
| + +) and | — —) states on the (i,i+ 1) links. First, we
note that the gauge transformation in Eq. (A26) is a product
of two operators E; io; and o; E;,; with an additional
—sign. The |+ +) and | — —) are eigenstates of those
operators. Therefore, we have two ZX-gauge-invariant
ground states:

1 (0)) = ® |+ +>(i—l)+,i—%,i_ Q| = =), itlii+1).
® [+ +>(i+1)+,i+%,(i+2)_ -,
W2(0)) = @ | = =)(ic1),iztii @ [+ +)i ivdiit1).

® | - _>(i+l)+.i+%,(i+2), -, (A34)

up to a proper normalization factor. Note that, to get a
ZX-gauge-invariant state under Eq. (A26), we need to
match + to — and — to + in the neighboring links, as
done in the above. However, the two ground states
expressed in Eq. (A34) are not symmetric under the global
Z§-symmetry transformation in Eq. (A22):

16 a
(i+1)—
2 H"u (i+1)_ HUzzl+ i+1)_

Uz, =
In fact, Uz, ; (i+1). exchanges |+ +) and | — —),

Uz,.i, (i+1) | + )iz

Uz,.i i+1) | = =)=, iLin = |+ ) -1, L (A36)

The ground states that respect the global Z$-symmetry
transformation in Eq. (A22) are the linear combination of
Eq. (A34):

Weseven (0)) = H‘Pl( ) + [¥2(0))]

%\

|Wes0aa(0)) = [\‘1’1(9» — [¥2(0))]. (A37)

Sl

where the [Wgeven(P)) is ZS-symmetry even by
ZA]ZZ|ngs,evs:r1(9>> = _H\Pgs,even(g»’ and the |Tgs,odd(9>> is
Zg'symmetry odd by 0ZZ|\Pgs.odd(9)> = _|\Pgs,0dd(9)>'

When 6 = 0, the even or odd Z§-symmetric ground
states are identical to the even or odd ZX-gauge holonomy
sectors of ground states in Eq. (A27) because of the locking
of Z§-charge and ZX-holonomy:
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¥y even(0=0)) = T[I‘P 0) + [5(0)] = [ (1)),
¥, 0a(0=0)) = %nw (0)) = ¥ (0))] = ¥y (-)).
(A38)

When 6 = (z/4), we have the confined states:

¥ (0=5) ) =@ 1) @I

® M) (1) (142 ®)@(|1> +|- 1>)i+%’
¥, <6’_g) > = QN )1, ® M) 1)
QN ) (ix1). (i42). ® -)§<|1> =)

(A39)

up to a proper normalization factor. Below, we aim to
show that, at @ = 0, namely, U = 0 and J > 0, we have the
deconfined state with spontaneous Z$-symmetry breaking;
at @ = (n/4), namely, U —» +o0 and J > 0, we have the
confined state with spontaneous Z$-symmetry breaking. We
demonstrate a strange property for this system: The decon-
fined state with spontaneous Z§-symmetry breaking and the
confined state with spontaneous Z$-symmetry breaking
belong to the same phase. In the next few paragraphs, we
explain the meanings of the deconfined and confined phases,
and also the meanings of the spontaneous symmetry
breaking.

First, we elaborate further on the physical meanings of
the deconfined and confined phases. The deconfined phase
(U = 0) here means that the distinct holonomies or loop
excitations (namely, Wilson lines) can span the large system
without causing extra energy. Consider the expectation
value (0|W[0) of Wilson line operator W = [[;V;,1 for
some ground state |0); the (0|W|0) goes to some constant
(proportional to the net holonomy [];v; 11 =*1) in the

Euclidean spacetime and, thus, obeys the perimeter law
instead of the area law [88]. The two ground states with
distinct holonomies in our case imply that we are in the
deconfined phase, even if the energy spectrum is gapped
between the ground states and first excitations. On the other
hand, the confined phase (U — oo, J > 0) has the gauge
field variable |v;,1) quantum disorder and strong fluctua-

tions in the state (|1) 4 | — 1));,1. The long-distance lines or

holonomies are energy disfavored. Consider the expectation
value (0 ) of Wilson line operator W for any ground
state |0); the (O|W|0) exponentially decays to zero in the
Euclidean spacetime and, thus, obeys the area law.
Therefore, the phase is confined. The ZX-gauge confined
phase for U - 400 and J > 0 is a ferromagnetic along the

link 7, (i + 1)_ but antiferromagnetic between the neigh-
bored links between spin up and down. There is no phase
transition as U goes from 0 to oo for J > 0, since the
energy gap above the ground state is always bigger than 2.J.
Thus, the ZX-gauge deconfined state for U = 0 and the ZX-
gauge confined state for U = +4-co belong to the same phase.

Second, we elaborate further on the physical meanings
of the spontaneous symmetry breaking (SSB) and possible
long-range orders. Based on Ref. [89], we know that the
SSB in a quantum system does not necessarily mean that its
ground states break the symmetry. Traditionally, we iden-
tify the symmetry-breaking order parameter and we com-
pute the long-range order correlation functions to detect the
symmetry breaking. The better definition for SSB is based
on the Greenberger-Horne-Zeilinger (GHZ) entanglement
[90]. Using GHZ form, we can probe the symmetry without
knowing the symmetry or the Ginzburg-Landau symmetry-
breaking order parameters. Using GHZ form, we can detect
the symmetry-breaking hidden in the symmetric ground-
state wave function.

Indeed, |¥,(0)) and |¥,(0)) are GHZ states,

[Wes.even (0)) = [I‘Pl( ))+[¥2(6))] =|GHZ.,(6))

5 1¥1(0)) = [¥2(6))] = GHZ_(9)).

Sl 5l-

|lpgs,0dd (9»

(A40)

Because the Z§-global symmetry operator U 7, acting on
two states gives rise to the symmetric charge +1, the
following conditions for SSB of symmetry group G are
satisfied:

(1) 0,|GHZ..(0)) = =|GHZ..(9)).

(2) The symmetric GHZ states have the same GHZ

entanglement |GHZ) =} .c;|¥;), with j € G/G',
G' C G, where |¥;) are locally distinguishable. In
our case, we have G = Z, and G’ is trivial.

To summarize, the symmetric many-body state has
spontaneous symmetry breaking, which implies that the
state has a GHZ entanglement. Indeed, we can also show
that the SSB here also implies the long-range order, con-
sistent with what we observed in Eq. (3.21) in Sec. III C.
Defining the gauge-invariant operator X, /, = 67, Eiy/),
which is odd, breaking the Z$-symmetry, we find

Xii12|¥1(0))=—|¥1(0)) and X, /»[¥>(0)) = +[¥2(6)).
Moreover,
(GHZ.(0)|X ;112X ;11/2|GHZ.(0)) = 1. (A41)

Thus, the G-symmetry odd operator detects the long-range
correlator of GHZ states, and we demonstrate the SSB
through the long-range order. In summary, we show that
the deconfined state and the confined state belong to the same
phase without the phase transition by tuning the Hamiltonian
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coupling U with the ground-state parameter 6 = %tan‘1 U.
All values of U have the spontaneous Z§-symmetry break-
ing. This is possible since the ZX-gauge deconfined phase
with no spin order has twofold degenerate ground states with
opposite global Z$ charge, the same as the ferromagnetic
state with spin order, which also has twofold degenerate
ground states with opposite global Z$ charges.

We remind the readers that the fermionic version of the
CZX model is studied in Appendix B. The boundary of the
fermionic CZX model with emergent ZX-gauge theory with
anomalous global symmetry is detailed in Appendix C.

One can read Sec. IV on more general boundaries of
SPTs in any dimension.

APPENDIX B: FERMIONIC CZX MODEL

Consider a square lattice model with each single site
endowed with four fermion orbitals, each with eigenstates
|0) and 1) of the fermion number operator ny = c'c. Thus,
a single site has a 2*-dimensional Hilbert space. We may
call the single site a “vertex” and the four individual
fermion orbitals in a site “subvertices.” In the fermionic
model, we have the anticommutation relation

{ci.ci} =5y

where i, j can be any local fermion degree of freedom, on
the same site or on different sites. The fermion parity
operator P, on each site (with 1,2,3,4 as the four sub-
vertices) i

Pr= [ == ] & (B1)
i=123,4 j=1234
Notice that
1-o%
(1=2cl¢;) = 5, cle; = > L (B2)

Let us introduce a Z, generator Uy as a product of cj. +¢j
on the four subvertices:

Uy = (e} +c1)(=1)" (3 + &) (=1)" (=1)2(c] + ¢3)
X (=1)"(=1)"(=1)" (¢} + ca)

=ojgsoiey, Ui =1, (B3)

where we have used the Jordan-Wiger transformation to
express fermion operators in terms of spin operators, for
example,

it = (H(;;)o}, (B4)

i<j

where i< j refers to a particular ordering of
the orbitals (see Fig. 27). We have chosen an unusual

FIG. 27. The filled dots are qubits (or spin-1/2’s) described
by 6. The open dots are fermion orbitals described by ¢ or . A
circle (with dots inside) represents a site. The bulk Hamiltonian
contains terms that force the dots connected by red and green
lines to have the same (—1)" or o7 at low energies. The dashed
blue line connecting dots i, j represents the phase factor CZ;; in
the ZzG global symmetry transformation. The arrow describes a
particular ordering of all fermion orbitals.

definition of Uy [instead of the more obvious

(] +cp)e) + e2)(ch 4 e3)(ch + ¢4)], because we want
Uy to have a simple form after bosonization.

For any pair of qubits, we set CZ=|00)(00|+|01)(01|+
[10)(10|=|11){11|=1-2cc"c'c'". For each site, we define
Uy as the product of such operators over all successive
pairs:

UCZ: H (I—ZCL_ICJ-chcj)

j=1234
_ H (1—<1_6;H)(1_0§))
=12.3.4 2

_ H ((1 +0j, toj— 0;_,'_10'5))’ (B5)

j=1234 2

where j =5 mod4 =1 mod 4. Now, we introduce a Z,
transformation in each site:

UCZX - Uchz, U%ZX — 1 (B6)

The group supercohomology predicts that there are four
distinct fermionic SPTs with G = Z, x Z’; symmetry from

Hiper[Z % 7. U(1)] = Z,. The model we will first focus
on is the one with the second class v =2 for v € Z,.
The full classification for four distinct fermionic SPTs

}\’i—}\‘i-»-

ni—ni+

FIG. 28. Emergent ZX-gauge theory from Majorana fermions
on the lattice.
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with Z, x ijc—symmetry is Zg from the spin cobordism
group Q3™ (BZ,)
for v € Zs.

The fermionic CZX Hamiltonian is essentially the same
as the bosonic CZX Hamiltonian:

H' =Y "H,,

H, = —X,PiP{P,P;.

= Zg; then, our model here is v =4

(B7)
(B8)

Here, plaquettes are defined in the bosonic CZX model. X,
acts on the four subvertices in a plaquette,
X4 = c3cuccq + cchc;(ﬁ

e + + + +
= 0,030,0| +0,030,0]

— (]0000)(1111] + [1111)(0000]) (B9)

plaquette
and the projection operator P, acts on a pair of qubits
adjacent to a plaquette as

I toof
P2 = Cicici+lci+] +Cicici+lci+l

— (100)(00] + [11) (11} (B10)

We see that, after bosonization, both the Hamiltonian and
the Z,-symmetry for the fermionic CZX model map to
those of the bosonic CZX model. So, the ground state of the
fermionic CZX model is the same as that of the bosonic
CZX model described in Sec. II.

It is also obvious that [ Pf,Hf] =0, since H; con-
serves fermion number mod 2 (in fact, H; conserves
fermion number mod 4). So, the fermionic CZX model

Hy has Z, x Zg—symmetry generated by [[Uczx and
[1P;. The ground state is invariant under the symmetry.

APPENDIX C: A BOUNDARY OF THE
FERMIONIC CZX MODEL: EMERGENT
ZX-GAUGE THEORY WITH AN
ANOMALOUS GLOBAL SYMMETRY,
AND MAJORANA FERMIONS

To obtain a boundary of the fermionic CZX model, we
start with the boundary model described in Fig. 27. On the
boundary, we have qubits described by o;, and fermions
described by y;, = n;, + i4;,, where 57 and 4 are Majorana
fermion operators, see Fig. [28].

However, we assume that the boundary Hilbert space
is not the one generated by 6;, and y; , but a subspace
satisfying a local ZX-gauge constraint:

Ulgauge _

o (1) = 1

(C1)

where

i, =wlw.. (C2)
Thus, the boundary is a ZX lattice gauge theory.

The bulk Hamiltonian of the model is still given by Hf
for the complete octagons in the bulk, with additional terms
that force the boundary qubits o'f-i to have the same value as
the (—1)" for the bulk fermions connected by the green
lines. However, notice that the shaded squares are not
complete octagons, since the two spins to the right of the
shaded squares do not need to be parallel. So, the
Hamiltonians for the shaded squares need to be modified:
Hy™ = X, PYPIPLP, + X, PLPIPL(1 — P}),  (C3)
where X, is given in Eq. (A2). The Zg -symmetry of the
system is generated by

U, _Hax of CZ; ;12 )e 52T TU k. (C4)
bulk

After the bosonization via Jordan-Wigner transformation
on Majorana fermion operators,

w=(I)m = (T1%)e

i<j i<j

(C5)

the above Hamiltonian and the Z$-symmetry map to those
of the bosonic model discussed in Sec. A 2. So, we can use
the results there. First, one can show that

(07 0f CZ; ; &f172m)e HIZ2m))2 — 1 (C6)
in the ZX-gauge-invariant physical Hilbert space. So, U Z
generates an on-site global Z?—symmetry. Second, one can
show that the Hamiltonian is indeed Z§ symmetric. Third,

one can find the low-energy effective Z$-symmetry on the
boundary to be generated by

H fivn). 1 07, Oi1)_ )/2 1(1 2"i+)e—i§(1—2"(1‘+1)+).
l

(C7)

Next, let us include a boundary interaction term
=U.> (1 =2n; )(1=2n(;y ) and take the U, — +oo
limit. In this case, the interaction locks n;, = n(;yy)_. In the
low-energy subspace, we introduce

E_ i1=1-

i+5
Vi =4, (=1)" A1)

Zi’li =1- 271(i+1)_,

(C8)
After the bosonization on the boundary, the above becomes

T:'(Jr TzciJrl)_ ’ (C9)

— L — L —
T T T Vi =

031048-53



JUVEN WANG, XIAO-GANG WEN, and EDWARD WITTEN

PHYS. REV. X 8, 031048 (2018)

which satisfies

Ei+%vi+% - Vz+lEz+‘- (C10)
Now, the ZX-gauge constraint becomes
—E;_i0i 0; E; i =1 (C11)
The effective Z$-symmetry generator becomes
Uz, = [[ot o0y i 77020 (C12)

i

We can write down a Z§-symmetric and local ZX-gauge-
symmetric boundary effective Hamiltonian:

f1=v—§:vH%u¢¢x¢¢|+|¢¢M¢¢DA4HU,
- JZG o (i+1)_ UZE1+]
- _Zvi+% 07,001 07,0041 )

—JZ}Gwl UZFM

which is identical to the effective boundary Hamiltonian in
Eq. (A23) in Appendix A 2.

Note that all the low-energy excitations at an energy scale
much less than U, are purely bosonic. So, the fermionic
CZX model has a boundary that can be identified as a
boundary of the bosonic CZX model, stacking with a
fermionic product state. This implies that the ground state
of the fermionic CZX model can also be viewed as a bosonic
Z$-SPT state, stacking with fermionic product states.

(C13)

APPENDIX D: SYMMETRY-EXTENDED GAPPED
BOUNDARIES OR INTERFACES: COMMENTS,
CRITERIA, AND EXAMPLES

In this section, we aim to show many systematic
examples of G-topological states, such that we can con-
struct an H-gapped boundary or interface through the
symmetry extension mechanism, based on a group homo-
morphism r (a surjective epimorphism) by a short exact
sequence,

1-K->HLG - 1. (D1)
In Sec. IVD 1, we considered the mathematical setup in
which the G-cocycle is trivialized in H based on homo-
geneous cocycles 15, in order to consider SPT states. In
this Appendix D, instead, we set up the mathematics based
on inhomogeneous cocycles a)dc, for the convenience of
notations (which becomes more transparent later) and for

more general topological phases (SET states and intrinsic
topological orders).

The plan of this Appendix D is the following. In
Appendixes D 1 and D 2, we will give an overview of the
setup of problems on the boundaries or interfaces. In
Appendix (A3), we show that the Lyndon-Hochschild-
Serre (LHS) spectral sequence criteria are helpful to ana-
lytically derive some split H-cochains that can trivialize
certain G-cochains (that can be G-cocycles) of one higher
dimension. The advantage of this LHS approach, compared
to Sec. V, is that we can obtain some analytic split H-
cochains [91]. However, the drawback of this LHS approach
is that, in a few cases, the G-cochains may not always be
the G-cocycles that we hoped for (standing for nontrivial
G-topological phases) but G-coboundaries (standing for a
trivial vacuum). Nevertheless, we can still produce many
valid successful examples through Appendix (A3)’s LHS
approach shown later in Appendix D. For all the examples
given from Appendixes D4 to D23, all that we aim to
provide are the data of the inhomogeneous G-cocycle ®§ (g)
and its trivialization by finding the split H-cochain g, (h).

1. Symmetry extension setup: Trivialize a G-cocycle
to an H-coboundary (split to lower-dimensional
H-cochains) by lifting G to a larger group H

We switch to using the inhomogeneous version of
d-cocycles @, and d-cochains f,; for the convenience of
notations. The inhomogeneous version is more general and
suitable even for gauge theories with nontrivial holonomies
around noncontractible cycles. Moreover, we can convert
between 1§ 4 and oY 4 based on the well-known relation given
in Eq. (9.6). We can develop their path integrals, lattice
Hamiltonians, and wave functions suitable for many-body
quantum systems as in Sec. IX.

The setup of the symmetry extension in Eq. (DI) for
inhomogeneous cocycles goes as follows. By pulling back
a G-cocycle a)dG back to H, it becomes an H-coboundary
5pf . Formally, we mean that a nontrivial G-cocycle

w§(g) € HIG. U(1)] (D2)
becomes a trivial element 1 (a coboundary) when it is
pulled back (denoted as *) to H:

wif (h) = 8p_, (h) € H[H, U(1)].
(D3)

ﬁ
*
e
Q
—~
<
S—
I
S
~Q
~
—
=
=
I

This trivial element means a trivial group element O in the
cohomology group H¢[H, U(1)] or a coboundary 1 for the
U(1) coefficient. The above variable g (or k) in the bracket
is a shorthand of many copies of group elements in a direct
product group of G (or H). More precisely, we rewrite the
above in terms of splitting a inhomogeneous G-cocycle:
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0§ (Go1+ -+ Ya—1a) = @G [r(hor), ... r(ha-14)) = @ (hoy, ... ha_14)

= (ﬂdH—l)S(hm)(hIZs

’ hi—li’ hii+lv hi+li+2’

coshgyg)

d-2
H(-1 i+1
X Hﬂd_(l ) (hots s hicyis hiir hirins Biaivzs -oon o+ hazia)
i=0
H(=1)?
X P (hots o hicyis Riers Piyias oo s ha—oat)
= 5ﬂ5_1- (D4)

Because of the property of the G-module for the coho-
mology group of U(1) cocycles, we impose that (5, )*") =
pH, for h contains only a unitary group element, and
(BH_)*" = (B )~" for h is an antiunitary group element
in H, such as an antiunitary time-reversal symmetry group.

We call this approach “symmetry extension” (or, collo-
quially, “symmetry enhancement”), because H is a larger
group mapping surjectively to G. For quantum many-body
systems, the dimension of Hilbert space is enhanced from a
|G| per degree of freedom in the bulk to a larger |H| per
degree of freedom on the boundary.

Here, we provide some useful information of the coho-
mology group H?[G, U(1)] of G that may be used later:

We write the order-8 dihedral group as

Dy = (x,R|R* = x> = 1,xRx = R7"),
generated by x and R. We write the order-8 quaternion as
Qs = (. ylx? =yt =y Lt =yt =1),

so that each element in Qg we can write uniquely as
x?y", where ¢ € {0,1} and n € {0, 1,2,3}. For (¢.n) €
{(0,0).(0,1).(0,2).(0,3),(1,0). (1,1). (1,2). (1,3)}, we
can identify them as the well-known Qg notation as
xiyr e {l1,i,—1,-i,j,—k,—j, k}.

For notation convention, we use the additive notation
0 to denote the trivial group if all groups are finite Abelian
groups such as in 0 » ZX — 7 — 7§ — 0. We use the
multiplicative notation 1 to denote the trivial group if
some group is non-Abelian such as in 1—Z§ - Q0 —
Z§ - 1.

For some selected examples below (from Appendix D 4
to D 23), we will test the LHS spectral sequence d, map
technique in Appendix D 3 and comment on its validity to
derive H-cochains for trivializing certain G-cocycles.

2. Symmetry-extended gapped interfaces

Consider the interface (i.e., domain wall) between two
sides of phases labeled by groups Gy and Gy, respectively.
The two sides of phases could be both SPTs, both SETs,
or both topological orders. Below, we present various
systematic constructions for gapped interfaces. The gapped

boundary of G can be regarded as a gapped interface
between a G-topological state and a trivial vacuum.

a. Symmetry extension and the folding trick: Trivialize
a Gy x Gyp-cocycle to an H-coboundary by splitting
to lower-dimensional H-cochains

Importantly, the previous formulation of a gapped
boundary is also applicable to formulate the gapped inter-
face, by using the folding trick. The strategy is that, by
replacing the G in Appendix D 1 with Gy x Gy, we can
determine the gapped boundary between Gy x Gy and the
vacuum, via trivializing a Gy x Gp-cocycle to an H-
coboundary by splitting to lower-dimensional H-cochains.
The surjective group homomorphism r is given by

1>K—->HS5G xGy - 1.

We can rewrite the above in terms of splitting an inhomo-
geneous G = Gy x Gy-cocycle:

0" (9) = wg™ " [r(h)] = 8L, (). (DS)
Here, (g) is a shorthand of (gg;,...,g4_14) With each
element in G; x Gy. Generally, % is a cocycle in
the cohomology group H[G; x Gy, U(1)]. The Kiinneth
theorem shows us that there exists a particular form

of cocycle {'(g;) - w"(gn)~", obtained from o €

H4[Gy, U(1)] and of" € H4[Gyy, U(1)]. Now, we see that
the G-symmetry action only acts on a)IGI (g1), while the G-
symmetry action only acts on a)ﬁ“ (gu)- By folding a)f (1)

and a)IGI“ (gn) to two different sides of the H-gapped
boundary, we obtain an H-gapped interface.

b. Append a lower-dimensional topological state
onto the boundary or interface

For all the previous setups, we actually pick a trivializa-
tion of the pullback of the G-cocycle to H. The possible
trivialization choices differed by a class in H4~'[H, U(1)]
physically imply that we can further append lower-
dimensional gapped topological states (that are well defined
in their own dimension) onto the boundary or the interface.
(See also Sec. VIII B for adiscussion.) In general, it could be
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aSETof (d — 1) dimensions labeled by an H-cocycle with H
site and K link variables:

V,If_‘lf({h'}‘{kij})
= (b i i K

io» Mgl igip "

e HVH, U(1)]

k:

ig-iq—1" g1 )

(Do)

and described by 1 > K-> H - G — 1, with a total
projective symmetry group H, a gauge group K, and a
global symmetry group G. The H-cocycle obeys the cocycle
condition: 5Vg_’11( = 51/{]_1 = 1. In different limit choices of
G and K, the topological phases of VZI_"I( include SPTs,
topological orders and SETs.

The proper choices of G and K on the boundary are also
constrained by the choices of G and K in the bulk. We will
leave this issue as a case-by-case study.

In this Appendix D, we use inhomogeneous cocycles as,
in Appendix D 1, we replace V'§ by Q7 . We see that

S[Ba (ML (h)] = 8IBiL, (h)] = ayf (h)
= o[r(h)] = 0 (9),

where 5[Qf | (h)] = 1. It can also be appended on the
interface, as in Appendix D 2 a’s Eq. (D5),

5[:51;—1(}1)951—1 (h)] = 5ﬂ5—1(h)

_ wglxcn[ (h)] = GIXGH(

9)-

Here, the appended lower-dimensional topological states
[differed by Qff |, with §[Q/ ,(h)] = 1] are all gapped.

3. Criteria on trivializing the G-cocycle
in a larger group H: Lyndon-Hochschild-Serre
spectral sequence

We would like to provide a systematic way to determine
the possible trivialization of the d-cocycle in G by lifting to
a larger group H, based on the setup of the LHS spectral
sequence. The question we would like to address here is,

“Given 1 - K - H->G — 1, how can we analytically
obtain the split H-cochain % | that satisfies that 0§ =
5pH | for some G-cocycle w§?”

The answer is as follows For 1 - K—>H5G -1,
with G acting trivially on H*[K, U(1)] [92], there is a
spectral sequence {EL?, d,} with
(a) EN?Y="Hr(G, Hq[K U(1))).

(b) The differential is defined as a map d,: E}? —
ELT 7" We have EPY, =[Ker(d,,) /Im(d,,)] at E54.

n+1"—

We focus on the d, differential of the E, page in the LHS
spectral sequence,

. P9 p+2.9—1
d2 . E2 g EZ

(D7)

= d,: HP(G,HIIK,U(1)]) = HP*2(G, HI7 K, U(1)]),

(D8)
in particular,
dy:H2(G, HUK, U(1)])
- HYG,H[K,U(1)]) = HYG,U(1)]. (DY)

If we want to trivialize the d-cocycle 0§ € H?(G, U(1)], we
can look for a larger group H, where H/K = G for some K.
The d, turns out to provide the following nice property.
The image of the differential d,: H‘(G, H'[K, U(1)]) —
HY[G, U(1)] provides elements of 0§ € H[G, U(1)], such
that all such elements are guaranteed to vanish to be trivial as
acoboundary in H?[H, U(1)]. In other words, every element
w§ in the image of the d, map is guaranteed to be trivial in
HH, U(1)]. [93] We have

wf =i, (D10)
or, more precisely,

g [r(h)] = ag (h) = 86, (h),

where % | is determined by the d, differential and the map

(D11)

f: G2 = HUK, U(1)]. (D12)
The f is a function that relates to a cocycle
ay_r € H72(G, H'[K, U(1))). (D13)

If we know the data of H are given by the pair G and K, we
can write # | as a function of d, (a,_,). Notice that d, (ay_)
is in H4[G,U(1)]. The claim is that there exists a map
dy: H2(G, H'[K,U(1)]) - H?G,U(1)], where every
G-cocycle m, in the image of the d, map is an H-coboundary
that can be split to lower-dimensional H-cochains.

By writing the group element 7 € H in terms of a pair
(k,g9) € (K,G) as h=(k,g), we can write down the
further precise relation,

o (h) = 0l (hy, hy. ... hy)

= off[(k,91), (k2. 92), s (ka, 9a)]

= oG (91,92, -+ 9a) = 0 (9)

= 5(ﬁ2’_1[(k1,g|), (k2. 92). - (ka—1, 9a-1)])
= (5)35—1)[(/(1,91)7 (k2. 92), - (Ka: 9a)]

= (5ﬁ§—1)(h1»h2» ---,hd) = 5ﬂ5_1(h).

Such a construction of S | as a function of d,(a,_,) from
the LHS spectral sequence can derive some G-coycle
§[r(h)] = 0l (h) = 6pH_,(h) that can split to lower-
dimensional H-cochains. However, we would like to
emphasize that some obtained wG[r(h)] may be already

(D14)
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a G-coboundary and may not be the specific nontrivial
G-cocycle that we originally aimed to trivialize. We will
show in Appendix D (from Appendixes D4 to D 23) how
this LHS spectral sequence approach can help in construct-
ing some examples, but not necessarily other examples.

4.2+1/1+1D bosonic 0 — ZX - 7z - 75 > 0

Consider the example where G = Z,, H = Z,, and
K=2Z,, and denote them under 0— ZX — 7/ - Z§ - 0.
The twisted three-cocycle is

V44 2z
o o) = x0| 3 Pl + o)
- ol + 1] = (-1 (DIS)

with g€ Z§ and p € H*[Z§,U(1)] = Z,. To have a
nontrivial three-cocycle, we set p = 1. This cocycle is

equivalent to g2 [hmvaivar _ (—l)f“‘U“‘U”1 with a cup
product form of @; U a; U ay,in H*[Z,, U(1)]. The a, here
is a Z,-valued one-cocycle in H! (M3, Z,) on the spacetime
complex M?. For a discrete finite G, the principle G-bundle
and the flat G connection are effectively the same. Here, we
consider G = Z,, so, in this context, we can view the
nontrivial SPTs detectable by the principle Z,-bundle and
the flat Z,-connection. The boundary bosonic anomaly of
SPTs is explored in Ref. [96].
We find that the analytic two-cochain,

Pa(hy, hy) = expl(i2zp/4)[hi]5[ha]4)s (D16)

splits G three-cocycle. Alternatively, we can choose
Ba(hy, hy) = exp|(i2zp/4)[li]4[ha],] with m, n € Z.

Furthermore, we find that the LHS technique in
Appendix D 3 works successfully. For the LHS technique
of Appendix D 3, we look for

d,: H' (G, H'[K,U(1)]) = H3(G,H[K, U(1)])
=H[G,U(1)],

= d,: HY(Z,,2,) = Z, - H*|Z,,U(1)] = Z,, (D17)
f: G- HK, U1)
= f: 25 > H ZK, U(1)] = Z,. (D18)

Because this f maps to H![ZX, U(1)] = Z,, the , can be a
base of (—1). We find that another two-cochain that splits
the three-cocycle is

Pa(hy, hy) = flgn)h = (=1)%h.

For h =0, (g,k) = (0,0); for h =1, (g9,k) = (1,0); for
h=2,(g,k) =(0,1); and for h =3, (g,k) = (1,1). The
group elements in H satisfy

(D19)

hy-hy = (g1, k1) - (92, k)
= ([g1 + %2)a. [ky + ko + 9192)5)-

We would like to check that (85, )(hy. ha, hy) = (—1)919:9::

?2(1127 h3>/;72€h1 ’ h2h3)
ﬁZ(hthv h3)ﬁ2(hl’ h2)
(=1)95k2 (=1)lo2t gl

- (_])93[k1+k2+91y2]2(_])gzkl (D20)

(8B2) (hy. hy, h3) =

(_1)g3k2 (—1)(92+93)k1
= = (—=1)91929
(_1)93(k1+k2+91g2)(_1>g2k1 ( 1) ! 37

(D21)

which is true. [Actually, both pf,(hy,hy) = (—1)%k
and B, (hy,hy)=(=1)9% work to trivialize the G three-
cocycle.] We can rewrite f,(hy, hy) = (—1)%k =
(_l)gz(hl_[hl]/z) = j9(=[l) — el ([(Pil=[m]) If we
write h € H in terms of h = (g, k), then B,(hy, hy) =
exp[(27i/4)([h1],)([ha]4)] = imhliels = jloihlo+2k],

If we consider the bulk to be a fully gauged, topologi-
cally ordered state, this becomes a gapped boundary for a
bulk 2+ ID field theory of an action [(2/27x)BdA+
(1/27)AdA, with B and A locally as one-form gauge fields.

a. Degeneracy on a disk and an annulus: Partition
functions Z(D? x S') and Z(I' x S* x S!)

Here, we can put the 2+ 1/1+ 1D 0 —» Z§ - ZI —
Z§ — 0 construction of topological states on a spatial D?
disk or an annulus I' x S! to count the degeneracy (GSD).
Whether we gauge the global symmetry K and H or not, we
have at least three types of theories:

(i) Fully global symmetric SPTs (a bulk G-SPT and a

boundary anomalous H-SPT),

(i) Bulk SPTs or boundary SETs (a bulk G-SPT and a

boundary anomalous H-SET with a gauge group K),
(iii) Fully topological orders with dynamical gauge fields
(a bulk G-topologically ordered gauge theory and a
boundary anomalous H-gauge theory). Since K is a
normal subgroup in H, we can label the K-holonomy
in H. Thus, below, we write all holonomies 4 in H.

Theory (i) is basically the second boundary discussed in
Secs. III and IV. Theory (ii) is basically the third (hard-
gauge) and fourth (soft-gauge) boundaries discussed in
Secs. Il and I'V. Theory (iii) is basically the fully dynamical
gauge boundary without global symmetry.

We compute the partition function of Sec. IXA S5 on
Z(D? x S') to evaluate GSD on a spatial D? disk in Table L.

Note that the & = 0 carries zero or an even Z§ charge.
The h = 2 carries an odd Z§ charge. For theory (iii), when
the Z$ is gauged, the ground state for the whole system
cannot carry an odd Z§ charge; thus, 7 = 0 € H implies
GSD = 1 on a disk. An important remark is that we cannot
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TABLE I.  For theory (ii), GSD = 2 from the holonomy 7 = 0
and h = 2 € H. For the fully gauge theory (iii), GSD = 1 from
the holonomy 7 =0 € H.

Disk Theory (i) Theory (ii) (third or ~ Theory (iii)
D?*  (second boundary) fourth boundary) (fifth boundary)
GSD 1 2 1

regard the 1+ 1D anomalous Z gauge theory as a usual
1 + 1D discrete gauge theory, because the usual 1 + 1D Z,
gauge theory has GSD = |H| =4 on an S' ring. In our
case, the 2 4+ 1D bulk plays an important rule, which causes
the GSD to decrease to GSD = 1 for theory (iii).

We compute the partition function of Sec. IXA 5 on
Z(I'xS'xS") to evaluate GSD on an annulus /' x S' in
Table 1II.

Again, the 2 + 1D bulk plays an important rule for the
GSD reduction for theory (iii) from GSD = |H|> = 16 to
GSD = 2 in Table II.

5. d+1/dD bosonic 0 > ZX - Z1 - 7§ - 0
for an even d

We can readily generalize Appendix D 4 to consider a
gapped boundary for the d 4+ 1/dD bosonic SPTs with a
G =Z, symmetry for any even dimension d under
0— zX - 7l - Z§ — 0. The twisted (d 4 1)-cocycle is

76

0 (915920 s Gagr) = (=1)9192 9000 (D22)

(éﬁd)(hlv h2’ ceey hda hd+l)

TABLE 1II. For theory (ii), GSD =4 from the holonomies:
(Mins how) With by, hoy € {0, 2}. For the fully gauge theory (iii),
GSD =2 from the holonomies of two sectors: (hy,, hyy) =
(0,0), (2,2).

Annulus
Stx !

GSD 1 4 2

Theory (i) Theory (ii) (third or Theory (iii)
(second boundary) fourth boundary) (fifth boundary)

with g € Z§ and HY*1[Z§, U(1)] = Z, for an even d. This

or [ .
cocycle is equivalent to e'** Jroao.var g o cup product

formofa; Ua, U ... Uay,in H¥*'[Z,, U(1)]. The a, here
is a Z,-valued one-cocycle in H'(M?' Z,) on the
spacetime complex M4*!,

As in Appendix D4, we write h = (g,k) € Zi! as a
doublet where g€ Z§ and k € ZX. We find that the
d-cochain that splits the (d 4 1)-cocycle in H can be

Balhy by, .. hg) = (=1)% 9k, (D23)
The group elements in H satisfy

hy-hy = (91.k1) - (92.k2) = ([g1 + 92l k1 + ko 4+ 9192]5).

We would like to check that (88,)(hy, hy. ..., hg hysy) =
(=1)9192--9a+1 for an even d. Namely,

_ Bd(hZﬂ tees hdJrl)"':Bd(hl’ h21 sy hdhd+l)

a Ba(hihy, ... hi1)...Ba(hy, ha, o hy)
(=1)95"9arike (—1)(02+03)94Garik . ...

(_1)92“‘(9d+9d+1)k1

<_1)93“'9d+1(k1+k2+9192) .

is true. Moreover, since H¢[Z,, U(1)] = 0 for any even
dimension d, there is no further lower-dimensional
topological phase of the H = Z,-cocycle that we can
append on the gapped boundary of an even spacetime
dimension d.

We find that the d+ ID bosonic SPTs with Z,-
symmetry (the bosonic topological superconductor of
G = Z,) have a dD symmetry-preserving surface decon-
fined Z, topologically ordered gauge theory, at least for
d > 4. When d = 2, the boundary deconfined Z, gauge
theory is a spontaneous symmetry-breaking state crossing
over to a confined state; thus, we require fine-tuning to have
a deconfined gauge theory, shown in Sec. A 2d.

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a
bulk d+ 1D field theory of an action [(2/27)BdA+
[1/(27)42|A(dA)¥>=[(2/27)BdA+[1/(27)¥/*]AdA---dA,

<_1)92“'gdk1 (D24)

with, locally, A a one-form gauge field and B a d-form
gauge field.

6. 3+1/2+1D bosonic 0 > Z, - Z} - 71 - 0
with Zg time-reversal symmetry

We discussed this example in the main text of
Sec. V C through a different method. From Ref. [15]
and Table III, for an antiunitary symmetry ZZ, we recall

that the cohomology groups for an odd dimension d

offer  H4[ZL,Uz(1)] = Z,. The four-cocycle w,’ €
H*ZT, Ur(1)] is of a form similar to the cocycle studied
in the previous section. The only new ingredient for
the calculation involving ZI-symmetry is the
nontrivial antiunitary action of ZI on the ZI-module

Ur(1). This cocycle is equivalent to ei2”f ™ in
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TABLEIIL.  Some examples of cohomology group H¢[G, U(1)]
for G = Dy, Qg, Z,, Z} and (Z,)? that can be used to construct
G-topological phases.

G H' G, U(1)] H?[G,U(1)] H3[G,U(1)] H*G,U(1)]

D, (2,)? Z, (2,)* x 24 (2,)?
Oy (2,) 0 Zg 0
A z, 0 z, 0
24 0 z, 0 z,
(2,)? (2,) Z, (z,)° (2,)

H*ZT, Up(1)]. The w; here is Z,-valued, the first
Stiefel-Whitney class in H'(M* Z,) on the space-
time complex M*. w; # 0 holds on a nonorientable
manifold. o

We would like to check that w,’(g;.0s.95.94) =
(=1)9192959% = (5f3)(hy, hy, h3, hy) for some ;. Similar
to Appendix D4, we write h = (g.k) € H =12} as a
doublet where g € G = ZI and k € K = Z,. We propose
B(hy, hy, hy) = (=1)%29%1 which splits the G-cocycle as
an H-coboundary under 0 — Z, — Z} — ZI' — 0. Indeed,
we find

(653)(111’ hZ’ hS’ h4)

P3(ha. by, hy)Bs(hy hohy, hy)Bs(hy, by, hs)
B3(hihy. hy, ha)Bs(hy. ho. hshy)
(=1)995k2 (] )(yz+93)94k1 (=1)9205k

- (=1)9s9s(kithatai92) (—1)92(9594)ks

= (_1)919293947 (D25)

which is true.

We find that the 3 + 1D bosonic SPTs with ZI-
symmetry (the bosonic topological superconductor of
G =27%) have a 2+ 1D symmetry-preserving surface

deconfined Z, topologically ordered gauge theory.
|

7. d +1/dD bosonic topological superconductor
0—>Z,—> 72 - ZT — 0 for an odd d with Z7
time-reversal symmetry: The dD Zf -gauge theory

boundary of d + 1D bulk invariant (—1)J """
From Ref. [15] and Table III, we recall that the

cohomology groups for an even dimension d offer

HMZ,, UM =2, R 2], Ur(1)] =0.

The cohomology groups for an odd dimension d offer

HMZ. Ur()] = 25, H*™(Z,, U(1)] = 0.

We can readily generalize Appendix D6 to consider
a gapped boundary for d + 1/dD bosonic SPTs with
a G =271 symmetry for any odd dimension d under
0— Z, > ZI' - ZI - 0. The twisted (d + 1)-cocycle is

G

V4
a)dil(gl7gz7""gd+l) — (_])9192...gd+l’ (D26)

with g € ZI and H**'[ZY, U1 (1)] = Z, for an even d. This

cocycle is equivalent to ¢™** Ji i e [ZY, Ur(1)]. The
w, here is Z,-valued, the first SW class in H'(M?*!, Z,)
on the spacetime complex M?*!. Here, we mean the SW
class of the O(d+ 1) bundle, where O(d+ 1) is the
structure group of the tangent bundle. w; # 0 holds on a
nonorientable manifold.

As in Appendix D 4, we write h = (g, k) € H = Z! as a
doublet where g € G = ZI and k € K = Z,. We find that
the d-cochain that splits the (d + 1)-cocycle in H can be

Ba(hy, ho, .. hg) = (=1)% 9k, (D27)

The group  elements in H again satisfy
hy-hy=(91.k1) - (92.k2) = (lg 4:92]2’ (ki +ky +9192]5)-
We can check that (86,)(hy, hy, ..o hg hyly) =
(=1)9192--9a+1 for an even d. Namely,

Balha. ...chair) .. Pa(hi ho. .. hg_ihg. hap)Ba(hy b, ... hy)

(51811)(]11’ h2’ "'7hds hd+]) =

(_1)!]3'“gd+1k2 -

Balhiho. ....hgiy)..BaChy by oo hghy.y)
(_1)92“'<gd—]+gd)gd+lk1 (_1)!]2'“gdkl

(—1)9sGan (ki+katg192) . .

is true. Moreover, since H¢ [ZT,U(1)] = 0 for any odd
dimension d, there is no further lower-dimensional topo-
logical phase of the H = ZI-cocycle that we can append on
the gapped boundary of an odd spacetime dimension d.

= (_1)9|!/2~-.¢}d+1 ,

. (_1)92"'90171(9.1'*‘9(1‘1)% (D28)

We find that the d + 1D bosonic SPTs with ZZ-symmetry
(the bosonic topological superconductor of G = Z¥) have a
dD symmetry-preserving surface deconfined Z, topologi-
cally ordered gauge theory, at least for d > 3.
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8. 3+1/2+1D bosonic topological superconductor
1 - Z, - Pin*(c0) — O(c0) — 1 with Z1 time-reversal
symmetry: The 2+ 1D Zf -gauge theory boundary of

3+1D bulk invariant (- 1)f(w2)2 and (- 1)f(w‘)4+<w2>2

There is an additional 3 + 1D time-reversal symmetric
bosonic topological superconductor (BTSC) beyond the
previous H*[ZI, U;(1)] = Z, class. It can be captured
either within the group cohomology of G x SO, [17]
under H*[ZI x SO(e0), Ur(1)] = (Z,)?, [97] or the
cobordism classification Q[pr, U(1)] = (Z,)* [19]. It

gives rise to 3 + 1D bulk topological invariants e" Jod

(—l)f(W2>2 or (—l)f(wl>4+(w2)2. w; = w;(TM) is the ith
Stiefel-Whitney class of a tangent bundle 7M over space-
time M. We would like to find out the surface K-gauge
topological order through a short exact sequence.

First, notice that the spin group Spin(n) is the double
cover of the special orthogonal group SO(n). There exists a
short exact sequence

1 - Z, - Spin(n) - SO(n) — 1. (D29)

In our case, for the 3 + 1D bulk SPT invariant (—l)f (wa)?
obtained through G =ZIxS0(o0) in H*[ZI x SO(0),
Ur(1)], one may attempt to use the short exact sequence
1 - Z¥ - 71 x Spin(c0) — Z} x SO(0) > 1 to con-
struct the surface ZX-gauge theory. However, we suggest
that the more proper way to consider a trivialization of the
bulk BTSC is not based on G = ZI x SO(o0), but based on
G = O() via

1 - ZX - Pin*(c0) —» O(0) — 1. (D30)

We can trivialize (—l)f 02" on the 2 + 1D boundary by
pulling G = O(o0) back to H = Pin*(c0). We can trivi-

alize (—l)f (000 o0 the 2 + 1D boundary by pulling
G = O(o0) back to H =Pin(o0). By picking a spin
structure on the boundary, it means the boundary can have
fermionic quasiparticles. The choice of spin structure can
be viewed as a twisted version of ZX fgauge theory.

We note that the e/m/ (and efm), as well) surface
topological order first proposed in Ref. [39] on the surface
of this 3 + 1D ZI-bosonic topological superconductor is
also a 2 + 1D deconfined Z,-gauge theory with quasipar-
ticles of Z,-gauge charge and Z,-gauge flux, both with
fermionic statistics.

9.2+1/1+1D bosonic 0 — ZX, — Z4, - 7§ - 0
For 0— ZX, i>Z£’N =, 7§ -0, again we want to trivialize

G
cocycle wfz (9as9ps9c) = (—1)%9%% to cochains. Generically,
we can still reduce (mod 4N) to (mod 4) in the exponent so

that 5 (hy.hy) =exp[(27i/4) ([h1],)([ho]a)]s or fo(hy. o) =
exp[(27i/4)([hy]4)([h,),)] can be the successful split
cochains.

10. 2+1/1+1D bosonic 1 — ZK - 9 - 7% - 1

Trivialize the three-cocycle in H3[ZS, U(1)]. For the
example that the H = Qg is a non-Abelian group, while
G = Z,, we write

1—>Zf—>Q§’L>Zg—>1. (D31)

G
Again, @5 (gy. gp. ge) = (=1)%05.

Write the quaternion Qg = (x,y[x* =y, xyx~! =
y~!,x* = y* = 1) so that each element in the group we
can write uniquely as x9y*, with g € {0, 1} corresponding
to {{1,i,—1,=i},j{1,i,—1,—i}}in Z§ and k € {0, 1,2, 3}
corresponding to {1, i, —1, =i} in ZX. Using yx = xy~! and

y~!x = xy, we can rewrite the group operation as

xglyklxgzykz :xglx!lZy(_l)yzklykZ = xlon +92]2y[(—1)”k1+k2+29192]4‘

We can write & = (g, k) of H as a doublet from G and K,
and then

hihy = (g1, k1) - (92, k)
= (g1 + 92, (=1)%ky + ks +29192)

= [g1 + 92, F(k1. k2. 91, 9)] (D32)

We find that the LHS technique in Appendix C works
successfully. For the LHS technique of Appendix D 3, we
look for

dr:H' (G, H'[K, U(1)])
=7, - H* (G, H[K,U(1)])) = H3[G,U(1)] = Z,.

(D33)
f:G->HIK, UQ1)| = Z§ — 7,. (D34)

In this case, it is found that
Ba(hy hy) = Bol(g1. k1) (92.k2)] = f(g2)"r =181 (D35)

Here, f(g5') corresponds to a U(1) function labeled by g,
and provides a U(1) function via f:G — H'[K, U(1)].
This U(1) function depends on k; € K for H'[K, U(1)];
thus, we have B(hy, hy) = f(g;')(k;). We look for the base
of i because H'[K,U(1)] =2, is generated by i
with i* = 1.

We would like to find a two-cochain that satisfies the
desired three-cocycle splitting property:
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o %
w3 (hw hy, hc) = s [r(ha>7 r(hb)7 r(hc)}
= (=1)7ta)rt)rhe) = (—1)9a959c

= (5,52)(}11,}12, h3)- (D36)
We write
Po(hy, h3)pa(hy, hohs)
Ry hy. hs) =
@) - hahs) = B Ty ) Py )
f(93)®) f(gr95) %) (D37)

- f(g3)[F(k1qk2~91 ’92>]f(gz)(kl) ’

Recall that f(g,g3)(k;) is the cocycle of H'[K, U(1)] with
a power k;. We should be able to rewrite f(g,g3) based on
the one-cocycle condition:

S (gz)f <93)

1(9295) =1= f(99) = f(9:)f(93)

(D38)

SO

)

73 ) [F(ky k2,01 ’92)]f(g2)(k1 )
)
)

flgy)=D2kitha+20100) ” (D39)

Further computation shows, indeed,

ﬁZ(hba hc)/}Z(hav hbhc)
ﬁZ(hahb? hc)ﬂ2(ha? hb)

i(kpge) ikalgn+gcla
— — (_1)9119};9(‘

(5:62)(]111’ hy, hc) =

ilka (=1)% +ky 429495149 § (Kags)

(D40)

Because H?[Qg, U(1)] = 0, we do not have another lower-
dimensional 1+ 1D Qg-topological state to stack on the
boundary.

If we consider that the bulk is a fully gauged, topologi-
cally ordered state, this becomes a gapped boundary for a
bulk 2 + 1D field theory of [(2/27)BdA + (1/2x)AdA.

a. Degeneracy on a disk and an annulus: Partition
functions Z(D? x S') and Z(I' x S* x S!)

Following the setup in Appendix D 4 a, we put the 2+1/
1+1D 1 - ZX - 0l - Z§ — 1 construction of topo-
logical states on a spatial D? disk or an annulus /' x S'
to count the degeneracy (GSD). Depending on gauging the
global symmetry K and H or not, we have at least three
types of theories. Since K is a normal subgroup in H, we

can label the K-holonomy in H. Thus, below, we write all
holonomies 4 in H. We consider the group homomor-
phisms:

1 |
7K —
4 ST e

- —i

1,i,—1,—i 1
- () () -
J.k,—j.—k -1
We compute the partition function of Sec. IXA 5 on
Z(D? x S') to evaluate GSD on a spatial D? disk in
Table IV.

The usual 1 4 1D topological gauge theory has its GSD
on an S' ring and can be computed as Z(S' x S') by

col  (D41)

(D42)

1
D=—> 1
GS |H| ; if hi=th

1
= HZ[number of elements in the
h

centralizer C;(h) of h]
= (number of conjugacy classes of H)

= (number of irrep of H) < |H|, (D43)

reduced to a smaller number than |H|. For H = Qg, we
have (number of conjugacy classes of H) = (number of
irrepof H)=5<|H|=8. The five conjugacy classes I;
-1; {i,—i}; {j,—j}; and {k,—k} yield five distinct
holonomies for GSD = 5 on S'.

We find that the & = 1 carries zero or an even Z§ charge.
The h =i and h = —i combined are also zero or an even
Z§ charge. Other sectors of & carry an odd ZS charge. For
theory (iii), when the Z§ is gauged, the ground state for the
whole system cannot carry an odd Z$ charge; thus, & = 0
or h =i/ —i € H implies GSD = 2 on a disk. An impor-
tant remark is that we cannot regard the 1 4+ 1D anomalous

TABLEIV. For theory (ii), GSD = 4 from the holonomy /& = 1,
i, —1, —i in K and also in H. For the fully gauge theory (iii),
GSD =2 from the holonomy h=1 and h=i/—i.
Here, h =i and h = —i each contributes 1/2 state, and the
i/ — i together act like a two-dimensional irreducible representa-
tion as a non-Abelian ground state. The setup and notations
follow Appendix D 4 a.

Theory (i) Theory (ii) (third or Theory (iii)
Disk D?(second boundary) fourth boundary) (fifth boundary)

GSD 1 4 2
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TABLE V. For theory (ii) without symmetry twist, GSD = 16
from the holonomies of sectors (hiy, hoy) With Iy,
how € {1,i,—1,—i}. For the theory (iii) fully gauge theory,
GSD =8 from the holonomies (A, /gy)=(1,1);(—1,—1);
(1,i/=i);(=1,i/=i);(i/—i,1);(i/—i,—1) and two more
states from (i/ —i,i/ —i). The setup and notations follow
Appendix D 4 a.

Annulus Theory (i) Theory (ii) (third or Theory (iii)
S' x I' (second boundary) fourth boundary) (fifth boundary)
GSD 1 16 8

Q1 gauge theory as ausual 1 + 1D discrete gauge theory—
because the usual 1 4+ 1D Qg gauge theory has GSD =5
on a S' ring. In our case, the 2+ 1D bulk plays an
important role, which causes the GSD to decrease from
five conjugacy classes to two conjugacy classes (1 and
{i,—i}) of GSD = 2 for theory (iii).

We compute the partition function of Sec. IXA S5 on
Z(I' x S' x §') to evaluate GSD on an annulus /' x S! in
Table V.

Again, the 2 4+ 1D bulk plays an important role for the
GSD reduction for theory (iii) from GSD = |(number of ir
rep of H)|> =25 to GSD = 8 in Table V.

11. 2+1/1+1D bosonic 1 —» Z, —» Dy — (Z,)* - 1

We consider the construction 1 - K =272, > H =
Dy — Q = (Z,)* - 1. The explicit group elements inside

a quotient group can be written as

D, _ Dy

Z, {1,R?}

= {1{1.R*},x{1,R*}.R{1,R?} xR{1.R*}}

=(Z,)*.

Here, we would like to trivialize the particular twisted
three-cocycle of G = (Z,)*:

@5(Gas Gp» Je) = €XP (127” [gal ]2[91)2]2[902]2)

— (_1)[gal]Z[gbz]Z[ng]Z’ (D44)

where g, = (9,,.94,) € G = (Z,)%, and similarly for g,

. o7 (1 :
g.. This cocycle is equivalent to e Jrvave G o cup

product form of a; U a; U a,, in H3[(Z,)?, U(1)]. The a,
and a, here are Z,-valued one-cocycles in H!(M?,Z,) on
the spacetime complex M?>. The boundary bosonic anomaly
of (Z,)?-SPTs is explored in Ref. [96].

We can write h = (g, k) € H, where g € G and k € K.
Let us write h=x“R’ € D, in terms of a triplet,
hy, = (ky» Gu,+ 9u,) € Dy, such that

(kuv Gu,» guz) ) (km Gu,» g?)z)
= (ky + Ky + 9,9, Gy, + oy Gy + G,)-

Note that the R> = (1,0,0) € D,. The D, — (Z,)?

maps hu = (kuv gupguz) € D4 to (gulvguz) € (22)2' We
can view the k, generates R? in D,, while 9y, and g,
generates x and R, respectively. We would like to split

off (hys by ) = S [r(hy). r(hy). r(hy)]
= (=1)loulle;bolgw, ) — (86,)(hy by hy),
(D45)

into a two-cochain f3,. The LHS technique in Appendix D 3
suggests that we look for

d,: H' (G, H'[K,U(1)]) - H*(G, H[K,
= dy: H'((2,)*.2,) = (Z

um)))
2)? = MG U] = (2,)°,

(D46)
f:G->HIK, U] = (Z,)*->H'[ZK,U(1)] = Z,.
(D47)
In this case, it is found that
:BZ(hu’ hv) = ﬂZ[(ku’ Gu,> guz)’ (kw 9o, gpz)]
= (g = (=1)f. (D45)

We can see that

ﬂZ(hv’ hw)ﬂZ(hu’ hvhw)

o(fr) =
) = e ) ol )
vIw k ( v + W )
( ) & 2( ) I Tz — (_l)gulgvzng
( 1) ku+k +gulg12 gv2( 1) u9vy
= ol (h,, h,, h,). (D49)
Similarly, it turns out that we can find another

two-cochain f,(h,., h,) = (=1)%9 that splits a differ-
ent three-cocycle 8(f,) = {[(=1) % (=1)kulon o))/
[(_1)(ku+kv+gulgr2)gwl( 1) ugv]]} = (=1)919029m

Since H?[D,,U(1)] = Z,, we can have two distinct
classes of two-cochain differed by a two-cocycle w, €
H?[D,, U(1)], corresponding to a 1 + 1D Dy-topological
state on the boundary.

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a bulk
2+1D field theory of [>7_,(2/2x)B;dA;+(1/2x)A,dA,.

12. 1+1/0+1D bosonic 1 —» Z, —» Qg — (Z,)> > 1

Here, we would like to trivialize a particular twisted two-
cocycle of G = (Z,)*
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127

®>(ga> gp) = €Xp (7 [ga1]2[9b2]2> = (_1>[ga|]2[gb2]z’
(D50)

where g, = (9,,.94,) € G = (Z,)%, and similarly for g,.

This cocycle is equivalent to e'** Jraver i o cup product
form of a; U a,, in H2[(Z,)?, U(1)]. The a, and a, here are
Z,-valued one-cocycles in H'(M?,Z,) on the spacetime
complex M?.

We consider the construction 1 - K =272, > H =
Q3 — G = (Z,)? - 1. The quotient group can be realized
as Qg/{1,—-1} = (Z,)>. We write each element in the
group H = Qg uniquely as h = x"y" with h € {0,1}
corresponding to {1{1,7, -1, =i}, j{1,i,—1,—i}} and i’ €
{0,1,2,3} corresponding to {1,i,—1,—i}. By writing
h = x"y" theh=1and ' = 1 correspond to two generators
of the quotient group G = (Z,)?. Applying the relation

yx=xy ' and x*=y% we find xMy"n'xyh’ =
x[hl+h2]2y[hll(_1)h2+h2/+2hlh2]4. We can rewrite
H G ,
05" (hy. hy) = 03 [r(h,). r(hy)] = (=1)FkR . (D51)

We claim that the above three-cocycle can be split by two-
cochains:

Pi(h) = pi(x"y") = 50 — ) (D52)
Indeed, we find it works:
h j(ha+hg) ()
(6ﬂ])(ha,hh) IBI( )ﬁl( b): 4 : l’ /b
ﬁ] (hahh) i([hu+hb]2+[ha(_l) b +h},+2hahh]4)

jUhalathala) {([(hela+ 1))

 j(hat o I (= 1) " 1, 4-2h, By )

_ RN -l = (i
(L (= D)™+ )

&% (hy.hy).

= (=1)lalh = (D53)
There are various legal one-cochains that trivialize the
G two-cocycle as a two-coboundary in H, such as
,31< ) ,51(Xh h’) h+h) (h—h’)’i(—h+h’)’l-(—h—h’). These
one-cochains can be dlffered by a one-cocycle w! in
H = Qg, such that o (h) € H'[Qg, U(1)] = (Z,)?; thus,
they differ by a 0 + 1D topological state on the boundary.
Indeed, the one-cocycle @ can be

) ("Y1 = (1) (=D (=)

One can check if the following is true:

w;(hg)o,(hy)

(6wy)(has hy) = wy (h,hy)

=1. (D54)

All these one-cochains 3, (xy"") = j(h+/) j(h=H) j(=h+H),

i="=") are differed by each other via stacking 0+ID-
topological states labeled by one-cocycle ;=
(=" (=D (=1 e H'[Qy, U(1)] = Z, X Z,.

The LHS technique in Appendix D 3 suggests that we
look for

dy: H(G, H'[K,U(1)]) = H*(G. H°[K,U(1)])
= dy: H((Z,)%,Z,) = Z, » H*(2,)*. U(1)] = Z,.
(D55)

f: G->HIK, U] = (Z,)* > H'[ZK, U(1)] = Z,.

(D56)

In this case, it suggested that f,(h) = f,[(g, k)] can be
written as a base of (—1), but we found the solution for a
base of i instead. So, the LHS technique is not helpful here.
If we consider the bulk as a fully gauged topologically
ordered state, this becomes a gapped boundary for a bulk
1+ 1D field theory of [ Y7 |(2/27)BdA; +1A,A,.

13. 1+1/0+1D bosonic 1 —» Z, —» Dy — (Z,)*> - 1

Here, we would like to trivialize a particular twisted two-
cocycle of G = (Z,)? based on 152X -D, 5 (Z,)2 > 1,

i2n
orlgn ) =exp( Sl hlan ) = (-1, (057

where g, = (94, 94,) € G = (Z,)?, and similarly for g,.

This cocycle is equivalent to e'Z”f with a cup product
form of a; U a,, in H2[(Z,)?, U(1)]. The a, and a, here are
Z,-valued one-cochains in H'(M?,Z,) on the spacetime
complex M?.

Here, D, is a dihedral group of order 8, namely, |D,| = 8.
Write the dihedral group D, = {x, R|x*> = R* = 1, xRx =
R~') so that each element in the group we can write uniquely
as x*R? with a € {0,1} and b € {0, 1,2,3}. The quotient
group is

3a1Vay

Dy D, 2 2 2 2
= {IRZ}—{I{lR}x{lR}R{lR}xR{lR}}
=(Zy)*.

We find the split one-cochain as 8, (h) = (—1)'""). This one-
cochain satisfies the desired two-cocycle splitting property.
Here, we can define the function f:

f()=f(x)=f(R)=f(xR)=0€Z3,
=f(xR-R*)=1€Z5.
(D58)
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Letus write 7 = x“R” € D, interms of adoubleth = (k, g),
or a more precise triplet, i, = (k,, gy, gu,) € Da, such that
(kuvgul vguz)'<kv’gvl vgvz):(ku+kv+9u19v2 3G, TG, ’gu2+gv2)’
Note that the R? = (1,0,0) € D,. The D, — (Z,)? maps
hu = (ku’ gu]’guz) € D4 to (gupguz) € (22)2’ so that

1) = feern) =2 = { LV (059)
pilh) = (1)) = (-1 (D6D)
We can see that, indeed,
B
= (1% = o lr(h). r(h,)] = 0f (h ).
(D61)

The LHS technique in Appendix D 3 suggests that we
look for

dy: H(G, H'[K,U(1)]) = H*(G, H[K,U(1)])

=d,: H'((2,)%.2,) =7, - H?*[G,.U(1)|=2Z,. (D62)

[1G-HIK U] = (2,)* > H'ZE. U(1)]| =2,
(D63)

with a base of (—1). In this case, it is true that ,(h,) =
:BI ((kw Gu,» guz)) - (_1)1(,,'

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a bulk
1 + 1D field theory of [>"7_,(2/27)B;dA; + (1/7)AA;.

14.2+1/1+1D bosonic 1 — Z, —» Dy x Z, — (Z,)* —» 1

Here, we would like to trivialize the three-cocycle of a cup
product form g2 [imuaas 5 H3[(Z,)3, U(1)] with a; €
H'(M3,Z,) of an M>-spacetime complex, via 1 — Z§ —
D, X Zy - (Z,)? - 1. The particular twisted three-cocycle
of G = (Z,)? that we would like to focus on is

@3 (G Gps Ge) = (_1)[3(1[]2[9172]2[91'3]2’ (D64)

where g, = (9a,+ 9a,- Ya,) € G = (Z,)?, and similarly for g,,
and g.. The boundary bosonic anomaly of (Z,)3-SPTs is
explored in Ref. [96].

Here, D, is a dihedral group of order 8, namely,
|D,| = 8. We write the dihedral group D, = (x, R|x* =
R* = 1,xRx = R™') so that we can write each element in
the group uniquely as x“R’ with a € {0,1} and
b €{0,1,2,3}. Indeed, the group homomorphism D, x
Z, = (Z,)* can be understood from a reduced map: D, —
(Z,)?. We only need to understand the short exact sequence

1 - 27X - Dy5(Z,)? = 1 in Appendix D 13. Namely,
we can take the Z, in D4 x Z, mapping directly to the third
Z, component in (Z,)?, while we only have to specify
D, (Z,)* such that {1{1,R%®},x{1,R?},R{1,R?},
xR{1,R*}} 5 (Z,)?. Meanwhile, the normal subgroup
ZX can be viewed as {1, R’} in D,,.

We denote the group elements of h, € Dy x Z, as
(ku’ gul ’ guz’ gu3)’ where (ku’ gul ’ guz) € D4’ and gu3 € ZZ’
such that (Ky.gu,.9u, ) (ku290,290,) = kit ki + G, 90y Gu, +
o, >Gu, T gyz). Following the construction in the previous
Appendix D 13, we note that the R* = (1,0, 0) € D,. The
D4 X ZZ - (22)3 maps hu = (kw gul’guy gu3) € D4 X ZZ
t0 (Gu,+ Yup» u) € (Z2)*. We propose that this two-cochain
satisfies the desired three-cocycle splitting property:

Ba(hyhy) = (=1) ) = (=1)kms . (D6S)

We can, indeed, show

ﬁ2(hy9 hw)ﬂZ(hw hvhw)

ﬁ2(huhv7 hw)ﬂZ(huv hv)
(_l)krgvv3 (_l)ku (g13+gw*3)
1

(5ﬂ2)(hu’ hvv hw) =

= (D66)
The LHS technique in Appendix D 3 also gives the cor-
rect hint.

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a
bulk 2+ 1D field theory of [>°3 (2/27)B;dA;+
(l/ﬂz)A1A2A3.

15. 3+1/2+1D bosonic 1 — Z, — Dy x (Z,)* —
(Z,)* — 1 and d +1/dD bosonic 1 — Z, —
Dyx (Zy)"™' = (Zy)"*! > 1

We can easily generalize from Appendixes D 13 and D 14
to any dimension. For example, based on a 3 + 1/2 + 1D
bosonic 1 = Z, — D, x (Z,)* = (Z,)* = 1 construction,
we can trivialize the four-cocycle of a cup product form
e?” Jharvavasva, in H*[(Z,)*, U(1)], here, a; € H'(M*, Z,)
of an M*-spacetime complex. We denote the group
elements of h, € Dy x (Z2)* as (ky.Gu,> Guy+ Gus» G, )»
where (kuv gulvguz) € D4’ and (gu3vgu4) € (22)2’ We can
define a three-cochain in H,

By(hy by b)) = (_l)f(hngv}ng‘ - (_l)k,,gzggwh (D67)

that indeed splits a nontrivial four-cocycle
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(5:33) (hu’ hvv hw’ hz)
:ﬂ.’a (hm hw* hz)ﬁ3 (hw hvhw7 hz)ﬁ3 (hu’ hv’ hW)
[}3 (huhvv hw’ hz)ﬁ3 (hu’ hv’ hwhz>
(_ 1 )kvgw3 g:4 (_1 )ku (91!3 +g»1f3)g:4 (_ 1 )kugvggvm

(_ 1 ) (ku+kv+gu] vy )gw3 Y2y (_ 1 )k14g1r3 (gw4 +gz4)

= (—=1)9u1 9029924

=wf[r(h,),r(hy),r(hy,), r(h,)] =l (h, h, h,,h.).

(D68)

In general, based on a d 4+ 1/dD bosonic construction via
1 = Z, = Dy x (Z,)4" = (Z,) - 1, we can trivialize

i 1
the d + 1-cocycle of a cup product form e Jhavaro...vas.y

in HYH1[(Z,)4!, U(1)]. We denote the group elements of
hu € D4 X (ZQ)d_l as (kw gupguz’ guy s gudﬂ)’ where

(kua gul s gu2> € D4, and (9”3’ gu4, ceey g“d+1) c (Zz)d_l_ We
can write down the d-cochain

(_ 1 )f(hu)gt,’3 Jwy9zs - -+9-d+1

ﬂd(huv hm hwv hz’ )

— (_1)kugr3gw4gzs-”g-d+l (D69)
that splits a nontrivial d+ 1-cocycle in H*+![(Z,)¢!,
U(l)l:

oG, [r(hy).r(hy).r(hy). r(h,)...]

=l (hyhy by b, ) = (=1)9u 9994 (DT0)
Again the LHS technique in Appendix D 3 also gives the
correct hint.

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a
bulk d+ 1D field theory of [> ¢t!(2/2z)B;dA;+
(1/(m))A1As.. Agi.

16. 2+1/1+ 1D bosonic
1-(Z,)) >DyxZy - (Z,)* > 1

Here, we would like to trivialize a particular twisted two-

cocycle of G = (Z,)? in H3[(Z,)%. U(1)],

sl 90.50) = x93 o Ll L. .

= (—1)la Ll lalge, o (D71)
where g, = (9a,-9a,) € G = (Z,)*, and similarly for g,
and g.. The boundary bosonic anomaly of (Z,)?-SPTs is
explored in Ref. [96].

The idea is extending the 1+ 1D example of
Appendix D13 via 1 - Z¥ - D, 5 (Z,)> > 1 in the
normal subgroup side by Z,, and we seek, for a realization
in 2+ 1D,

1 > (2, > Dyx 2,5 (2, - 1. (D72)

Since we have discussed that, in Appendix D11, the
2 4 1D example of

152725 5Dy 5 (2,2 = 1 (D73)

already trivializes the three-cocycle of a cup product
form &7 Jhaveve: i, 443 [(Z,)?, U(1)], then we can simply
take Dy X Z,— (Z,)? as the combination of D, (Z,)?
and Z,—>1. We denote the group elements of £, €
D4 X ZZ as (km gul ’ guzv gu3)’ where (ku’ gul s guz) € D4’
and Gu, € Z,, such that (kuv gul’guz) ’ (kvv gvl’gvz) =
(ku + Ky + Gu, 9,2 Gu, + 9o, G, + 90,)- We propose  the
split two-cochain

(_l)kuﬂvz_

Po(hy hy) = (D74)

We can see that

Pa(hy, hyy)Ba (s hyhyy)
ﬁZ(hl vs w)ﬂ2(huvhv)

) WGy (— )k w(Guy 9wy )

(=
1) (kutky+Gu, 9uy) Iz (— 1) 9,
5

r( ) ( )r(hw)]:wS(hu’hmhw)'

(5ﬂ2) =

— (_1 )gul vy Gwy

(-
= 0§ (D75)
The LHS technique in Appendix D 3 gives the correct hint.
Basically, this shows the same result as in Appendix D 11.

17. 3+1/2+1D bosonic 1 — (Z,) — Dy — (Z,)* — 1

Here, we would like to trivialize a particular twisted four-
cocycle of G = (Z,)? in H*((Z,)%, U(1)],

12
@4(9a> Gps Ges » 9a) = €XP <7 [gal}2[gh2}2[962]2[9d2]2>

= (—1)000 Llow 1l9e; hl9as o (D76)

We consider the construction via 1 —Z, —» Dy —
(Z,)* = 1. Following the earlier definition of D, group

elements, we propose the split three-cochain

(_1 )f(hu>gl'2 Gwy — (_ 1 )kugvzng X

ﬂ3(hu9 hu’ hw) = (D77)

We can check explicitly that the three-cochain splits the
four-cocycle in H:
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(5:33)(]/114’ hm hwv hz)
_ ﬁ3 (hvv hw’ hz)ﬂ.’s (hu’ hvhwv hz)ﬁ3 (hu’ hm hw)
ﬁ3 (huhvv hw’ hz)ﬁ3 (hua hv’ hwhz)

(_ l)kvnggzz (_ 1 )ku ([112 +ng )g:2 (_ 1 )kugr2 Gwy

- (-1) (kutko+9u, 9y ) 9wy 92y (-1 )ktu (G, +92,)

— (—l)g“lg”ngZg*'Z

= w§y = o§[r(h,), r(h,), r(hy,), r(h;)]

= ol (hy. hy, by, hy). (D78)

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a field
theory of [ Y7 ,(2/2n)B;dA; + [1/2(r)*]A AydA,.

18. 3+1/2+1D bosonic 1 —)Zz —)D4 XZ2 e d (22)3 -1
Here, we would like to trivialize the four-cocycle of a

particular twisted four-cocycle of G = (Z,)* in H*[(Z,)3,
U],

127
@4(Gar Gpr Ge- Ya) = €XPp (2 [galb[gbz]z[gq]z[gd3]2>

— (_1)[.%,]2[9172]2[9(‘3]2[9(13]2' <D79)

We consider the construction via 1 - Z, - Dy X Z, —
(Z,)? — 1. Following the earlier definition of D, group
elements, we propose the split three-cochain

ﬂ3<hu7h1)’hw) _ (_1>f(h1,)gv3yw3 — (_l)kug[ggw (D80)

We can check explicitly that the three-cochain splits the
four-cocycle in H:

(5:63)(]114’ hm hw’ hz)
_ ﬂ3(hvv hwv hz)ﬁ3 (huv hvhwv hz)ﬁ3 (hu’ hvv hw)
/7)3 (huhv’ hwv hz)ﬁS (hw hv’ hwhz)
(_1)kvgw3 gz3 (_ 1 )ku (91'3 +gW3 )933 (_l)kugl'3 gw3

(-1 )(ku kot Guy Gy )G 92 (-1 )kuyv} (93 923)

(—l)gulg’/zg”’ng}

m — wﬂr(h”), r(hv)7 r(hw)’ r(hz)]

f
Ol (hys By, B ).

(D81)

If we consider the bulk to be a fully gauged topologically
ordered state, this becomes a gapped boundary for a field
theory of [ >3 ,(2/27)B;dA; + (1/2(n)*)A AydAs.

19.2+1/1+1D to d +1/dD bosonic
1-Zy->U(1l) - U(1) — 1: Symmetry-enforced
gapless boundaries protected by perturbative
anomalies

It is tempting to ask for the construction of a

2+ 1/1 4 1D topological state via

1->Zy->U()-U(1) > 1, (D82)
where the bulk has 2+ 1D U(1) SPTs obtained from
H3[U(1),U(1)] = Z, while the boundary has 1 + 1D SETs
with a U(1) global symmetry and an emergent exact Zy
gauge symmetry.

Of course, this kind of group extension along the
boundary is possible, in general. But then the boundary
theory isa 1 4+ 1D theory with a U(1) global symmetry that
has a perturbative ’t Hooft anomaly [29]. As in 't Hooft’s
original work on such matters, this obstructs the possibility
of symmetrically gapping the boundary theory. Similar
remarks apply for any even d-dimensional spacetime of the
boundary theory.

20. 6 +1/5+ 1D bosonic
1-2Z,->U(1)xS0(0) - U(1) xSO(0) — 1:
Surface topological order and global mixed
gauge-gravitational anomaly

The previous Appendix D19 discusses the U(1)-
anomaly on the boundary of SPTs obtained from the group
cohomology H+'[U(1),U(1)] = Z of symmetry group
G =U(1l) for the even d. However, there are U(1)
anomalies beyond the H![G,U(1)] but within
HY[G x SO(0), U(1)] [17]. One example is the 3 +
1D perturbative mixed gauge-gravity anomaly [17,28] on
the surface of 4 + 1D U(1)-SPTs, characterized by

i 1A
exp<1 n/32”p1>,
where A is a U(1) one-form gauge field and p, is the first
Pontryagin class of the tangent bundle of a spacetime
manifold. In this example, the boundary has a perturbative
’t Hooft anomaly [29] and, therefore, again cannot be
symmetrically gapped.

Another SPT theory with a 6 + 1D bulk/5 + 1D boun-
dary dimension can have a Z, anomaly [within
H'[U(1) x SO(0), U(1)] = (Z)* x Z,], labeled by the
bulk topological invariant [17] on a seven-manifold M’:

: 1 dA ) 1
exp| 27 —wow3— | =exp| 27 —wowscy |,
M7 2 27 M’ 2

(D84)

(D83)

where w; is the ith Stieffel-Whitney class. Here, w; is a
cohomology class with mod 2 coefficients. We can write
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w; = w;(TM") of the spacetime tangent bundle TM’. This
Z, class indicates a nonperturbative global mixed gauge-
gravitational anomaly from a continuous group U(1). We
suggest that the 5 4+ 1D Z, gauge theory can be a boundary
topological order, via the construction 1 — Z, - U(1)x
SO(0) = U(1) x SO(c0) — 1, as a symmetry-preserving
gapped boundary. The U(1) in the total group H is the
double cover of that U(1) in the quotient group G. The
boundary field theory could be

1
E exp [ier/ = ((bda) + wawza + bcy) |-
(oM 2

bec* (0m)°.2,).
aeCl((0M)0,2,)

(D85)

The C%(M,Z,) contains all d-cochains of Z, values
assigned to a d-simplex on a triangulated manifold M.
Here, a is a one-cochain and b is a four-cochain; both are
integers with Z, values. It is basically a 5 + 1D Z, gauge
theory. The “gauge transformations” are

w3 = w3+ 6, A=adf+wyf+ aws,

(D86)

Wy = wy +6a,

b—-b+4, c¢y—c+0y, a—a-—y.

Here A, a, B, and y are four-cochain, one-cochain, two-
cochain, and one-cochain, respectively, all in Z, values.
We have the gauge transformation wows — wows + 04 =
Wowsz + wroff + daws + daof, because the SW classes
satisfy 6w, = éwz = 0. The whole partition function with
bulk and boundary theories together is gauge invariant.
Since both a and b are Z,-valued cochains, coupled to w,,
ws, and ¢ of the background U(1) probed field, we can
regard the 5 + 1D surface theory as a Z, gauge theory.

21. 2+1D/1 + 1D bosonic topological insulator 1 —
Z¥ > U(1)xz! - U(1)xZf -1 and 2+1D/1+1D
bosonic topological superconductor of Z§ ~ Z2T :
Spontaneous G-symmetry breaking of boundary
deconfined K-gauge theory

The bosonic SPT with symmetry group G = U(1) X Z¥
is called a bosonic topological insulator (BTI). In 2 + 1D,
we can obtain these SPTs from the group cohomology
H3[U(1) x Z%, U(1)] = Z,. Let us focus on the nontrivial
Z, class; the bulk field theory on a three-manifold M?> is
described by [17,20]

. 1 dA . 1
exp(zZnL}iwl E) :exp(z2ﬂA3§wlcl). (D87)

The boundary field theory can be described by

Z exp{i2zz/(8M)2%(¢5a+w,a+¢c,) , (D88)

bec®(9m)?,2,),
aeCl((0M)2,2,)

where ¢ is a zero-cochain and a is a one-cochain, both in
Z, values. The “gauge transformations” are

W] d Wl +5a,

¢ ¢+a,

¢y — ¢+ 6y, a—a-y. (D89)
Here, a and y are a zero-cochain and one-cochain in Z,
values. The c; is an integral two-cochain defined the same
as in the previous Appendix D 20. The boundary theory
shows a K = Z, gauge theory in 1 4 1D coupled to w;
and c¢;. In terms of the U(1)-field A, we have the
gauge transformation A — A + 2zy. This establishes our

construction:
1—>Z§—>U(1)><]Zg—>U(l)><]Zg—>l.

For this Z¥ gauge theory, there are a few topologically
distinct sectors and gauge-invariant operators, as shown in
Table VI: (1) The trivial sector is 1, with trivial quantum
number U(1) charge 0 and T = +1. (2) The ZX gauge
charge as an e-sector corresponds to the line operator

¢" [le+4/20)] Bach of two ends of such an open line

e” le la+(4/20)] has an e-particle (ZX gauge charge ¢). Each
of the two ends must attach with a 1/2 U(1) charge, due to
its attachment to the U(1)-field A. Thus, the e-particle
has quantum number U(1) charge 1/2 and T = +1.
(3) The ZX gauge flux as an m-sector corresponds to the

> _ 32 X
line operator M) )], " where the vortex e is

an m-instanton insertion operator. Similarly, each of the
two ends of the open line must attach with an m instanton
with an eigenvalue of T = —1, due to w,. The m instanton
has a trivial eigenvalue of U(1), namely 0.

If we put either 2+ 1D SPT on a spatial disk with a
circular boundary, and if the boundary Z, gauge theory is
deconfined, there are twofold degenerate ground states,
labeled by a trivial (no) holonomy and a nontrivial

TABLE VL. The quantum numbers [U(1) charge and T7] of the
U(1) symmetry and Z? time-reversal symmetry here are meant to
be associated to e-particle local excitations and m-instantons (the
second column), not to the entire line operators (the first column).

Operators Sectors (fractional U(l) T
objects) charge eigenvalue

1 Trivial (none) 0 1

eirzf[a+(A/2ﬂ)] Z, gauge charge 1/2 1
(e-particle)

SrP)=dG)+ [2w] - Z, gauge flux 0 -1

(m-instanton)
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holonomy of a Z, gauge charge (e-particle) winding an odd
number of times, along the circular boundary.

Note that the SPTs with a smaller symmetry group Z, X
ZT also render the same class, due to H3[Z, x ZT, U(1)] =
(Z,)?; one of the Z, class coincides with H?[U(1) X
ZT,U(1)] = Z,. The SPT invariant for that Z, class in
HZy X 25, U(1)] = (Z,) is

1
exp{iZﬂ/ —wl(al)z},
M3 2

with a Z,-valued one-cochain a;. This implies that the
boundary physics of 2+ 1D U(1) X Z% SPTs can be under-
stood in terms of that of 2 4+ 1D Z, X Z3 SPTs. Even if the
Coleman-Mermin-Wager theorem protects the continuous
U(1)-symmetry against spontaneous symmetry breaking,
we may break U(1) explicitly down to Z,. The same physics
is valid for both U(1) X Z§ BTI and Z, X Z] SPTs.

For the K = Z, deconfined gauge theory on the 1 + 1D
boundary of the above U(1) X ZI and Z, X ZI SPTs, we
should have no spontaneous symmetry breaking, neither on
the U(1) (supposing that Coleman-Mermin-Wager theorem
still holds) nor on the Z, [because U(1) X ZI' SPTs and
Z, X Z¥ SPTs have the same physics]. It is likely that the
boundary has spontaneous symmetry breaking on the time-
reversal symmetry Z2. Below, we provide arguments to
support that the time-reversal symmetry Z! is spontane-
ously broken at the boundary.

(D90)

22. Spontaneous global symmetry breaking of
boundary K-gauge theory: Zg-symmetry breaking on
2+1D Z,-SPT’s boundary vs Z!-symmetry breaking on

2+1D U(1) x Z3-SPT’s and Z, X Z3-SPT’s
boundaries for K =ZX

Here, we would like to show that 1 + 1D deconfined
K-gauge theories with symmetry G on the boundary of
2 4 1D bulk G-SPTs can actually be spontaneous global
G-symmetry-breaking states. Some examples are in order.

(1) Our first example is already mentioned in the main

text, in Sec. III C, as well as Appendixes A 2d and
D 4. Consider the 141D boundary of 241D Z,-
SPTs under the construction 0— ZX — 71 - 7§ - 0.
This Z,-valued three-cocycle of bulk SPTs is equiv-

alent to 2% Jamvaa _ (—l)f“‘ua‘ua‘ with a cup
product form of a@; U a; U a,, in H3[Z,, U(1)]. The
a, is a Z,-valued one-cochain. Through a field theory
analysis, we can find a gauge-invariant partition
function for the bulk on M3 and boundary on
(OM)?. The boundary ZX gauge theory has a minimal
coupling to the bulk fields, and its partition function is

1
Z eXp [i2n/ §(¢5a+¢(a1)2+aal) )
dec((@m) 2y). (om)?

aecl((0M)2.2,)

(D91)

Here, ¢ and a are Z,-valued zero-cochain and one-
cochain fields, respectively. The boundary has a spin-
1 electric gauge charge excitation associated to the a,
and a spin-0 magnetic instanton associated to the ¢.
The gauge-invariant vortex operator has a nonzero
vacuum expectation value with respect to ground
states:

(ORIt J2 aly

_ <Tgs|ei”[¢(xl>_¢<x2)+j;l' a |\Pgs> — const (D92)

The const. stands some constant value. This
statement shows the same physics as Eq. (3.21)’s
(Wes(£)[Xi11/2Xj11/2|Pes (£)) = 1. The spin-0 vor-
tex operator that is odd under Z$-symmetry has a real
expectation value, and its two-point function develops
a long-range order. This implies that Z§-symmetry is
violated. Thus, the ground states of ZX-gauge theory
have spontaneous Z$-symmetry breaking.

(2) The second example is the main example of Appen-
dix D 21,the 1 + 1D boundary of 241D U(1) x4 ZZ-
SPTs under the construction 1 »ZX > U(1)xZ! -
U(1)xZI—1. Again, the gauge-invariant vortex
operator (see Table VI) has a nonzero vacuum
expectation value with respect to ground states:

(ORI J: wily

[ D00 [ g

= (¥ ) =const  (D93)

gs

The vortex operator that is odd under ZI-symmetry

has a real expectation value, and its two-point

function develops a long-range order. This implies

that Z2 -symmetry is violated. Thus, the ground states

have spontaneous ZI-symmetry breaking. For the

third example, we can also show that the 1+ 1D

boundary of 2 + 1D Z, X ZI-SPTs under the con-

struction 1 — Z§ — Z, X Z¥ - Z, X Z] — 1 has

the same two-point function as Eq. (D93) and

develops a long-range order for Z!-symmetry-odd

vortex operators. Thus, the ground states of ZX-gauge
theory have spontaneous Z7-symmetry breaking.

To summarize, the above field theory analysis suggests

that the ground states of 14 1D deconfined K-gauge

theory of 2 + 1D G-SPTs have spontaneous G-symmetry

breaking. We expect that both its deconfined gauge theory

and confined gauge theory have spontaneous G-symmetry
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breaking, with crossover to each other without phase
transitions, similar to the physics in Appendix A 2 d.

23.1+1/0+ 1D bosonic 1 — Z, — SU(2) — SO(3) — 1

In 1+ 1D, we have a nontrivial bosonic SPT state
predicted by H?[SO(3), U(1)] = Z,. This nontrivial class
is exactly a 1 4+ 1D Haldane spin chain protected by the
global symmetry SO(3). For example, it is well known that
the 1 + 1D Haldane SPT state is the ground state of the
AKLT spin chain Hamiltonian:

1 = = 1 - -
H:Zk <SJ"S]~+1+§(S]~S]~+1)2>+1/3} (D94)
j

Each site j has a Hilbert space of a spin-1 degree of

freedom, and the spin-1 operator S; acts on each site j. The
particular choice of Hamiltonian prefers the lowest-energy
ground state such that the spin-1 on each site splits to two
spin-1/2 qubits, and the neighbor spin-1/2 spins between
two sites have a total spin-O singlet pairing. In a closed
chain, we have a gapped state with a unique ground state. In
an infinite-size open chain, we have a gapped state with two
dangling spin-1/2 qubits at the two ends, where the two
dangling spin-1/2 of a spin-0 singlet and three spin-1 triplet
states become fourfold degenerate.

However, we can lift the fourfold degeneracy of a 1 +
1D open chain by adding two spin-1/2 qubits at the two
ends. Formally, this is achieved by trivializing the two-
cocycle of H2[SO(3), U(1)] by lifting SO(3) to SU(2) via

1 > Z, > SU2) > S0(3) - 1. (D95)

The bulk topological term (—1)f w21SOG) of the second SW
class of principle G = SO(3)-bundle becomes trivial when
we lift SO(3) to the SU(2)-bundle. The unique gapped
ground state is achieved when we introduce the edge
Hamiltonian term pairing each of the old dangling spin-
1/2 qubits to the two newly added spin-1/2 qubits, such
that the low-energy ground state favors the singlet spin-0
pairing sectors at the two ends [98].

The LHS technique in Appendix D 3 suggests that we
look for

d,: H(G,H'[K,U(1)]) - H*(G, H°[K,U(1)])
=d,: H[SO(3).Z,] = Z, = H*[SO(3),U(1)] = Z,,
(D96)

f:G—-HIK U] = S03) - H'[ZK. U(1)] = 2.
(D97)

with a one-cochain of a suggested base of (—1).

APPENDIX E: SYMMETRY-BREAKING
GAPPED BOUNDARIES OR INTERFACES:
COMMENTS AND CRITERIA

The main focus of this article is a new approach to define a
gapped interface via “symmetry extension’: lifting G to a
larger group H, as described in Sec. VIII and Appendix D,
that trivializes the G-cocycle to define a lower-dimensional
gapped boundary prescribed by the split H-cochain. On the
other hand, there is another, more familiar approach for a
gapped interface, known in the literature as “symmetry
breaking.” Namely, the global or gauge symmetries
are spontaneously or explicitly broken, described in
Sec. VIII A. For a finite group G, when the symmetry
breaking does not produce gapless Goldstone bosons, the
boundary can be gapped. Phenomenologically, one can
achieve symmetry breaking through the Higgs effect or
through interactions such as sine-Gordon cosine potentials.

The global symmetry-breaking mechanism is well
known in the fields of topological insulators and SPTs.
For example, we can add a ferromagnet on the boundary of
topological insulators to break time-reversal global sym-
metry to obtain a gapped anomalous surface quantum Hall
state. The gauge-symmetry-breaking mechanism is also
known in the literature. The gapped boundary or interface
criteria studied by Haldane [99], Kapustin-Saulina [78],
Kitaev-Kong [79], Lan-Wang-Wen [80,84], and many
others can be viewed as gauge-symmetry breaking [80-82,
84] or the Anderson-Higgs effect.

In particular, let us look at the symmetry-breaking
mechanism in 2+ 1D Abelian bulk topological phases
for simplicity. The bulk phase can be described by an
Abelian Chern-Simons theory with an action Sy, =
(K;;/4r) [a; A da; under a symmetric integral bilinear
matrix K and, locally, some one-form gauge fields a. The
usual gapless boundary action is a K-matrix Luttinger
liquid or a doubled-version chiral boson theory Sy =
(1/471') f dtdx(K”(?,(I)Iaxq)J — V]Jax(blax(bj) with a non-
universal velocity matrix V;; and some scalar modes ®.
The gapped boundary conditions can be achieved through a
set of sine-Gordon cosine terms [ dtdx_,g, cos(, ;- @)
as a strong coupling g, > 1 limit. Notice that the gapping
cosine term indeed breaks the symmetry of ®; — ®; + 7
for some constant . Here, the broken symmetry can be
global symmetry [100] or gauge symmetry [78-82],
depending on the context.

The simplest example is that G’ =1 is a trivial group
containing only the identity element. G’ — G is a map that
the identity in G’ maps to the identity in G. This can be
regarded as breaking G to nothing in G’. There are G-cocycles
assigned in the bulk, but the boundary becomes a trivial
cocycle or cochain 1 in G’. In terms of the inhomogeneous
cochain, S | = 1. The G-cocycle @ (go;, -, ga_14) that
touches any boundary link, say, g, must have

oSi(gh;) =1,....94-14 = 1. This type of boundary
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condition works for any bulk defined by any discrete group G
with any cocycle. The usual way that one would describe it is
that the G is spontaneously broken to nothing along the
boundary.

More generally, the symmetry-breaking mechanism
involves breaking G-topological phases of group G down
to a subgroup G':

G—G (E1)
viewed through the injective map 1. If G’ is a subgroup of G,
then we can define the symmetry-breaking gapped boun-
dary of G-topological phases, if the G’-cocycle becomes a
G’-coboundary [with a similar expression as in Eq. (D4)]

wg[l(gfn)’ s Gy1a)] = wﬁ(gm, s 9d-1d)

_ G _ spG
= oF (Jo1» -+ Ju1a) = Bi_1»

thus split to lower (d — 1) dimensional G’ cochains.
Formally, we mean that a nontrivial G-cocycle
0§ € HIG, U(1)] (E2)
becomes a trivial element 1 (a coboundary) when it is
pulled back (denoted as *) to G”:
1 =rw$erG,U1). (E3)
The dimension of Hilbert space is restricted from a |G| per
degree of freedom in the bulk to a smaller |G'| per degree of
freedom on the boundary.

As an application of Appendix E, we will count and
classify distinct gauge-symmetry-breaking gapped interfa-
ces in various dimensions (e.g., 2 + 1D bulk and 3 + 1D
bulk), in Appendix F 1.

APPENDIX F: DYNAMICALLY GAUGED
GAPPED INTERFACES OF TOPOLOGICALLY
ORDERED GAUGE THEORIES

Because gauge symmetry is not a physical symmetry but
only a gauge redundancy, the physical meanings of gauge-
symmetry breaking and gauge-symmetry extension are
rather different from their global symmetry counterparts.
We would like to reinterpret the dynamically gauged
gapped interfaces for topologically ordered gauge theories
(such that the whole systems are topologically ordered
without any global symmetries) more carefully in any
number of dimensions.

Let us propose the generic gauged gapped interfaces of
topologically ordered gauge theories as follows. Let L be
the gauge group of a gauged interface; let G; and Gyy be the
gauge groups of the left and right sector relative to the
interface, respectively. Let L be a group with a group
homomorphism map to Gy x Gy,

L — GI X GH, (Fl)

such that the product of the two cocycles of the two twisted
gauge theories on the left and right pulls back to a trivial
cocycle in L. Here, we assume neither a surjective map (as
the gauge-symmetry extension) nor an injective map (as the
gauge-symmetry breaking), but we only require the group
homomorphism for L. — Gy x Gy;. Therefore, such a con-
struction actually includes mixed mechanisms of gauge-
symmetry extension and gauge-symmetry breaking, but we
do not require any global symmetry at all. In Eq. (F1), we
view L and Gy x Gy all as gauge groups.

In Appendix F1, we explore applications of gauge-
symmetry-breaking gapped interfaces. In Appendix F 2, we
explore applications of gauge-symmetry-extended gapped
interfaces, and we make a comparison to gapped interfaces
obtained from first constructing global symmetry-extended
SPTs and then dynamically gauging the system with
various gauging procedures. The two subsections aim to
demonstrate the generality of this Eq. (F1) for generic
gauged interfaces.

1. Gauge-symmetry-breaking gapped interface via
Anderson-Higgs mechanism—Examples: 2 + 1D twisted
quantum double models D”3(G) and 3 + 1D gauge
theories and Dijkgraaf-Witten gauge theories

The motivation for this subsection is to construct and
count gauge-symmetry-breaking gapped interfaces for
gauge theories, and to compare to the known methods
and known examples in the past literature (mostly studied
in the 2+ 1D bulk). Then, we can check consistency
and further produce new concrete examples for gauge-
symmetry-breaking gapped interfaces in any dimension.
Many examples are shown in this appendix.

We consider Dijkgraaf-Witten (DW) gauge theories [22],
namely, topologically ordered discrete G-gauge theories
that allow “twists” by the cohomology group cocycle. For a
more specialized case, a gauge-symmetry-breaking gapped
boundary, this repeats the same setup in Eq. (E1) that we
used in Appendix E. We only rewrite Eq. (F1) as G’ —
G x1with L=G', G;=G, and G = 1.

More generally, our strategy to construct and count
distinct topological gapped interfaces between two given
twisted gauge theories of Gy and Gy in any dimension,
under Anderson-Higgs gauge-symmetry breaking, is [101]

(1) First step: For gauge-symmetry-breaking gapped

interfaces, we consider Eq. (F1), with an additional
constraint that L C Gy x Gy; be an unbroken gauge
subgroup. The criteria are (similar to Appendix E,
except that every group is gauge group) that the
Gy x Gy-cocycle 0901 = o (gr) - " (gn) ™" (al-
lowed by the Kiinneth formula) in HY[G; x
Gy, U(1)] becomes a coboundary 1 € HY[L, U(1)]
when we restricted Gy (on the left) and Gy (on the
right) to L on the interface.
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(i1) Second step: To fully implement the first step, one
has to actually pick a trivialization of the cocycle
@6 The choice is not unique and we can modify
it by appending any cocycle in H![L,U(1)],
corresponding to a topological L-gauge theory on
the boundary or interface, following Appendix D 2 b.
This yields distinct new gauged interfaces.

(iii) Third step: Some of the gauged interfaces, constructed
by the above two steps, can be identified. For
example, two different gauge groups L; and L, on
the interfaces (between the same pair of bulk gauge
groups) with cocycles a)’(;‘_l and wsi | can be identified
as the same gapped interface if and only if the two
interfaces are conjugate through the adjoint action of
Gp x G [102]. Namely, some element g € Gy x Gy
identifies two interfaces by gL,g~' = L,.

(iv) Fourth step: To construct and count all gauge-
symmetry-breaking gapped interfaces, we consider
all the possible subgroups L C Gy x Gy, and all
possible lower-dimensional distinct gauge theories
in H4'[L, U(1)], and we identify the equivalence
classes of them as in the third step.

Many examples of gauge interfaces are provided below
in Appendix F 1, including 2 + 1D G = Z, gauge theory
(namely, the Z, toric code and Z, topological order);
241D G = Z, twisted gauge theory [namely, the Z,
double semions, or U(1), x U(1)_,-fractional quantum
Hall states]; and more generic 2 + 1D Dijkgraaf-Witten
discrete gauge theories, also written as twisted quantum
double models D”3(G) of a gauge group G with a twisted
three-cocycle w3 for G = (Z,)*, D4, Qg. We also consider
3 + 1D Dijkgraaf-Witten gauge theories of a gauge group
G with a twisted four-cocycle w,.

We show that the gauge-symmetry-breaking mechanism
reproduces the previous results on gapped boundaries or
interfaces of 2 + 1D topological orders, either through the
anyon condensation method or through the tunneling
matrices constructed through modular § and 7 data,
especially showing consistency with Ref. [84].
Furthermore, we can systematically obtain gapped inter-
faces in any dimension, such as in 3 4 1D.

a. Gauge-symmetry-breaking boundaries or interfaces
of Z, toric code and Z, double-semion

(1) Consider a 2+ 1D Gy =G = Z, gauge theory
(namely, the Z, toric code and Z, topological order)
on the left, and Gy; = 1 as a trivial vacuum on the
right. The three-cocycle on the left is a trivial
coboundary @§ (g) = 1 and the cocycle on the right
is also 1, but the Hilbert spaces of the left and right
sides are different. We can consider either subgroups
L=G =1or L=G =2, so that G - G pro-
vides a trivial cocycle when pulling back to G'. The
G’ = 1 and G’ = Z, define the famous e-condensed

or m-condensed gapped boundaries, achieved by
Anderson-Higgs gauge-symmetry breaking. The
two e- and m-gapped boundaries have been con-
structed explicitly on the lattice Hamiltonian model
[79] and have been realized field theoretically through
strong coupling sine-Gordon interactions at bounda-
ries [80]. Following Appendix E, given a bulk Abelian
Chern-Simons action with a K = (97) matrix for Z,
gauge theory, the e- or m-gapped boundaries are
achieved by strong coupling interactions
[ dtdxgcos(2®,) and [ dtdxgcos(2®,), on a Lut-
tinger liquid boundary, respectively [80]. See Ta-
ble VII for the details of these two gapped boundaries.
(2) Consider a 2+ 1D G = Z, twisted gauge theory
[namely, the Z, double semions, or U(1), x U(1)_,-
fractional quantum Hall states] on the left, and G’ =
1 as a trivial vacuum on the right. The three-cocycle
on the left is nontrivial @ () # 1, and the cocycle on
the right is 1; again, the Hilbert spaces of the left and
right sides are different. We can consider only the
subgroups G’ = 1, so that G’ — G provides a trivial
cocycle when pulling back to G'. The G’ = 1 defines
the semion-antisemion condensed gapped interface
by Anderson-Higgs gauge-symmetry breaking. Fol-
lowing Appendix E, given a bulk Abelian Chern-
Simons action with a K = (3 ) matrix for a Z,
twisted gauge theory, the gapped boundary is
achieved by the strong coupling interaction
[ dtdxgcos[2(®; + ®@,)], on a Luttinger liquid
boundary [80]. Again, this unique gapped interface
is also realized and consistent with earlier work [79—
82]. See Table VII for the data of a gapped boundary.
(3) Consider a Z, toric code on the left and a Z, double-
semion model on the right, as an example for the
gauge-symmetry-breaking gapped interface. Equa-
tion (F1) becomes L — Z, x Z, with a trivial
coboundary a)g‘ =1 of G; = Z, on the left, and a

nontrivial cocycle a)g}“ of Gy = Z, on the right, and
gauge-symmetry breaking results in Anderson-
Higgs to L =1 or L = Z,. This is consistent with
two gapped interfaces between the Z, toric code and
Z, double semions found in Ref. [84].

TABLE VIL.  Subgroup G’ of a Z,, H*[G’,U(1)], and gauge-
symmetry-breaking boundaries in 2 + 1D. Our result reproduces
and agrees with the classification in Ref. [80]’s Table III and in
Ref. [84]’s Appendixes I and II.

Z5’s Z, toric code Z, double-semion
subgroup number of gauge number of gauge
G H?[G',U(1)]  boundaries boundaries
{1} =1 0 1 1

Z, 0 1 0

2 (total number) 1 (total number)

031048-71



JUVEN WANG, XIAO-GANG WEN, and EDWARD WITTEN

PHYS. REV. X 8, 031048 (2018)

b. Gauge-symmetry-breaking boundaries of
D(D4)=D*1((Z,)?]

Here, we consider a 2 + 1D twisted quantum double
model D”m((Z,)%] = D(Dy). It can be described by a
twisted Abelian gauge theory under a type III three-cocycle
w3y (see its definition in Ref. [28]) or a non-Abelian
topological field theory action [[(>_3_,(2/27)B;dA;)+
(1/7%)A;A,A;]. Alternatively, we can regard it as a discrete
D, gauge theory, with D, a dihedral group of order 8. Now,
we aim to count the distinct types of topological gapped
boundaries based on gauge-symmetry breaking. Following
Egs. (El) and (F1), we choose G; = G = D4 and Gy = 1.
What are the possible unbroken subgroups L = G'? In
Appendix D, Table VIII, we show the subgroup data for the
D, group. Since D(Dy,) is an untwisted gauge theory with a
trivial three-cocycle 1 € H*[Dy4, U(1)], when we pull 1
back from D, to any subgroup G’ C Dy, it is still a three-
coboundary 1 € H3[G’, U(1)]. Among the 10 subgroups of
D,, 4 of the Z, subgroups are identified to two sets of
conjugate subgroups under the adjoint action [102]. For
two (Z,)? subgroups and one Dy, each of them offers
two distinct gapped boundaries by appending lower-
dimensional topological states due to H2?[G',U(1)] =
Z,. Thus, the total distinct gauge-symmetry-breaking
gapped interfaces have 11 types, which is consistent with
topological gapped boundaries obtained from a different
approach via modular S and 7 data in 2 + 1D [84]. See
Table IX for the details of these 11 gapped boundaries.

c. Gauge-symmetry-breaking boundaries of
D(Qg) =D®3»m®31([(Z,)3] in 2+ 1D and Qg gauge
theory in 3+ 1D

Let us now consider gapped gauge interfaces of discrete
quaternion Qg gauge theories in 2 + 1D and 3 4 1D.

(1) First, we consider a 2 4 1D twisted quantum double

model D”3m®31[(Z,)3] = D(Qsg). It can be described

by a twisted Abelian gauge theory under type III and

TABLE VIII. Subgroup N and quotient groups Q of G = D,.
Subgroup N Quotient group Q G/N =Q
{1} Dy/{1} = Dy Dy/{1} = Dy
{1,R?} (center) Dy/{1.R*} = (Z,)* Dy/Zy = (2,)
{1,x} No No

{1, xR?} No No
{1,xR} No No
{1,xR%} No No

{1,x,R? xR?} D,/{1,x,R* xR*} =Z, D4/(Z,)* =2,
{1.xR,R*,xR3} D,/{1.xR.R2.xR3} =2, D,/(Z,)? =2,
{1.R.R*.R*} Dy/{l.R.R* R’} =Z,  D4/Z4y=12,
D, Dy/Dy =1 Dy/Dy =1

TABLE IX. Subgroup G’ of a dihedral D,, H?[G’, U(1)], and
gauge-symmetry-breaking boundaries in 2+ 1D. Our result
reproduces and agrees with the classification in Ref. [84]’s
Appendix XI.

D(D,) = D" [(Z,)%]
number of distinct

D,’s subgroup G’ H?[G',U(1)] gauge boundaries
{1} =1 0 1
{1LR*} =2, 0 1
{1.x}=R{1.xR*}R"' =2, 0 1
{1,xR}=R{1,xR*}R™'=2Z, 0 1
{1,x,R?,xR*} = (Z,)? Z, 2
{1,xR,R*, xR} = (Z,)* Z, 2
{I.R.R®.R3} = 7, 0 1
D, Z, 2

11 (total number)

type I three-cocycles wj jy; - @3 1 (see its definition in
Ref. [28]) or a non-Abelian topological field theory
action f[(z;=1 (2/27T)B]dA[)+(l/ﬂz)A|A2A3 —+
(1/27)A,dA;]. Alternatively, we can regard it as a
discrete Qg gauge theory, with Qg a quaternion group
of order 8. Now, we count the distinct types of
topological gapped boundaries based on gauge-
symmetry breaking. Following Egs. (E1) and (F1),
we choose Gy = G = Qg and G = 1. What are the
possible unbroken subgroups L = G'?In Appendix D,
Table X, we show the subgroup data for the Qg group.
Whenwepull 1 € H3[Qg, U(1)] foruntwisted D(Qg)
back from Qg to any subgroup G’ C Qy, it is still a
three-coboundary 1 € H3[G’, U(1)]. Among the six
subgroups of Qg, none is identified under adjoint
actions. None of them can append lower-dimensional
topological states due to H?[G’, U(1)] = 0. Thus, the
total distinct gauge-symmetry-breaking gapped inter-
faces have six types, which is consistent with topo-
logical gapped boundaries obtained from a different
approach via modular § and 7 data in 2 4 1D [84].
See Table XI's fourth column for the details of these
six gapped boundaries.

(2) Second, we consider a 3 + 1D Qg gauge theory.
For an untwisted gauge theory with a trivial four-
cocycle 1 € H*[Qg, U(1)], when we pull 1 back

TABLE X. Subgroup N and quotient groups Q of G = Q.

Subgroup N Quotient group Q G/N =0
{1} Og/{1} = 0Oy Os/{1} = Qs
{1,—1} (center) Qs/{1,-1} = (Z,)? 03/, = (Z,)?
{1.i. -1, —i} Os/{l.i,—1,=i} = Z, Os/Zy =7,
{1, -1 —j} Os/{l.j.—-1.=j} =2, Os/Zy = 2,
{1.k.—1.—k} Os/{1.k.-1.—k} = Z, Os/Zy = 2,
Os 03/0s =1 03/0s =1
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TABLE XI. Subgroup G’ of a quaternion Qg, H*[G', U(1)],
H3[G’,U(1)] and gauge-symmetry-breaking boundaries in 2 +
1D and 3 + ID. Our 2 + 1D result reproduces and agrees with
the classification in Ref. [84]’s Appendix XII. Our 3 + 1D result
may be new to the literature.

Qg gauge theories
number of distinct
gauge boundaries

H? H? 2 + 1DD(Qg)vs
Qg’s subgroup G’ [G',U(1)][G', U(1)] 3+1D
{1y =1 0 0 1vs 1
{1.-1} =2, 0 z, 1 vs2
{li,~1,-iY=2, 0 z, 1 vs4
{1.j-1,-j}=2, 0 z, 1vs 4
{(1.k.=1,-k} =2, 0 z, 1vs4
Qg 0 ZS 1 vs 8

6 vs 23 (total number)

from Qg to any subgroup G’ C Qy, it is still a four-
coboundary 1€ H*G',U(1)]. After appending
lower-dimensional topological states (see Table XI's
fourth column), we find 23 gapped boundaries.

d. Gauge-symmetry-breaking boundaries of G=Z, or
(Z,)? twisted gauge theories in 3+ 1D

Consider 341D Dijkgraaf-Witten gauge theories of a
gauge group G = Z, and (Z,)? with twisted four-cocycle a.
(1) First, we consider a 3 + 1D Z, gauge theory, de-
scribed by alow-energy BF action [(2/2r)BdA with
two-form and one-form fields B and A. Following
Egs. (El) and (F1), we choose Gy = G = Z, and

Gy = 1. What are the possible unbroken subgroups

L = G'? Since it is an untwisted gauge theory with a
trivial four-cocycle 1 € H*[Z,, U(1)], when we pull

1 back from Z, to any subgroup G’ C Z,, it is still a
four-coboundary 1 € H*[G', U(1)]. There are two
types of boundaries realized by condensing the
Z,’s charge e-particle and condensing the Z,’s
flux m-string on boundaries. These two boundaries

are e- and m-gapped boundaries, analogs to that
ofthe 2 4 1D Z, toric code. However, we can append

TABLEXIL. ForG=2,=2" orG= (2, =2
gauge-symmetry-breaking boundaries in 3 + 1D.

2

(a)

a lower-dimensional topological state due to
H3(Z,,U(1)] = Z,; thus, we find three gapped
boundaries, as shown in Table XII’s third column.
Second, we consider a 3 + 1D (Z,)? twisted gauge
theory, described by a low-energy BF action
J(OTi-1(2/27)B1dA;) + (2/(27)%)A1AydA,  with
two-form and one-form fields B and A. Following
Egs. (E1) and (F1), we choose G| = G = (Z,)? and
Gy = 1. What are the possible unbroken subgroups
L = G'? For a twisted gauge theory with a four-
cocycle H*[(Z,)?, U(1)], only limited subgroups G’
trivialize the cocycle after pulling G back to G'.
After appending lower-dimensional topological
states, we find five gapped boundaries, as shown
in Table XII’s fourth column.

2

To summarize, in this section, we provide many gauge-
symmetry-breaking gapped interfaces and detailed data.
We find consistency with results obtained in previous
literature (in 2 4 1D), but we can systematically obtain
gapped interfaces in any dimension, such as 3 + 1D.

2. Comparison to gapped interfaces obtained from
dynamically gauging the symmetry-extended SPTs

In Appendix D, we summarized how to construct
symmetry-preserving gapped boundary for SPTs via
Eq. (D1)’s symmetry extension 1 - K - H->G — 1.
In this section, we would like to explore various ways to
dynamically gauge this SPT system to obtain different
topologically ordered gauge versions of the system, and we
make a comparison with the generic gauge interface
construction in Eq. (F1)’s L — G; x Gp. The goal is to
demonstrate that the gauge interface construction from
L — Gy x Gy is general enough to contain different
dynamical gauging procedures of the SPT system. To
narrow down the possibilities of outcomes, here, we would
like to fully gauge the left side SPTs of group G to be a
twisted gauge theory of group G and to fully gauge the
interface of group H. What remains are the different but
consistent choices of gauging the right side of the interface.
This corresponds to Eq. (F1), where we choose G| = G,
L = H, and leave Gy free for different choices. Below, we

X Zgh), we list down the subgroup G', H?[G', U(1)], and

gauge theory number

3+1IDG =2, 3+ 1DG = (Z,)? twisted

DW theorynumber of

G's subgroup G’ H3[G', U(1)] of gauge boundaries gauge boundaries
=1 0 1 1
79 z, 2 2
A Z 2
(2,)? (2,)° 0

3 (total number) 5 (total number)
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provide several examples for the different choices of Gy
and interpret the construction from the perspectives of
(a) gauging of the symmetry-extended SPTs and (b) the
gauge interface of topologically ordered gauge theory
systems, in a generic d-dimensional spacetime.

(1) Consider H - G x 1, where we choose L = H,
G; = G, and Gy = 1 in Eq. (F1). The group homo-
morphism H — G X 1 is surjective, sending h € H
to [r(h),1] =(g,1) € Gx 1. From the gauging
SPTs perspective of (a), the construction is obtained
by first doing a local unitary transformation on the
right sector to a trivial product state, which, thus,
can be removed and regarded as a trivial vacuum.
We only dynamically gauge the left sector G-SPTs
and the H-interface to their gauge theory counter-
parts, namely, the G-twisted gauge theory (of
Dijkgraaf-Witten) in d-dimensions and the H-gauge
theory with a G-anomaly in a lower (d— 1)-
dimensions. But, we do not gauge the right sector
and, thus, Gy; = 1. From the gauge theory perspective
of (b), the H — G x 1 construction means that we
have a nontrivial inhomogeneous G x 1-cocycle
o' =% (g)-wh(1)'=wf(g)-1 for the gauge
theory, and that can be pulled back to H as lower-
dimensional H-cochains to construct the interface
gauge theory.

(2) Consider H — G x G, where we choose L = H,
G; = G, and G = G in Eq. (F1). It is not surjective
but only a group homomorphism from 4 € H to a
diagonal group [r(h), r(h)] = (g.g) € G x G. From
the gauging SPTs perspective of (a), the construc-
tion is obtained by first doing a local unitary
transformation on the right sector to a trivial
product state. The dynamically gauging procedure
on the left sector and the interface is the same as in
the previous case, but we also gauge the right sector
to an untwisted usual G = G-gauge theory. From
the gauge theory perspective of (b), the H - G x G
construction means that we have a nontrivial
inhomogeneous G x G-cocycle ¢ = wP(g) - 1
for the gauge theory with w§ =1, and that
@ can be pulled back to H as lower-
dimensional H-cochains to construct the interface
gauge theory.

(3) Consider H — G x H, where we choose L = H,
Gy = G, and Gy = H in Eq. (F1). It is not surjective
to G x H, but it has a group homomorphism from
heH to [r(h),h] = (g,h) € Gx H. From the
gauging SPTs perspective of (a), the construction
is obtained by first doing a local unitary trans-
formation on the right sector to a trivial product
state. The dynamically gauging procedure on the
left sector and the interface is the same as in the
previous case, but we also gauge the right sector to

an untwisted usual G;; = H-gauge theory. From the

gauge theory perspective of (b), the H - G x H

construction means that we have a nontrivial

inhomogeneous G x H-cocycle w%# = o (g) -1

for the gauge theory with wfl = 1, and that @%*#

can be pulled back to H as lower-dimensional H-
cochains to construct the interface gauge theory.

More concretely, for a specific example, we can choose

G = Z, and H = Z,; from the perspective of gauging 2 +

ID SPTs (a) from Eq. (D1), we choose 1 — ZK —

ZH L, 7§ — 1. The above constructions have the following
implications. The first item above offers Z¥ — Z§ x 1,
which indicates that the left sector is a 2 + 1D Z, double-
semion model (i.e., a twisted Z, gauge theory); the inter-
face is a 1 + 1D Z, gauge theory (with a Z§ anomaly); and
the right sector is a trivial vacuum (no gauge theory). The
second item above offers Z{ — Z$ x Z§, which indicates
that the left sector is a 2 + 1D Z, double-semion model;
the interface is a 1+ 1D Z, gauge theory (with a Z§
anomaly); and the right sector is a 2 4+ 1D Z, toric code
(i.e., a Z, gauge theory). The second item above offers
Zit - 79 x ZH, which indicates that the left sector is a
2 + 1D Z, double-semion model, the interface isa 1 + 1D
Z, gauge theory (with a Z$ anomaly), and the right sector is
a2+ 1D Z, gauge theory.

The above construction requires a group homomor-
phism map, and we additionally need to impose the zero
gauge flux constraint (more precisely, zero gauge holon-
omy for a shrinkable loop) everywhere, on the left sector,
the interface, and the right sector. The previous three
examples in Appendix F2 all satisfy these constraints.
However, other proposals may fail the constraints, for
example, by considering H — G x K for the gauge inter-
face construction. This H - G x K requests a construc-
tion of a d-dimensional G-twisted gauge theory on the left,
a (d — 1)-dimensional H gauge theory (with G-anomaly)
on the interface, and a d-dimensional untwisted usual
K-gauge theory on the right. Will this be a valid
construction? If we consider the H — G x K map as
h — [r(h), k] = (g, k), then it is not a group homomor-
phism, and the zero gauge flux constraint on the closed
loop sitting between the interface (in H) and the right
sector (in K) is generally nonzero. Thus, H - G x K is
illegal for a gauge interface construction between a
G-twisted gauge theory and a K-gauge theory, at least
from the perspective (a) of dynamically gauging global
symmetry-extended SPTs.

However, we can make H — G x K work for a gapped
interface, if we consider it as a group homomorphism
Hx1->GxK, so (h1)eHx1-[r(h),1] €GxK.
This implies that we have a gauge-symmetry-extended
construction from the left sector H — G, but a gauge-
symmetry-breaking construction from the right sector
1 - K. In short, the mixed symmetry-extension and
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symmetry-breaking construction can support an H-gauge
interface between a G-twisted gauge theory on the left and
an untwisted usual K-gauge theory on the right.

Overall, we show that the perspective (a) of gauging
global symmetries of SPTs is within the construction of the
perspective (b) of gauge interfaces of gauge theories based
on Eq. (F1). This supports the generality of Eq. (F1).

[1] E.H. Lieb, T. D. Schultz, and D. C. Mattis, Two Soluble
Models of an Antiferromagnetic Chain, Ann. Phys. (N.Y.)
16, 407 (1961).

[2] M. Karbach, K. Hu, and G. Miiller, Introduction to the
Bethe Ansatz II, Comput. Phys. 12, 565 (1998).

[3] F.D.M. Haldane, Continuum Dynamics of the 1-D
Heisenberg Antiferromagnet: Identification with the
O(3) Nonlinear Sigma Model, Phys. Lett. 93A, 464 (1983).

[4] 1. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Valence
Bond Ground States in Isotropic Quantum Antiferromag-
nets, Commun. Math. Phys. 115, 477 (1988).

[5] Z.-C. Gu and X.-G. Wen, Tensor-Entanglement-Filtering
Renormalization Approach and Symmetry Protected Topo-
logical Order, Phys. Rev. B 80, 155131 (2009).

[6] M. Levin and C. P. Nave, Tensor Renormalization Group
Approach to Two-Dimensional Classical Lattice Models,
Phys. Rev. Lett. 99, 120601 (2007).

[7] X.-G. Wen, Topological Orders in Rigid States, Int. J.
Mod. Phys. B 04, 239 (1990).

[8] X. Chen, Z.-C. Gu, and X.-G. Wen, Local Unitary
Transformation, Long-Range Quantum Entanglement,
Wave Function Renormalization, and Topological Order,
Phys. Rev. B 82, 155138 (2010).

[9] X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of
Gapped Symmetric Phases in One-Dimensional Spin
Systems, Phys. Rev. B 83, 035107 (2011).

[10] L. Fidkowski and A. Kitaev, Topological Phases of
Fermions in One Dimension, Phys. Rev. B 83, 075103
(2011).

[11] N. Schuch, D. Perez-Garcia, and 1. Cirac, Classifying
Quantum Phases Using Matrix Product States and PEPS,
Phys. Rev. B 84, 165139 (2011).

[12] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa,
Entanglement Spectrum of a Topological Phase in One
Dimension, Phys. Rev. B 81, 064439 (2010).

[13] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa,
Symmetry Protection of Topological Phases in One-
Dimensional Quantum Spin Systems, Phys. Rev. B 85,
075125 (2012).

[14] X. Chen, Z.-X. Liu, and X.-G. Wen, Two-Dimensional
Symmetry-Protected Topological Orders and Their Pro-
tected Gapless Edge Excitations, Phys. Rev. B 84, 235141
(2011).

[15] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry-
Protected Topological Orders and the Cohomology Class
of Their Symmetry Group, Phys. Rev. B 87, 155114
(2013).

[16] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry-
Protected Topological Orders and the Cohomology Class
of Their Symmetry Group, Science 338, 1604 (2012).

[17] X.-G. Wen, Construction of Bosonic Symmetry-Protected-
Trivial States and Their Topological Invariants via
g x so(o0) Non-linear o-Models, Phys. Rev. B 91,
205101 (2015).

[18] For d 4+ 1D SPT states (possibly with a continuous sym-
metry), here we use the Borel group cohomology
HAHG, U(1)] or H™G x SO(o0), U(1)] to classify
them [14,17]. Note that H'[G, U(1)] = H*"*(BG, 7),
where HY"2(BG,Z) is the topological cohomology
of the classifying space BG of G. When G is a finite
group, we have only the torsion part H*![G,U(1)] =
H¥2(BG,Z) = H**'[BG, U(1)].

[19] A. Kapustin, Symmetry Protected Topological Phases,
Anomalies, and Cobordisms: Beyond Group Cohomology,
arXiv:1403.1467.

[20] A. Kapustin, Bosonic Topological Insulators and Para-
magnets: A View from Cobordisms, arXiv:1404.6659.

[21] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang,
Fermionic Symmetry Protected Topological Phases and
Cobordisms, J. High Energy Phys. 12 (2015) 052.

[22] R. Dijkgraaf and E. Witten, Topological Gauge Theories
and Group Cohomology, Commun. Math. Phys. 129, 393
(1990).

[23] M. Levin and Z.-C. Gu, Braiding Statistics Approach to
Symmetry-Protected Topological phases, Phys. Rev. B 86,
115109 (2012).

[24] L.-Y. Hung and X.-G. Wen, Quantized Topological Terms in
Weakly Coupled Gauge Theories and Their Connection to
Symmetry Protected Topological Phases, arXiv:1211.2767.

[25] S. Ryu, J. E. Moore, and A. W. W. Ludwig, Electromag-
netic and Gravitational Responses and Anomalies in
Topological Insulators and Superconductors, Phys. Rev.
B 85, 045104 (2012).

[26] X.-G. Wen, Classifying Gauge Anomalies through SPT
Orders and Classifying Gravitational Anomalies through
Topological Orders, Phys. Rev. D 88, 045013 (2013).

[27] A. Kapustin and R. Thorngren, Anomalies of Discrete
Symmetries in Various Dimensions and Group Cohomol-
ogy, arXiv:1404.3230.

[28] J.C. Wang, Z.-C. Gu, and X.-G. Wen, Field Theory
Representation of Gauge-Gravity Symmetry-Protected
Topological Invariants, Group Cohomology and Beyond,
Phys. Rev. Lett. 114, 031601 (2015).

[29] G.’t Hooft, Naturalness, Chiral Symmetry, and Sponta-
neous Chiral Symmetry Breaking, in Recent Developments
in Gauge Theories, NATO Advanced Study Institutes
Series (Series B. Physics), Vol. 59, edited by G.’t Hooft
et al. (Springer, Boston, MA, 1980).

[30] The boundary theories of SPTs have anomalies [26-28].
The obstruction of gauging the global symmetries (on the
SPT boundary) is known as the 't Hooft anomalies [29].
The possible boundary anomalies of SPTs include pertur-
bative anomalies [31] and nonperturbative global anoma-
lies [32,33]. Although SPTs can have both perturbative and
nonperturbative anomalies, our construction of symmetric
gapped interfaces is only applicable to SPTs with boundary
nonperturbative anomalies.

[31] L. Alvarez-Gaume and E. Witten, Gravitational Anoma-
lies, Nucl. Phys. B234, 269 (1984).

[32] E. Witten, An SU(2) Anomaly, Phys. Lett. 117B, 324 (1982).

031048-75


https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1063/1.168740
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1007/BF01218021
https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.91.205101
https://doi.org/10.1103/PhysRevB.91.205101
http://arXiv.org/abs/1403.1467
http://arXiv.org/abs/1404.6659
https://doi.org/10.1007/JHEP12(2015)052
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.86.115109
http://arXiv.org/abs/1211.2767
https://doi.org/10.1103/PhysRevB.85.045104
https://doi.org/10.1103/PhysRevB.85.045104
https://doi.org/10.1103/PhysRevD.88.045013
http://arXiv.org/abs/1404.3230
https://doi.org/10.1103/PhysRevLett.114.031601
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1016/0370-2693(82)90728-6

JUVEN WANG, XIAO-GANG WEN, and EDWARD WITTEN

PHYS. REV. X 8, 031048 (2018)

[33] E. Witten, Global Gravitational Anomalies, Commun.
Math. Phys. 100, 197 (1985).

[34] We note that there is a terminology clash between con-
densed matter and high-energy/particle physics literature
on the “Adler-Bell-Jackiw (ABJ) anomaly” [35,36]. In
condensed matter literature [26], the phrase “ABJ
anomaly” [35,36] refers to “perturbative” anomalies (with
Z classes, captured by the free part of cohomology/
cobordism groups), regardless of further distinctions
(e.g., anomalies in dynamical gauge theory, global sym-
metry currents, etc.). In condensed matter terminology, the
ABJ anomaly is captured by a one-loop diagram that only
involves a fermion Green’s function (with or without a
dynamical gauge field). Thus, the one-loop diagram can be
viewed as a property of a free fermion system even without
gauge field. On the other hand, in high-energy/particle
physics literature, the perturbative anomaly without a
dynamical gauge field captured by a one-loop diagram
should still be referred to as a perturbative 't Hooft
anomaly, instead of the ABJ anomaly. Here, we attempt
to use a neutral terminology to avoid any confusion.

[35] S. Adler, Axial-Vector Vertex in Spinor Electrodynamics,
Phys. Rev. 177, 2426 (1969).

[36] J. Bell and R. Jackiw, A PCAC Puzzle: my — yy in the
o-Model, Nuovo Cimento A 60, 47 (1969).

[37] Here, we mean that there is no intrinsic 1 + 1D topological
order in bosonic systems, neither in its own dimension nor
on the boundary of any 2 + 1D bulk short-range entangled
state. (Namely, we may say that there is no 1 4+ 1D bosonic
topological quantum field theory robust against any local
perturbation.) However, the 1 + 1D boundary of a 2 + 1D
bulk long-range entangled state may have an intrinsic
topological order. Moreover, in contrast, in a fermionic
system, there is a 1 + 1D fermionic chain [38] with an
intrinsic fermionic topological order.

[38] A.Y. Kitaev, Unpaired Majorana Fermions in Quantum
Wires, Phys. Usp. 44, 131 (2001).

[39] A. Vishwanath and T. Senthil, Physics of Three Dimen-
sional Bosonic Topological Insulators: Surface Decon-
fined Criticality and Quantized Magnetoelectric Effect,
Phys. Rev. X 3, 011016 (2013).

[40] F.J. Burnell, X. Chen, L. Fidkowski, and A. Vishwanath,
Exactly Soluble Model of a 3D Symmetry Protected
Topological Phase of Bosons with Surface Topological
Order, Phys. Rev. B 90, 245122 (2014).

[41] X. Chen, L. Fidkowski, and A. Vishwanath, Symmetry
Enforced Non-Abelian Topological Order at the Surface of
a Topological Insulator, Phys. Rev. B 89, 165132 (2014).

[42] C. Wang, A. C. Potter, and T. Senthil, Gapped Symmetry
Preserving Surface State for the Electron Topological
Insulator, Phys. Rev. B 88, 115137 (2013).

[43] M. A. Metlitski, C.L. Kane, and M.P. A. Fisher, A
Symmetry-Respecting  Topologically-Ordered — Surface
Phase of 3d Electron Topological Insulators, Phys. Rev.
B 92, 125111 (2015).

[44] P. Bonderson, C. Nayak, and X.-L. Qi, A Time-Reversal
Invariant Topological Phase at the Surface of a 3D
Topological Insulator, J. Stat. Mech. (2013), P09016.

[45] M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath,
Interaction Effects on 3D Topological Superconductors:

Surface Topological Order from Vortex Condensation,
the 16 Fold Way and Fermionic Kramers Doublets,
arXiv:1406.3032.

[46] D.FE. Mross, A. Essin, and J. Alicea, Composite Dirac
Liquids: Parent States for Symmetric Surface Topological
Order, Phys. Rev. X 5, 011011 (2015).

[47] C. Wang, C.-H. Lin, and M. Levin, Bulk-Boundary
Correspondence  for Three-Dimensional — Symmetry-
Protected Topological Phases, Phys. Rev. X 6, 021015
(2016).

[48] The symmetries may be ordinary unitary symmetries or
may include antiunitary time-reversal symmetries.

[49] See Sec. III B for an example in which it is natural in
condensed matter physics to treat K as a global symmetry.
See also a more recent work, Ref. [50], applying the idea to
1 + 1D bosonic/spin chains or fermionic chains.

[50] A. Prakash, J. Wang, and T.-C. Wei, Unwinding Short-
Range Entanglement, arXiv:1804.11236.

[51] E. Witten, The “Parity” Anomaly on an Unorientable
Manifold, Phys. Rev. B 94, 195150 (2016).

[52] N. Seiberg and E. Witten, Gapped Boundary Phases of
Topological Insulators via Weak Coupling, Prog. Theor.
Exp. Phys. 2016, 12C101 (2016).

[53] We remark that our approach to constructing gapped
boundaries may not be applicable to some invertible
topological orders (iTO, or the invertible topological
quantum field theory) protected by no global symmetry.
However, the gapped boundaries of certain iTO can still be
constructed via our approach. For example, the 4 4+ 1D

iTO with a topological invariant (—1 )f 23 has a boundary
anomalous 3 + 1D Z, gauge theory, which can be con-
structed by a suitable group extension via our Eq. (1.2).
Here, w; = w;(TM) is the ith Stiefel-Whitney class of a
tangent bundle TM over spacetime M.

[54] M.Z. Hasan and C.L. Kane, Colloquium: Topological
Insulators, Rev. Mod. Phys. 82, 3045 (2010).

[55] X.-L. Qi and S.-C. Zhang, Topological Insulators and
Superconductors, Rev. Mod. Phys. 83, 1057 (2011).

[56] B. Bernevig and T. Hughes, Topological Insulators and
Topological Superconductors (Princeton University Press,
Princeton, NJ, 2013).

[57] L. Savary and L. Balents, Quantum Spin Liquids: A
Review, Rep. Prog. Phys. 80, 016502 (2017).

[58] The name CZ is read “controlled Z” and is suggested by
quantum computer science. The operator U ;; measures
o, of spin j if spin i is in state |]) and otherwise does

nothing. .
[59] In the case of a compact ring boundary, (Uz,)? = +1 for
an even-site boundary, while (U 2,)> = —1 for an odd-site

boundary. To avoid the even or odd lattice site effect, from
now on we assume the even-site boundary system through-
out our work for simplicity. If there are no corners or
spatial defects or curvature—which would lead to correc-
tions in these statements—then the number of odd-site
boundary components is always even, so, overall,
U3 =1

[60] It is not true that these states can be classified canonically
by H%'[H,U(1)], because there is no natural starting
point; that is, there is no natural choice of /45_1 to begin

031048-76


https://doi.org/10.1007/BF01212448
https://doi.org/10.1007/BF01212448
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevX.3.011016
https://doi.org/10.1103/PhysRevB.90.245122
https://doi.org/10.1103/PhysRevB.89.165132
https://doi.org/10.1103/PhysRevB.88.115137
https://doi.org/10.1103/PhysRevB.92.125111
https://doi.org/10.1103/PhysRevB.92.125111
https://doi.org/10.1088/1742-5468/2013/09/P09016
http://arXiv.org/abs/1406.3032
https://doi.org/10.1103/PhysRevX.5.011011
https://doi.org/10.1103/PhysRevX.6.021015
https://doi.org/10.1103/PhysRevX.6.021015
http://arXiv.org/abs/1804.11236
https://doi.org/10.1103/PhysRevB.94.195150
https://doi.org/10.1093/ptep/ptw083
https://doi.org/10.1093/ptep/ptw083
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1088/0034-4885/80/1/016502

SYMMETRIC GAPPED INTERFACES OF SPT AND SET ...

PHYS. REV. X 8, 031048 (2018)

with. Once one makes such a choice, the boundary states
that we will construct can be classified by H*-'[H, U(1)].
[61] In Sec. III B, we described a situation in which it is natural.
[62] The formula works when all groups are Abelian. For non-
Abelian groups, there could be additional constraints on
this formula, for example, in terms of conjugacy classes.
[63] To complete the argument, we need to know that, for
every SPT phase with G-symmetry, a suitable extension

1 - K — H-5 G — 1 exists. This is shown in Sec. V.

[64] Here, the local G-symmetry does not mean the gauge
symmetry. On one hand, the local G-symmetry is that
physically distinct configurations [note that, in the main
text discussion, two distinct configurations are (g;, A;, h;;)
and (g;, i, hi;)] have the same action amplitude. On the
other hand, the gauge symmetry is not a (global) symmetry
but, indeed, a gauge redundancy. The gauge symmetry is a
gauge redundancy that two (redundant) configurations are,
indeed, the same equivalent physical configuration and are
related to each other through gauge transformations.

[65] Here, let us focus on the case that K is Abelian (while H
and G may be non-Abelian), for the simplicity of the
formulas. One may generalize the situation to non-Abelian
groups as well.

[66] L. Kong and X.-G. Wen, Braided Fusion Categories,
Gravitational Anomalies, and the Mathematical Frame-
work for Topological Orders in Any Dimensions,
arXiv:1405.5858.

[67] Y. Tachikawa, On Gauging Finite Subgroups, arXiv:
1712.09542.

[68] After the appearance of our preprint on arXiv, one of the
authors (J. W.) thanks Yuji Tachikawa for informing the
recent Ref. [67]’s Sec. II.7 as a mathematical proof,
reproducing and obtaining similar results as our Sec. VA.

[69] X.-G. Wen, Quantum Orders and Symmetric Spin Liquids,
Phys. Rev. B 65, 165113 (2002).

[70] Y. Hu, Y. Wan, and Y.-S. Wu, Twisted Quantum Double
Model of Topological Phases in Two Dimensions, Phys.
Rev. B 87, 125114 (2013).

[71] Y. Wan, J.C. Wang, and H. He, Twisted Gauge Theory
Model of Topological Phases in Three Dimensions, Phys.
Rev. B 92, 045101 (2015).

[72] A. Mesaros and Y. Ran, Classification of Symmetry
Enriched Topological Phases with Exactly Solvable Mod-
els, Phys. Rev. B 87, 155115 (2013).

[73] Recall that the gauge transformation can be implemented
on the basis (a vector in the Hilbert space) or on the wave
function (effectively a “covector”). The operator O can be
also implemented either on the basis as

o 1)

{nl;

0|{nij}M> =
or on the wave function,

@({nij}u) = chuiq’ ({7} m)-

In either case, we obtain the same consistent result for 0
acting on the state vector |®) as in Eq. (9.28).

[74] A.Y. Kitaev, Fault-Tolerant Quantum Computation by
Anyons, Ann. Phys. (Amsterdam) 303, 2 (2003).

[75] To make a comparison, we remark that Refs. [27,76] show
a related physics by starting from a given anomalous
boundary topological field theory (TQFT) and finding the
possible bulk TQFT.

[76] F. Benini, P.-S. Hsin, and N. Seiberg, Comments on Global
Symmetries, Anomalies, and Duality in (2 4 1)d, J. High
Energy Phys. 4 (2017) 135.

[77] The free part of the cohomology/(co)bordism group
contributes the perturbative anomalies. The forsion part
of the cohomology/(co)bordism group contributes the
nonperturbative global anomalies.

[78] A. Kapustin and N. Saulina, Topological Boundary
Conditions in Abelian Chern-Simons Theory, Nucl. Phys.
B845, 393 (2011).

[79] A. Kitaev and L. Kong, Models for Gapped Boundaries
and Domain Walls, Commun. Math. Phys. 313, 351
(2012).

[80] J. Wang and X.-G. Wen, Boundary Degeneracy of Topo-
logical Order, Phys. Rev. B 91, 125124 (2015).

[81] M. Levin, Protected Edge Modes without Symmetry, Phys.
Rev. X 3, 021009 (2013).

[82] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Theory of Defects
in Abelian Topological States, Phys. Rev. B 88, 235103
(2013).

[83] L.-Y. Hung and Y. Wan, Ground State Degeneracy of
Topological Phases on Open Surfaces, Phys. Rev. Lett.
114, 076401 (2015).

[84] T. Lan, J.C. Wang, and X.-G. Wen, Gapped Domain
Walls, Gapped Boundaries and Topological Degeneracy,
Phys. Rev. Lett. 114, 076402 (2015).

[85] However, the fate of some of the gauge-symmetry-
extended interfaces turns out to be the same phase as
the gauge-symmetry-breaking interface. This was later
explored in Sec. 7 of Ref. [86], where their dual description
and equivalence were found.

[86] J. Wang, K. Ohmori, P. Putrov, Y. Zheng, Z. Wan, M. Guo
et al., Tunneling Topological Vacua via Extended Oper-
ators: (Spin-)TQFT Spectra and Boundary Deconfinement
in Various Dimensions, Prog. Theor. Exp. Phys. (2018)
053A01.

[87] I. Cong, M. Cheng, and Z. Wang, Topological
Quantum Computation with Gapped Boundaries, Prog.
Theor. Exp. Phys. (2018) 053A01.

[88] K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10,
2445 (1974).

[89] B. Zeng and X.-G. Wen, Gapped Quantum Liquids and
Topological Order, Stochastic Local Transformations
and Emergence of Unitarity, Phys. Rev. B 91, 125121
(2015).

[90] D. M. Greenberger, M. Horne, and A. Zeilinger, Bell’s
Theorem, Quantum Theory, and Conceptions of the Uni-
verse: Going beyond Bell’s Theorem (Springer, Nether-
lands, 1989).

[91] Note that Sec. V’s approach can only suggest the possible
K for a given G and a given G-cocycle, but Sec. V cannot
provide any analytic H-cochain easily.

[92] If K is contained in the center of H, it implies G acts
trivially on H*[K, U(1)].

031048-77


http://arXiv.org/abs/1405.5858
http://arXiv.org/abs/1712.09542
http://arXiv.org/abs/1712.09542
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.87.125114
https://doi.org/10.1103/PhysRevB.87.125114
https://doi.org/10.1103/PhysRevB.92.045101
https://doi.org/10.1103/PhysRevB.92.045101
https://doi.org/10.1103/PhysRevB.87.155115
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1007/JHEP04(2017)135
https://doi.org/10.1007/JHEP04(2017)135
https://doi.org/10.1016/j.nuclphysb.2010.12.017
https://doi.org/10.1016/j.nuclphysb.2010.12.017
https://doi.org/10.1007/s00220-012-1500-5
https://doi.org/10.1007/s00220-012-1500-5
https://doi.org/10.1103/PhysRevB.91.125124
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1103/PhysRevB.88.235103
https://doi.org/10.1103/PhysRevB.88.235103
https://doi.org/10.1103/PhysRevLett.114.076401
https://doi.org/10.1103/PhysRevLett.114.076401
https://doi.org/10.1103/PhysRevLett.114.076402
https://doi.org/10.1093/ptep/pty051
https://doi.org/10.1093/ptep/pty051
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevB.91.125121
https://doi.org/10.1103/PhysRevB.91.125121

JUVEN WANG, XIAO-GANG WEN, and EDWARD WITTEN

PHYS. REV. X 8, 031048 (2018)

[93] Namely, the image of the d, map is guaranteed to be
contained in the kernel of the inflation map from
HYG, U(1)] to HY[H,U(1)]. J. W. gratefully acknowl-
edges Tom Church and Ehud Meir for illuminating the
spectral sequence method [94,95].

[94] K. S. Brown, Cohomology of Groups (Springer Science &
Business Media, New York, 2012), Vol. 87.

[95] https://mathoverflow.net/q/249368/27004 (Special thanks
to Tom Church and E. Meir), “g cocycle split and
trivialized to a coboundary in j, given a group homomor-

phism j— ¢> MathOverflow.

[96] J. Wang, L. H. Santos, and X.-G. Wen, Bosonic Anomalies,
Induced Fractional Quantum Numbers and Degenerate
Zero Modes: The Anomalous Edge Physics of Symmetry-
Protected Topological States, Phys. Rev. B 91, 195134
(2015).

[97] The H*[ZL x SO(0), Uz(1)] = (Z,)? classification [17]

= -/,

g [L
suggests a bulk topological invariant el S

where the Pontryagin class p; is related by the
Stiefel-Whitney class w, through the relation w3 = p,
mod 2 on any closed oriented four-manifold. Moreover,
the class with w, is related to 7,[SO(c0)] = Z, and

m,[0(c0)] = Z,.
[98] This procedure has been shown explicitly in Ref. [50]
recently.

[99] F. Haldane, Stability of Chiral Luttinger Liquids and
Abelian Quantum Hall States, Phys. Rev. Lett. 74, 2090
(1995).

[100] Y.-M. Lu and A. Vishwanath, Theory and Classification of
Interacting “Integer” Topological Phases in Two Dimen-
sions: A Chern-Simons Approach, Phys. Rev. B 86,
125119 (2012).

[101] J. W. thanks Tian Lan for collaborating on a different
approach in 2 + 1D [84].

[102] V. Ostrik, Module Categories, Weak Hopf Algebras and
Modular Invariants, arXiv:math/0111139.

031048-78


https://mathoverflow.net/q/249368/27004
https://mathoverflow.net/q/249368/27004
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1103/PhysRevLett.74.2090
https://doi.org/10.1103/PhysRevLett.74.2090
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
http://arXiv.org/abs/math/0111139

