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Hybrid superconductor-semiconductor devices are currently one of the most promising platforms for
realizing Majorana zero modes. Their topological properties are controlled by the band alignment of the
two materials, as well as the electrostatic environment, which are currently not well understood. Here, we
seek to fill in this gap and address the role of band bending and superconductor-semiconductor
hybridization in such devices by analyzing a gated single Al-InAs interface using a self-consistent
Schrödinger-Poisson approach. Our numerical analysis shows that the band bending leads to an interface
quantum well, which localizes the charge in the system near the superconductor-semiconductor interface.
We investigate the hybrid band structure and analyze its response to varying the gate voltage and thickness
of the Al layer. This is done by studying the hybridization degrees of the individual subbands, which
determine the induced pairing and effective g factors. The numerical results are backed by approximate
analytical expressions which further clarify key aspects of the band structure. We find that one can obtain
states with strong superconductor-semiconductor hybridization at the Fermi energy, but this requires a fine
balance of parameters, with the most important constraint being on the width of the Al layer. In fact, in the
regime of interest, we find an almost periodic dependence of the hybridization degree on the Al width, with
a period roughly equal to the thickness of an Al monolayer. This implies that disorder and shape
irregularities, present in realistic devices, may play an important role for averaging out this sensitivity and,
thus, may be necessary for stabilizing the topological phase.
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I. INTRODUCTION

Metal-semiconductor interfaces is a well-established
field in the context of semiconducting electronics for
implementing either Schottky diodes or Ohmic contacts,
cf. Refs. [1–3]. In the former case, the interface coupling
forces the semiconductor to experience band bending
leading to a depletion of charge near the semiconductor
side of the interface, while the latter situation gives an
accumulation of charges. The separation between the two
behaviors is mainly determined by the sign of the difference
of the metal work function (WM) and the electron affinity of
the semiconductor (χSM), which we denote as Φbulk ¼
χSM −WM. However, in practice other interfacial effects
influence the band offset between the two materials. Here,
we work with an effective offset which we denote by Φ.
Recently, metal-semiconductor interfaces have attracted

renewed attention in the context of engineered topological
superconductivity where conventional s-wave Cooper pair-
ing can be induced into the semiconductor. It has been
theoretically predicted that the induced superconducting
pairing combined with spin-orbit coupling (SOC) and an
applied magnetic field can drive the system into the
topological superconducting (p-wave) [4–8] state. This
topologically nontrivial state supports charge-neutral zero-
energy end states which obey non-Abelian exchange
statistics. These so-called Majorana zero modes have
interest for implementation of topological quantum com-
puting [9–15].
The first experimental spectroscopic signatures of

Majorana zero modes in superconductor-semiconductor
hybrid devices were reported in Ref. [16] and have since
then been refined via the fabrication of ultraclean epitaxial
Al-InAs hybrids [17,18]. These improved fabrication
methods have led to promising reports of Majorana finger-
prints in both epitaxial nanowire hybrids [19–22] and 2D
epitaxial superconductor-semiconductor hybrids with litho-
graphically defined 1D channels [21,23].
However, many microscopic details of the interfaces and

in particular the degree of hybridization between the metal
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and semiconductor, which determines the induced super-
conducting pairing, the SOC strength, and the effective g
factor, are not well understood. Neither are the number of
subbands occupied in the nanowires and the resulting
semiconductor electron density. In fact, there seems to
be a large spread in critical magnetic fields and gate
voltages required to induce the topological state. A recent
study showed a systematic dependence of the effective g
factor on gate voltage, when measured by the slope of the
induced gap with applied field [24]. Some theoretical
progress in understanding the variation of the experimental
results has already been made. For example, in Ref. [25] it
was shown that orbital contributions might help to under-
stand the large measured g-factor values, while the authors
of Ref. [26–28] have assessed the role of the electrostatic
environment in the nanowire devices. The effect of
hybridization on the induced pairing has also been con-
sidered [29,30]. However, the interplay between hybridi-
zation and the electrostatically determined self-consistent
potential has not been explored and a better understanding
of this could potentially guide future experimental designs
and theoretical modeling [31–33] of Majorana devices.
In this paper, we address the abovementioned open

issues by employing a self-consistent continuum model
for the semiconductor-metal hybridization which incorpo-
rates band-bending effects due to electrostatics. Motivated
by the existing epitaxial Majorana devices, we focus on an
Al-InAs interface. Our analysis relies on applying the
Thomas-Fermi and Schrödinger-Poisson methods to cal-
culate band edge and charge density profiles for the hybrid
Al-InAs device shown in Fig. 1(a). The main conclusion of
both approaches is that the band bending leads to a
quantum well, which confines the electrons in the system
in the vicinity of the superconductor-semiconductor inter-
face. From the Schrödinger-Poisson approach we obtain the
reconstructed band structure and investigate its response to
varying the gate voltage as well as the thickness of the Al
layer. Our numerical findings are further understood via
employing an analytical approach.
Based on our numerical investigation and approximate

analytical expressions, we discuss the hybridization and the
resulting g factor, SOC strength, and induced supercon-
ducting gap for the interfacial bands crossing the Fermi
energy. We find that the degree of hybridization for the
bands with strong Al-InAs mixing is very sensitive to the
thickness of the Al layer and native band offset Φ, while
only a weak dependence on the gate voltage is found. In
contrast, the hybrid bands with predominant InAs character
are more susceptible to gating.
The abovementioned parameters may be tuned such that

a single band with strong superconductor-semiconductor
hybridization crosses the Fermi level while leaving out
bands with negligible coupling to the superconductor.
However, the sensitivity to the Al width found here implies
that a fine balance of parameter values may be required to

obtain Majorana zero modes. In fact, this sensitivity
appears even for Al thicknesses much larger than the ones
routinely employed in experiments, e.g., ∼10 nm.
Nevertheless, the dependence of the hybridization degree
on the Al width, for the bands with mixed character,
exhibits an alternating pattern ranging from high to low
values. The period of this pattern is approximately equal to
the thickness of a single atomic Al layer. At first sight, this
appears to contradict the claimed experimental observation
of Majorana zero modes [16,19–22,24], in which such a
fine-tuning is not yet accessible to such a degree.
Nonetheless, additional effects to the ones considered here
may account for this discrepancy. First of all, even the
highest fabrication quality devices exhibit shape imperfec-
tions stemming from residual strain in the semiconductor or
Al-deposition irregularities. Even more, Majorana experi-
ments are carried out in confined geometries, in which the
breaking of translational invariance mimics the role of
disorder. Therefore, we expect that the combination of the
above disorder sources could average out the periodically
varying degree of hybridization.

II. SELF-CONSISTENT BAND BENDING

A. Setup and electrostatics

We consider the hybrid device depicted in Fig. 1(a),
showing a layered structure consisting of metal, semi-
conductor, and dielectric with translational invariance in the
xy plane. The device is characterized by two boundary
conditions for the electrostatic potential ϕ: (i) the metal
layer is assumed to be a grounded conductor with ϕ ¼ 0
and (ii) the rightmost edge of the dielectric is in contact to a
back gate with ϕ ¼ VG. For our self-consistent modeling
we focus only on the metal and semiconductor region of the
device, and in this case (ii) is replaced by a scaled back-gate
voltage ϕ ¼ VD at the semiconductor-dielectric interface.
In fact, depending on the choice of the dielectric layer, VG
and VD may differ by very little [34].
We wish to determine the conduction band edge and

charge density profile in our device. The idea behind our
approach is shown in the band diagrams of Figs. 1(b) and
1(c). We assume that the Fermi level of the metal layer
(dashed line) sets the chemical potential of the hybrid
system and choose this as our reference energy. The
distance between the Fermi level of the metal and its
conduction band edge is determined by its Fermi energy
EF, which we set to the bulk Al value; i.e., EF ¼ 11.7 eV
[35]. Before contact [Fig. 1(b)], the conduction band edge
of the semiconductor is assumed to be below the Fermi
level of the metal corresponding to a positive difference
between the electron affinity of the semiconductor and
work function of the metal; that is, Φ > 0. The results turn
out to be very sensitive to this value and here we start by
studying the case when the value of this experimentally not
yet fully resolved parameter is Φ ¼ 0.1 eV.
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When the metal and semiconductor layer are contacted
[Fig. 1(c)], the band edges of the semiconductorwill benddue
to the presence of charges that are transferred from the metal
into the semiconductor conductionband.Weassume that only
the conduction band electrons contribute to the band bending
in the semiconductor, thus disregarding the presence of the
valence band electrons. This approach is valid for the low-
temperature range of interest, where kBT ≪ Eg ≈ 0.418 eV
[36]. Furthermore, we must restrict ourselves to back-gate
voltages where the valence band edge of the semiconductor
stays below the Fermi level of the metal, otherwise the band
bending would lead to the formation of an unwanted hole
pocket near the semiconductor dielectric interface. As indi-
cated in Fig. 1(c), this condition is satisfied as long as
eVD > −Φ − Eg ¼ −0.518 eV, which thus defines a lower
bound for values of VD that we can apply.

We determine the band edge and charge density profiles
for our device using both a Thomas-Fermi approximation
and a self-consistent Schrödinger-Poisson method. Both of
these methods rely on determining ϕðzÞ through Poisson’s
equation, which is solved only in the semiconductor region
of our device:

d
dz

�
εr
dϕ
dz

�
¼ −

ρðzÞ
ε0

: ð1Þ

Here, εr denotes the dielectric constant of the semicon-
ductor, which we set to εr ¼ 15.15 corresponding to InAs,
while ρðzÞ denotes the charge density of conduction band
electrons. The boundary conditions for Eq. (1) are the
previously described electrostatic boundary conditions, i.e.,
ϕð0Þ ¼ 0 and ϕðL2Þ ¼ VD.

(a)

(b)

(c)

(d)

(e)

FIG. 1. (a) Schematic of the hybrid device consisting of a layer of metal, semiconductor, and dielectric with translational invariance in
the plane. The rightmost edge of the dielectric is in contact with a gate electrode which keeps it at a voltage VG with respect to the
grounded metallic layer. This translates into a voltage difference between the grounded metallic layer and the lower edge
of the semiconductor, which we denote VD. (b) Band diagram for the metal and semiconductor region before contact. (c) Band
diagram of the metal and semiconductor region after contact. (d) Self-consistent band edge profiles in the semiconductor region for
several values of VD. Solid lines indicate the results obtained via the self-consistent Schrödinger-Poisson method and dashed lines
indicate the results obtained from the Thomas-Fermi approximation. (e) Self-consistent charge density profiles in the semiconductor
region for several values of VD. Solid lines indicate the results obtained via the self-consistent Schrödinger-Poisson method and dashed
lines indicate the results obtained from the Thomas-Fermi approximation.
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B. Thomas-Fermi approach

The Thomas-Fermi approximation relies on the
assumption that the electronic charge density is given by
the same expression as the standard result for a homo-
geneous 3D electron gas:

ρðzÞ ¼ −
e
3π2

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mInAsϵFðzÞ

p
=ℏ�3: ð2Þ

Here, ϵFðzÞ denotes the local Fermi energy in the semi-
conductor, which is determined by the offset between the
conduction band edge and Fermi level of the metal, i.e.,
ϵFðzÞ ¼ Φþ eϕðzÞ, whilemInAs denotes the effective mass
of the semiconductor, which we set to mInAs ¼ 0.023me
corresponding to zinc blende InAs [36].
The Thomas-Fermi approach further combines Eq. (2)

with Poisson’s equation [Eq. (1)]. This is most conveniently
done via the introduction of the following rescaled quan-
tites: (i) electrostatic potentialφ≡ eϕ=Φ and (ii) coordinate
ζ ≡ z=lTF. Here, we define the Thomas-Fermi length scale
l−1
TF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ejρðϕ ¼ 0Þj=ðεInAsΦÞp
, where ρðϕ ¼ 0Þ denotes

the charge density obtained in Eq. (2) for ϕ ¼ 0. With the
help of these rescaled quantities, Poisson’s equation (1)
may be rewritten in the following dimensionless form:

d2φðζÞ
dζ2

¼ ½1þ φðζÞ�3=2: ð3Þ

The boundary conditions for φ follows from the boundary
conditions for ϕ, i.e., φð0Þ ¼ 0 and φðL2=lTFÞ ¼ eVD=Φ.
We solve Eq. (3) using standard numerical techniques for
nonlinear differential equations.
Figures 1(d) and 1(e) show the result of a Thomas-

Fermi calculation (dashed lines) of the conduction band
edge and charge density profile in an Al-InAs device for
several values of VD. The calculation was done with
thicknesses of L1 ¼ 5 nm and L2 ¼ 100 nm for the Al
and InAs layers, respectively. We find that a triangular well
forms near the Al-InAs interface due to band bending,
which leads to charge accumulation close to the super-
conductor. Furthermore, for a positive value of VD, we find
that electrons also accumulate near the dielectric away from
the superconductor, thus leading to puddles with reduced
superconductor-semiconductor hybridization. This situa-
tion is undesired since the hole puddle would give an
ungapped region in the semiconductor and introduce
quasiparticle poisoning to the Majorana device.

C. Schrödinger-Poisson approach

The Schrödinger-Poisson approach is based on self-
consistently solving Poisson’s equation (1) together with
the following Schrödinger equation:

−
d
dz

�
ℏ2

2mðzÞ
dψn;k

dz

�
þ
�
EcðzÞ þ

ℏ2k2

2mðzÞ
�
ψn;k ¼ En;kψn;k:

ð4Þ

The xy plane translational invariance allows us to consider
a fixed in-plane wave vector k ¼ ðkx; kyÞ of magnitude
k ¼ jkj. The quantities mðzÞ and EcðzÞ denote the effective
mass and band edge of the hybrid system with the latter
given by [see Fig. 1(c)]

EcðzÞ ¼
�−EF −L1 ≤ z ≤ 0

−Φ − eϕðzÞ 0 < z ≤ L2:
ð5Þ

The boundary conditions for the differential equation
[Eq. (4)] are the hard-wall boundary conditions, i.e.,
ψn;kð−L1Þ ¼ ψn;kðL2Þ ¼ 0. We solve it using a standard
finite difference approach, explained in Appendix A.
To obtain the self-consistent solution of Eqs. (1) and (4)

we need the electronic charge density which is found by
integrating over the occupied eigenstates of Eq. (4),
according to

ρðzÞ ¼ −e
π

Z
∞

0

dkk
X
n

jψn;kðzÞj2Θð−En;kÞ; ð6Þ

with Θ denoting the Heaviside step function. We calculate
ρðzÞ from the above by solving Eq. (4) for many different
values of k and subsequently evaluating the integral
numerically.
Figures 1(d) and 1(e) show the results of a Schrödinger-

Poisson (solid lines) calculation of the conduction band
edge and charge density profile with the same parameters as
the previously described Thomas-Fermi calculation. The
two approaches yield remarkably similar results for the
band edge and quite similar results for the charge density
profile. The strongest deviation for the latter appears at the
metal-semiconductor interface, where the Thomas-Fermi
result approaches the value predicted by Eq. (2), while the
value obtained using the Schrödinger method rises steeply
due to the hybridization with the Al layer.

D. Hybrid band structure

Having determined the band-bending profile, we pro-
ceed to investigate the hybrid band structure En;k obtained
from solving the Schrödinger equation (4). Here, we focus
on results where EcðzÞwas obtained using the Schrödinger-
Poisson approach, but in Appendix B, we also compare
these to results based on simpler approximations including
the Thomas-Fermi approach.
We first address the overall character of the bands based

on the results displayed in Fig. 2 showing bothEn;k aswell as
the weights in the InAs region of the corresponding wave
functionsψn;k.We have chosen to include negative values of
k, such that the presented band structure corresponds to a cut
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through the 2D paraboloidal band structure of the system.
From the large-scale enlargement provided by Fig. 2(a), it is
evident that the band structure is composed mainly of
segments with negligible InAs weight corresponding to
states localized in the Al region. It, however, also contains a
dense region of band segments with high InAs weight
corresponding to states which are predominantly localized
in the InAs region. Strikingly, band segments with strong
superconductor-semiconductor hybridization, i.e., with sub-
stantial weight of both InAs andAl, occur rarely as shown in
Fig. 2(b). We present in the next section an analytical
approach for predicting when bands have substantial
hybridization.
As discussed in Sec. IV, band segments with mixed

weights are in fact crucial for the realization of robust
Majorana zero modes. They correspond to states with both
a strong SOC strength and sizable superconducting gap,

proportional to the Al character of the band, given by the
weight wAl. Below we therefore investigate whether it is
possible to obtain states of this character at the Fermi level.
Furthermore, other bands that cross the Fermi level should
not have large InAs weight (wInAs) at the Fermi energy
since this would give rise to a soft gap.
To investigate the conditions for having states with mixed

weights at the Fermi energy, we address the effects of varying
the effective gate voltageVD andAl layer thicknessL1, which
are both parameters that can be tuned experimentally. Our
results are summarized in Fig. 3, where the top right-hand
corner of each panel shows theweight at the Fermi level of the
crossing bands. We focus on negative values of VD for which
all states are located close to the superconductor-semicon-
ductor interface and restrict ourselves to gate voltages above
−0.518 V, which, as previously discussed, defines a lower
bound for values of VD.

(a) (b)

(c)

FIG. 2. Hybrid band structure of Al-InAs obtained with parameters L1 ¼ 5 nm, L2 ¼ 100 nm, Φ ¼ 0.1 eV, and VD ¼ −0.5 V.
(a) Large-scale enlargement of the band structure showing that the bands are predominately Al-like with a narrow region of band
segments, which have a large InAs weight. (b) Enlargement showing that band segments with strong hybridization appear only for
narrow ranges of k values. (c) Enlargement at the Fermi level revealing that this specific choice of parameters does not lead to states with
strong hybridization at the Fermi energy.

(a)

(d) (e) (f)

(b) (c)

FIG. 3. (a)–(f) Band structure dependence on Al thickness and VD. Horizontal direction indicates changing Al thickness and vertical
indicates changing VD. The semiconductor weights at the Fermi level of crossing bands are displayed in the top right-hand corner of
each panel.
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Figures 3(b) and 3(e) show that it is indeed possible to
obtain a situation where a band with strong hybridization
crosses the Fermi level, while InAs-like bands are kept
above the Fermi level. Evidently this is obtained by tuning
the Al layer thickness, which delicately determines the
position and hybridization of the lowest Al-like band. In
contrast, the hybridization of the bands responds more
weakly to changes in VD. From Fig. 3 one can verify
that lowering the gate voltage has the expected effect of
pushing up all the InAs-like bands, thereby depopulating
states which would otherwise lead to a soft bulk gap.
Nonetheless, gating appears only to affect the position of
these bands, while their hybridization profile remains
practically unchanged. In contrast, states with strong
coupling to the superconductor essentially remain at the
same energies. The reason for this is that the semiconductor
component of the wave function of a strongly hybridized
state is concentrated near the superconductor-semiconduc-
tor interface, where the superconductor screens the pres-
ence of the gate electrode.
To conclude this section, we investigate the effects of

varying the parameter Φ, which so far has been set to the
value Φ ¼ 0.1 eV. Our results are summarized in Fig. 4,
which displays the band structure at the Fermi level for
different values of Φ using the parameters L1 ¼ 4.75 nm
and VD ¼ −0.5 V (chosen to achieve strong hybridization
at the Fermi level). The results show that increasing values
of Φ lead to the emergence of more InAs-like bands below
the Fermi level, thereby leaving several InAs-like states at
the Fermi energy with negligible coupling to the super-
conductor. This is not surprising, since Φ effectively
determines the depth of the quantum well at the super-
conductor-semiconductor interface, but it does appear
contradictory to reported experimental measurements on
hybrid Al-InAs structures that suggest a regime in which all
states at the Fermi energy are strongly coupled to the
superconductor. In our framework such a regime is achiev-
able only with a small value of, e.g., Φ ¼ 0.1 eV, which
thus explains our motivation for originally choosing this
value for Φ. It should, however, be emphasized that this
chosen value is somewhat smaller than found by recent
angle-resolved photoemission spectroscopy (ARPES)

experiments, Φ ∼ 0.23 eV [37]. The ARPES measurement
were done for a bulk zinc blende structure, but the relevant
structure for the nanowire systems is wurtzite, where the
electron affinity is known to be∼0.1 eV smaller. Therefore,
usingΦ ≈ 0.1 eV for nanowire systems could be consistent
with these experiments. Moreover, it should be noted that
these values significantly differ from the bulk value for the
difference between the work function of Al and electron
affinity of InAs [38,39], Φbulk ∼ 0.7 eV.

III. ANALYTICAL APPROACH TO
HYBRIDIZATION

A. Effective-square-well versus triangular-well model

To shed light on the factors determining the degree of the
superconductor-semiconductor hybridization, we proceed
with studying a simpler and analytically tractable model.
This model is obtained by replacing the triangular potential
in the semiconductor with a rectangular well. This is
applicable in the case of a large negative VD, and the
situation corresponds to the one depicted in Fig. 1(b), with
the only difference that the physical width of InAs L2 is
replaced by an effective width L0

2, roughly given by the
length for which the triangular potential crosses the Fermi
level. In fact, by comparing the reconstructed band struc-
tures of the two models, we find that they share the same
qualitative features. To illustrate this connection, we com-
pare in Fig. 5 (Fig. 6) the InAs weights obtained via the
Schrödinger-Poisson method for parameters Φ ¼ 0.1 eV,
L2 ¼ 100 nm, and L1 ¼ 5 nm (L1 ¼ 4.75 nm) with the
ones calculated using the square potential for L0

2 ¼ 16 nm.
In the same plots, we also include the weights calculated via
employing the approximate analytic expressions discussed
in the next paragraph. One observes that, given thewayL0

2 is
chosen, the weights obtained using these two models are in
good agreement for energies near the Fermi level and begin
to deviate for energies which lie above the Fermi level. This
deviation mainly happens for small k since the discrepancy
is related to the sensitivity of the InAs-like bands to the
electric field. The agreement allows us to extract approxi-
mate analytical expressions describing the hybridization
characteristics using the square-well model.

(a) (b) (c)

FIG. 4. Band structure dependence on Φ obtained with parameters L1 ¼ 4.75 nm, L2 ¼ 100 nm, and VD ¼ −0.5 V. Increasing the
value of Φ leads to a deeper well at the superconductor-semiconductor interface, which gives rises to more InAs-like bands below the
Fermi level. In panels (a)–(c) we show the band structure for Φ ¼ 0.1 eV, Φ ¼ 0.3 eV, and Φ ¼ 0.5 eV, respectively.
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B. Square-well model and hybrid band structure

The wave functions in both regions are given by
sinusoidal functions with wave numbers kAl and kInAs.
For a fixed k they have the form

ψAlðzÞ ¼
C1

N
sin½kAlðL1 þ zÞ�; z ∈ ½−L1; 0�; ð7Þ

ψ InAsðzÞ ¼
C2

N
sin½kInAsðL0

2 − zÞ�; z ∈ ð0; L0
2�: ð8Þ

Because of the broken translational invariance along the z
direction, the wave numbers are determined by the energy

ℏ2k2Al
2mAl

þ ℏ2k2

2mAl
− EF ¼ ℏ2k2InAs

2mInAs
þ ℏ2k2

2mInAs
−Φ ¼ E: ð9Þ

Here, N and C1;2 denote constants that will be found via
the normalization and appropriate matching conditions at

the interface z ¼ 0, respectively. The wave function match-
ing yields the transcendental equation:

mAl

kAl
tanðkAlL1Þ ¼ −

mInAs

kInAs
tanðkInAsL0

2Þ: ð10Þ

The above equation supports two types of solutions
characterized by (i) kAl ∈ R and kInAs ≡ ijkInAsj ∈ I and
(ii) kAl;InAs ∈ R. The first type describes dispersive sol-
utions in Al which leak inside InAs within a width
ξInAs ¼ 1=jkInAsj. The second type of solutions correspond
to states which disperse in z ∈ ½−L1; L0

2�.

C. Band structure features

Let us first discuss the bands which originate mainly
from the pure Al bands. These become very weakly
modified by the InAs conduction band considered here,
and belong to the first type of solutions mentioned earlier
possessing an imaginary kAl. In fact, wave functions of this

(a)

(c)

(e) (f)

(d)

(b)

FIG. 5. (a)–(f) InAs weights for L1 ¼ 5 nm and Φ ¼ 0.1 eV.
Solid purple line: Weights obtained numerically using the self-
consistent Schrödinger-Poisson method for L2 ¼ 100 nm. Dotted
blue line: Weights obtained numerically using the Schrödinger
equation within the square-well model for L0

2 ¼ 16 nm. Dashed
red line: Weights obtained within the square-well model using the
approximate analytical expressions of Eqs. (14), (17), and (22)
for L0

2 ¼ 16 nm. The energetically highest weakly modified Al
level is the one with n� ¼ 27. We observe that the numerical
methods are in good agreement up to n ¼ 30. For n > 30, the
numerical results obtained using the square-well model show
significant deviations from the ones calculated with the actual
triangular potential. The analytical results follow the numerical
ones and manage to capture the qualitative features of the
weights. However, the approximate analytical approach is inad-
equate to describe bands with n ≥ 31.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 6. (a)–(f) InAs weights for L1 ¼ 4.75 nm and
Φ ¼ 0.1 eV. Solid purple line: Weights obtained numerically
using the self-consistent Schrödinger-Poisson method for
L2 ¼ 100 nm. Dotted blue line: Weights obtained numerically
using the Schrödinger equation within the square-well model for
L0
2 ¼ 16 nm. Dashed red line: Weights obtained within the

square-well model using the approximate analytical expressions
of Eqs. (14), (17), and (24) for L0

2 ¼ 16 nm. The energetically
highest weakly modified Al level is the one with n� ¼ 26. The
two numerical methods yield quite similar results up to n ¼ 28.
For n > 28, the numerical results obtained using the square-well
model show significant deviations from the ones calculated using
the Schrödinger-Poisson method. The analytical results follow
the numerical ones and manage to capture the qualitative features
of the weights. The approximate analytical expression fail to
describe weights corresponding to n ≥ 29.

HYBRIDIZATION AT SUPERCONDUCTOR-SEMICONDUCTOR … PHYS. REV. X 8, 031040 (2018)

031040-7



type will penetrate only a very small distance into the InAs
region. For these deep bands, one has kAl ≈ nπ=L1,
corresponding to the Al layer being an infinite square well
with energies

EAl
n;k ¼

ℏ2k2

2mAl
þ ℏ2

2mAl

�
nπ
L1

�
2

− EF: ð11Þ

For the approximate energy dispersions of these bands, see
Appendix C.
There are n� such bands where n� is defined by

EAl
n�þ1=4;k¼0 ≲ −Φ: ð12Þ

For Φ ¼ 0.1 eV and L1 ¼ 5 nm (L1 ¼ 4.75 nm) we
find n� ¼ 27 (n� ¼ 26), which corresponds to EAl

n�;k¼0 ≈
−0.76 eV (EAl

n�;k¼0 ≈ −0.46 eV). For these weakly modi-
fied Al-like bands, the penetration depth into the semi-
conductor layer is approximately given by

ξ−1InAs ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2mInAsðEAl

n;k þΦÞ=ℏ2
q

: ð13Þ

For the above parameters and n� ¼ 27 (n� ¼ 26), we find
that ξInAs ≈ 1.6 nm (ξInAs ≈ 2.1 nm) at k ¼ 0. At finite k,
the penetration length becomes even smaller, which
becomes evident from the equation above. Finally, the
InAs weight of such a En≤n�;k band is approximately given
by the expression

wInAs ≈
ðnπÞ2

ðnπÞ2 þ ð mAl
mInAs

Þ2ð L1

ξInAs
Þ3 : ð14Þ

The numerical methods employed earlier for retrieving
Figs. 5 and 6 confirm that the InAs weight increases with n,

and for n� it attains values of the order of 5%–10%. In
Figs. 5 and 6 we have also calculated the weight via the
approximate Eq. (14). We find that the InAs weight, while
still reasonably low, is overestimated by this approximate
formula. The same happens for ξInAs.
In contrast to the low degree of hybridization achieved

for the typical device parameters considered here when
n ≤ n�, for n > n� it is possible to find bands that,
depending on the value of k, exhibit strong hybridization.
We have studied the structure of the solutions of the
transcendental equation (10) and found that also the bands
above n� have a one-to-one correspondence to the pure Al
bands, in accordance with Ref. [3]. However, they signifi-
cantly differ compared to the pure Al bands, since they
become strongly modified in the presence of InAs, espe-
cially for small k. Therefore, a band with n > n� is
generally divided into three k-space regions for which
kInAs ∈ R or kInAs ∈ I. See, for instance, Fig. 7.
For large k the new bands resemble the weakly modified

Al bands with n ≤ n�, since the pure InAs bands are
concentrated in the small k region. In most of the cases, the
n > n� bands are thus Al-like as k → ∞ and become InAs-
like as k → 0. In between, new band structure segments
appear upon hybridization, which glue the pure Al and
InAs bands together. These are characterized by k2 ∈ I.
Such segments are depicted in Figs. 2(b) and 2(c) and
illustrated with dashed (cyan) ellipses in Figs. 7(a) and 7(b).
In general, they appear for kl ≤ k ≤ kh, with kl;h given by
the inequalities:

EAl
n−1=2;k ≤

ℏ2k2

2mInAs
−Φ≲ EAl

nþ1=4;k; for n > n�: ð15Þ

It is possible that kl ¼ 0 and one obtains the situation of
Figs. 2(c), 3(c), and 7(a) of an Al-like band with addition-
ally strong InAs character for small k. Essentially, the

FIG. 7. Panels (a) and (b) depict the two possible hybrid band structure scenarios for energies in the vicinity of the isolated InAs
conduction band edge. The band structures shown are obtained via the self-consistent Schrödinger-Poisson method forΦ ¼ 0.1 eV and
L2 ¼ 100 nm. In (a) [(b)] we have L1 ¼ 5 nm [L1 ¼ 4.75 nm] and we have additionally shown the relevant pure Al and InAs bands for
L0
2 ¼ 16 nm. The dashed (cyan) ellipses illustrate band segments of strong superconductor-semiconductor hybridization which glue the

pure Al and InAs bands together and generally appear for kl ≤ k ≤ kh; see Eq. (15). In (a) we encounter scenario I in which kl ¼ 0 for
n ¼ n� þ 1 and a band appears below the pure InAs bands due to the hybridization-induced downward bending of the ðn� þ 1Þth pure
Al band. This scenario is realized when the condition of Eq. (16) is satisfied. In contrast, in (b) this condition is not satisfied and a
separated band does not appear below the pure InAs levels. However, gluing segments with kl > 0 appear, to connect the pure InAs and
Al bands.
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ðn� þ 1Þth pure Al band is pushed downwards after contact
with InAs, so that a new band now appears below the
location of the pure InAs bands. See band n ¼ 28 in
Fig. 7(a). This occurs if the following condition is satisfied
for the last Al-like band (meaning for n ¼ n�):

EAl
n�þ1=2;k¼0 ≤

ℏ2k2

2mInAs
−Φ: ð16Þ

This type of gluing band segments, appearing only for
k ∈ ½kl; kh�, possesses an InAs weight given approximately
by (see Appendix C)

wInAs ≈
1

1þ L1=ξInAs
: ð17Þ

For n > n� and k ∈ ½kl; kh�, the length ξInAs satisfies the
approximate relation:

1þL1=ξInAs≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þπ2

mInAs

mAl

ℏ2k2
2mInAs

−Φ−EAl
n−1=2;k

EAl
1;k¼0þEF

vuut : ð18Þ

Based on Figs. 5 and 6 one infers that it is precisely these
band segments which have mixed Al-InAs character and
exhibit strong hybridization. Thus, in order to ensure the
robustness of the Majorana device one should maximize
the difference kh − kl and ensure that these segments cross
the Fermi level. Strikingly, at the level of approximation
considered here, the penetration depth, InAs weight, and
energy of these segments do not depend on L0

2. This also
implies a very weak dependence on the back-gate potential
and VD, thus explaining the findings of Fig. 3.
The above discussion has already covered the bands with

n ≤ n� for all k, as well as the band segments for n > n� for
k > kl. We proceed with investigating the properties of the
band segments appearing for k < kl which primarily
possess InAs character. At this point we distinguish two
scenarios, corresponding to Figs. 7(a) and 7(b), depending
on whether a new band (scenario I) appears below the pure
InAs bands or not (scenario II).
Scenario I.—When the condition of Eq. (16) is satisfied,

a band appears below the pure InAs levels, as in Fig. 7(a).
In this case we find at higher energies hybridized InAs-like
bands with n > n� þ 1, k < kl, and modified energies
given by

En;k ≈
ðn� þ 1Þ2EInAs

n−n�−1;k þ λðn − n� − 1Þ2EAl
n�þ1;k

ðn� þ 1Þ2 þ λðn − n� − 1Þ2 ; ð19Þ

where we introduced the InAs energy levels,

EInAs
s;k ¼ ℏ2k2

2mInAs
þ ℏ2

2mInAs

�
sπ
L0
2

�
2

−Φ; ð20Þ

and defined a hybridization coefficient,

λ ¼
�

mAl

mInAs

�
2
�
L1

L0
2

�
3

: ð21Þ

The above approximation holds for bands satisfying
EInAs
n−n�−1;k ≲ EAl

n�þ5=4;k, while for higher energies different
approximations apply. See Appendix C. The InAs weights
for these bands are approximately given by

wInAs ≈
ðn� þ 1Þ2

ðn� þ 1Þ2 þ λðn − n� − 1Þ2 : ð22Þ

As can be seen from Figs. 5 and 6, the Al content of these
bands is practically negligible, at least for the parameter
values considered here. It is desirable that these band
segments acquire a sizable superconducting gap and get
pushed to higher energies, and thus enhance the device
protection against quasiparticle poisoning. To achieve this
goal, one could use a metal with a smaller Fermi energy in
order to reduce n� þ 1.
Scenario II.—So far we have examined the situation in

which the (n� þ 1)th pure Al level does not get glued to a
pure InAs level for k ¼ 0, but instead it is pushed down-
wards in energy, yielding a band below the pure InAs ones.
This is the case of Fig. 7(a). However, within the present
model a slight modification of L1 by 2.5 Å can lead to a
different situation in which the condition of Eq. (16) is not
satisfied. As a result one finds a different approximate
expression for the InAs weight of the levels above n� and
small k, i.e., k<kl. In this case, corresponding to Figs. 3(b),
3(e), 4(a), and 7(b), the pureAl levels become gluedwith the
pure InAs ones via appropriate segments ofmixed character.
While the InAsweight and ξInAs of these segments appearing
for kl ≤ k ≤ kh are given by the equations discussed earlier,
the expressions describing the InAs-like parts living in
k < kl become modified. We find that for EInAs

n−n�−1=2;k ≲
EAl
n�þ3=4;k the energy of the segments defined for k < kl and

n > n� read (see Appendix C for details)

En;k ≈
L0
2E

InAs
n−n�−1=2;k þ L1EAl

n�þ1=2;k

L1 þ L0
2

; ð23Þ

and the InAs weight is given by the simple ðn; kÞ-
independent formula,

wInAs ¼
1

1þ L1=L0
2

: ð24Þ

We note that for L1=L0
2 ≈ 1=3 the weight is wInAs ≈ 75%.

From Fig. 6 we find that this result agrees well with the
corresponding Schrödinger-Poisson calculation for n ¼ 27.
As n increases, one finds stronger deviations because for
higher energies the differences between the square and
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triangular wells become more pronounced. In the next para-
graph we show how to extend our approach and obtain an
improved agreement with the Schrödinger-Poisson results.

D. Extended square-well model and fit
to the Schrödinger-Poisson solution

The above conclusions can help us understand the
obtained band structure when the electrostatic effects,
introduced by a nonzero ϕ, are taken into account. The
strongly hybridized bands have a relatively short decay
length inside InAs and weakly feel the electrostatic potential.
On the other hand, the InAs-like bands are extended over a
larger region and are prone to the gate-induced electric fields.
The effect of the triangular well is to broaden the effective
width L0

2 for energies above the Fermi level. In fact, for a
band with index n consisting of an InAs band with energy
EInAs
s;k ≥ 0 (s ¼ n − n� − 1 or s ¼ n − n�), one can define an

effective energy-dependent L0
2;s, given by

L0
2;s ¼

EInAs
s;k¼0

ejEzj
; ð25Þ

since these bands appear for small k. Here, EzðzÞ ¼ −dϕ=dz
denotes the electric field in the system, which is nonzero
only in the semiconductor’s region. For VD ¼ −0.5 V, we
find that jEzj ≈ 6.5 meVnm−1. By appropriately varying L0

2

depending on the band, we obtain a very good agreement
with the Schrödinger-Poisson results as shown in Fig. 8.

IV. EFFECTIVE PARAMETERS
FOR MAJORANA DEVICES

Having solved the electrostatics and studied the metal-
semiconductor hybridization in detail, we now discuss its
consequences for the realization of Majorana zero modes.
The starting point for our analysis is the Bogoliubov–de
Gennes Hamiltonian in the presence of the self-consistent
potential determined above, see Eq. (5), with added terms
due to the Zeeman coupling, Rashba SOC, and spin-singlet
superconductivity. Using that the problem is translationally
invariant in the xy plane, we write the Hamiltonian in k
space as

HkðzÞ ¼
�
p̂z

1

2mðzÞ p̂z þ
ℏ2k2

2mðzÞ þ EcðzÞ
�
τz

þ gðzÞμB
2

B · σ þ αðzÞðẑ × ℏkÞ · στz þ ΔðzÞτx;
ð26Þ

where σx;y;z (τx;y;z) are Pauli matrices operating in spin
(electron-hole space). Furthermore, gðzÞ denotes the g
factor of the hybrid system, which is set to g ¼ þ2 in
the Al region and g ¼ −14.9 [36] in the InAs region. The
magnetic field B is in plane such that orbital effects play
little role. The term αðzÞ is the Rashba SOC strength, which
is given approximately by [36]

ℏαðzÞ ¼ ℏḡInAsμBEzðzÞ
2Eg

≡ ḡInAs
2

ℏ2

2me

eEzðzÞ
Eg

; ð27Þ

with

ḡInAs ¼ gInAs
2me=mInAs þ gInAs=2
me=mInAs − gInAs=2

≃ −23.3: ð28Þ

The final component entering Eq. (26) is the superconduct-
ing order parameter ΔðzÞ which is nonzero only in Al. For
bulk Al, ΔAl ≈ 340 μeV.
If we assume large negative back-gate voltages leading

to a constant electric field in the semiconductor of the order
of EzðzÞ ≈ 6.5 meVnm−1, as estimated from the results in
Fig. 1(d), the strength of the Rashba SOC in Eq. (27)
becomes ℏjαeff j ≈ 0.06wInAs eVÅ. For wInAs ≈ 0.5, we find
ℏjαeff j ≈ 0.03 eVÅ, Δeff ¼ wAlΔAl ≈ 170 μeV, and geff ¼
gAlwAl þ gInAswInAs ≈ −6.5.
The effective superconducting gap, g factor, and chemi-

cal potential (μeff ) enter into the condition determining the
transition of an Al-InAs nanowire into the topological
superconducting phase. When a single confinement chan-
nel of the nanowire hybrid band structure (see Fig. 9)
crosses the Fermi level, the topological criterion reads
jgeff jμBjBj=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2eff þ Δ2

eff

p
. The dependence of these

parameters on the InAs weight, for which we obtained

(a)

(c) (d)

(b)

FIG. 8. (a)–(d) InAs weights shown in the upper (lower) panels
for L1 ¼ 5 nm (L1 ¼ 4.75 nm) and Φ ¼ 0.1 eV. Solid purple
line: Weights obtained numerically using the self-consistent
Schrödinger-Poisson method for L2 ¼ 100 nm. Dashed red line:
Weights obtained within the square-well model using
L0
2 ¼ 16 nm. Dotted green line: Weights obtained using the

extended square-well model which assumes an energy-dependent
L0
2 for bands above the Fermi level. Here we have used L0

2 ¼
40.8 nm (L0

2 ¼ 91.6 nm) for the left (right) panels. In both cases,
the extended analytical model yields a significantly improved
agreement with the Schrödinger-Poisson approach.
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analytic expressions in Sec. III, can be employed to
indirectly infer the role of physical parameters such as
the Al width, gate voltage, and band offset. On the other
hand, the effective mass (m−1

eff ¼ m−1
e wAl þm−1

InAswInAs) and
SOC strength determine the Majorana decay length ξM,
which further controls the resulting energy splitting and
oscillations of overlapping Majorana zero modes in finite-
sized nanowires [40–43]. The self-consistent Schrödinger-
Poisson investigation of these effects in such a nanowire
setup would require a full 3D simulation, which is a task
beyond the scope of the present paper. Nevertheless, we can
provide a rough estimate for ξM. According to Ref. [43], we
are in the case of weak SOC, which for the above parameter
values implies ξM ∝ ℏ=ðmeffαeffÞ ≈ 0.5 μm. Finally, note
that the inclusion of electrostatic effects can lead to a
suppression or vanishing of the Majorana oscillations
[27,28], through the zero-energy pinning of the state
originating from the overlapping Majorana zero modes.
To this end, we note that in our self-consistent

electrostatics analysis we neglected the SOC, Zeeman,
and superconducting contributions. We have verified
that the inclusion of the SOC term in the self-consistent
Schrödinger-Poisson problem does not significantly
modify the obtained results. This also holds for both
magnetic field and superconducting energy scales which
constitute the smallest energy scales in the problem.
Therefore, one could use the presented results for the band
edge profiles and hybridization degrees for further model-
ing the physics of experimentally realized Majorana
devices.

V. DISCUSSION AND CONCLUSIONS

We assess the role of band bending and superconductor-
semiconductor hybridization in Majorana devices by study-
ing a planar, gated Al-InAs interface. Our results are based
on a self-consistent Schrödinger-Poisson approach, which
reveals that the band bending leads to an approximately
triangular quantum well along with a charge accumulation
layer at the Al-InAs interface. We also compare the
Schrödinger-Poisson calculation with a Thomas-Fermi
approach which ignores the hybridization and find remark-
ably similar results for the band bending. This can be useful
for future calculations since one can use the computation-
ally faster Thomas-Fermi approach to determine the self-
consistent potential and then solve the Schrödinger equa-
tion in this potential.
The character of the superconductor-semiconductor

hybridization is addressed by calculating the band structure
of the hybrid system and investigating its response to
varying the Al layer thickness, gate voltage, and native
band offset. Our main finding is that the system parameters
may be tuned to a situation as shown in Fig. 3(e) where a
band with strong superconductor-semiconductor hybridi-
zation crosses the Fermi level, while higher levels of
predominately InAs character stay above it. Such a sit-
uation is ideal for inducing superconductivity in the InAs
region, which requires strong hybridization with the Al
region, while simultaneously keeping out the InAs-like
bands, which would give rise to a soft superconducting gap.
To back our numerical findings, we analyze the super-

conductor-semiconductor hybridization using an analytical
approach showing that the hybridization is sizable only
when there is resonance between the uncoupled Al and
InAs bands. This behavior might seem surprising given the
absence of a barrier between the materials, and it appears to
be a result of mismatch of the wave functions in the metal
square well and triangular semiconductor well.
The conditions for having the ideal situation shown in

Fig. 3(e) turns out to be extremely sensitive to the Al layer
thickness, while a far weaker dependence on the gate
voltage was found. As a matter of fact, in the regime of
interest, the sensitivity to the Al width manifests itself
through an alternating pattern of high and low values of the
hybridization degree. Thus, the strong hybridization is not
restricted to a single window of Al widths, but rather, it
appears in a periodic fashion. An obvious question to
address is whether the observed sensitivity persists for
thicknesses much larger than 10 nm, which is a width
typically employed in experiments. By investigating Al
thicknesses such as 50 and 60 nm, we have found that a
significantly better hybridization of the pure InAs-like
bands can be achieved but that the observed sensitivity
on the Al thickness remains. We expect that this sensitivity
will persist until the pure Al-level splitting for energies near
the semiconductor’s band edge is comparable to the
splitting of the pure InAs levels. For the parameters

FIG. 9. Hybrid band structure for an Al-InAs nanowire with a
square 100 × 100 nm2 InAs cross section. The band structure is
obtained after imposing confinement along one of the planar
directions (e.g., y). The parameter values are the same as in
Fig. 3(e). The confinement leads to a “splitting” of the original
bands shown in Fig. 3(e), thus resulting into a finite number of
channels which are shifted in energy but exhibit similar hybridi-
zation profiles. We remark that, for presentation purposes, we
have not included the confinement channels originating from
purely metallic bands. Note also that we have neglected the
possible electrostatic effects near the boundaries of the confined
dimension.
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employed in the case of Fig. 3(e), we find that EAl
n�þ1;k¼0 −

EAl
n�;k¼0 ≃ f83.6; 41.7; 27.8g meV for the respective values

of Al width L1 ¼ f50; 100; 150g nm. Thus, it appears that
quite thick Al layers are required to soften the sensitivity in
question. Note that in experiments small Al thicknesses are
preferred in order to enhance the critical magnetic field at
which the device becomes nonsuperconducting.
We have seen that the hybridization and the number of

bands below the Fermi energy depend strongly on the
thickness of the Al layer and therefore one expects that
disorder such as variations by even a singlemonolayer of the
deposited Al layer could have strong effects. Likewise, if a
nanowire structure is formed out of the quasi-2D system
studied here, a nonregular cross section could give quali-
tatively different results from what we found for the 2D
translationally invariant setup.Moreover, the strong depend-
ence on Al thickness also raises the question of whether a
more microscopic description (for example, a tight-binding
model of the aluminum) would give a different result. We
speculate that the details will naturally be different but also
that the sensitivity to thickness remains because of the large
mismatch of energy scales between the twomaterials. Given
the extreme sensitivity to the Al width, as discussed above,
onemaywonder how this is consistentwith the experimental
data which have been interpreted as signatures of induced
topological superconductivity [16,19–22,24], because it
would require atomically flat Al along the whole length
of the nanowire, which seems unlikely to be the case.
However, the sensitivity may be softened by width varia-
tions on short length scales which could average out the
hybridization degree. The length scale of roughening of the
Al surface depends on growth conditions, semiconductor
morphology, and lattice matching. An example of a very
highly ordered Al surface is when it is grown on lattice
matched planar GaSb/InAs based materials where the
interfacial domain matching with Al can be highly ordered.
In this case, the Al can follow the semiconductor surface
morphology over several microns (verified by atomic force
microscopy on structures with up to 300 nm step size). But
formost hybridmaterials the roughness takes place onmuch
smaller length scales, down to the few nanometer scale. This
roughness may be responsible for the proposed averaging.
Therefore, both the effect of disorder and a more detailed
band structure are natural questions for further research.
Another important parameter is how themetal Fermi level

aligns with the semiconductor conduction band; see Fig. 1.
Here we have used Φ in the range 0.1–0.3 eV, which is
supported by recent experiments [37], but not by known
bulk values. Therefore, it could be that there is some surface
chemistry that still needs to be resolved before a more
complete understanding of these structures can be reached.
In conclusion, devices based on Al-InAs or similar

material combinations are indeed promising candidates
for Majorana physics and several experiments have already
shown signatures of Majorana zero modes. However, based

on the analysis here, it seems to require a fine balance
between several parameters, such as the metal thickness
and band alignments. In our simulations the effect on gate
voltage is very limited when it comes to the degree of
hybridization, while it predominantly affects the position of
the InAs-like bands. Disorder effects might help in relaxing
these conditions. Studying these effects would require a 2D
simulation, which we intend to pursue in future works.
Experimentally, there seems to be a stronger dependence on
gate voltage which could be due to the gate coupling
inhomogeneously to the structure. A better understanding
of this would require a full 3D self-consistent simulation.
Recently, two other works addressing Schrödinger-

Poisson calculations for superconductor-semiconductor
hybrid structures have appeared [44,45]. We find that our
results on the hybridization are in a good agreement with
those obtained in theseworks using numerical methods. The
primary interest of Refs. [44,45] is to explore aspects of the
topological phase diagram of nanowires. Specifically,
the authors of Ref. [44] discuss the influence of gating on
the effective g factor, while Ref. [45] focuses on efficient
numerical methods for solving the Schrödinger-Poisson
problem, as well as on the electrostatic effects on the
Majorana oscillations. In the present paper, we place
emphasis on understanding in detail the superconductor-
semiconductor hybridization and investigate the sensitivity
of the degree of hybridization upon varying key parameters
(e.g., Al thickness). We also derive approximate analytic
expressions enabling experimental predictions.
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APPENDIX A: NUMERICAL METHODS

1. Schrödinger equation

The Schrödinger equation (4) is solved on a 1D grid
using the finite difference approximation:

−ℏ2

ziþ1 − zi−1

�
1

m�
iþ1=2

ψ iþ1 − ψ i

ziþ1 − zi
−

1

m�
i−1=2

ψ i − ψ i−1

zi − zi−1

�

þ
�
ℏ2k2

2m�
i
þ Ec;i

�
ψ i ¼ Eψ i: ðA1Þ

Here, m�
iþ1=2 denotes the average value of the effective

mass on the two grid points i and iþ 1. Since the Fermi
wavelength of the metal is orders of magnitude smaller than
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that of the semiconductor, it is advantageous to make the
discretization more coarse in the semiconductor region.
The results presented in this work were obtained using a
fixed grid spacing of 0.1 Å in the Al region and 2 Å in the
InAs region. To obtain the solutions to the system of
Eq. (A1), we solve it as an eigenvalue equation. We enforce
hard-wall boundary conditions by setting the wave func-
tions to zero at the ends of the 1D grid.

2. Obtaining the self-consistent solution

Our Schrödinger-Poisson approach relies on self-
consistently solving Eqs. (1), (4), and (6). For this we
employ a simple mixing scheme, where the input electro-
static potential used in each iteration is a simple mixing of
the input and output electrostatic potential of the previous
iteration:

ϕi
inðzÞ ¼ κϕi−1

out ðzÞ þ ð1 − κÞϕi−1
in ðzÞ: ðA2Þ

In our calculations we use κ ¼ 0.1. For the initial input, we
use ϕ1

inðzÞ ¼ VDz=L2. While the authors of Ref. [26]
have shown that more sophisticated mixing schemes such
as Anderson mixing lead to a faster convergence, we find
that the simple mixing scheme above provides reasonably
fast convergence within the first 50–100 self-consistent
iterations.

APPENDIX B: INFLUENCE OF BAND BENDING
ON THE HYBRIDIZATION

The hybrid band structures shown in Sec. II D were
obtained using EcðzÞ obtained from the Schrödinger-
Poisson approach. This procedure is computationally
demanding since it requires solving Eq. (4) a larger number
of times within each self-consistent iteration when calcu-
lating the electronic density from Eq. (6). In this appendix,
we explore the consequences of employing simpler and
computationally faster approaches for calculating EcðzÞ.
Specifically, we compare the results of Sec. II D to those
obtained when EcðzÞ is determined by the following.
(1) The Thomas-Fermi approach described in Sec. II B.
(2) A simplified Schrödinger-Poisson approach, where

Eq. (4) is solved only in the InAs region with boundary
conditions ψnð0Þ ¼ ψnðL2Þ ¼ 0. In this case, the wave
functions are independent of k and the density in the
semiconductor region is found by integrating over the 2D
density of states for each subband yielding

ρðzÞ ¼ −eX
n

mInAsjEnj
π2ℏ2

jψnðzÞj2Θð−EnÞ: ðB1Þ

(3) With ρðzÞ ¼ 0 in the semiconductor, i.e., neglecting
band bending due to charge in the InAs such that
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FIG. 10. Self-consistent band edge profiles and band structures obtained using the methods described in Appendix B with L1 ¼
4.75 nm and VD ¼ −0.5 V. Results for both Φ ¼ 0.1 eV and Φ ¼ 0.3 eV are shown. (a) Band edge profiles obtained for Φ ¼ 0.1 eV.
(b) Band structures obtained forΦ ¼ 0.1 eV. The numbers in the lower left-hand corner are the weights at the Fermi energy of the bands
marked by the black circle. (c) Band edge profiles obtained for Φ ¼ 0.3 eV. (d) Band structures obtained for Φ ¼ 0.3 eV. The numbers
in the lower left-hand corner are the weights at the Fermi energy of the bands marked by the black circle.
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EcðzÞ ¼ −Φ − eVDz=L2: ðB2Þ

Our results are summarized in Fig. 10, where we show
both the resulting band-bending and the band structure
plots from the different approaches for Φ ¼ 0.1 eV and
Φ ¼ 0.3 eV. We have here chosen parameters such that a
strongly hybridized band crosses the Fermi level, and the
corresponding InAs weights at the Fermi energy (indicated
by the circle) are shown in the bottom left-hand corners of
Figs. 10(b) and 10(d).
WhenΦ ¼ 0.1 eV [Figs. 10(a) and 10(b)], the density in

the InAs region is low, and the band edges exhibit only a
slight bending, staying close to the constant slope found
without density in the semiconductor. Notably, the strong-
est bending is found when the full Schrödinger-Poisson
approach is employed. This is due to the hybridization with
the Al which induces a large electron density close to the
Al-InAs interface [see Fig. 1(d)]. In the case Φ ¼ 0.3 eV,
the band-bending profiles are much stronger and deviate
substantially from the solution without charge. Thus, the
strongest bending is found from the full Schrödinger-
Poisson approach, but both Thomas-Fermi and simplified
Schrödinger-Poisson methods yield similar results.
The same conclusion holds for the band structure plot of

Fig. 10(d). Here the band structures obtained with band
bending are reasonably similar, while the one obtained with
constant slope evidently contains additional bands below
the Fermi level due to the more shallow band profile.
Interestingly, it appears that the weight at the Fermi energy
of the strongly hybridized band is only weakly dependent
on the exact band-bending profile and all approaches yield
comparatively similar results.

APPENDIX C: ANALYTICAL APPROACH
TO HYBRIDIZATION

In this appendix, we demonstrate how to obtain approxi-
mate analytical expressions for the band structure proper-
ties of the square-well model of Sec. III B. We start from
Eq. (10) and rewrite the transcendental equation as

tan ðkAlL1Þ
kAlL1

π

¼ −
mInAsL0

2

mAlL1

tan ðkInAsL0
2Þ

kInAsL0
2

π

; ðC1Þ

or bring it to its inverted form:

kAlL1

π
cot ðkAlL1Þ ¼ −

mAlL1

mInAsL0
2

kInAsL0
2

π
cot ðkInAsL0

2Þ: ðC2Þ

Figure 11 depicts the functions of the lhs (dashed blue
lines) and rhs (solid gold lines) of Eqs. (C1) and (C2) for
Φ ¼ 0.1 eV, L0

2 ¼ 16 nm, k ¼ 0, and Al width L1 ¼ 5 nm
and L1 ¼ 4.75 nm, respectively. The energy eigenstates of
the hybrid band structure are given by the crossing points of
the two functions. For low energies we have essentially

solutions corresponding to isolated Al. Instead, for energies
in the vicinity of the pure InAs levels, we find solutions
emerging from the hybridization of InAs and Al. In Fig. 11
the top and corresponding bottom panels, i.e., Figs. 11(a)
and 11(c) and Figs. 11(b) and 11(d), lead to identical
solutions. Nevertheless, we have included them both since,
depending on the energy regime, it is more convenient to
employ the inverted Eq. (C2) instead of the direct tran-
scendental equation (C1).
The aim is to Taylor expand the lhs or/and rhs of the

respective transcendental equation employed, about zero.
Depending on the case, one performs a linear or quadratic
Taylor expansion. If we work with Eq. (C1), we can expand
the lhs as follows,

tan ðkAlL1Þ
kAlL1

π

≈
π

2

δE
EAl
n;k¼0 þ EF

�
1 −

3

4

δE
EAl
n;k¼0 þ EF

�
; ðC3Þ

with the energy shift δE ¼ E − EAl
n;k being measured from a

pure Al level, which yields a zero tangent since
kAlL1=π ¼ n ∈ Nþ. A similar method is followed if we
want to expand the rhs of the same equation about the pure
InAs levels.
If it is instead preferable to employ Eq. (C2), then one

should expand about a zero of the respective lhs or rhs. For
instance, if we wish to expand the lhs about a zero of the
cotangent obtained for

kAlL1

π
¼ nþ 1

2
with n ∈ Nþ; ðC4Þ

we have

kAlL1

π
cot ðkAlL1Þ

≈ −
π

2

δE
EAl
1;k¼0 þ EF

�
1þ 1

4

δE
EAl
nþ1=2;k¼0 þ EF

�
: ðC5Þ

Here, the energy shift δE ¼ E − EAl
nþ1=2;k is measured

relative to the ðnþ 1
2
Þth pure Al level. In reality there is

no such pure Al level before contact with InAs, but this
notation is convenient because it reflects that we are
focusing on energy eigenstates which appear due to the
Al-InAs hybridization. One can further expand the rhs
about the ðsþ 1

2
Þth pure InAs level, with s ∈ Nþ, in a

similar fashion.
Before proceeding with obtaining the various approxi-

mate analytical expression discussed in the text, let us
remark that our approach generally holds for the case of
small Al widths where the spacing of the pure Al levels is
much larger that the spacing of the pure InAs levels. Our
approximation further holds for arbitrary values of L0

2.
However, it can modify the number of Al-InAs bands for
which our method is valid.
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1. Solutions with kAl ∈ R and kInAs ≡ ijkInAsj ∈ I

After applying the matching conditions, we find that the
wave function for such a solution with En;k has the
approximate form

ψn;kðzÞ ≈ ð−1Þnþ1 ffiffiffiffiffiffiffi
wAl

p
ffiffiffiffiffiffi
2

L1

s
sin ½kAlðzþ L1Þ�; ðC6Þ

for z ∈ ½−L1; 0�, and

ψn;kðzÞ ≈
ffiffiffiffiffiffiffiffiffiffi
wInAs

p
ffiffiffiffiffiffiffiffiffi
2

ξInAs

s
sinh ½jkInAsjðL0

2 − zÞ�
sinhðjkInAsjL0

2Þ
; ðC7Þ

for z ∈ ½0; L0
2�. The InAs and Al weights are defined as

wInAs ¼
R L0

2

0 dzjψn;kðzÞj2R L0
2

−L1
dzjψn;kðzÞj2

and wAl ¼ 1 − wInAs: ðC8Þ

We first discuss the weakly modified pure Al levels, with
n ≤ n� for all k and n > n� for k > kh. In this case, we start
from Eq. (C1). We linearize the lhs about EAl

n;k, consider
tanh ðjkInAsjL0

2Þ ≈ 1, and set E ¼ EAl
n;k on the rhs. In

Figs. 11(a) and 11(b) we show details for the n ¼ n� level.
We find that the eigenenergies approximately read

En;k ¼ EAl
n;k −

2

π

mInAsL0
2

mAlL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EInAs
1;k¼0 þΦ

ℏ2k2=ð2mInAsÞ −Φ − EAl
n;k

s

× ðEAl
n;k¼0 þ EFÞ: ðC9Þ

Using the above, we obtained Eqs. (13) and (14).
We proceed with the band segments for n > n� and

k ∈ ½kl; kh�. In this case we consider the inverted transcen-
dental Eq. (C2). We linearize the lhs about EAl

n−1
2
;k
, consider

coth ðjkInAsjL0
2Þ ≈ 1, and set E ¼ EAl

n−1=2;k on the rhs. See
also Fig. 11(c). We find the eigenenergies

En;k ¼
ℏ2k2

2mInAs

−

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2k2=ð2mInAsÞ−Φ−EAl

n−1=2;k

EAl
1;k¼0þEF

þ
�
1

π

ffiffiffiffiffiffiffiffiffiffiffi
mAl

mInAs

r �
2

s

−
1

π

ffiffiffiffiffiffiffiffiffiffiffi
mAl

mInAs

r #
2

ðEAl
1;k¼0þEFÞ: ðC10Þ

FIG. 11. Plot of the lhs (dashed blue lines) and rhs (solid gold lines) of the direct and inverted transcendental Eqs. (C1) and (C2) for
Φ ¼ 0.1 eV and L0

2 ¼ 16 nm. In (a) and (c) L1 ¼ 5 nm, and in (b) and (d) L1 ¼ 4.75 nm. The eigenenergies are obtained when the lhs
and rhs lines cross. Depending on the energy regime, it is convenient to use the direct or inverted transcendental equation in order to
obtain the eigenspectrum. The approximate analytical expressions for the eigenenergies are obtained via a Taylor expansion of the lhs or/
and the rhs about zeros of the respective tangent or cotangent. These zeros are related to the pure Al and InAs levels and the values EAl

n;k

and EInAs
n;k , as well as EAl

nþ1=2;k and E
InAs
nþ1=2;k. Panel (a) is employed for inferring weakly modified Al-like bands and InAs-like bands within

scenario I. Panel (b) is employed for inferring weakly modified Al-like bands within scenario II. Panel (c) is employed for inferring the
Al-InAs gluing segments within scenario I. Panel (d) is employed for inferring modified InAs-like bands within scenario II.
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Note that the above expression does not depend on L0
2 at

this level of approximation. Using the above, we obtained
Eqs. (17) and (18).

2. Solutions with kAl ∈ R and kInAs ∈ R

After applying the matching conditions, we find that the
wave function for such a solution with En;k has the
approximate form

ψn;kðzÞ ≈ ð−1Þnþ1 ffiffiffiffiffiffiffi
wAl

p
ffiffiffiffiffiffi
2

L1

s
sin ½kAlðzþ L1Þ�; ðC11Þ

for z ∈ ½−L1; 0�, and

ψn;kðzÞ ≈
ffiffiffiffiffiffiffiffiffiffi
wInAs

p
ffiffiffiffiffiffi
2

L0
2

s
sin ½kInAsðL0

2 − zÞ�; ðC12Þ

for z ∈ ½0; L0
2�, with the weights discussed in the main text.

These solutions appear for k < kl defined in Sec. III. One
distinguishes two scenarios, I and II.

Scenario I.—In this case, we use Eq. (C1) and linearize
both sides. We linearize the lhs about the EAl

n�þ1;k level and
the rhs about the EInAs

n−n�−1;k level. See Fig. 11(a) for
n ¼ n� þ 2. This approximation led to Eqs. (19) and
(22), and holds as long as the linear approximation of
the lhs is valid, i.e., EInAs

n−n�−1;k ≲ EAl
n�þ5=4;k.

Scenario II.—In this case, we use Eq. (C2) and
linearize both sides. We linearize the lhs about the
EAl
n�þ1=2;k level and the rhs about the EInAs

n−n�−1=2;k level.
See Fig. 11(d) for n ¼ n� þ 3. This approximation led to
Eqs. (23) and (24). Note that this approximation holds as
long as the linear approximation of the lhs is valid, i.e.,
EInAs
n−n�−1=2;k ≲ EAl

n�þ3=4;k. In this case, for n ¼ n� þ 3

we are on the borderline of our approximation’s
validity. For larger L0

2, e.g., L0
2 ∼ 80 nm, we have to

expand up to quadratic order the rhs in order to obtain a
good approximate solution, and in this case the
energy reads

En;k ¼ EInAs
n−n�−1=2;k þ 2

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ L1

L0
2

�
2

þ L1

L0
2

EAl
n�þ1=2;k − EInAs

n−n�−1=2;k

EInAs
n−n�−1=2;k¼0 þΦ

vuut −
�
1þ L1

L0
2

�9=
;ðEInAs

n−n�−1=2;k¼0 þΦÞ; ðC13Þ

which is applicable for bands satisfying EAl
n�þ1=2;k >

EInAs
n−n�−1=2;k. The approach can be extended to higher

energies by separating the energy interval in regions where
the direct or inverted transcendental equation is best.
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