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We propose a theoretical framework for the study of spreading processes in structured metapopulations,
with heterogeneous agents, subjected to different recurrent mobility patterns. We propose to represent the
heterogeneity in the composition of the metapopulations as layers in a multiplex network, where nodes
would correspond to geographical areas and layers account for the mobility patterns of agents of the same
class. We analyze classical epidemic models within this framework and obtain an excellent agreement with
extensive Monte Carlo simulations. This agreement allows us to derive analytical expressions of the
epidemic threshold and to face the challenge of characterizing a real multiplex metapopulation, the city of
Medellín in Colombia, where different recurrent mobility patterns are observed depending on the
socioeconomic class of the agents. Our framework allows us to unveil the geographical location of those
patches that trigger the epidemic state at the critical point. A careful exploration reveals that social mixing
between classes and mobility crucially determines these critical patches and, more importantly, it can
produce abrupt changes of the critical properties of the epidemic onset.
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I. INTRODUCTION

During the past decades we have witnessed the onset of
several major global health threats such as the 2003 spread
of severe acute respiratory syndrome (SARS), the H1N1
influenza pandemic in 2009, the western Africa 2014 Ebola
outbreaks, and more recently the Zika epidemics in the
Americas and Caribbean regions. These outbreaks are
increasingly characterized by the small elapsed time
between initial infections in a single region to the global
epidemic state affecting different cities, regions, countries,
and, in some cases, continents. Thus, in recent years a great
effort has been devoted to understanding the fast unfolding
of emergent diseases and to design both local and global
contention strategies. The most common avenue to tackle
this problem is to adapt classical epidemic models taking
into account the multiscale nature of diseases propaga-
tion [1,2].

It is clear that the spread of an emergent infectious disease
is the result of human-human interactions in small geographi-
cal patches. However, in order to understand the geographical
diffusion of diseases, one has to combine these microscopic
contagion processes with the long-range disease propagation
due to human mobility across different spatial scales. To
tackle this problem, epidemic modeling has relied on
reaction-diffusion dynamics in metapopulations, a family
of models first used in the field of population ecology [3–7].
For the case of epidemic modeling, the usual metapopulation
scenario [8–10] is as follows. A population is distributed in a
set of patches, with the size (number of individuals) of each
patch in principle different. The individualswithin each patch
are well mixed; i.e., pathogens can be transmitted from an
infected host to any of the healthy agents placed in the same
patch with the same probability. The second ingredient of
metapopulation frameworks concerns the mobility of agents.
Eachhost is allowed to change its current location andoccupy
another patch, thus fostering the spread of pathogens at the
system level. The mobility of agents between different
patches is usually represented in terms of a network where
nodes are locations while a link between two patches
represents the possibility of moving between them.
The nontrivial mobility patterns observed in real pop-

ulations [11] and recent advances of network epidemiology
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[12] have motivated a thorough analysis about the impact
that the structure of mobility networks has on the onset of
global-scale contagions. In the past decade, important steps
towards the inclusion of realistic mobility structures have
been made [13–16]. These approaches had to compromise
between realism and analytical feasibility. On one side,
lengthy mechanistic simulations [1,17] provide fair pre-
dictions on realistic scenarios while, on the other, theo-
retical frameworks allowing for analytical results usually
rely on strong assumptions limiting their applicability to
real-world threats. For instance, it is usual to assume
simplified mobility patterns and mean-field approximations
for hosts’ and patches’ behavior to be able to predict the
onset of an outbreak. In these models, random diffusion of
agents between the nodes is often used as a proxy of human
mobility while, as in the heterogeneous mean field in
contact networks [18], subpopulations with identical con-
nectivity are assumed to be equally affected by the disease.
These mean-field-like approximations for patches having

identical properties, while useful for deriving analytical
results, add important limitations for their applicability in
real-world diseases prediction. As data gathering techniques
and epidemic surveillance [19] increase their accuracy,
metapopulation models face new challenges [20]. In an
effort to overcome the random diffusion of hosts assumption
and approach realistic mobility patterns, researchers have
recently addressed the recurrent and spatially constrained
nature of most human movements [21–27], finding counter-
intuitive results such as the epidemic detriment caused by
mobility [26,27]. However, a theoretical framework of
metapopulations of arbitrary structure, incorporating the
many aspects of real mobility patterns, remains an open
challenge.
One of these aspects to explore is the coexistence, within

the same population, of different types of interacting agents
and its implications in the spread of pathogens. Previous
works along this line have been devoted to incorporate
different types of agents according to their age [28] or
heterogeneities in terms of infectivities [29,30]. However,
those works addressing the interplay between different
types of individuals in metapopulations rely on random
diffusion of agents [29] or in degree-based assumptions for
assigning the occupation of patches and the fluxes between
them [30]. Thus, a metapopulation framework incorporat-
ing both agents’ heterogeneities and the use of realistic
demographic and mobility patterns is still needed, and
constitutes the main focus of this work.
To tackle this problem here we draw upon the multiplex

formalism, a mathematical representation of networked
systems in which different types of interactions between a
given set of nodes coexist and interplay. Multiplex net-
works [31–35] consist of a set of L networks (usually called
layers) and a set of N nodes. Each node is represented once
in each network layer, allowing it to share different
connectivity patterns in each of the L layers. In terms of

metapopulation models, for which nodes account for
geographical locations, each layer represents the mobility
network of each type of agent, while each subpopulation is
represented in each layer. This way, the multiplex formal-
ism captures the coexistence, within each subpopulation, of
different types of agents with different mobility prefer-
ences. These differences can account for age-specific
mobility habits (capturing different preferences in the
locations visited) or the socioeconomic segregation of
residences and work places across urban areas. In these
cases, the diverse mobility patterns corresponding to each
agent type affect in different ways the onset of epidemics.
In an attempt to increase the realism of epidemiological

models without compromising the possibility of a theo-
retical analysis, here we propose a mathematical framework
in which the dynamical variables of each patch forming the
metapopulation are treated independently. Our framework
can accommodate any mobility multiplex network from
real commuting data sets containing different types of
individuals and is amenable to any particular distribution of
the population across the patches, generalizing previous
findings on monolayer networks [26,27]. We analyze the
classical susceptible-infected-susceptible (SIS) and the
susceptible-infected-recovered (SIR) models, achieving an
excellent agreement with intensiveMonteCarlo simulations.
In addition, we derive an exact expression of the epidemic
threshold and show its nontrivial dependence with the
different mobility patterns represented in the multiplex.
The multiplex formalism introduced here is suitable to

include new realistic factors for modeling spreading proc-
esses that former metapopulation models could not account
for. As an example of the potential applicability of this
formalism, we tackle the spread of diseases over the city of
Medellín (Colombia), taking into account that its popula-
tion is divided into six socioeconomic classes. These
classes are represented as a multiplex metapopulation of
six layers, each one encoding the demography as well as
the mobility patterns of each class. We analyze the spread
of diseases over this real configuration and introduce
quantifiable measures to shed light on the influence of
the social mixing among socioeconomic classes and
mobility on the critical properties of the epidemic onset.
The interplay between socioeconomical mixing and mobil-
ity produces nontrivial effects with strong consequences on
the criticality of the epidemics. Specifically, the localization
of the epidemics changes abruptly as a consequence of this
interplay, having interesting consequences in the design of
epidemic containment policies.

II. METAPOPULATION MODEL

For the sake of clarity, we start by considering a
metapopulation framework consisting of one single type
of agents. In this case, we have a network composed of N
nodes (the patches) and a total population of P agents.
Importantly, each agent has associated one of the patches so
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that all the movements of agents associated to a node, say i,
initiate from and return to it. In its turn, a node i of
the network is the basement (or home) of a number ni of
agents so that P ¼ P

N
i¼1 ni. For the sake of generality, we

consider that the network connecting the patches of the
population is a weighted and directed graph, encoded in an
adjacency matrix whose entries Wij account for the weight
of the interaction from node i to node j.
The dynamical model implemented in our metapopula-

tion involves three different stages at each time step t:
movement, interaction, and return (MIR). First, each agent
decides whether to move with probability p or remain in its
associated home node i with probability (1 − p). If the
agent moves, it goes to any of the nodes connected to i as
dictated by the adjacency matrix W. The probability that a
patch j is chosen is proportional to the weight of the
corresponding entry Wij of the adjacency matrix:

Rij ¼
WijP
N
j¼1Wij

: ð1Þ

Once all the agents have been placed in the nodes, the
interaction stage takes place. Each agent updates its
dynamical state according to the epidemic model at work
(see below) by interacting with the agents that are placed in
the same patch at time t. Finally, agents come back to their
corresponding residence node and another time step starts.
These stages are depicted in Fig. 1 where, for clarity, we
have considered that the states of agents are either healthy
or infectious, as in the SIS model.

This metapopulation model captures the commuting
nature of most of the human displacements within cities
(at the level of neighborhoods) or countries (at the level of
cities). Interestingly, let us remark that empirical data about
real recurrent mobility patterns can be incorporated straight-
forwardly in the MIR model by considering the number of
observed trips between two locations Wij in order to
construct the transition rates matrix R. This way, the model
has as control parameters the displacement probabilityp and
those controlling the epidemic model under study.

A. Population-based Markovian dynamics
in complex networks

In the following we focus on the two most paradigmatic
epidemic models, SIS and SIR. The reaction laws of these
models are given by two parameters: (i) the probability λ
that a susceptible (healthy) agent catches the diseases after
the contact with a single infected individual and (ii) the
probability μ that an infected overcomes the disease and
turns to be susceptible again (SIS) or becomes immunized
(SIR). These reactions can be expressed as

Sþ I!λ 2I; I!μ S; ð2Þ

for the SIS model, while for the SIR,

Sþ I!λ 2I; I!μ R: ð3Þ

As in any metapopulation model on large complex
networks, we face the problem of computationally

FIG. 1. Schematic representation of one time step of the movement-interaction-return (MIR) metapopulation model. The network is
composed of N ¼ 3 patches. At the movement stage some of the local agents decide to move to the other patches according to the
probabilities encoded in matrixR. Once agents have moved they interact in a well-mixed way and change their epidemic status (healthy
or infected) according to a SIS model. Finally, the agents come back to their home patches and a new time step starts.
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expensive simulations. A useful avenue to analyze these
models, with the by-product of obtaining analytical esti-
mations for the impact of the epidemic, is to formulate
coarse-grained models that reduce significantly the com-
plexity of the problem. Typically, heterogeneous mean-
field techniques have been applied in a number of works
related to epidemic spreading in contact networks and
metapopulations. As anticipated above, themain assumption
of the heterogeneous mean field is to correlate the relevant
parameters of nodes and patches with their number of
connections to other nodes, i.e., their degree. This way,
two distant patches that are connected to the same number
(but not the same set) of locations are considered to have the
same static and dynamical properties such as, for instance,
the number of habitants and the fraction of infected agents.
This assumption, although being strong, has been shown to
be valid for small epidemic sizes, thus allowing quite good
predictions of epidemic thresholds.
Here we formulate the mathematical equations of

the MIR model by following a similar avenue as in
Refs. [36–38] for contact networks, thus generalizing the
Markovian approach to complex metapopulations. This
way, we consider both static and dynamical variables of
each individual patch as independent, allowing us to
compare directly with the findings of Monte Carlo simu-
lations at the microscopic level and, more importantly, to
derive theoretical results for any kind of particular mobility
networks.

1. SIS model

For the SIS model, we have a set of N variables ρiðtÞ
denoting the fraction of infected agents associated to patch i
at time t. It is important to stress that, according to the MIR
model, an agent whose associated patch is i can be in
another node j at time t. The time evolution of ρiðtÞ can be
written as

ρiðtþ 1Þ ¼ ð1 − μÞρiðtÞ þ ½1 − ρiðtÞ�ΠiðtÞ; ð4Þ

where the first term denotes the fraction of infected agents
associated to i that do not recover at time tþ 1. The second
term instead accounts for the fraction of healthy agents
associated to i that pass to infected at time tþ 1. In this
second term, ΠiðtÞ is the probability that a healthy agent
associated to node i becomes infected at time t. This
probability reads

ΠiðtÞ ¼ ð1 − pÞPiðtÞ þ p
XN
j¼1

RijPjðtÞ; ð5Þ

where the first term denotes the probability that a suscep-
tible agent associated to patch i becomes infected when
remaining at its home node i, and the second one accounts

for the probability that this agent catches the disease when
moving to any neighbor of i.
Finally, the probability PiðtÞ in Eq. (5) denotes the

probability that a healthy agent in (but not necessarily
associated to) node i at time t becomes infected after
contact with any of the infected agents present inside i at
the same time. Then, probability PiðtÞ reads

PiðtÞ ¼ 1 −
YN
j¼1

½1 − λρjðtÞ�nj→i ; ð6Þ

where

nj→i ¼ δijð1 − pÞni þ pRjinj; ð7Þ

with δij ¼ 1 when i ¼ j and δij ¼ 0 otherwise.
The expressions in Eqs. (4)–(7) compose the closed set

of equations covering the evolution of a SIS disease
spreading in the MIR metapopulation model with param-
eters p, μ, and λ. In addition, the matrix R is given by the
topology of the mobility network, which can be constructed
from the observed flows between the patches, and the set of
node populations fnig can also be set according to the local
census of the population under study.

2. SIR dynamics

The formulation of the Markovian equations for a
metapopulation under a SIR spreading dynamics demands
to add another set of N variables: friðtÞg (i ¼ 1;…; N),
i.e., the fraction of recovered agents associated to patch i.
Thus, the set of N equations (4) for the SIS model is now
substituted by the following set of 2N equations:

ρiðtþ 1Þ ¼ ð1 − μÞρiðtÞ þ ½1 − ρiðtÞ − riðtÞ�ΠiðtÞ; ð8Þ

riðtþ 1Þ ¼ riðtÞ þ μρiðtÞ: ð9Þ

On the other hand, since the infection processes within each
of the patches in the SIR model follow identical rules as
those of the SIS one, the expression in Eq. (8) for the
probability that a healthy agent associated to node i
becomes infected at time t, ΠiðtÞ, has the same form as
in the SIS case. This way, the SIR metapopulation
dynamics is fully described by Eqs. (8) and (9) with the
addition of Eqs. (5)–(7).
In Appendix Awe illustrate the accuracy of the SIS and

SIR Markovian equations by comparing their predictions
with the results obtained via Monte Carlo numerical
simulations in Erdös-Rényi (ER) and scale-free (SF)
metapopulations.

III. MULTIPLEX METAPOPULATIONS

After the former brief introduction to the Markovian
formalism in monolayer metapopulations, we are ready to
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tackle the study of metapopulations in which different types
of agents coexist and interact. The diversity of agents is
manifested in their heterogeneous segregation across
patches, so that the demographic partition into patches is
independent for each class, and in their different mobility
patterns. In particular, we focus on systems in which agents
displaying L types of mobility patterns coexist within each
patch. This way, the population of a patch i is the sum of the
number of agents of each type ni ¼

P
L
α¼1 n

α
i and the

probability that an agent of patch i and type α visits another
patch j is now written as the generalization of Eq. (1):

Rα
ij ¼

Wα
ijP

N
j¼1W

α
ij
; ð10Þ

where Wα
ij is associated to the number of observed trips of

agents of type α in patch i to patch j.
To analyze this situation, it is natural to make use of a

multiplex formulation [31–35] of the metapopulation, as it
is illustrated in Fig. 2. In our case, the number of layers of
the multiplex is equal to the number of types of agents (L)
and the architecture of each layer is described by a different
matrix Rα. Each patch of the system is represented as one
node in each network layer, and the corresponding L nodes

are virtually connected (dotted lines) as they mix their
agents when the contagion processes take place.
The number of Markovian equations of the multiplex are

now multiplied by L with respect to the networked
metapopulation. In particular, for the SIS [and SIR] model,
the variables are ραi ðtÞ [and rαi ðtÞ], which denote the
fraction of infected [and recovered] individuals of layer
α ¼ 1;…; L associated to node i. In this case, SIR
equations become

ραi ðtþ 1Þ ¼ ραi ðtÞð1 − μÞ þ ½1 − ραi ðtÞ − rαi ðtÞ�

×

�
ð1 − pÞPα

i ðtÞ þ p
XN
j¼1

Rα
ijP

α
j ðtÞ

�
; ð11Þ

rαi ðtþ 1Þ ¼ rαi ðtÞ þ ð1 − μÞραi ðtÞ; ð12Þ

while for the SIS model we only have Eq. (11) with
rαi ðtÞ ¼ 0. The term Pα

i ðtÞ, which denotes the probability
that an agent of type α placed in patch i at time t becomes
infected, reads

Pα
i ðtÞ ¼ 1 −

YL
β¼1

YN
j¼1

½1 − λαβρβj ðtÞ�n
β
j→iðtÞ; ð13Þ

where λαβ is the probability that a diseased agent of type β
infects a healthy agent of type α. In addition, the number of
agents of type α associated to patch j that travel to a
different patch i is given by

nαj→i ¼ ð1 − pÞδijnαi þ pRα
jin

α
j : ð14Þ

The set of equations (11)–(14) conforms the Markovian
model of the multiplex metapopulation. For the sake of
simplicity, we now restrict to the case λαβ ¼ λ ∀ α, β, so
that the infection probability between healthy and infected
agents does not depend on their types.

A. Validation of the Markovian equations

To validate the Markovian equations for the multiplex
metapopulation, we proceed in the same fashion as we did
for networked ones. First, we compute the impact that SIR
and SIS diseases have as a function of the infectivity of the
disease λ and the degree of mobility p. We have studied
three types of multiplex of L ¼ 2 layers, namely, ER-ER,
SF-SF, and ER-SF, ofN ¼ 103 nodes, and each node has an
identical population of 500 agents. The weights of each link
Wα

ij are randomly assigned following a homogeneous
distribution in the range [1,39].
In Fig. 3, we show the diagrams for the SIR (top) and the

SIS (bottom) where dots represent the results obtained for
Monte Carlo simulations of the epidemic processes and the
solid lines are for the solution of the Markovian equations.
As in the case of networked metapopulations, we observe a

FIG. 2. Schematic representation of a metapopulation multiplex
composed of L ¼ 3 layers. Each of the N ¼ 3 patches (nodes) is
represented in each of the layers. The layers highlight that
individuals of type α associated to patch i move to another patch
j with probability Rα

ij which, in general, is different from the rate
of transitions of agents of type β ≠ α associated to the same node.
This way, each network layer α presents a topology captured by a
different matrix Rα.
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perfect agreement between simulations and the numerical
solution of Eqs. (11)–(14). From the physical point of view
we observe that, while for all the cases mobility enhances
the anticipation of the epidemic onset, the multiplex
composed of an ER and a SF topology yields an inter-
mediate anticipation effect compared to those observed for
ER-ER and SF-SF. This is an interesting result that
differentiates what has been recently observed in epidemic
processes in multiplex contact networks [40,41], where
coupling L layers yields an overall epidemic threshold that
is equal to the smallest threshold of the isolated layers or, in
other words, the epidemic onset is driven by the largest of
the maximum eigenvalues of the set of adjacency matrices
that define the layers. It is clear that in the case of
metapopulations the situation is more complicated as we
show in the following section.
We now focus on the general scenario in which λαβ ≠ λ,

i.e., the contagion probability between two agents depends
on their corresponding types. To this aim, we consider one
population of agents whose movements are described by an
ER mobility network and another population whose move-
ments occur according to a SF graph. The number of
patches is N ¼ 103, and inside each patch there are 500
agents of each type (ER and SF). We consider the situation
in which λαβ ≪ λαα (α ≠ βÞ. In particular, a contagion
between agents moving in the ER layer occurs with
probability λER ¼ 1.5μ=500 and that for the agents moving

in the SF layer is set to λSF ¼ 1.1μ=500 (recall that μ=500 is
the epidemic threshold for a well-mixed population of 500
agents). In its turn, we have set the infection probability
between agents of different type to λER-SF ¼ λSF-ER ¼
0.025μ=500. Finally, to work with a more heterogeneous
setup, we study the case of a SIR dynamics in which a small
seed of initial infected agents is set in a single patch and
affects only agents of one type (here, those moving across
the ER layer).
To analyze the accuracy of Eqs. (11)–(14) in capturing the

spatiotemporal evolution of epidemics, we first consider the
temporal evolution of the fraction of infected individuals of
each type (layer). In Fig. 4(a), we show this evolution
comparing the solution of the Markovian equations (solid
lines) with the result obtained fromMonte Carlo simulations
(points). It is clear that the Markovian equations (11)–(14)
fairly reproduce the output of the numerical simulation,
capturing the delay of the onset of the epidemics in the SF
layer with respect to that in the populationmoving across the
ER. This delay is a clear consequence of (i) the localization of
the initial infected individuals in the ER layer and (ii) the
small contagion probability between agents of different type
(layer). Interestingly, the fact that λER-SF is far less than the
threshold (μ=500) in a closed population of 500 agents does
not prevent the disease from invading the SF layer.
Finally, in Figs. 4(b)–4(e), we show the temporal

evolution of the fraction of recovered individuals for each
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FIG. 3. Epidemic diagrams for the SIR (top), RðλÞ and SIS (bottom), IðλÞ dynamics of three different multiplexes with L ¼ 2 layers.
From left to right we have ER-ER, ER-SF, and SF-SF. In all the cases each network layer hasN ¼ 103 nodes and each node contains 500
individuals per layer. The solid curves indicate the solution obtained by solving the Markovian evolution equations (the color of each
curve indicates the value of p as shown in the color bars), whereas the points correspond to the results obtained by using agent-based
simulations (50 realizations for each value of λ and p). Note that the value of λ has been rescaled by the critical value λc at p ¼ 0, i.e.,
that of a well-mixed population of n ¼ 103 individuals: λc ¼ μ=103 at p ¼ 0. The recovery rate is μ ¼ 0.2.
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patch in each of the layers (ER top and SF bottom) obtained
from numerical simulations (left-hand panels) and solving
Eqs. (11)–(14) (right-hand panels). The fair agreement
between left- and right-hand panels indicates the great
spatiotemporal accuracy of the Markovian model. Here, in
addition to the delay in the onset of the epidemics in the SF
population already observed in Fig. 4(a), it is remarkable
that two different stationary regimes are obtained in each
layer. Namely, the fraction of recovered individuals in the
ER layer is nearly identical for all the patches. However, in
the SF population the stationary pattern points out a far
more heterogeneous distribution of recovered individuals
across the different patches.

IV. DEDUCTIONOF THE EPIDEMIC THRESHOLD

The fair agreement between agent-based simulations and
the solution of the Markovian equations allows us to make
use of them in order to derive the analytical expression of
the epidemic threshold. For the sake of simplicity, let us
compute this value for the SIS case (similar results are
obtained for the SIR model). In this case, see Eq. (11), the
stationary solution for the fraction of infected agents of type
α associated to patch i, ρα⋆i fulfills

μρα �i ¼ ð1 − ρα �i Þ
�
ð1 − pÞPα �

i þ p
XN
j¼1

Rα
ijP

α �
j

�
: ð15Þ

As usual for calculating the threshold, we linearize the
above expression by considering that the fraction of
infected people in the stationary state is very small
(ρα⋆i ¼ ϵαi ≪ 1∀ α ∀ i). This way, we can neglect sec-
ond-order terms in ϵαi in Eq (13), so that Pα �

i is given by

Pα �
i ¼ P�

i ¼
XL
β¼1

XN
j¼1

λαβϵβjn
β
j→i: ð16Þ

Introducing this expression into Eq. (15), the stationary
state of the epidemics can be written as

μϵαi ¼ ð1 − pÞ
XL
β¼1

XN
j¼1

λαβϵβj ðtÞnβj→i

þ p
XN
j¼1

Rα
ij

XL
β¼1

XN
k¼1

λαβϵβkn
β
k→j: ð17Þ

To incorporate the asymmetry between interlayer and
intralayer interactions, we set the intralayer contagion

FIG. 4. Spatiotemporal patterns of the SIR dynamics in a metapopulation multiplex composed of an ER and a SF layer. Each layer has
103 patches and 500 individuals are associated to each patch. Theoretical prediction are shown by lines, whereas dots represent
Monte Carlo results. The initial infected agents are placed in a single patch of the ER layer. This, together with the small contagion
probability between agents of different layers (see the text for details), causes the time difference between the epidemic onsets in each
layer as observed from (a). Panels (b)–(d) show the time evolution of the fraction of recovered agents for each patch. The top panels
show this evolution in the ER layer obtained for Monte Carlo simulations (b) and the solution of the Markovian model (c). On the other
hand, bottom panels show the same evolution in the SF layer as obtained again from simulations (d) and by solving the Markovian
equations (11)–(14) (e).
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probability to λαα ¼ λ while its interlayer counterpart reads
λαβ ¼ γλ (with γ ∈ ½0; 1� and α ≠ β). This way, the limit
γ ¼ 0 describes the case of null interaction between agents
of different types, whereas γ ¼ 1 recovers the indistin-
guishability of the agents type in terms of contagion
processes. Under these premises, the general expression
for the contagion probability λαβ becomes

λαβ ¼ ½1 − ð1 − γÞð1 − δαβÞ�λ; ð18Þ

where δαβ is the Kronecker delta, which is 1 if layers α ¼ β,
and 0 otherwise. Finally, by using the value of nβj→i from
Eq. (14) and keeping up to first order in ϵαi , we obtain the
expression

μ

λ
ϵαi ¼

XN
j¼1

XL
β¼1

½1 − ð1 − γÞð1 − δαβÞ�½ð1 − pÞ2δijnβi þ pð1 − pÞnβj ðRβ
ji þ Rα

ijÞ þ p2nβj ðRα ·RβTÞij�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mαβ

ij

ϵβj : ð19Þ

At this point, it becomes clear that Eq. (19) defines an
eigenvalue problem for the feasible solutions ϵαi . Indeed,
there are N · L feasible solutions of λ corresponding to the
eigenvalues of the N · L × N · L supramatrixM. However,
since we are interested in the minimum value λc for which
Eq. (19) is fulfilled, the epidemic threshold is thus
associated to the largest eigenvalue of M as

λc ¼
μ

ΛmaxðMÞ : ð20Þ

Let us now describe the entries of the matrix M, see
Eq. (19), since they allow us to quantify the microscopical
interactions among agents across the multiplex metapopu-
lations. In fact, the elements Mαβ

ij correspond, close to the
epidemic threshold, to the probability that an agent of type

α associated to patch i comes in contact with another one of
type β from patch j. Specifically, each element contains
three contributions accounting for the three potential
sources of infections that a healthy agent can find: from
agents associated to the same node inside this node
[weighted by ð1 − pÞ2], from agents from a different patch,
either at one of the two patches they are associated to
[weighted by pð1 − pÞ], and from agents with whom they
come in contact inside a third place different from their
associated nodes (weighted by p2).
To round out this derivation, let us remark that the

generality of the expression for the epidemic threshold of
multiplex metapopulations allows us to recover, by setting
L ¼ 1, the value of the epidemic threshold in monolayer
metapopulations. Indeed, for L ¼ 1, Eq. (19) turns into

μ

λ
ϵ�i ¼

XN
j¼1

½ð1 − pÞ2δijnj þ pð1 − pÞnjðRþRTÞij þ p2njðR ·RTÞij�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mij

ϵ�j ; ð21Þ

so that the epidemic threshold is given by

λc ¼
μ

ΛmaxðMÞ ; ð22Þ

where M is now an N × N matrix. In the same fashion as
supramatrix M, each term Mij of matrix M encodes the
probability that an agent associated to patch i comes in
contact with another from patch j.
We have checked the validity of Eq. (20) by computing

the largest eigenvalue of M for the three synthetic multi-
plexes under study in Fig. 3 for a range of values of
p ∈ ½0; 1�. This way, through Eq. (20) we obtain a curve
λcðpÞ, see Fig. 5, that reproduces the onset observed in

Monte Carlo simulations for both indistinguishable agents
γ ¼ 1 (top) and noninteracting layers γ ¼ 0 (bottom). The
monotonous decrease of λcðpÞ corroborates that, for these
three synthetic multiplexes, mobility enhances the spread
of the disease. Interestingly, for the case of noninteracting
layers, the epidemic threshold of the ER-SF and SF-SF
multiplexes follows the same dependence on the mobility.
This result indicates that it is the layer with the smallest
threshold, the SF one (see Fig. 12 in Appendix A), the
one driving epidemic outbreaks. However, as the inter-
layer coupling increases, the two layers interplay and the
ER-SF and SF-SF metapopulations behave differently.
Interestingly, for γ ¼ 1 the effect of the ER layer in the
ER-SF multiplex is to soften the trend of the epidemic
threshold with the mobility compared to γ ¼ 0.
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V. REAL MULTIPLEX METAPOPULATIONS
DETERMINED BY SOCIOECONOMIC

CLASSES

The formalism proposed here offers the possibility of
accounting for the coexistence of different mobility patterns
within the inhabitants of real populations. This possibility
allows us to gain insights about the role played by the
interactions between different kinds of agents in spreading
processes. To shed light on the applicability of this for-
malism in real populations and to fully exploit the pos-
sibilities offered by the multiplex formulation, we now
study the SIS and SIR spreading dynamics in a real urban
system, the city of Medellín (Colombia), where six differ-
ent socioeconomic classes coexist. Specifically, these social
classes range from 1, which includes those inhabitants
with the lowest incomes, to class 6, corresponding to the
wealthiest individuals. The separation into six socioeco-
nomic classes in Colombia [42] and, in particular, in large
cities such as Medellín (the second largest city in Colombia
with around 5 × 106 inhabitants) leads to a different
demographic distribution across towns and, equally impor-
tant, to different mobility patterns due to their hetero-
geneous needs and transportation services at hand (see
Refs. [43,44] for details).
To study the evolution of diseases while preserving the

information related to the existence of different socioeco-
nomic classes, we make use of the former formalism by

constructing, from the data presented in Refs. [45,46], a
multiplex network of six layers. As shown in Fig. 6, each
layer contains the specific recurrent mobility patterns of
each socioeconomic class among the 413 areas (nodes) in
which the city of Medellin is divided. Note that, apart
from the different link patterns of the layers, the distri-
bution of the agents across the 413 areas depends strongly
on the particular socioeconomic class. For instance, it is
clear that agents belonging to the lowest income class 1
tend to localize in northern areas of the city, whereas
individuals of class 6 concentrate in those areas in
the south.

A. Epidemic incidence on social classes

In this section, we aim at quantifying the impact for each
socioeconomic class of a disease propagated across the city
of Medellín. For the sake of simplicity, let us first consider
the case of indistinguishable interacting agents, i.e., γ ¼ 1.
As for the case of synthetic networks, we show in
Appendix B the accuracy of our formalism in capturing
the global incidence of SIS and SIR diseases. The epidemic
incidence for each socioeconomic class is shown in Fig. 7
by plotting, for several values of the mobility p, the
epidemic diagrams for a SIS disease, IðλÞ. Apart from
the fair agreement between the Markovian formulation and
Monte Carlo simulations, we observe that, regardless of the

FIG. 5. Epidemic diagrams Iðλ; pÞ for SIS dynamics over those multiplex metapopulations used in Fig. 3. The color code (see color
bar) denotes the fraction of infected individuals in the steady state as obtained from Monte Carlo simulations. The solid curves indicate
the function λcðpÞ as dictated from Eq. (20) for the multiplex metapopulations. The values of interlayer coupling are γ ¼ 1 (top) and
γ ¼ 0 (bottom). The recovery rate of the SIS dynamics has been set to μ ¼ 0.2. From left to right we have used ER-ER, ER-SF, and
SF-SF architectures to simulate the evolution of a disease.
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value of p, layer 2 drives the onset of epidemics in the
multiplex whereas layer 6 (the wealthiest class) turns out to
be the least affected by the disease.
Some features about the underlyingmultiplex network can

be inferred from these graphs. For instance, the results cor-
responding to the static case (p ¼ 0) unveil the demographic
distribution of the layers. On the one hand, in Fig. 7(a), we
observe that agents from classes 1, 2, and 3 occupy the most

populated nodes, since the epidemic onset associated to these
layers is the smallest one. On the other hand, it becomes clear
that individuals from class 6 reside practically isolated from
the rest of the classes, occupying sparsely populated neigh-
borhoods. Additionally, from Figs. 7(b) and 7(c), we notice
the balancing role ofmobility: by increasingp, social mixing
is boosted and, as a consequence, the epidemic incidence in
the layers become more similar.

FIG. 6. Mobility networks of each socioeconomic class in the city of Medellín. Each panel shows the geographical location of each
subpopulation (node) in the city of Medellín. The size of each node is proportional to the number of agents of the corresponding
socioeconomic class in the subpopulation. The connections between two nodes denotes the existence of back-and-forth movements
between two subpopulations for a given socioeconomic class.

FIG. 7. Impact of a SIS disease IðλÞ on each of the layers of a real multiplex metapopulation. Note that the value of λ has been rescaled
by the critical value λc at p ¼ 0. The mobility of the agents has been set from left to the right to p ¼ 0, p ¼ 0.2, and p ¼ 1. Solid lines
correspond to theoretical predictions obtained by iterating Eqs. (11)–(14), whereas black dots are the result from averaging 20
realizations of numerical simulations. The recovery rate of both dynamics has been set to μ ¼ 0.2.
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To get more insight about the interaction among the
different layers and to further validate our formalism, we
now address the spatiotemporal propagation of diseases
whose initial seed is localized inside one of the layers. For
this purpose, we have fixed the parameters of our model
(p, λ, μ) and represented in Fig. 8 the time evolution of the
number of infected agents according to a SIR disease for each
socioeconomic class when the seed is localized in classes 1
[Fig. 8(a)] and 5 [Figs. 8(b)]. Again, we also compare the
results of the Markovian evolution equations (curves) with
Monte Carlo agent-based simulations (points).
The solution of the Markovian equations captures the

nontrivial interaction patterns between the different socio-
economic classes. In particular, it can be noticed that
contagion processes take place mainly among close classes
(in terms of incomes) since they showa cascadelike structure:
1 → 2, 3 → 4 in Fig. 8(a) and 5 → 4 → 3 → 4, 2 → 1 in

Fig. 8(b). Finally, the nontrivial nature of the time evolution
of infections is captured by the existence of a feedback
phenomenon when looking to the sequence of local out-
breaks for classes 2, 3, and 4. The observed correlations
between layers’ outbreaks reveals the closeness between the
individuals in these middle-class layers.

B. Epidemics and interlayer coupling

Up to this point, we have assumed that contagion
processes between agents from Medellín do not depend
on the layers (socioeconomical class) to which interacting
agents belong. However, in real systems, the social mixing
between different socioeconomical classes is far from
homogeneous, being more typically contacts between
agents of the same or similar socioeconomical classes.
Thus, in multiplex terminology, the assumption that an
agent interacts in the same way with agents of the same
layer and with those of different layers, λαβ ¼ λ, is no
longer a valid premise. To analyze the role of social mixing
between the different socioeconomic classes, we make use
of the interlayer coupling γ and analyze the behavior of the
epidemic threshold λc as γ varies from 0 (noninteracting
classes) to 1 (fully indistinguishable classes).
To illustrate the applicability of Eq. (20) in a real case, let

us focus on the analysis of the role that socioeconomic
mixing has on the epidemic threshold for the city of
Medellín. In Fig. 9(a), we show the surface λcðp; γÞ
calculated from the supramatrix M0 obtained from the
data of the city of Medellín. From this surface it becomes
evident that an increase of social mixing γ always leads to a
decrease of the epidemic threshold since γ promotes the
number of contacts taking place inside each subpopulation.
Regarding the role that mobility plays, it becomes clear
that, for all the values of the interlayer coupling, increasing
the agents’ movements always has a detrimental effect on
the onset of epidemics, which is identified by an increase of
the epidemic threshold. Both factors then can counterbal-
ance each other and will be responsible of interesting
nontrivial effects on the criticality of the epidemics. The
pattern observed in the surface λcðp; γÞ points out a
nontrivial dependence of the epidemic threshold with the
mobility for small values of the social mixing γ. This
dependence is better visualized in Figs. 9(b) and 9(c),
where we show the curves λcðpÞ for several γ values and
their counterpart, i.e, the curves λcðγÞ for several values
of p.
Interestingly, for low values of γ, at certain values of the

mobility p0 a sharp change in the slope of λcðpÞ takes place.
Given the dependence of λc on ΛmaxðM0Þ this sudden
variation is associated to a change on the leading eigen-
vector of M0. This phenomenon is in close analogy to the
findings by Ref. [35] for the spectra of the supra-Laplacian
matrix, where the change on the order of the relevant
eigenvalues leads to an abrupt change of the critical
properties of the multiplex. In the following section, we

FIG. 8. Temporal evolution of a SIR disease whose seed is
initially localized inside layer 1 (top) and layer 5 (bottom).
Solid lines correspond to theoretical predictions according
to Eqs. (11)–(14), whereas black dots are the output of
Monte Carlo simulations. The mobility of the agents p, the
contagion rate λ, and the recovery rate μ have been set to
(p; λ; μÞ ¼ ½0.05; 4λcðp ¼ 0Þ; 0.2�.
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present a deeper analysis of this phenomenon and its
implications.

C. Outbreak localization transitions

To get insight on the abrupt change of tendency in the
evolution of the epidemic threshold observed in Figs. 9(b)
and 9(c) for certain values of (p, γ) = ðp0; γ0Þ, we analyze
the structure of the leading eigenvector of matrix M0. The
components of the leading eigenvector vmax corresponding
to ΛmaxðM0Þ encode those subpopulations driving the
onset of the epidemic close to the epidemic threshold. If
the structure of this eigenvector vmax, which controls the
onset of epidemics, also changes at ðp0; γ0Þ, it implies that
the contribution of each subpopulation to the epidemic
onset is eventually altered.
The analysis of the components of vmax reveals that

this is indeed the case. The distribution of values of the
components of vmax shows different localizations, i.e.,
significantly larger contributions of different subpopula-
tions, as a function of the mobility parameter p and the
social mixing controlled by γ. The existence of different
localizations vmax depending on the mobility is crucial for
designing efficient policies to ameliorate the onset of
diseases since the particular contribution of each subpopu-
lation encoded in the components of vmax allows us to apply
targeted immunization strategies. Specifically, as the
patches in the metapopulation of Medellín correspond to
neighborhoods, identifying the largest components of vmax
helps us to identify the most critical urban areas. To do so,
note that first we must filter those entries of the matrix
M0αβ

ij which are physically infeasible, i.e., having zero
individuals in a patch i in layer α. This filtering is essential
to make predictions about real epidemic scenarios and does
not have any influence on its eigenvalues, so that there are
no changes in the predictions about the epidemic threshold.
Once we have filtered out these artifacts, we compute the
leading eigenvector of the matrix M0.

A way to quantify the former description is focusing on
the overall contribution of each geographical patch to vmax
across all layers. This can be achieved simply by coarse
graining the eigenvector summing the contributions of each
layer associated to the same urban area i, obtaining a new
eigenvector Vmax of N entries which are given by

ðVmaxÞi ¼
P

L
α¼1 ðvmaxÞαiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
j¼1½

P
L
α¼1 ðvmaxÞαj �2

q ; ð23Þ

where the denominator accounts for the normalization of
the projected eigenvector Vmax.
In Figs. 10(a) and 10(b), we show the evolution of the

projected eigenvector with γ assuming that agents’mobility
is p ¼ 0 (a) and p ¼ 0.6. In these cases, the eigenvectors
are pretty localized in a few patches, pointing out that
targeted policies should be implemented to control epi-
demic outbreaks. Moreover, as anticipated before, strong
variations in the leading eigenvector components occur
while varying social mixing γ. For the chosen mobility
values, these transitions take place for γ0 ≃ 0.63 when
p ¼ 0 and γ0 ≃ 0.21 when p ¼ 0.6. For the sake of
completeness, we have also represented in Fig. 10(c) a
complementary figure by fixing γ ¼ 0.1 and modifying
agents’ mobility p. In this case, we also find a sharp
transition in the leading eigenvector which occurs for
p0 ≃ 0.18. Note that, as a direct consequence of the current
findings, containment strategies targeting a certain patch
can pass from efficient to useless under small changes in
either the agents’ mobility or their social mixing.
Finally, to have a more general and explicative picture of

the phenomena described above, we compute the inverse
participation ratio (IPR) of the projected eigenvector Vmax
as a function of the agents’ mobility p and the interlayer
coupling γ. This quantity has been proved to be very useful
for studying the localization of spreading dynamics in
complex networks [47,48]. In our case, this quantity reads
as follows:

FIG. 9. (a) Epidemic threshold (color code) as a function of the agents’ mobility p and the interlayer coupling γ. (b) Epidemic
threshold as a function of the mobility for several values of the interlayer coupling. (c) Epidemic threshold as a function of the interlayer
coupling for several values of the mobility. Note that the epidemic threshold has been rescaled by the epidemic threshold corresponding
to the static case and decoupled layers, so that λ̃c ¼ λcðp; γÞ=λcð0; 0Þ.

D. SORIANO-PAÑOS et al. PHYS. REV. X 8, 031039 (2018)

031039-12



IPR ¼
XN
i¼1

ðVmaxÞ4i ; ð24Þ

where ðVmaxÞi is given by Eq. (23). This definition bounds
IPR between IPR ¼ 1=N, corresponding to a completely
delocalized state, and IPR ¼ 1, for which the eigenvalue is
strictly localized in one patch.
In Fig. 10(d), we show the inverse participation ratio as a

function of the mobility and the social mixing. It can be
observed that this indicator captures the transition points
previously reported as sudden changes in the localization of
the leading eigenvector of the matrixM0 for small values of
p and γ. These sudden changes consist of abrupt decreases

of the IPR, pointing out the delocalization processes
necessary to move from one localized eigenvector to
another one localized in the other node. Finally, as p
increases, for all γ values, a drop in IPR occurs due to the
delocalization of the eigenvector components because of
the geographical mixing provided by the large mobility of
agents.

D. Physical interpretation of the abrupt changes
in the populations triggering epidemics

We now try to understand the physical roots beneath the
abrupt changes in the components of the leading eigen-
vector of matrixM. To shed light on these phenomenon we

FIG. 10. (a),(b) Magnitude of the components of the leading eigenvector (color coded) as a function of the social mixing γ for every
subpopulation (patch); see Eq. (23). The mobility of the agents has been set to (a) p ¼ 0.0 and (b) p ¼ 0.6. (c) Same as (a) and (b), but
now fixing the interlayer coupling to γ ¼ 0.1 and monitoring the evolution of the leading eigenvector with p. (d) Inverse participation
ratio (IPR) (color code) according to Eq. (24) as a function of p and γ. Note that there are abrupt changes in the IPR for certain values of
(p, γ). These strong variations encode the delocalization processes that take place when the dominant patch, which triggers the epidemic
onsets, changes.
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must identify those critical patches driving the epidemic
onset without performing any spectral analysis. The most
logical way to tackle this problem is to compute the total
number of contacts performed by the agents of a given
patch i and socioeconomic class α. This way, we can identify
the urban area and class whose inhabitants are more likely to
contract the disease due to their higher participation in
contagion processes. At this point, let us recall the physical
meaning of the entries of matrix M, Eq. (19). In particular,
Mαβ

ij encodes all the possible contacts between one indi-
vidual from patch i at layer α and agents from patch j at layer
β. This way, the effective number of contacts of agents from i
at α can be computed as

Cα
i ðp; γÞ ¼

XL
β¼1

XN
j¼1

Mαβ
ij ðp; γÞ: ð25Þ

To illustrate the applicability of this quantity to identify
those areas that are more likely to trigger the epidemic
outbreak, let us represent, see Fig. 11, the two largest values
of the effective number of contacts as a function of (p, γ)
for the cases depicted in Fig. 10. Interestingly, these two
largest values of Cα

i correspond to the patches involved in
each of the abrupt transitions reported in Fig. 10, thus
revealing that the effective number of contacts captures
those driver nodes that appear in the leading eigenvector of
M. Moreover, the effective number of contacts also
captures those values γ0 and p0 where the abrupt transitions
in the leading eigenvector take place. As a consequence, we
can physically explain the observed transitions by comput-
ing the values of the mobility and the interlayer coupling
for which the contacts of agents from one patch and layer
surpass those corresponding to the former dominant patch.

VI. CONCLUSIONS

In this work, we elaborate a theoretical formalism to
analyze spreading processes in multiplex metapopulations

characterized by recurrent mobility patterns. Our frame-
work gets rid of the assumptions about the correlations
between the node attributes and epidemic variables intro-
duced in heterogeneous mean-field formulations. This
way, the formalism introduced here is general enough so
as to accommodate any origin-destination (weighted and
directed) matrix containing different commuting patterns
within a population and to cast the information about the
local census of each patch.
First, we introduce the Markovian evolution equations

for the monoplex (single-layer multiplex) case under the
SIR and SIS dynamics. The second step is to generalize the
former formalism to address metapopulations composed of
several types of agents whose mobility patterns are differ-
ent. To this aim, we make use of the multiplex formalism,
thus constructing a multiplex metapopulation. We check
the validity of the Markovian formalism by solving the
equations and comparing their solution with the results
obtained from Monte Carlo simulations in synthetic
multiplex metapopulations. The agreement we obtain is
remarkable both at the macroscopic and the microscopic
level, even reproducing the spatiotemporal epidemic pat-
terns capturing the onset of epidemics at the local level of
patches.
The validity of theMarkovian equations has allowed us to

derive analytical expressions for the global epidemic thresh-
old of multiplex metapopulations. Again, the analytical
prediction is in complete agreement with numerical simu-
lations. Interestingly, the onset is related to the maximum
eigenvalue of a supramatrix M in which the different
mobility patterns, local census, the degree of mobility, and
the social mixing interplay. Remarkably, the structure of the
supramatrixM captures three basic contagion processes for
a healthy individual.
On more general grounds, dynamical processes on

multiplexes have been a research focus in recent years
[39,49–52], along with, in particular, their application to

FIG. 11. (a),(b) Average number of contacts Cα
i in which agents from patch i at layer α participate as a function of γ. For the sake of

clarity, only the largest values of this indicator, which are relevant for identifying the critical patches, have been represented. The chosen
values of the mobility are p ¼ 0 in (a) and p ¼ 0.6 in (b). (c) Average number of contacts Cα

i in which agents from patch i at layer α
participate as a function of the mobility for γ ¼ 0.1.
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epidemics [53]. As usual in the multiplex literature, the
scenario considered is that of coupled contact networks, so
that a node is an individual that interacts in different ways
(i.e., through different interaction layers) with the rest of the
nodes. Under this setting, different problems, such as the
diffusion of a disease through different contagion channels
[40,41,54], the cooperative spreading of different diseases
[55–58], or the coevolution of different contagion processes
[59–61], have been addressed. Here, at variance, the two
interaction levels (epidemics and mobility) of the meta-
population yield interesting results related to the interplay
of the architecture of layers.
Finally, we show the applicability of the formalism to a

real case study: the city of Medellín (Colombia). To this
end, we gathered data of the mobility patterns for different
socioeconomical classes (the layers of the multiplex). The
first interesting result is the presence of epidemic detriment
with mobility [26] for the full multiplex structure while, for
each individual layer, the phase diagram does not show this
phenomenon. Additionally, the multiplex formalism allows
us to study the mixing among the different socioeconomic
classes in Medellín using a single parameter (intensity of
the interlayer link). An exhaustive analysis of the epidemic
threshold reveals that, when mixing between different
socioeconomic classes is small, there is a sudden change
in the localization components of the eigenvector control-
ling the epidemic onset as mobility increases. This tran-
sition implies that the set of subpopulations triggering the
spread of the disease changes abruptly, and can be detected.
Moreover, we derive an indicator that is the effective
number of contacts of the agents of one agent from a
given patch and class. This indicator, which only depends
on the underlying multiplex metapopulation, allows us to
determine the drivers nodes and, more importantly, the
transition points where the abrupt changes in the localiza-
tion of epidemic outbreaks occur. These results point out
that the multiplex nature of urban systems and the interplay
between mobility and the social mixing of their inhabitants
must be carefully taken into account in order to design
efficient containment policies.
In a nutshell, the formalism we introduce here provides

us with a reliable and computationally time-saving platform
to analyze the epidemic risk of systems displaying recurrent
mobility patterns. This way, the formalism can be used to
readily identify those critical areas that spur the unfolding
of diseases. In addition, the possibility of handling ana-
lytical equations can be further exploited beyond the
derivation of the epidemic threshold and combined together
with control techniques to test in an efficient way different
contention policies. We expect as well that our Markovian
formalism can be further extended in the future to accom-
modate more sophisticated commuting patterns and more
refined epidemic models, thus better representing real
epidemic scenarios.
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APPENDIX A: VALIDATION OF THE
MARKOVIAN EQUATIONS FOR SYNTHETIC

SINGLE METAPOPULATIONS

To check the accuracy of the Markovian equations we
have considered ER and SF synthetic networks having the
same number of nodes N ¼ 103 and average connectivities
hki ¼ 5.5 and hki ¼ 7.3, respectively. The nodes of these
networks are homogeneously populated, ni ¼ 5×103 ∀ i,
so that the total population of our systems is P ¼ 5 × 106.
The weights Wij between the nodes of the graphs are
randomly assigned following a homogeneous distribution
within the range Wij ∈ ½1; 50�. Once all the weights are
set, we construct the transition matrix R [see Eq. (1)] for
each graph.
Monte Carlo simulations start by infecting a small

fraction of agents in each of the nodes. In particular, we
infect each agent with probability 10−3 so that, on average,
there is 1 infected agent per node at time t ¼ 0. This initial
configuration corresponds to set as initial conditions
of the Markovian equations ρið0Þ ¼ 10−3 ∀ i [and
rið0Þ ¼ 0 ∀ i in the SIR case]. For Monte Carlo simu-
lations, due to the stochastic nature of the initial configu-
ration and the disease models, we have averaged the results
over 102 realizations for each combination of the param-
eters (p, λ, and μ) considered.
First, we analyze the SIS model. In Fig. 12 (top and

bottom panels correspond to ER and SF networks, respec-
tively), we plot the number of infected agents in the steady
state I as a function of the infection probability λ for
different movement probabilities p. The points denote the
results of Monte Carlo simulations for each value of λ and p
while solid curves correspond to the solution of the
Markovian equations. The agreement between simulations
and the equations is almost exact, capturing with high
accuracy the macroscopic state of the metapopulation in
both the disease-free and epidemic regimes. For the SIR
model in Fig. 13 (top and bottom panels correspond to ER
and SF networks, respectively), we plot the number of
recovered agents R as function of λ for the same set of
movement probabilities p as for the SIS model. Again, we
observe the exact agreement between Monte Carlo simu-
lations and the solution of Markovian equations both before
and after the epidemic threshold.
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The high accuracy of the solution of Markovian equa-
tions shown in Figs. 12 and 13 allows us to overcome the
computational costs associated to large-scale Monte Carlo
simulations. However, it is clear that both I (SIS) and R
(SIR) are macroscopic indicators of the outreach of the
disease in the whole population. The examples shown
above assume that the populations across nodes are
homogeneously distributed. However, in real metapopula-
tions, such as cities, each patch contains a different number
of agents. These demographic heterogeneity may lead to
interesting effects, such as the increase of the epidemic
threshold with the increase of mobility [26,27]. Here, due
to the homogeneous distribution of agent across patches,
mobility always leads to a decrease of the epidemic onset
(as shown in Figs. 12 and 13).

APPENDIX B: VALIDATION OF THE
MARKOVIAN EQUATIONS FOR MEDELLÍN

MULTIPLEX

Finally, we check the accuracy of the Markovian
equations in predicting the impact of epidemics on the city
of Medellín at a global scale. In Fig. 14, we plot the epi-
demic diagrams corresponding to different values of the
degree of mobility p for both SIS and SIR diseases. These
diagrams are obtained via Monte Carlo simulations (points)
and by solving the Markovian equations (lines), showing an
excellent agreement. Interestingly, we can also notice that,
in Medellín, mobility hinders epidemic onsets, since the
epidemic threshold increases with p. This counterintuitive
behavior, already reported for monolayer configurations
[26], emerges from the homogenization of the demographic
distribution across urban areas as mobility increases.

FIG. 13. RðλÞ for the SIR dynamics in ER (top) and SF
(bottom) networks of 103 nodes and hki ¼ 5.5 and hki ¼ 7.3,
respectively. The population of each node is 5000 individuals.
The solid curves indicate the solution obtained by solving the
Markovian evolution equations (the color of each curve indicates
the value of p as shown in the color bars), whereas the points
correspond to the results obtained by using Monte Carlo sim-
ulations (102 realizations for each value of λ). Note that the
value of λ has been rescaled by the critical value at p ¼ 0,
i.e., that of a well-mixed population of n ¼ 5 × 103 individuals:
λcðp ¼ 0Þ ¼ μ=n ¼ 4 × 10−4. The recovery rate is μ ¼ 0.2.

FIG. 12. IðλÞ for the SIS dynamics in ER (top) and SF (bottom)
networks of 103 nodes and hki ¼ 5.5 and hki ¼ 7.3, respectively.
The population of each node is 5 × 103 individuals. The solid
curves indicate the solution obtained by solving the Markovian
evolution equations (the color of each curve indicates thevalue ofp
as shown in the color bars), whereas the points correspond to the
results obtained by usingMonte Carlo simulations (20 realizations
for each value of λ). Note that the value of λ has been rescaled by
the critical value at p ¼ 0, i.e., that of a well-mixed population
of n ¼ 5000 individuals: λcðp ¼ 0Þ ¼ μ=n ¼ 4 × 10−4. The
recovery rate is μ ¼ 0.2.
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