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It is vital to minimize the impact of errors for near-future quantum devices that will lack the resources for
full fault tolerance. Two quantum error mitigation (QEM) techniques have been introduced recently,
namely, error extrapolation [Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017); K. Temme et al.,
Phys. Rev. Lett. 119, 180509 (2017)] and quasiprobability decomposition [K. Temme et al., Phys. Rev.
Lett. 119, 180509 (2017)]. To enable practical implementation of these ideas, here we account for the
inevitable imperfections in the experimentalist’s knowledge of the error model itself. We describe a
protocol for systematically measuring the effect of errors so as to design efficient QEM circuits. We find
that the effect of localized Markovian errors can be fully eliminated by inserting or replacing some gates
with certain single-qubit Clifford gates and measurements. Finally, having introduced an exponential
variant of the extrapolation method we contrast the QEM techniques using exact numerical simulation of
up to 19 qubits in the context of a “SWAP” test circuit. Our optimized methods dramatically reduce the
circuit’s output error without increasing the qubit count.
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I. INTRODUCTION

Controlling noise in quantum systems is crucial for the
development of practical technologies. Such noise can
occur due to unwanted interactions of a passive qubit with
the environment, or due to imperfections in the use of
circuit elements that compose the algorithm (qubit initial-
ization, gates, and measurement). In all cases the result is
errors occurring at the level of physical qubits. The theory
of quantum fault tolerance (QFT) reveals that the intro-
duction of logical qubits, composed of numerous physical
qubits, can allow one to detect and correct errors at the
physical level; however, this capacity comes at an enor-
mous multiplicative cost in resources. A recent estimate
suggests that a Shor algorithm operating on a few thousand
logical qubits would require several million physical qubits
[1]. While it is encouraging to know that such techniques
exist, hardware on this scale is probably at least a decade
away. The timely (indeed, urgent) question is, to what
extent can we control the impact of errors in computing
devices that are too small to support full QFT?

It may prove to be the case that deep quantum algo-
rithms, such as Shor’s factoring algorithm and Grover’s
search algorithm, cannot be successfully executed on
classically intractable problems without the support of
QFT. However, fortunately there are other algorithms of
potential practical significance that focus on shallow
circuits, with the output typically being fed into a classical
supervising algorithm so as to form a hybrid system. Such
approaches have been proposed for the simulation to
aid discovery in chemistry and materials science; see
Refs. [2–11] for examples. Hybrid systems may be capable
of yielding significant results, surpassing conventional
computers, even when finite error rates are present because
of their error resilience [12,13]. In order to achieve this it is
desirable to suppress or mitigate errors to the greatest extent
possible while keeping the qubit count ideally unchanged,
or increasing only modestly compared to the high cost of
full QFT.
Recently two techniques were introduced for quantum

error mitigation (QEM) in generic hybrid quantum algo-
rithms where the expected value of an observable—say, a
z-basis measurement of a given qubit—is the quantity of
interest. The goal is to estimate the value that this
observable would take given an error-free circuit, despite
the reality that the real experimental system cannot perform
operations with less than a certain error rate. Reference [2]
introduced a hybrid algorithm simulating quantum dynam-
ics, which featured an active error minimization technique
involving extrapolation. The experimentalist would execute
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the circuit with all errors at their minimum achievable
severity, obtain the expected value of the observable, and
then repeat the exercise having deliberately increased the
physical error rate (or having applied additional quantum
gates to achieve the same effect). By noting the effect of the
increased errors on the observable, the experimentalist
would be able to make an extrapolated estimate of the
zero-error value, presuming that the error sources had
scaled proportionately. The technique was found to be
very advantageous in the numerical simulations of few-
qubit experiments presented in that paper (see, e.g., Fig. 5
in Ref. [2]).
A paper that appeared online at almost the same time was

Ref. [14] by the IBM-based team of Temme, Bravyi, and
Gambetta. That Letter presented a comprehensive analysis
of the extrapolation technique, which the authors had
independently conceived, and moreover, it introduced a
second technique with using (what we will call) a “qua-
siprobability” formalism. The authors explained that by
replacing operations in the quantum circuit and assigning
parity �1 to each operation following a certain probability
distribution dependent on the noise, an experimentalist can
obtain the unbiased estimator, at the cost of an increase in
the variance. Their method was shown to be applicable to
specific noise types, including homogeneous depolarizing
errors and damping errors. The authors found both methods
to be promising in few-qubit numerical simulations (see,
e.g., Fig. 2 in Ref. [14]).
As exciting as these studies were, open questions

remained to be answered before these two techniques
could be considered to be fully practical. First, both
techniques rely on the full knowledge of the error model,
whereas an experimentalist will have imperfect knowledge
and the real noise will generally differ from the canonical
types considered in these first papers. Second, we need an
explicit method to derive the QEM circuits, i.e., a speci-
fication of how to algorithmically increase the error rate in
the error extrapolation or how to sample circuits in the
quasiprobability decomposition. In this paper, we solve
these two problems. We find that gate set tomography
(GST) [15,16] provides sufficient information to enable full
elimination of the impact of localized Markovian errors. As
with other process tomography protocols, GST cannot
determine the exact physical error model due to noise
associated with state preparation and measurement.
However, we determine that preparation and measurement
noise in GST is not harmful to the overall QEM approach.
We also find that single-qubit Clifford gates and measure-
ments are universal in computing expected values.
Each quantum operation is a linear map, and single-
qubit Clifford gates and measurements yield a complete
set of linearly independent maps (quantum operations).
Therefore, any error can be simulated or subtracted by
decomposing the error using the complete operation set,
which is the standard linear decomposition. We prove that,

by combining GST and the complete set decomposition,
any localized and Markovian errors in the quantum
computer can be systemically mitigated, so that the error
in the final computational output is only due to unbiased
statistical fluctuation.
For the quasiprobability method, we provide an upper

bound of the cost in QEM, and we describe the utility of
“twirling” operations [17–19] in minimizing this cost. For
the extrapolation method, which is a relatively straightfor-
ward technique, our optimization is to observe that typi-
cally for the classes of noise most common in experiments
it is appropriate to assume that the expected value of the
observable will decay exponentially with the severity of the
circuit noise. Adopting this underlying assumption, rather
than a polynomial (e.g., linear) fit, proves to be quite
advantageous.
Having thus optimized both the quasiprobability and the

extrapolation techniques, we make a series of numerical
simulations to study their efficacy. We opt for a specific
circuit, a realization of the “SWAP test” that is often
employed in quantum algorithms as a means for estimating
the similarity of quantum states [20,21]. Our SWAP test
operates on 2nþ 1 qubits, and we simulate a total of 15
qubits over a comprehensive set of cases as well as 19
qubits for specific cases. We numerically simulate the
actions of the experimentalist, who must perform many
circuit trials in order to make a single estimate of the
observable (we choose 104 trials). But in order to evaluate
our QEM techniques we must then repeat this entire
process to determine the distribution of values that the
experimentalist might obtain. We perform at least 103

repetitions so that the distribution becomes clear; thus, at
least 107 individual numerical experiments are performed
for each of the curves that we presently report.

II. ERROR MITIGATION

In this paper, we focus on computing the expected value
of an observable in a state (the final state of a quantum
circuit) using a quantum computer. It is typical of a number
of quantum algorithms and subroutines that the desired
output is the expected value of a qubit or qubits—the SWAP

test [20,21] itself, which is a component of algorithms
including the recently introduced autoencoder [22], and
several proposed hybrid algorithms for simulating chemical
or materials systems [2–8].
Without using QEM as shown in Fig. 1(a), the quantum

circuit is repeated for many times, and the measurement
outcome μ of each time is collected. Then, we can calculate
the average μ̄ as our best estimate of the expected value.
Given that the number of repetitions is finite, the value of μ̄
is a random variable with an associated distribution.
Because the implementation of the quantum circuit is
imperfect, it is likely that the distribution of μ̄ is not even
centered at the ideal value, i.e., the exact expected value
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when the quantum circuit is perfectly implemented with-
out error.
When we use QEM as shown in Fig. 1(b), instead of the

original quantum circuit, we implement a set of modified
circuits. The scheme depicted in the figure is relevant to the
quasiprobability method for QEM, but can also apply to the
extrapolation method as a means to deliberately boost
errors. Each modified circuit is determined by a set of
random numbers l. The distribution of random numbers,
i.e., modified circuits, depends on the error model, which is
measured using GST before the quantum computing. In
each run of the quantum experiment, firstly the random
number set l is generated, then depending on l a specific
circuit is implemented, and finally the measurement out-
come μ is collected. Rather than calculating the average μ̄,
we use both l and μ to calculate the average of an effective
outcome μeffðl; μÞ, which is given explicitly later. If QEM is
successful, the distribution of Cμeffðl; μÞ is centered at the
ideal value, but the distribution is wider than μ̄ because of
the factor C, which is greater than 1 and can be efficiently
computed. Thus, only error due to the statistical fluctuation
remains, although it is amplified. By repeating the quantum
experiment enough times, we can obtain an accurate
computing result of the expected value.
In Sec. IV, we explicitly give the effective outcome

μeffðl; μÞ and the factor C. Modified circuits and their
distribution are given in Sec. VIII.

III. NOTATION FOR STATES, OPERATORS,
AND OPERATIONS

We use the notation commonly used in quantum tomog-
raphy (e.g., in Refs. [15,16]).
In quantum theory, a quantum state is usually represented

by a density matrix ρ, and an observable is represented by a
Hermitian operatorQ. The expected value of the observable

quantity in the state is hQi ¼ TrðQρÞ. An operation is a map
on the space of states, OðρÞ ¼ P

kEkρE
†
k, expressed in the

Kraus form.
Because an operation is a linear map, we can always

express the operation O as a square matrix, e.g., using the
Pauli transfer matrix representation, acting on the state
expressed as a column vector jρ⟫. Similarly, an observable
can be expressed as a row vector ⟪Qj, and the expected
value is hQi ¼ ⟪Qjρ⟫. Throughout this paper, we use the
Pauli transfer matrix representation; see Appendix A for
details. In quantum tomography, usually we focus on
observables that are positive-operator valued measure
(POVM) operators, which is not necessary here.
In the Pauli transfer matrix representation, vectors

representing states or observables and matrices represent-
ing operations are all real. For n qubits, vectors and
matrices are 4n-dimensional. The expected value of the
observable Q in the state ρ going through a sequence of
operations O1;…;ON reads as follows:

Tr½QON∘ � � � ∘O1ðρÞ� ¼ ⟪QjON � � �O1jρ⟫:

IV. QUANTUM COMPUTING BY SAMPLING
CIRCUITS

We suppose that the initial state is ρð0Þ, which goes

through a sequence of operations Oð0Þ
1 ;…;Oð0Þ

N , and in the
final state the observable Qð0Þ is measured. Each time the
experimentalist implements this circuit, the measurement
returns an eigenvalue of Qð0Þ, and the probability distri-
bution of eigenstates is determined by the final state. By
repeating such a circuit for many times, we can estimate the

expected value hQð0Þi ¼ ⟪Qð0ÞjOð0Þ
tot jρð0Þ⟫ ¼ E½μð0Þ�, where

Oð0Þ
tot ¼ Oð0Þ

N � � �Oð0Þ
1 , and μð0Þ is the measurement outcome.

(a) Computing without error mitigation

(b) Computing with error mitigation

FIG. 1. Quantum computing of the expected value of an observable (a) without quantum error mitigation (QEM) and (b) with QEM. In
QEM circuit (b), each operation (including the memory operation) in the original circuit (a) is replaced by an operation depending on the
corresponding random numbers [see Fig. 2(a)].
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Generally in this paper we use the superscript 0 to denote
the ideal noise-free realization of a state, operation, or
observable quantity.
In the case that the quantum computation has errors, the

actual initial state is ρ, actual operations are O1;…;ON ,
and the actually measured observable is Q. As a result, the
estimation of the expected value converges to hQi ¼
⟪QjOtotjρ⟫ rather than hQð0Þi. Here, Otot ¼ ON � � �O1,
and we have assumed that errors are Markovian.
The central idea introduced by the IBM team in Ref. [14]

is that one can exactly compensate for the effect of errors by
sampling from a set of (real, error-burdened) circuits, each

labeled OðlÞ
tot for l ¼ 1; 2;…, provided that their outputs

satisfy

hQð0Þi ¼
X
l

ql⟪QðlÞjOðlÞ
tot jρðlÞ⟫:

Reference [14] describes how the real numbers fqlg, which
represent quasiprobabilities, can be efficiently derived
given specific error models, assuming that the experimen-

talist has full knowledge of the model. Note that each OðlÞ
tot

denotes the total operation composed by a sequence of
operations in the lth circuit.
We can use the Monte Carlo method to compute hQð0Þi.

We note that ⟪QðlÞjOðlÞ
tot jρðlÞ⟫ ¼ E½μðlÞ�, where μðlÞ is the

measurement outcome in the lth circuit. Then
hQð0Þi ¼ P

ljqljE½sgnðqlÞμðlÞ�. To compute hQð0Þi, we
randomly choose a circuit to implement, and the lth circuit
is chosen with the probability pl ¼ jqlj=C, where
C ¼ P

ljqlj. Then, the computing result is given by the
expected value of effective measurement outcomes, i.e.,
hQð0Þi ¼ CE½μeff �, where the effective outcome is μeff ¼
sgnðqlÞμðlÞ if the lth circuit is chosen to be implemented,
and μðlÞ is the outcome directly obtained in the lth circuit.

V. PER-OPERATION ERROR CORRECTION

We can correct errors in each operation using the
quasiprobability method, which is the primary focus for
the following several sections. We suppose that we have a

set of initial states satisfying jρð0Þ⟫ ¼ P
linq

½in�
lin
jρðlinÞ⟫, and a

set of operations satisfying Oð0Þ
i ¼ P

liq
½i�
li
OðliÞ

i for each

error-free operationOð0Þ
i , and a set of observables satisfying

⟪Qð0Þj ¼ P
loutq

½out�
lout

⟪QðloutÞj. Then, computing with error
mitigation can be expressed as

hQð0Þi ¼
X
lin

X
l1

� � �
X
lN

X
lout

q½in�lin
q½1�l1

� � � q½N�
lN
q½out�lout

× ⟪QðloutÞjOðlNÞ
N � � �Oðl1Þ

1 jρðlinÞ⟫: ð1Þ

When we sample circuits to compute hQð0Þi ¼ CE½μeff �, the
initial state is jρðlinÞ⟫ with probability p½in�

lin
¼ q½in�lin

=Cin, the

ith operation is OðliÞ
i with probability p½i�

li
¼ jq½i�li j=Ci, and

the observable is ⟪QðloutÞj with probability p½out�
lout

¼
q½out�lout

=Cout. Here, Cα ¼
P

lα jq
½α�
lα
j, and C ¼ CinC1 � � �

CNCout accordingly. To calculate μeff , we

use sgnðq½in�lin
� � � q½out�lout

Þ ¼ sgnðq½in�lin
Þ � � � sgnðq½out�lout

Þ.

VI. VARIANCE AMPLIFICATION IN
QUASI-PROBABILITY DECOMPOSITION

The presence of quasiprobabilities taking negative values
amplifies the variance of the expected value of the
observable. We consider the case that QðlÞ is a Pauli
operator (maybe with error) and the measurement reports
two kinds of outcomes denoted by �1, respectively. In this
case, the distribution is binomial. The standard deviation of
the average of outcomes in the Monte Carlo calculation is
σ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − E½μeff �2Þ=Nr

p
≤ C=

ffiffiffiffiffiffi
Nr

p
. Here, Nr is the total

number of samples; i.e., the total number of circuits of
all kinds which the experimentalist performs is Nr.
We compare this to the error-free computing; i.e., the

ideal original circuit ⟪Qð0ÞjOð0Þ
tot jρð0Þ⟫ is repeated for Nð0Þ

r

times to estimate hQð0Þi. For the error-free computing,
the standard deviation is given by σð0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − E½μð0Þ�2Þ=Nð0Þ

r

q
. Therefore, to achieve the same

accuracy, i.e., σ ¼ σð0Þ, the error-mitigated computation

needs Nr=N
ð0Þ
r ¼ ðC2 − hQð0Þi2Þ=ð1 − hQð0Þi2Þ times more

samples than the error-free computation. Here, we have
used the fact that the error-mitigated computation and the
error-free computation should converge to the same value
of hQð0Þi; i.e., E½μð0Þ� ¼ CE½μeff �.
In order to limit the standard deviation to be σ ∼ ϵ, we

can chooseNr ∼ ðC=ϵÞ2. Therefore, if the factorC is larger,
the computing takes longer.
Because C ¼ CinC1 � � �CNCout if errors are corrected for

each operation, we call Cα − 1 the cost for mitigating error
in the corresponding operation. The overall cost therefore
increases with the number of operations; thus it is important
to reduce the operation number. For example, in a quantum
computer with qubits fully connected [23], operations for
communication are not required, which may significantly
reduce the cost.

VII. UNIVERSAL OPERATION SET

The set of operations including measurement and single-
qubit Clifford gates is universal in computing expected
values of observables. The relevant measurement operation
reads ½π� ¼ ½1

2
ð1þ σzÞ�, which projects a qubit to the state

j0i. Here, ½U�ðρÞ ¼ UρU† denotes a superoperator. Such a
nondestructive measurement can be realized using a
destructive measurement followed by initializing the qubit
in the state j0i. Single-qubit Clifford gates include the
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Hadamard gate ½H� ¼ ½ð1= ffiffiffi
2

p Þðσx þ σzÞ�, the phase gate
½S� ¼ ½ð1= ffiffiffi

2
p Þð1 − iσzÞ�, and all other single-qubit Clifford

gates can be derived from these two.
The measurement superoperator [π] also means post-

selection; i.e., if the outcome of the measurement corre-
sponding to [π] (which is not the final measurement on the
observable QðlÞ) is j1i in a trial, the value of the observable
QðlÞ is noted as μðlÞ ¼ 0, but the trial is counted in the total
number of samples in the Monte Carlo calculation. If QðlÞ
has two values �1, we can estimate the value of

⟪QðlÞjOðlÞ
tot jρðlÞ⟫ by calculating ðNðlÞ

þ1 − NðlÞ
−1Þ=ðNðlÞ

0 þ
NðlÞ

þ1 þ NðlÞ
−1Þ. Here, we have supposed that the circuit is

implemented for total NðlÞ
0 þ NðlÞ

þ1 þ NðlÞ
−1 times; for NðlÞ

0

times, the circuit does not pass postselections (i.e.,

μðlÞ ¼ 0), and for NðlÞ
�1 times, the circuit passes all post-

selections and reports QðlÞ ¼ �1 (i.e., μðlÞ ¼ �1). It is the
same when we compute hQð0Þi using the Monte Carlo
method. If the effect outcome is μeff ¼ 0with the probability
P0, then the standard deviation of the Monte Carlo calcu-
lation becomes σ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 − P0Þ2 − E½μ�2�=ð1 − P0ÞNr

p
≤

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − P0Þ=Nr

p
.

In Table I, we list 16 linearly independent operations that
can be derived from the minimum universal operation set

f½π�; ½H�; ½S�g. In the following, we use fBð0Þ
i ji ¼ 1;…; 16g

to denote these 16 operations. Because they are linearly
independent, any single-qubit operationO, which is a 4 × 4
real matrix, can be expressed as a linear combination of 16

basis operations; i.e., O ¼ P
16
i¼1 qiB

ð0Þ
i . Similarly, multi-

qubit operations can be expressed as a linear combination
of tensor products of basis operations. Using the quasi-
probability method, any computation of expected values of
observables can be realized using this operation set.
Note that these basis operations are universal, as one can

verify by constructing a non-Clifford gate or an entangling
gate: We can decompose the T gate using our basis
operations as ½T�¼1

2
½1�−½ð ffiffiffi

2
p

−1Þ=2�½σz�þð ffiffiffi
2

p
=2Þ½R3

z �
(see Appendix B for controlled-NOT as a second example).
However, this construction would not be used in practice—it
is not an efficient means to actually implement a desired T in
the basic circuit, since the corresponding costC ¼ ffiffiffi

2
p

would
imply an unacceptably steep exponential in the time over-
head, as one would expect from, e.g., Refs. [24–26]. Instead
we rely on the assumption that the experimental system can
directly implement a universal set of gates (including
entangling and non-Clifford gates) with a reasonably high
fidelity. Then, rather than fully synthesizing any of the basic
gates using our basis, we need only compensate for slight
imperfections. The cost for doing so, for each imperfect gate,
is then C ∼ 1þ δ, as we presently discuss.
Having obtained the complete operation set in Table I we

can use it in deriving the protocol that will compensate for
errors. In this paper, we focus on the case that errors are
localized: An (error-free) operation that is applied on a set
of qubits S is a 4jSj-dimensional real matrix, then the
corresponding operation in real (i.e., error-burdened) O is
also a 4jSj-dimensional real matrix acting on the same set of
qubits. The overall operation on the entire system can be
expressed as 1S̄ ⊗ O, where 1S̄ is the identity acting on all
other qubits. It is similar for the initialization and meas-
urement. If each qubit is initialized individually, the overall
initial state is ⊗m jρm⟫, where jρm⟫ is a two-dimensional
real vector representing the mth qubit’s initial state.
Similarly, individual measurement of qubits implies that
the overall measured observable is ⊗m ⟪Qmj, where ⟪Qmj
is a two-dimensional real vector representing the measured
observable for the mth qubit. In this case, a single-qubit
operation with error can still be expressed using a 4 × 4 real
matrix. We suppose that for a qubit, 16 basis operations
with errors are fBiji ¼ 1;…; 16g, which are all 4 × 4 real
matrices. When errors are not significant, these 16 bases
should still be linearly independent; i.e., the set of basis
operations with errors is still universal.
To make this statement more precise, we consider the

16 × 16 real matrix

A ¼

2
666664

ðB1Þ•;1 � � � ðB16Þ•;1
ðB1Þ•;2 � � � ðB16Þ•;2
ðB1Þ•;3 � � � ðB16Þ•;3
ðB1Þ•;4 � � � ðB16Þ•;4

3
777775
: ð2Þ

TABLE I. Sixteen basis operations. Gates ½Rx� and ½Ry� can be
derived from [H] and [S], and other operations can be derived
from [π], ½Rx�, and ½Ry�.

1 ½1� (no operation)

2 ½σx� ¼ ½Rx�2
3 ½σy� ¼ ½Rx�2½Rz�2
4 ½σz� ¼ ½Rz�2
5 ½Rx� ¼ ½ð1= ffiffiffi

2
p Þð1þ iσxÞ� ¼ ½H�½S�3½H�

6 ½Ry� ¼ ½ð1= ffiffiffi
2

p Þð1þ iσyÞ� ¼ ½Rz�3½Rx�½Rz�
7 ½Rz� ¼ ½ð1= ffiffiffi

2
p Þð1þ iσzÞ� ¼ ½S�3

8 ½Ryz� ¼ ½ð1= ffiffiffi
2

p Þðσy þ σzÞ� ¼ ½Rx�½Rz�2
9 ½Rzx� ¼ ½ð1= ffiffiffi

2
p Þðσz þ σxÞ� ¼ ½Rz�½Rx�½Rz�

10 ½Rxy� ¼ ½ð1= ffiffiffi
2

p Þðσx þ σyÞ� ¼ ½Rx�2½Rz�
11 ½πx� ¼ ½1

2
ð1þ σxÞ� ¼ ½Rz�3½Rx�3½π�½Rx�½Rz�

12 ½πy� ¼ ½1
2
ð1þ σyÞ� ¼ ½Rx�½π�½Rx�3

13 ½πz� ¼ ½1
2
ð1þ σzÞ� ¼ ½π�

14 ½πyz� ¼ ½1
2
ðσy þ iσzÞ� ¼ ½Rz�3½Rx�3½π�½Rx�3½Rz�

15 ½πzx� ¼ ½1
2
ðσz þ iσxÞ� ¼ ½Rx�½π�½Rx�3½Rz�2

16 ½πxy� ¼ ½1
2
ðσx þ iσyÞ� ¼ ½π�½Rx�2
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Here, ðBiÞ•;j denotes the jth column of the matrix of the
basis operation Bi. Sixteen basis operations are linearly

independent if the matrix A is invertible. We use ϵmax ¼
maxfkBi − Bð0Þ

i kmaxji ¼ 1;…; 16g as the measure of the
error severity in basis operations. When ϵmax <
1
32
ð13 − 3

ffiffiffiffiffi
17

p Þ ≃ 0.0351, A is always invertible (see
Appendix C). We remark that even if ϵmax exceeds the
threshold, basis operations are still likely to be linearly
independent.

VIII. ERROR MITIGATION USING BASIS
OPERATIONS

Given an operation with error O, we can use 16 basis
operations to correct the error, i.e., realize the operation
without error Oð0Þ. There are two ways for correcting
the error.
Compensation method.—The operation O is close to

Oð0Þ. Therefore, we can keep the correct component of O
and only decompose the error component using basis
operations. We decompose the operation without error as
Oð0Þ ¼ λOþP

iqiBi, where λ is an arbitrary real number.
If basis operations are linearly independent, the decom-
position always exists, and there is only one solution of
coefficients fqig when λ is determined.
Inverse method.—If the matrix Oð0Þ is invertible, we can

express O as Oð0Þ followed by a noise operation, i.e.,
O ¼ NOð0Þ, where the noise operation N ¼ OOð0Þ−1. In
order to correct the error, we can decompose the inverse of
the noise as N −1 ¼ Oð0ÞO−1 ¼ P

iqiBi. By applying the
inverse of the noise after the operationO, we can realize the
operation without error, i.e., Oð0Þ ¼ N −1O ¼ P

iqiBiO.
Similar to the compensation method, if basis operations are
linearly independent, the decomposition always exists, and
there is only one solution of coefficients fqig. However, the
inverse method can be applied only if the matrix O is
invertible.
For multiqubit operations, the decomposition is per-

formed using tensor products of basis operations, as
described explicitly in Appendix D. Although basis oper-
ations are not entangling, we can use basis operations to
efficiently mitigate multiqubit errors and errors that can
entangle qubits. As an example, we show how to decom-
pose the controlled-NOT gate only using basis operations in
Appendix B, which suffices to imply that any error in the
form of the controlled-NOT gate can be mitigated using
basis operations.
Initialization and measurement errors can also be cor-

rected using basis operations. Taking first the case of
initialization errors: If jρ⟫ is the error-burdened initial
state, and it is a nonzero vector, we can always find a
transformation T that satisfies jρð0Þ⟫ ¼ T jρ⟫, where jρð0Þ⟫
is the error-free initial state. Thus, by decomposing T using
basis operations and applying it after the initialization, we

can prepare the initial state without error. Actually, given an
initial state that is close to j0i, we can generate a complete
set of linearly independent vectors fjρk⟫g using basis
operations. With these vectors, we can decompose the
initial state without error as jρð0Þ⟫ ¼ P

kqkjρk⟫.
A similar approach yields the corresponding result for

measurement: For an observable ⟪Qj there will be some
⟪Qð0Þj ¼ ⟪QjT where ⟪Qð0Þj is the error-free quantity. If
an observable is close to σz, then a linearly independent set
f⟪Qjjg can be generated; then the error-free observable
⟪Qð0Þj ¼ P

jqj⟪Qjj.
Circuits for QEM are shown in Fig. 2(a). Given

quasiprobabilities, we can compute the corresponding
probability in sampling circuits as shown in Sec. V.
More details of QEM using basis operations are given in
Appendix D.
Using the same technique, we can also increase the error

in an operation, as required by the alternative error
extrapolation method for QEM. Instead of decomposing
the error-free operation Oð0Þ using O and basis operations,
we can also decompose the error-boosted operation
ObðrÞ ¼ ð1 − rÞOð0Þ þ rO (r > 1) using O and basis
operations. It is similar for initial states and observables.

One of basis operations

|0〉ρk Qj

i or

or

Inverse method Compensation method

or

(i
,i

′ )
(a) Error mitigation circuits

Original gate

(b) Extrapolation

ε0

εError rate 

rε0

〈Z(0)〉
〈Z(ε0)〉

〈Z(rε0)〉

FIG. 2. (a) Error mitigation circuits. The choice of a basis
operation is determined by the corresponding random number i,
j, or k. Original gate that is identity (memory operation) also has
to be error mitigated, unless memory error is negligible. In the
compensation method, either the original gate or basis operations
are applied depending on the random number. (b) The schematic
of the linear extrapolation (orange curve) and exponential
extrapolation (green curve).

SUGURU ENDO, SIMON C. BENJAMIN, and YING LI PHYS. REV. X 8, 031027 (2018)

031027-6



We have noted that in the decomposition of an error-free
operation, there are always some negative quasiprobabil-
ities, i.e., the C factor is greater than 1, which leads
to greater time costs. But fortunately, when we merely
wish to decompose an error-boosted operation we can do
so without introducing negative quasiprobability, e.g., by
boosting Pauli errors using Pauli gates [2].

IX. QUANTUM GATE SET TOMOGRAPHY

We can measure a set of initial states fjρ̄k⟫g, observables
f⟪Q̄jjg, and operations fŌig (including basis operations)
using GST [15,16]. These vectors and matrices with the bar
notation describe the actual physical system. Because there
are errors in both initial states and observables, and
initialization and measurement errors cannot be distin-
guished, we may not obtain exactly these vectors and
matrices describing the actual physical system. Instead,
the vectors and matrices obtained using GST are fjρ̂k⟫g,
f⟪Q̂jjg, and fÔig, which are estimations of fjρ̄k⟫g,
f⟪Q̄jjg, and fŌig, respectively.
If we know fjρ̄k⟫g, f⟪Q̄jjg, and fŌig because the

physical system is well understood, we can directly use
them in QEM. If our knowledge about the physical system
is not enough, we can use GST to obtain fjρ̂k⟫g, f⟪Q̂jjg,
and fÔig. We show that, although the estimations may not
be exact, we can exactly correct errors by using these
estimations in QEM.

Using the protocol in Refs. [15,16] (also see
Appendix E), the estimation of an operation and the actual
physical operation are similar matrices, i.e., Ôi ¼
TM̄in−1ŌiM̄inT−1, where M̄in is a matrix determined by
initial states (i.e., M̄in

σ;k ¼ ⟪σjρ̄k⟫), and T is an arbitrary
invertible matrix. We note that T and M̄in are independent
of the operation Ōi, and M̄in cannot be determined by
GST. By choosing T, we can obtain different estimations of
the operation set. Similarly, jρ̂k⟫ ¼ TM̄in−1jρ̄k⟫ and
⟪Q̂jj ¼ ⟪Q̄jjM̄inT−1.
All operations are transformed by the same similarity

transformation, and initial states and observables are also
transformed accordingly. As a result, these estimations
obtained by GST can exactly predict the expected value of
an observable; i.e., ⟪Q̄jjŌN � � � Ō1jρ̄k⟫ ¼ ⟪Q̂jjÔN � � �
Ô1jρ̂k⟫. Therefore, we can directly use these estimations
in QEM, and the similarity transformation does not lead to
any computing error.
Using GST estimations in QEM, the actual opera-

tions realized in this way differ from operations without
error, but the computing result is correct. To correctly
obtain ⟪Qð0ÞjOð0Þjρð0Þ⟫, we decompose the initial state,
the observable, and the operation using fjρ̂k⟫g, f⟪Q̂jjg,
and fÔig, respectively. Here, jρð0Þ⟫, ⟪Qð0Þj, Oð0Þ, and
GST estimations are all known to us. The decompo-
sitions are jρð0Þ⟫ ¼ P

kqkjρ̂k⟫, ⟪Qð0Þj ¼ P
jqj⟪Q̂jj, and
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FIG. 3. Cost (C − 1) for correcting errors. We consider a universal set of operations, including the initialization, measurement, single-
qubit Clifford gates, a single-qubit non-Clifford gate, and a two-qubit entangling Clifford gate. Sixteen basis operations of each qubit
can be generated using these operations. Every operation in the set has error, and the memory error is also included. We assume that
qualities of the initialization and single-qubit gates are 10 times better than the measurement and two-qubit gates, and also that the
quality of the memory operation is 100 times better. Details of the model are given in Appendix H. The cost for correcting error in each
operation in the universal set is calculated, and the maximum cost over all operations is plotted. (a) For the depolarizing error model, the
cost is lower if we directly use actual operations to correct errors, and the cost is higher if we use gate set tomography (GST) estimations
to correct errors. (b) For the overrotation model, the cost is higher without using the Pauli twirling, and the cost is lower when the Pauli
twirling is used. In (a) and (b), solid curves correspond to the compensation method (with the optimized λ), and dashed curves
correspond to the inverse method. (c) The cost as a function of the distance between operations with errors and operations without error.
For the operation with error O and the operation without error Oð0Þ, the distance is ϵO ¼ kO −Oð0Þkmax. The x axis illustrates the
maximum distance over all operations in the universal set. In (b) and (c), we always use GST estimations. In (c), Pauli twirling and the
inverse method are used for all the data. Pauli twirling is applied to the measurement and two-qubit gate, and the inverse method is
applied only to the two-qubit gate, while errors in other operations are corrected using the compensation method. We remark that usually
the maximum distance and the maximum cost are given by the two-qubit gate.
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Oð0Þ¼P
iqiÔi. Accordingly, we actually realize jρ̄ð0Þ⟫ ¼P

kqkjρ̄k⟫, ⟪Q̄ð0Þj ¼ P
jqj⟪Q̄jj, and Ōð0Þ ¼ P

iqiŌi in

the physical system. We have jρ̄ð0Þ⟫ ¼ M̄inT−1jρð0Þ⟫,
⟪Q̄ð0Þj ¼ ⟪Qð0ÞjTM̄in−1, and Ōð0Þ ¼ M̄inT−1Oð0ÞTM̄in−1.
Therefore, the physical system gives the computing result
⟪Q̄ð0ÞjŌð0Þjρ̄ð0Þ⟫ ¼ ⟪Qð0ÞjOð0Þjρð0Þ⟫, i.e., the desired error-
free output. The cost of this adaption lies in the potential
increase to the number of samples required, as shown in
Fig. 3 and discussed in the caption.
We remark that, when errors in actual operations are

small, errors in estimations of operations are also small. If
we take a proper strategy for choosing T, and errors in
initial states and observables are small, the estimation of an
operation Ô is close to the operation without error Oð0Þ

when the actual operation Ō is close toOð0Þ. It is similar for
estimations of initial states and observables. See
Appendix F for details.

X. ESTIMATION OF THE COST

In general, when the error in an operation is more
significant, there is a higher cost for mitigating the error
(to a given level of suppression). We take ϵO ¼ kO −
Oð0Þkmax as the measure of the error severity in the
operation, where O (Oð0Þ) is the n-qubit operation with
(without) error. An upper bound of the cost for correcting
error in O is

CO − 1 ≤
162nϵO

½sminðAð0ÞÞ − 16ϵmax�n
: ð3Þ

Here, ϵmax is the maximum error in all basis operations for
all n qubits, and sminðAð0ÞÞ ¼ 1

2
ð13 − 3

ffiffiffiffiffi
17

p Þ ≈ 0.315.
Similar upper bounds can be obtained for correcting errors
in initial states and observables. See Appendix G for
details.
There are several ways for reducing the cost. The upper

bound of the cost is obtained using the compensation
method and taking λ ¼ 1. In general, we can optimize the
value of λ or use the inverse method to minimize the cost.
For example, for the depolarizing error model (see
Appendix H), the cost of using the inverse method is
lower than using the compensation method [see Fig. 3(a)].
We remark that, to obtain data for the compensation method
in Fig. 3, we have optimized the value of λ. If we use
estimations obtained from GST to correct errors, we can
optimize the T matrix to minimize the cost. In Fig. 3(a), we
can find that, without optimizing T matrices, the cost using
estimations obtained from GST is higher than using actual
operations. If we choose the matrix in the form
T ¼⊗n

m¼1 Tm, where Tm is a four-dimensional real matrix
corresponding to the mth qubit, there are total 16n
parameters to be optimized for a n-qubit quantum com-
puter, which is a nontrivial task. Under some reasonable

conditions, we can also use the Pauli twirling [17–19] to
reduce the cost.

A. Pauli twirling

In many quantum computing systems, e.g., supercon-
ducting qubits [27] and ion traps [28–30], the fidelity of
single-qubit gates is much better than the fidelity of two-
qubit gates, and usually a state can be initialized with a high
fidelity while the fidelity of measurement is worse. In this
section, we focus on the case that error rates of initialization
and single-qubit gates are much lower than error rates of
two-qubit gates and measurement.
If the error rate of initialization is low (much lower than

the error rate of measurement), we know how to choose T
so that the estimation of an operation obtained from GST is
close to the actual operation. We cannot exactly estimate
operations using GST, because we cannot distinguish
initialization and measurement errors. If we treat all errors
in the initialization and measurement as measurement error
(which corresponds to T ¼ Minð0Þ⊗n in Appendix F), the
difference between the estimation and the actual operation
is determined only by the initialization error. Therefore, if
the initialization is high fidelity, the estimation obtained in
this way and the actual operation are close.
Because the set of basis operations includes Pauli gates,

it is easy to use basis operations to correct Pauli errors. By
using the Pauli twirling, we can convert the error in a two-
qubit entangling Clifford gate to Pauli error [17–19], which
is achieved by applying Pauli gates before and after the
two-qubit gate. This treatment of the error is feasible only if
the fidelity of Pauli gates is much better than the two-qubit
gate, otherwise Pauli gates cause significant new errors,
which may not be Pauli error, on the two-qubit gate. In
Fig. 3(b), we can find that the cost can be significantly
reduced by using the Pauli twirling for the overrotation
error model (see Appendix H).
In Fig. 3(c), costs of different error models are compared,

including the depolarizing model, pure-dephasing model,
amplitude-damping model, and the overrotation model. We
also randomly generated many other error models; see
Appendix H for details of these error models. For a
random-operation model, we randomly generate an oper-
ation close to the ideal error-free operation, and we find that
the cost is approximately the cost of the depolarizing
model. For a random-field model, we randomly generate
a Hamiltonian that drives the erroneous evolution, and the
cost is between the depolarizing model and overrota-
tion model.
From Fig. 3(c) we see that the cost of quantum error

mitigation varies according to the error model but is
generally upper bounded by the case of depolarizing noise,
over the range of noise levels shown here. (Note that other
models can exceed the cost of the depolarising model if we
use even lower fidelity gates.) For the depolarizing model,
the cost for mitigating error in a two-qubit entangling gate
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is C − 1 ≃ aϵ, where ϵ is the error rate and the factor a is
between 2 and 3 [see Fig. 3(a)]. If errors in initialization and
single-qubit gates are negligible, or if the matrix T is
optimized to minimize the cost, the factor a can approach 2.
Accepting the depolarizing model as an approximate upper
bound, we can estimate the overall cost in a quantum
algorithm. Suppose the total number of gates in a quantum
algorithm is N, the overall amplification of the standard
deviation (uncertainty of the computing result) is
ð1þ 2ϵÞN . Therefore, ð1þ 2ϵÞ2N times more repetitions
of the experiment are required in order to reduce the
standard deviation. We are interested in the case that N is
large but ϵ is small; therefore, ð1þ 2ϵÞ2N ∼ e4Nϵ. As a rule
of thumb we might take Nϵ ¼ 2 as a limit for acceptable
scenarios, since then e4Nϵ ≈ 3000. However, larger over-
head factors may be acceptable depending on the speed of
the quantum computer.

XI. NUMERICAL SIMULATION

In our numerical simulation, we apply QEM to the SWAP-
test circuit [20] shown in Fig. 4, in which we realize each
controlled-SWAP gate using Toffoli gates and realize each
Toffoli gate using T gates, T† gates, Hadamard gates, and
controlled-NOT gates [31]. We note with interest that very
recently the implementation of a SWAP test using shallow
circuit has been proposed [21]. However, for present
purposes, it is not essential to use an optimized realization
of the SWAP circuit; its role is simply to act as a real test case
for our technique, and indeed the considerable depth of our
nonoptimal circuit is helpful here. The number of gates
scales as 23Nq − 21, where Nq is the number of qubits
(e.g., Nq ¼ 7 in Fig. 4). Without error, the expected value

of the observable Z (σz of the probe qubit) in the SWAP-test
circuit in Fig. 4 is 0.5.
We consider error models according to which the same

noise E is applied after the initialization to the state j0i,
before the measurement, and before and after each gate. For
the controlled-NOT gate, the noise applied is E ⊗ E on two
qubits. We remark that basis operations are also affected by
noise likewise. We consider two types of noise: inhomo-
geneous Pauli error and leakage error, which can be,
respectively, described as

Einh ¼ ð1 − px − py − pzÞ½1� þ px½σx� þ py½σy� þ pz½σz�

and

Eleak ¼ ½j0ih0j þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j1ih1j�;

where pα is the probability of the error ½σα�, and p is the
probability of the leakage error from the state j1i. It is
worth mentioning that the leakage error is a non-trace-
preserving error. In our simulations, we set px ¼ py ¼
0.0001, pz ¼ 0.0006, and p ¼ 0.0008. Thus, in both
models the total error rate is 0.08% for initialization and
measurement, 0.16% for single-qubit gates, and 0.32% for
two-qubit gates, which is achievable with two-qubit gates
in ion traps [29] and can be far surpassed for one-qubit
gates [28]. Moreover, with these numbers the expected total
number of error events in circuits of the depth and breadth
that we consider here is approximately unity; this is a
challenging domain for error mitigation.
In addition to quasiprobability decomposition (see

Appendix I for an instruction of the implementation), we
also study the extrapolation technique introduced in
Ref. [2]. The expected value of Z obtained by running
the SWAP-test circuit in a quantum computer with noise
depends on the error rate; i.e., it is a function that can be
denoted as hZiðϵÞ, where ϵ is the overall error rate. For our
first set of numerical experiments we consider linear
extrapolation to the error-free value hZið0Þ as follows:
We obtain the expected value hZiðϵ0Þ with the lowest
attainable error rate ϵ0, and by increasing error rate to rϵ0
with r > 1, we obtain another expected value hZiðrϵ0Þ.
Using these two values, we can infer hZið0Þ ¼ ½rhZiðϵ0Þ−
hZiðrϵ0Þ�=ðr − 1Þ, as shown in Fig. 2(b), which is the final
estimation of hZi. Here, we set r ¼ 2.
The first set of numerical results is shown in Fig. 5. We

assume that the experimentalist makes their overall esti-
mate of the hZi after they perform 104 individual experi-
ments. We take this number of runs as a fixed constraint
(effectively, we are constraining their overall time re-
source), and they may choose to employ those runs using
one of three alternative approaches: no error correction,
linear extrapolation, and quasiprobability decomposition
(using basis operations and incorporating GST). In each
experiment the SWAP-test circuit or its variant for the

FIG. 4. SWAP-test circuit. The first qubit (denoted black) is a
probe qubit, and the expected value of Z gives the overlap
between states of two groups of qubits (denoted green and
orange, respectively). Green qubits are prepared in the Green-
berger-Horne-Zeilinger (GHZ) state ðj00 � � �i þ j11 � � �iÞ= ffiffiffi

2
p

,
and orange qubits are prepared in j00 � � �i. Therefore, the ideal
expected value of Z is 0.5.
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purpose of QEM is implemented. Because of the finite
number of samples, the estimation is stochastic. Therefore,
in our numerical simulation we perform the appropriate
series of 104 experiments, mirroring the actions of the
experimentalist, and then we repeat ≥ 1000 times in order
to determine the distribution of final estimations that may
be obtained. The distribution for each case is plotted
in Fig. 5.
We can observe that both QEM approaches can improve

the result; i.e., the corresponding distributions are shifted
closer to the ideal value 0.5 compared to the approach
without QEM. For the inhomogeneous Pauli error model,
the means of distributions are at 0.1961, 0.3415, and
0.5011 for the three approaches, respectively. The distri-
bution of the quasiprobability approach is centered at the
ideal value, which clearly shows its desirable property of
completely removing any systematic bias. However, the
distribution is wider (as we expected) compared to the other
two approaches. A fairer metric would be the expected
absolute error versus ideal value (i.e., jhZi − 0.5j). Given an
ideal error-free computer and 104 trials, this metric would
evaluate to 0.006910. Using the error-prone computer with
our three protocols the three corresponding values are
0.3039, 0.1853, and 0.0491. Similarly, for the leakage error
model, the means for three approaches now lie at 0.3819,
0.4710, and 0.5007, while the expected absolute error
evaluates to 0.1181, 0.0294, and 0.0434.
From these results it may appear that (given a large but

reasonable number of samples) the quasiprobability tech-
nique outperforms the extrapolation method, with the latter
unable to approach the mean of the error-free circuit.
However, here the extrapolation method was limited to
linear interpolation whereas the physical error rates are high
enough that the linear assumption is poor. One could fit a
higher-order polynomial using more data points (here, we
have only used two: one derived from the actual lowest

possible error rate and one boosted to twice the error rate);
however, since we are limiting the total number of
experimental runs to 104 this would lead to greater noise
in each data point. Moreover, as we now argue, the
underlying trend is likely to be well approximated by an
exponential decay rather than a polynomial one (i.e., the
expected value of the observable falls exponentially with
the physical error rate) and two data points will suffice to
estimate the zero-error observable under that assumption.
In Fig. 6, we show the results when the experimentalist

indeed assumes that the expected value hZiðϵÞ changes
exponentially with respect to the error rate ϵ and converges
to 0 in the limit of ϵ → ∞. Then they will infer the error-
free value as

hZið0Þ ¼ hZiðϵ0Þr=ðr−1ÞhZiðrϵ0Þ1=ð1−rÞ:

Here we take r ¼ 2.
As shown in Fig. 6, the distribution of the final result

using the exponential extrapolation approaches the ideal
value of hZi (which is 0.5 for the SWAP-test circuit) much
better than the linear extrapolation. Given the same 104

experimental runs, the mean of the experimentalist’s
estimate is now 0.5111 for the inhomogeneous Pauli error
model and 0.4986 for the leakage error model. These
numbers almost rival those of the quasiprobability tech-
nique but do so with a smaller variance. The expected
absolute error for inhomogeneous Pauli error and leakage
error are 0.065 01 and 0.018 82, respectively. For the latter,
the expected absolute error comes within a factor of 3 of the
shot-noise limit that would be achieved by error-free ideal
hardware (0.00691). This is despite the fact that our error-
burdened circuits have error rates corresponding to at least
one error event per circuit. We emphasize that this
suppression results purely from the QEM protocol; i.e.,
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FIG. 5. Histograms of the estimation of hZi using quantum computers with inhomogeneous Pauli error and leakage error. For the
inhomogeneous Pauli error model, the SWAP-test circuit involving 19 qubits is simulated: one qubit is the probe qubit, and each group
has 9 qubits. For the leakage error model, the SWAP-test circuit involving fewer qubits (15 qubits) is simulated, because in the numerical
simulation we need to use an additional qubit to introduce the leakage process. The ideal value of hZi is marked by the red arrow.
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it is achieved at no cost in terms of the qubit count or the
total number of runs (constrained to 104).
Because of the limited power of the classical computer

we utilized, our exact numerical simulations did not
involve more than 19 qubits. However, it is of course
very interesting to assess the relevance of our techniques
to quantum computing using over 50 qubits, which is in
the so-called “quantum supremacy” regime. Therefore,
we estimate the cost of quantum error mitigation in the
SWAP-test circuit, using the same error models in
our numerical simulation and error rates achievable in
ion trap experiments [28,29]; i.e., the error rate of the

two-qubit gate is 0.1% and error rates of single-qubit
operations are 0.01%. Take for example the SWAP test
with Nq ¼ 51 qubits (the number of gates is 1152). For
the inhomogeneous Pauli error model, the overall cost is
C ¼ 2.956, which implies that we can attain the same
computing precision as the ideal case if we have C2 ¼
8.738 times more repetitions of the experiment, which is
experimentally feasible. For the leakage error model, the
cost for the 51-qubit SWAP test is C ¼ 4.338, which
means C2 ¼ 18.818 times more repetitions. A plot
showing how the cost scales versus qubit count is shown
in Fig. 7.
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FIG. 6. Comparison of optimized quantum error mitigation techniques. The green outlines correspond to the quasiprobability
technique while solid histograms correspond to the extrapolation technique using a presumption of an underlying linear (blue) or
exponential (red) dependence. For the inhomogeneous Pauli error model, the SWAP-test circuit involving 19 qubits is simulated. For the
leakage error model, the SWAP-test circuit involving fewer qubits (15 qubits) is simulated. The horizontal axis is the estimate of hZi that
an experimentalist who performs 104 experiments will obtain. Ideally the circuit produces hZi ¼ 0.5. Panel (a) corresponds to physical
errors of the inhomogeneous Pauli type, while panel (b) corresponds to physical leakage errors. Note that the horizontal scale differs
between the two panels; a gray bar showing the scale from 0.4 to 0.6 appears in both panels to facilitate comparison. For either type of
noise, it is clear that exponential extrapolation mitigates noise more than linear extrapolation.
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FIG. 7. The graphs show the cost of matching the performance of an ideal noiseless circuit with a noisy circuit, using the
quasiprobability method. The vertical axis (C2) is a multiplicative factor indicating how many more repetitions of the circuit execution
are requited. In each graph the upper pair of lines correspond to error rates achievable in ion trap experiments [28,29]; i.e., the error rate
of two-qubit gate is 0.1% and error rates of single-qubit operations are 0.01%. The lower pair of lines indicate the result of reducing these
error rates by a factor of 10. Panel (a) corresponds to the SWAP-test circuit. Panel (b) corresponds to a circuit where every qubit is actively
gated in every time step, and the number of steps equals to the number of qubits.
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We also evaluate C2 for a fully paralleled circuit, whose
circuit depth is Nq, and each layer has Nq=2 single-qubit
gates and Nq=4 controlled-NOT gates, which means the
quantum circuit has N2

q=2 single-qubit gates and N2
q=4

controlled-NOT gates. As single-qubit gates, we use the T
gate, S gate, and Hadamard gate, because these gates plus a
controlled-NOT gate constitute a universal gate set, and we
equally assign the number of qubits to these three types of
single-qubit gates. We plot C2 versus the number of qubits
for the SWAP-test circuit and the fully paralleled circuit in
Fig. 7. We observe that for the SWAP-test circuit, it is
feasible to venture into the supremacy regime with today’s
best fidelities; for the more demanding case of full
parallelism (so that the gate count scales as N2

q), we see
that today’s error rates would not suffice much beyond 50
qubits, but that error rates 10 times lower would easily
suffice for 80 qubits and beyond.

XII. INTUITION FOR EXPONENTIAL
EXTRAPOLATION

Intuitively, the explanation for the success of the expo-
nential extrapolation is as follows. We express the ith noise
event occurring in the quantum circuit as

EiðϵÞ ¼ ð1 − ϵÞ½I� þ ϵE0
iðϵÞ; ð4Þ

where E0ðϵÞ is the error component. The only assumption is
that the error component only weakly depends on the error
rate ϵ (see Appendix J). Now, for simplification we ignore
the computing operations, which do not affect our general
argument. The total noise that the entire quantum circuit
experiences is

YN
i¼1

Ei ¼
YN
i¼1

½ð1 − ϵÞ½I� þ ϵE0
i�: ð5Þ

Here, N is the total number of the noise-burdened oper-
ations. Expanding the overall noise, we get

YN
i¼1

Ei ¼
XN
n¼1

�
N

n

�
ð1 − ϵÞN−nϵnXn; ð6Þ

where

Xn ¼
�
N

n

�−1� the sum of terms where

E0appears for n times

�
: ð7Þ

Note that the coefficient of Xn in the overall noise
corresponds to a binomial distribution, which can be
approximated by the Poisson distribution. We have

YN
i¼1

Ei ¼ e−Nϵ
XN
n¼0

ðNϵÞn
n!

Xn: ð8Þ

We can find that the impact of the overall noise on the
expected value of some observable is proportional to e−Nϵ,

which implies that exponential extrapolation works better
than linear extrapolation.

XIII. CONCLUSIONS

We demonstrate that, following our protocol step by step,
an experimentalist can derive an algorithm to run on a noisy
quantum computer so as to estimate an output observable
with zero bias versus the ideal observable. The experimen-
talist does not require any prior knowledge of the physical
property of the noise, and the only condition is that the
noise is localized and Markovian. For this purpose, we
show that quantum gate set tomography is a perfect tool for
measuring the noise in a quantum computer, if the aim is
only to compensate the effect of the noise in quantum
computing, and we also show that single-qubit Clifford
gates and measurement can derive a complete set of
operations that can compensate any noise in quantum
computing.
The price of using such a systematic method to negate

computing errors is that the quantum computation needs to
run for a longer time than an error-free system. We verify
the protocol with numerical simulations of up to 19 qubits,
in which an alternative method, i.e., exponential error
extrapolation, is introduced and studied. We find that the
estimation using exponential error extrapolation is also
very accurate, while the computing time could be shorter.
An approach combining two methods may optimize both
accuracy and efficiency.
In Appendix I, we describe in detail the steps that an

experimentalist would take in order to realize the quasi-
probability method. We hope that this compact summary,
presented in a single section, will indeed be useful to
researchers who are interested in demonstrating the QEM
technique with their hardware.
Our general conclusion is that these quantum error

mitigation techniques can dramatically enhance the per-
formance of quantum computers, especially at the small-to-
medium scale where full code-based quantum error cor-
rection is impossible. Our simulations consider circuits up
to 19 qubits, but with error rates considerably worse than
the state of the art. Extrapolating from the trends that we
observe in these smaller systems, we anticipate that hybrid
algorithms involving 50þ qubits, i.e., beyond the reach of
classical emulation, will benefit from QEM techniques if
the hardware fidelity matches today’s state-of-the-art error
or modestly improves upon it.
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APPENDIX A: PAULI TRANSFER MATRIX

A state ρ can be expressed as a real column vector

jρ⟫ ¼ ½ � � � ρσ � � � �T; ðA1Þ

where the vector element is

ρσ ¼ TrðσρÞ; ðA2Þ

σ ∈ f1; σx; σy; σzg⊗n is a Pauli operator, and d ¼ 2n is the
dimension of the Hilbert space. Similarly, an observable
(i.e., Hermitian operator) Q can be expressed as a real row
vector,

⟪Qj ¼ ½ � � � Qσ � � � �; ðA3Þ

where the vector element is

Qσ ¼ d−1TrðσQÞ: ðA4Þ

Here, we use notations ⟪ · j and j · ⟫ to denote real row and
column vectors, respectively. A physical operation O [i.e.,
OðρÞ ¼ P

kEkρE
†
k] can be expressed as a real square

matrix,

Oσ;τ ¼ d−1Tr½σOðτÞ�; ðA5Þ

where σ; τ ∈ f1; σx; σy; σzg⊗n are Pauli operators. If
ρ0 ¼ OðρÞ, we have jρ0⟫ ¼ Ojρ⟫.

APPENDIX B: DECOMPOSITION OF
CONTROLLED-NOT GATE USING BASIS

OPERATIONS

The controlled-NOT gate reads

ΛX ¼ 1þ σz

2
⊗ 1þ 1 − σz

2
⊗ σx: ðB1Þ

The controlled-NOT gate can be decomposed as

½ΛX� ¼
1

2
ð½1 ⊗ σx� þ ½σz ⊗ 1� − ½1 ⊗ Rx�

− ½Rz ⊗ 1� − ½σz ⊗ Rx� − ½Rz ⊗ σx�Þ
þ ½σz ⊗ σx� þ ½Rz ⊗ Rx� þ ½1 ⊗ πx�
þ ½πz ⊗ 1� − ½σz ⊗ πx� − ½πz ⊗ σx�: ðB2Þ

Then, the corresponding cost is given by C ¼ 9.

APPENDIX C: ERROR THRESHOLD OF BASIS
OPERATIONS

For two real matrices Að0Þ and A and a nonzero real
vector x, we have

kAð0Þxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTAð0ÞTAð0Þx

p
≥ sminðAð0ÞÞkxk2; ðC1Þ

where sminðAð0ÞÞ is the minimum singular value of Að0Þ. We
also have

kðA − Að0ÞÞxk2 ≤ kA − Að0Þk2kxk2: ðC2Þ

Therefore,

kAxk2 ≥ kAð0Þxk2 − kðA − Að0ÞÞxk2
≥ ðsminðAð0ÞÞ − kA − Að0Þk2Þkxk2: ðC3Þ

If kA − Að0Þk2 < sminðAð0ÞÞ, kAxk2 is always positive (non-
zero); i.e., A is invertible.
Now, A is the matrix formed by basis operations with

error as defined in Eq. (2), and Að0Þ is the matrix formed by
basis operations without error. Because detðAð0ÞÞ ¼ 16,
Að0Þ is invertible; i.e., basis operations without error are
linearly independent. The minimum singular value
is sminðAð0ÞÞ ¼ 1

2
ð13 − 3

ffiffiffiffiffi
17

p Þ. Because kA − Að0Þk2 ≤
16kÃ − Akmax ¼ 16ϵmax, the matrix A is invertible
if ϵmax <

1
16
sminðAÞ.

APPENDIX D: DECOMPOSITION USING BASIS
OPERATIONS

We consider the n-qubit operation E. For each qubit,
there is a set of basis operations fBm;iji ¼ 1;…; 16g, where
m ¼ 1;…; n is the label of the qubit. For each set of basis
operations, there is a matrix A as defined in Eq. (2). We use
Am to denote the matrix of the mth qubit.
The operation E is decomposed as

E ¼
X16
i1¼1

� � �
X16
in¼1

qi1;…;inB1;i1 ⊗ � � � ⊗ Bn;in : ðD1Þ

Coefficients form a 16n-dimensional vector:
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q ¼

0
BBBBBBBBBBBBBBB@

q1;1;…;1;1

..

.

q1;1;…;1;16

..

.

q16;16;…;16;1

..

.

q16;16;…;16;16

1
CCCCCCCCCCCCCCCA

: ðD2Þ

Therefore, the decomposition is given by q ¼ ðA1 ⊗ � � �
⊗ AnÞ−1E, where E is a 16n-dimensional vector corre-
sponding to E.
We choose the order of Pauli operators, i.e., the order of

bases of Pauli transfer matrices fBm;iji ¼ 1;…; 16g, as 1,
σx, σy, and σz (which are also denoted as I, X, Y, and Z,
respectively). Then, to be consistent with A1 ⊗ � � � ⊗ An,
we have

E ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

EI1I2���In−1In;I1I2���In−1In
EI1I2���In−1In;I1I2���In−1Xn

..

.

EI1I2���In−1Zn;I1I2���In−1Yn

EI1I2���In−1Zn;I1I2���In−1Zn

..

.

EZ1Z2���Zn−1In;Z1Z2���Zn−1In

EZ1Z2���Zn−1In;Z1Z2���Zn−1Xn

..

.

EZ1Z2���Zn−1Zn;Z1Z2���Zn−1Yn

EZ1Z2���Zn−1Zn;Z1Z2���Zn−1Zn

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ðD3Þ

Here, αm (α ¼ I, X, Y, Z) is a Pauli operator of the
mth qubit.
The state of a qubit is represented by a four-dimensional

real vector. To decompose the initial state of a qubit without
error jρð0Þ⟫, we need four linearly independent initial states.
If the qubit can be initialized in the state j0i, we can choose
the set of four states as fρð0Þk g ¼ fj0i; j1i; 1ffiffi

2
p ðj0iþ

j1iÞ; 1ffiffi
2

p ðj0i þ ij1iÞg. These four states can be obtained

by applying basis-adjusting operations (Clifford gates)
f½1�; ½Rx�; ½Rx�2; ½Rz�½Rx�g on the initial state j0i. Because
of the error in the state j0i and errors in basis-adjusting
operations, the prepared four states fρkg are not exactly

states fρð0Þk g. When the overall error is small, states fρkg
are still linearly independent. We introduce the matrix
Min

σ;k ¼ ⟪σjρk⟫, and Minð0Þ is the matrix corresponding to

fρð0Þk g. States fρkg are linearly independent if Min is
invertible. Similar to the analysis of the linear independ-
ence of basis operations (i.e., the invertibility of the matrix
A; see Appendix C), we have thatMin is always invertible if

kMin −Minð0Þkmax <
1
4
sminðMinð0ÞÞ ¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffi
5−

ffiffiffiffi
17

p
2

q
≃ 0.0828.

The initial state without error is decomposed as jρð0Þ⟫ ¼P
4
k¼1 qkjρk⟫. Coefficients form a four-dimensional column

vector q ¼ ½q1 q2 q3 q4�T. The decomposition is given
by q ¼ Min−1jρð0Þ⟫.
Similarly, an observable of a qubit is also represented by

a four-dimensional real vector. To decompose the observ-
able of a qubit without error ⟪Qð0Þj, we need four linearly
independent observables. If σz can be measured, we can
choose the set of four observables as Pauli operators

fQð0Þ
j g ¼ f1; σx; σy; σzg. The operator 1 denotes a trivial

measurement; i.e., the outcome is always þ1.
Measurements of the other three Pauli operators can be
obtained by applying basis-adjusting operations (Clifford
gates) f½1�; ½Rx�; ½Rz�3½Rx�½Rz�g before the measurement of
σz. Because of the error in the measurement of σz and errors
in basis-adjusting operations, the measured observables

fQjg are not exactly fQð0Þ
j g. When the overall error is

small, observables fQjg are still linearly independent. We
introduce the matrix Mout

j;σ ¼ ⟪Qjjσ⟫, and Moutð0Þ is the

matrix corresponding to fQð0Þ
j g. Observables fQjg are

linearly independent if Mout is invertible. We have that
Mout is always invertible if kMout −Moutð0Þkmax <
1
4
sminðMoutð0ÞÞ ¼ 1

4
. The initial state without error is decom-

posed as ⟪Qð0Þj ¼ P
4
j¼1 qj⟪Qjj. Coefficients form a

four-dimensional row vector q ¼ ½q1 q2 q3 q4�. The decom-
position is given by q ¼ ⟪Qð0ÞjMout−1.

APPENDIX E: QUANTUM GATE SET
TOMOGRAPHY

To measure a set of operations fŌ1;…; ŌNg on n qubits
using GST, we need to choose a set of 4n linearly
independent initial states fρ̄kg and a set of 4n linearly
independent observables fQ̄jg. Given these initial states
and observables, we measure expected values

Õj;k ¼ ⟪Q̄jjŌjρ̄k⟫: ðE1Þ
Here, Ō is one of operations fŌ1;…; ŌNg.
The matrix Õ is equivalent to Ō up to a transformation.

Because Ōσ;τ ¼ ⟪σjŌjτ⟫ and
P

σjσ⟫⟪σj ¼ 1 (the sum is
taken over all Pauli operators), we have

Õ ¼ M̄outŌM̄in; ðE2Þ
where M̄in and M̄out are matrices defined as M̄in

σ;k ¼ ⟪σjρ̄k⟫
and M̄out

j;σ ¼ ⟪Q̄jjσ⟫. We remark that the initialization error
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and measurement error are included in M̄in and M̄out,
respectively. We cannot measure matrices M̄in and M̄out

independently; therefore, we cannot determine Ō using
GST. By taking Ō as the identity operation (i.e., Ō ¼ 1) in
Eq. (E1), we can measure

g ¼ M̄outM̄in: ðE3Þ

The estimation of Ō is given by

Ô ¼ Tg−1ÕT−1 ¼ TM̄in−1OM̄inT−1: ðE4Þ

Here, g and Õ are obtained by measuring the expected
values of observables, and T is an arbitrary invertible
matrix. If M̄in and T are different, Ô is different from Ō, but
they are always similar matrices. The estimations of states
jρ̄k⟫ and observables ⟪Q̄jj are given by

jρ̂k⟫ ¼ T•;k ¼ TM̄in−1jρ̄k⟫; ðE5Þ

⟪Q̂jj ¼ðgT−1Þj;• ¼ ⟪Q̄jjM̄inT−1: ðE6Þ

Here, M•;k (Mj;•) denotes the kth column (jth row) of the
matrix M.
We introduce matrices M̂in and M̂out defined as M̂in

σ;k ¼
⟪σjρ̂k⟫ and M̂out

j;σ ¼ ⟪Q̂jjσ⟫, respectively. Then M̂in ¼ T
and M̂out ¼ gT−1.
For a sequence of operations Ō1;…; ŌN , because Ôi and

Ōi are similar matrices up to the same transformation
independent of the operation (i.e., the index i), we have

⟪Q̄jjŌN � � � Ō1jρ̄k⟫ ¼ ⟪Q̂jjÔN � � � Ô1jρ̂k⟫: ðE7Þ

Therefore, although estimations fjρ̂k⟫;⟪Q̂jj; Ôig may be
different from their correspondences fjρ̄k⟫;⟪Q̄jj; Ōig, they
can always provide the correct prediction for the expected
value of an observable in an initial state going through a
sequence of operations.

APPENDIX F: STABILITY OF THE QUANTUM
GATE SET TOMOGRAPHY

We define

ε̄in ¼ maxfkM̄in
m −Minð0Þk2jm ¼ 1;…; ng; ðF1Þ

ε̄out ¼ maxfkM̄out
m −Moutð0Þk2jm ¼ 1;…; ng; ðF2Þ

ε̄O ¼kŌ −Oð0Þk2; ðF3Þ

which describe severities of the initialization error, meas-
urement error, and operation error, respectively. Here, M̄in

m

and M̄out
m are matrices corresponding to the mth qubit. The

overall matrices of n qubits are M̄in ¼ ⊗
n

m¼1
M̄in

m and

M̄out ¼ ⊗
n

m¼1
M̄out

m .

Similar to the analysis of the linear independence of
basis operations (i.e., the invertibility of the matrix A; see
Appendix C), we have that M̄in and M̄out are always
invertible, i.e., g ¼ M̄outM̄in is always invertible, if ε̄in <

sminðMinð0ÞÞ and ε̄out < sminðMoutð0ÞÞ. Choosing fρð0Þk g and

⟪Qð0Þj as in Appendix D, we have sminðMinð0ÞÞ ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5 − ffiffiffiffiffi

17
p

=2Þ
q

≃ 0.3311 and sminðMoutð0ÞÞ ¼ 1.

We choose T ¼ Minð0Þ⊗n, then M̂in ¼ ⊗
n

m¼1
M̂in

m and

M̂out ¼ ⊗
n

m¼1
M̂out

m , where M̂in
m and M̂out

m are matrices corre-

sponding to the mth qubit. The severity of errors in
estimations of initial states is

ε̂in ¼ maxfkM̂in
m −Minð0Þk2jm ¼ 1;…; ng ¼ 0; ðF4Þ

and the severity of errors in estimations of observables is

ε̂out ¼ maxfkM̂out
m −Moutð0Þk2jm ¼ 1;…; ng

≤ ðε̄outε̄in þ kMinð0Þk2ε̄out þ kMoutð0Þk2ε̄inÞ
× kMinð0Þ−1k2: ðF5Þ

Here, we have used that

M̂out
m −Moutð0Þ

¼ ðM̄out
m M̄in

m −Moutð0ÞMinð0ÞÞMinð0Þ−1

¼ ½ðM̄out
m −Moutð0ÞÞðM̄in

m −Minð0ÞÞ
þ ðM̄out

m −Moutð0ÞÞMinð0Þ

þMoutð0ÞðM̄in
m −Minð0ÞÞ�Minð0Þ−1: ðF6Þ

Choosing fρð0Þk g and ⟪Qð0Þj as in Appendix D, we have

kMinð0Þk2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5þ ffiffiffiffiffi

17
p

=2Þ
q

≃ 1.0679, kMoutð0Þk2 ¼ 1,

and kMinð0Þ−1k2¼s−1minðMinð0ÞÞ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=5− ffiffiffiffiffi

17
p Þ

q
≃3.0204.

The severity of the error in the estimation of an n-qubit
operation is

ε̂O ¼ kÔ −Oð0Þk2
≤ kÔ − Ōk2 þ kŌ −Oð0Þk2

≤
2ε̄ðnÞin

½sminðMinð0ÞÞ�n − ε̄ðnÞin

ðkOð0Þk2 þ ε̄OÞ þ ε̄O; ðF7Þ

as we show next. Here,
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ε̄ðnÞin ¼ ðkMinð0Þk2 þ ε̄inÞn − kMinð0Þkn2: ðF8Þ

For an invertible matrix A, we have

kA−1k2 ¼ sup
x≠0

kA−1xk2
kxk2

¼ sup
y≠0

kyk2
kAyk2

: ðF9Þ

Then, using the inequality Eq. (C3), we have

kA−1k2 ≤
1

sminðAð0ÞÞ − kA − Að0Þk2
: ðF10Þ

We have the expression

Ô − Ō ¼ Minð0Þ⊗nM̄in−1ŌM̄inðMinð0Þ⊗nÞ−1 − Ō

¼ ðMinð0Þ⊗n − M̄inÞM̄in−1Ō

× ðM̄in −Minð0Þ⊗nÞðMinð0Þ⊗nÞ−1
þ ðMinð0Þ⊗n − M̄inÞM̄in−1Ō

þ ŌðM̄in −Minð0Þ⊗nÞðM6inð0Þ⊗nÞ−1: ðF11Þ

First, we have kŌk2 ≤ kOð0Þk2 þ ε̄O. Second, using

kA ⊗ B − C ⊗ Dk2
¼ kA ⊗ B − A ⊗ Dþ A ⊗ D − C ⊗ Dk2
≤ kAk2kB −Dk2 þ kA − Ck2kDk2; ðF12Þ

we have

kM̄in −Minð0Þ⊗nk2

≤ ε̄in
Xn
h¼1

kMinð0Þkn−h2

Yh−1
m¼1

kM̄in
mk2

≤ ε̄in
Xn
h¼1

kMinð0Þkn−h2 ðkMinð0Þk2 þ ε̄inÞh−1

¼ ε̄ðnÞin : ðF13Þ

Third, using the inequality Eq. (F10), we have

kM̄in−1k2 ≤
1

½sminðMinð0ÞÞ�n − ε̄ðnÞin

: ðF14Þ

We remark that for a d-dimensional matrixM, kMkmax ≤
kMk2 ≤ dkMkmax.

APPENDIX G: UPPER BOUND OF THE COST

We consider the compensation method and take λ ¼ 1;
i.e., the n-qubit operation without error is realized as
Oð0Þ ¼ Oþ E, where E is decomposed using basis oper-
ations as shown in Eq. (D1). Then the cost for correcting
the error in O is determined by

CO ¼ 1þ
X

i1;…;in

jqi1;…;in j: ðG1Þ

Decomposition coefficients are determined by q ¼
ðA1 ⊗ � � � ⊗ AnÞ−1E, where q and E are defined in
Eqs. (D2) and (D3). Here, q and E are 16n-dimensional
vectors, and A1 ⊗ � � � ⊗ An is a 16n-dimensional matrix.
Therefore, for each element of q,

jqi1;…;in j ≤ 16nkðA1 ⊗ � � � ⊗ AnÞ−1kmaxkEkmax: ðG2Þ

Here, we have used that the maximum absolute value of an
element of E is kEkmax. Because E ¼ Oð0Þ −O, we have
kEkmax ¼ ϵO. Using the inequality Eq. (F10), we have

kðA1 ⊗ � � � ⊗ AnÞ−1kmax

¼
Yn
l¼1

kA−1
l kmax ≤

Yn
l¼1

kA−1
l k2

≤
Yn
l¼1

1

sminðAð0ÞÞ − kAl − Að0Þk2

≤
Yn
l¼1

1

sminðAð0ÞÞ − 16kAl − Að0Þkmax

≤
1

½sminðAð0ÞÞ − 16ϵmax�n
: ðG3Þ

Here, ϵmax ¼ maxfkAl − Að0Þkmaxjl ¼ 1;…; ng. There are
in total 16n decomposition coefficients; therefore,

CO ≤ 1þ 162nϵO
ðsminðAð0ÞÞ − 16ϵmaxÞn

: ðG4Þ

Here, we have assumed that ϵmax < sminðAð0ÞÞ=16.
We consider using the set of initial stateswith errorsfjρk⟫g

to realize the initial state jρð0Þk0
⟫, which is in the set of initial

stateswithout errorfjρð0Þk ⟫g. The initial state canbedecompo-

sed as jρð0Þk0
⟫¼jρk0⟫þ

P
kðqk−δk;k0Þjρk⟫ (see Appendix D).

We use ϵin ¼ kMin −Minð0Þkmax as the measure of the error

severity in initial states. Using kjρk0⟫ − jρð0Þk0
⟫kmax ≤ ϵin and

kMin−1kmax ≤ 4½sminðMinð0ÞÞ − ϵin�−1, we have the cost for
correcting errors in initial states:

Cin ¼
X
k

jqkj ≤ 1þ
X
k

jqk − δk;k0 j

≤ 1þ 42ϵin
sminðMinð0ÞÞ − ϵin

: ðG5Þ

It is similar for observables. We consider using the set of
observables with errors f⟪Qjjg to realize the observable

⟪Qð0Þ
j0
j, which is in the set of observables without error
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f⟪Qð0Þ
j jg. We use ϵout ¼ kMout −Moutð0Þkmax as the mea-

sure of the error severity in observables. Then, the cost for
correcting errors in measured observables is

Cout ≤ 1þ 42ϵout
sminðMoutð0ÞÞ − ϵout

: ðG6Þ

APPENDIX H: ERROR MODELS

We consider a quantum computer with the following
operations. The initialization I ð0Þ ¼ ½π� þ ½πσx�, which
prepares the state j0i, the projective measurement [π],
single-qubit Clifford gates ½Rx� and ½Rz�, the single-
qubit non-Clifford gate [T], where T ¼ 1 cosðπ=8Þþ
iσx sinðπ=8Þ, and two-qubit maximally entangling gate
[Λ], where Λ ¼ ð1= ffiffiffi

2
p Þð1þ iσz ⊗ σzÞ, which is equiva-

lent to the controlled-NOT gate and controlled-phase gate up
to single-qubit gates. The 16 basis operations can be
realized as shown in Table I. In order to perform GST,
we choose initial states and observables as in Appendix D,
and we choose the invertible matrix T ¼ Minð0Þ⊗n for n
qubits.
For the initialization, the state prepared is ρ0 rather than

j0ih0j. We can always express the initialization operation
with error as I ¼ N iI , where N iðj0ih0jÞ ¼ ρ0.
A POVM is defined by a set of operators fEkg satisfyingP
kE

†
kEk ¼ 1. In a POVM, the state is mapped to EkρE

†
k

when the outcome is k. When the measurement has error,
we may not be able to obtain all the information k. Usually
there are only two outcomes corresponding to j0i and j1i,
respectively. In this case, maybe several k values corre-
spond to the same outcome ν ¼ 0, 1. Therefore, we model
the projective measurement [π] with error as
Mρ ¼ P

k∈K0
EkρE

†
k, where Kν is the set of k correspond-

ing to the measurement outcome ν.
For a gate without error Gð0Þ, the gate with error can be

expressed as G ¼ N aGð0ÞN b. Any noisy gate can be
expressed in this form: Because Gð0Þ is invertible, we
can always take N b ¼ ½1� and N a ¼ GGð0Þ−1.
We suppose that time costs of the measurement [π] and

the two-qubit gate [Λ] are the same, and time costs of
single-qubit gates are negligible.
We distinguish the identity operation and the memory

operation. Without error, both of them are the same
operation ½1�. In any case, the identity operation is ½1�,
which means that the next operation is performed immedi-
ately, so it takes no time and there is not any memory error.
When the memory operation is performed, the qubit waits
for the next operation, so memory errors may occur on it.
We apply the identity operation for measuring the matrix g
(see Appendix E). In the basis operation set, the operation
½1� is replaced by the memory operation.

We set the cycle time of the computing as the time cost of
the measurement and the two-qubit gate. In one cycle, only
one operation is performed on a qubit. If the operation is a
single-qubit gate, the gate is performed at the middle of the
cycle; i.e., the overall operation is N mGN m, where N m
denotes memory noise. If no gate or measurement is
performed in the cycle, the overall operation is N 2

m, which
is the error version of the operation ½1� in the basis
operation set.
We suppose that the single-qubit noise is described by

the superoperator Eð1ÞðϵÞ, and the two-qubit noise is
described by the superoperator Eð2ÞðϵÞ. Here, ϵ is a
parameter describing the intensity of the noise. Then, the
initialization noise is N i ¼ Eð1Þðϵ=10Þ, and the measure-
ment with noise is M̃ ¼ Eð1Þðϵ=2Þ½π�Eð1Þðϵ=2Þ. For single-
qubit gates, N a ¼ N b ¼ Eð1Þðϵ=20Þ. For the two-qubit
gate, N a ¼ N b ¼ Eð2Þðϵ=2Þ. For the memory opera-
tion, N m ¼ Eð1Þðϵ=200Þ.

1. Depolarizing error

The single-qubit depolarizing noise is

Eð1ÞðϵÞ ¼
�
1 −

4ϵ

3

�
½1� þ ϵ

3

X3
α¼0

½σα�; ðH1Þ

where σ0, σ1, σ2, and σ3 correspond to 1, σx, σy, and σz,
respectively. The two-qubit depolarizing noise is

Eð2ÞðϵÞ ¼
�
1 −

16ϵ

15

�
½1 ⊗ 1� þ ϵ

15

X3
α;β¼0

½σα ⊗ σβ�: ðH2Þ

The x axis (error rate) in Fig. 3(a) is ϵ of the two-qubit gate.

2. Dephasing error

The single-qubit dephasing noise is

Eð1ÞðϵÞ ¼ ð1 − ϵÞ½1� þ ϵ½σz�: ðH3Þ
The two-qubit dephasing noise is

Eð2ÞðϵÞ ¼ ð1 − ϵÞ½1 ⊗ 1� þ ϵ

3
ð½1 ⊗ σz�

þ ½σz ⊗ 1� þ ½σz ⊗ σz�Þ: ðH4Þ

3. Damping error

The single-qubit damping noise is

Eð1ÞðϵÞ ¼
�
1þ σz

2
þ

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p 1 − σz

2

�

þ
� ffiffiffi

ϵ
p σx þ iσy

2

�
: ðH5Þ
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The two-qubit damping noise is

Eð2ÞðϵÞ ¼ Eð1Þ
�
ϵ

2

�
⊗ Eð1Þ

�
ϵ

2

�
: ðH6Þ

4. Overrotation error

Noise is gate dependent. Initialization, measurement,
and memory operation are perfect; i.e., Eð1Þ ¼ ½1� for these
operations. Only gates have noise. For gate Rx,
Eð1ÞðϵÞ ¼ ½1 cosðϵπ=4Þ þ iσx sinðϵπ=4Þ�. For gate Rx,
Eð1ÞðϵÞ ¼ ½1 cosðϵπ=4Þ þ iσz sinðϵπ=4Þ�. For gate T,
Eð1ÞðϵÞ ¼ ½1 cosðϵπ=8Þ þ iσz sinðϵπ=8Þ�. For gate Λ,
Eð2ÞðϵÞ ¼ ½1 ⊗ 1 cosðϵπ=4Þ þ iσz ⊗ σz sinðϵπ=4Þ�. The x
axis (overrotation) in Fig. 3(a) is ϵ of the two-qubit gate.

5. Random-field error

Noise is gate dependent. For each operation, the noise
Eð1;2ÞðϵÞ ¼ ½e−iϵπH� is determined by a Hamiltonian. Here,
H ¼ ðhþ h†Þ=2, and each element of h is randomly
generated with a uniform distribution in the unit circle.
We remark that the noise is time independent; i.e., the noise
is the same for the same gate implemented at differ-
ent times.

6. Random-operation error

The operation without noise is Gð0Þ. The operation with
noise is GðϵÞ, which depends on the error parameter. As the
same as other models, the error parameter ϵ is operation
dependent. Each operation can be expressed using a χ
matrix [31]. We suppose the χ matrix corresponding to GðϵÞ
is χ, and the χ matrix corresponding to Gð0Þ is χð0Þ. To
generate χ, first, we generate a Hermitian matrix around
χð0Þ, which is χ0 ¼ χð0Þ þ ϵH, where H is generated as the
same as the random Hamiltonian. Second, if Gð0Þ is not
measurement, GðϵÞ should be trace preserving. However, χ0
may correspond to a non-trace-preserving operation. In this
case, we project χ0 to the subspace in the matrix space that
corresponds to trace-preserving operations; i.e., χ00 is the
matrix closest to χ0 and corresponds to a trace-preserving
operation. If Gð0Þ is measurement, χ00 ¼ χ0. Third, χ00 may
not be positive semidefinite. Therefore, we take χ000 ¼
χ00 þ λmin1 if the minimum eigenvalue λmin of χ00 is
negative, otherwise χ000 ¼ χ00. Finally, χ ¼ fχ000, where
the factor f makes sure that the operation is still trace
preserving and the maximum eigenvalue of χ is smaller
than 1.

APPENDIX I: INSTRUCTION OF THE
IMPLEMENTATION OF THE

QUASIPROBABILITY METHOD

This section is a self-contained description of how to
implement QEM using the quasiprobability decomposition.
There are three steps: first, implement GST; second,

compute the quasiprobability decomposition; third, imple-
ment the quasiprobability decomposition using the
Monte Carlo approach.

1. Implementation of gate set tomography

General discussions of GST are given in the main text
and Appendix E; therefore, here we describe GST in a more
concrete way. GST is implemented to measure all gates
used in the quantum computation. We discuss how to
measure single-qubit gates first and two-qubit gates
afterwards.
To measure a single-qubit gate using GST, we prepare

initial states j0i, j1i, jþi, and jyþi, where jþi and jyþi are
the eigenstates of Pauli operators σx and σy with the
eigenvalue þ1, respectively. We denote these states ρ̄1,
ρ̄2, ρ̄3, and ρ̄4, respectively. These initial states can be noisy
states, which is the essential advantage of GST; i.e., GST
can tolerate state preparation and measurement errors.
Then, we apply the gate that we want to measure, for
instance, Hadamard gate, T gate, and T† gate in the SWAP-
test circuit. Here we use Ō (superoperator acting on a
reduced density matrix) to denote the gate to be measured,
which has noise. Subsequently, we measure expectation
values for four observables, 1, σx, σy, and σz, respectively.
Here, 1 is a trivial observable whose measurement outcome
is always þ1. We denote these observables as Q̄1, Q̄2, Q̄3,
Q̄4, and measurements of these observables can also be
noisy. Then, by repeating the experiment to compute the
mean value of observables, we can construct the 4 × 4

matrix Õ, and matrix elements are

Õj;k ¼ TrðQ̄jŌρ̄kÞ: ðI1Þ

Similarly, we can obtain the 4 × 4matrix g by choosing not
to apply any gate to the initial state, so that the matrix
elements are

gj;k ¼ TrðQ̄jρ̄kÞ: ðI2Þ

This process is implemented for each qubit and each type of
single-qubit gate (including all basis operations).
One will find that there is a freedom in the specification

of the gate Ō. Legitimate variants can be obtained as

Ô ¼ Tg−1ÕT−1; ðI3Þ

where T is an invertible 4 × 4 matrix. The matrix T can be
different for different qubits but must be the same for all
gates on the same qubit. We can choose T to minimize the
cost in QEM. In the case that the error rate of preparing
initial states is low, we can take
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T ¼

0
BBB@

1 1 1 1

0 0 1 0

0 0 0 1

1 −1 0 0

1
CCCA; ðI4Þ

which approximately minimize the cost according to our
experience.
Estimations of the initial state ρ̄k and the observable Q̄j

are, respectively,

jρ̂k⟫ ¼ T•;k; ðI5Þ
⟪Q̂jj ¼ðgT−1Þj;•: ðI6Þ

Here, M•;k (Mj;•) denotes the kth column (jth row) of the
matrix M.
To measure a two-qubit gate using GST, the procedure is

basically the same. The only difference is that there are 16
initial states and 16 observables to be measured. Initial
states are the tensor products of single-qubit initial states,

i.e., ρ̄ð1Þk1
⊗ ρ̄ð2Þk2

, and observables are tensor products of

single-qubit observables, i.e., Q̄ð1Þ
j1

⊗ Q̄ð2Þ
j2
. Here, the super-

script is the label of the qubit. Accordingly, the matrix
g ¼ gð1Þ ⊗ gð2Þ, which is the tensor product of gmatrices of
two qubits, and similarly the matrix T ¼ Tð1Þ ⊗ Tð2Þ,
which is the tensor product of T matrices of two qubits.
We need to implement two-qubit gate GST for each pair of
qubits that the two-qubit gate may be performed on.

2. Quasiprobability decomposition

Using results obtained from GST, we can compute the
quasiprobability decomposition. From GST we obtain
estimations of initial states, observables to be measured,
and gates (including basis operations), and they are

jρ̂k⟫∶ initial state;
⟪Q̂jj∶ observable;

Ô∶ gate;

B̂i∶ basis operation:

These estimations are utilized to compute the quasiprob-
ability decomposition.
Now, we focus on the inverse method. We use Oð0Þ to

denote the Pauli transfer matrix of the ideal gate (without
error). The estimation of the Pauli transfer matrix of the
actual gate with noise (i.e., Ō) is Ô, which is obtained in
GST. To compute the decomposition, first, we compute the
ideal matrix Oð0Þ; second, we compute the inverse of the
noise,

N −1 ¼ Oð0ÞÔ−1; ðI7Þ

and finally, we solve the equation (for the single-qubit
gate),

N −1 ¼
X
i

qO;iB̂i; ðI8Þ

to determine quasiprobabilities qO;i of the gate O. We need
to compute quasiprobabilities for each qubit and each gate.
For example, for the SWAP-test circuit, we need to compute
the decomposition for the Hadamard gate, T gate, and T†

gate of each qubit, and the controlled-NOT gate of each pair
of qubits that the controlled-NOT gate may be performed on.
For two-qubit gates, the procedure is the same but tensor

products of single-qubit basis operations, i.e., B̂ð1Þ
i1

⊗ B̂ð2Þ
i2

(where the superscript is the label of the qubit), are used to
decompose the inverse of the noise N −1.
In order to mitigate errors in initial states and measure-

ments of observables, we should solve the following

equations for the quantities qðmÞ
ρ;k and qðmÞ

Q;j :

jρð0Þ⟫ ¼
X
k

qðmÞ
ρ;k jρ̂k⟫; ðI9Þ

⟪Qð0Þj ¼
X
k

qðmÞ
Q;j⟪Q̂jj ðI10Þ

for each qubit. Here,m is the label of the qubit, jρð0Þ⟫ is the
column vector representing the ideal initial state j0ih0j,
and ⟪Qð0Þj is the row vector representing the ideal
observable σz.
Before implementing the quasiprobability decomposi-

tion on a quantum computer, we compute

CðmÞ
ρ ¼

X
k

jqðmÞ
ρ;k j; ðI11Þ

CðmÞ
Q ¼

X
k

jqðmÞ
Q;j j ðI12Þ

for each qubit and

CO ¼
X
i

jqO;ij ðI13Þ

for each gate.

3. Monte Carlo implementation of the
quasiprobability decomposition

It is vital to note that we use estimations B̂i to decompose
the inverse of the noise, but usually there is a difference
between B̂i and the actual basis operation B̄i. This differ-
ence does not cause any error in the final computing result,
because the computing result is invariant under a similarity
transformation, as we explained in the main text.
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Now, we describe how to implement the quasiprobability
decomposition on a quantum computer. We suppose the
circuit is sequentially performing gates O1, O2;…;ON on
the initial state j00…0i, and the first qubit is measured in
the σz basis to read the computing result. The procedure can
be generalized to the case of measuring multiple qubits.
First, we generate a set of random integers: for each qubit

m, we randomly select an integer km such that each integer
would be selected with corresponding probability

jqðmÞ
ρ;km

j=CðmÞ
ρ ; similarly for each gate l, we generate random

integer il with corresponding probability jqOl;il j=COl
; and

finally we generate random integer j1 with the probabil-

ity jqð1ÞQ;j1
j=Cð1Þ

Q .
Second, on the quantum computer, we implement the

following quantum computing for once: we initialize the

qubit m in the state ρ̄ðmÞ
km

; then, we sequentially perform

gates Ō1, B̄i1 , Ō2, B̄i2 ;…; ŌN , B̄iN ; finally, we measure the
observable Q̄j1 . The measurement outcome is μ.
Third, we compute the effective measurement outcome

μeff ¼ sgn

�Y
m

qðmÞ
ρ;km

Y
l

qOl;ilq
ð1Þ
Q;j1

�
μ: ðI14Þ

By repeating these three steps, we can obtain the mean of
effective outcomes E½μeff �. The final computing result is
CE½μeff �, where

C ¼
Y
m

CðmÞ
ρ

Y
l

COl
Cð1Þ
Q : ðI15Þ

APPENDIX J: ERROR COMPONENT OF PAULI
ERROR AND LEAKAGE ERROR

Taking ϵ ¼ px þ py þ pz, it is obvious that in the
inhomogeneous Pauli error model, the error component
does not depend on the error rate; i.e., E0 ¼
ϵ−1ðpx½σx� þ py½σy� þ pz½σz�Þ. We remark that ratios
pα=ϵ do not change with ϵ.
For the leakage error model, we take ϵ ¼ p. Then the

error component is

E0ðρÞ ¼ π0ρπ0 þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
− ð1 − pÞ
p

ðπ0ρπ1 þ π1ρπ0Þ

¼ π0ρπ0 þ ½1=2þOðpÞ�ðπ0ρπ1 þ π1ρπ0Þ; ðJ1Þ

where π0 ¼ j0ih0j and π1 ¼ j1ih1j. Therefore, E0 varies
slowly with p.
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