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Vincent Lienhard,* Sylvain de Léséleuc,* Daniel Barredo, Thierry Lahaye, and Antoine Browaeys
Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS,
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We explore the dynamics of artificial one- and two-dimensional Ising-like quantum antiferromagnets
with different lattice geometries by using a Rydberg quantum simulator of up to 36 spins in which we
dynamically tune the parameters of the Hamiltonian. We observe, in a region in parameter space, the onset
of antiferromagnetic (AF) ordering, albeit with only finite-range correlations. We study systematically the
influence of the ramp speeds on the correlations and their growth in time. We observe a delay in their
buildup associated to the finite speed of propagation of correlations in a system with short-range
interactions. We obtain a good agreement between experimental data and numerical simulations, taking
into account experimental imperfections measured at the single-particle level. Finally, we develop an
analytical model, based on a short-time expansion of the evolution operator, which captures the observed
spatial structure of the correlations, and their buildup in time.
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I. INTRODUCTION

The study of nonequilibrium dynamics is currently one
of the most challenging areas of quantum many-body
physics. In contrast to the equilibrium case, where stat-
istical physics provides a general theoretical framework and
where very powerful numerical methods are available, the
out-of-equilibrium behavior of quantum matter presents a
wide variety of phenomena and is extremely hard to
simulate numerically, especially in dimensions d > 1.
When the parameters of a quantum many-body system
are quenched abruptly or, more generally, ramped with a
finite rate into a new quantum phase, correlations and
entanglement build up and propagate over the system,
which may, at long times, either thermalize or retain
memory of its initial state when many-body localization
occurs [1,2]. The speed at which the correlations propagate
depends on the range of the interaction and is limited by the
Lieb-Robinson bounds [3–8].

An attractive way to study this physics has emerged
in recent years and consists of using quantum simulators,
i.e., well-controlled, artificial quantum systems that imple-
ment experimentally the Hamiltonian of interest [9]. Spin
Hamiltonians that are used in condensed-matter physics to
describe, e.g., quantum magnets are arguably the simplest
quantum many-body systems that can be used to study
nonequilibrium dynamics: Even though they involve dis-
tinguishable particles with only internal degrees of freedom,
the interplay among interactions, geometry, and dimension-
ality provides awealth of distinct quantum phases intowhich
the system can be driven. In recent years, many experimental
platforms for the quantum simulation of spin Hamiltonians
have been developed using the tools of atomic physics. For
example, equilibrium properties of synthetic quantum mag-
nets have been studied using trapped ions [10,11] or ultracold
atoms in optical lattices [12–16], including, e.g., the obser-
vation of long-range antiferromagnetic order [17]. Many
experiments using these platforms were also devoted to the
study of nonequilibrium dynamics, including the investiga-
tion of the Lieb-Robinson bound [18–24].
Recently, a new platform, using arrays of individually

resolved atoms excited to Rydberg states, has been shown
to provide a versatile way to engineer synthetic quantum
Ising magnets [25]. Pioneering experiments in quantum gas
microscopes studied quenches [26] or slow sweeps [27] in a
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regime where the blockade radius Rb, i.e., the distance over
which interatomic interactions prevent the excitation of two
atoms, was much larger than the lattice spacing a, rendering
the underlying lattice hardly relevant. In this case, the
observed correlations are liquidlike, and observing the
crystal-like ground state of the system [28] would require
exponentially long ramps [29]. More recently, experiments
with arrays of optical tweezers allowed exploring the
regime Rb ≳ a, studying nonequilibrium dynamics follow-
ing quenches [30] or slow sweeps [31].
Here, we use a Rydberg-based platform emulating an

Ising antiferromagnet to study the growth of correlations
during ramps of the experimental parameters in 1d and 2d
arrays of up to 36 single atoms with different geometries.
We operate in the regime Rb ≃ a, where the interactions act
to a good approximation only between nearest neighbors.
We dynamically tune the parameters of the Hamiltonian
and observe the buildup of antiferromagnetic order. We also
observe the influence of the finite ramp speed on the extent

of the correlations, and we follow the development in space
and time of these correlations during a ramp. Numerical
simulations of the dynamics of the system without any
adjustable parameters are in very good agreement with the
experimental data and show that single-particle dephasing
arising from technical imperfections currently limits the
range of the observed correlations. Finally, we observe a
characteristic spatial structure in the correlations, which can
be understood qualitatively by a short-time expansion of
the evolution operator for both square and triangular
lattices. This study is a benchmarking of a state-of-the-
art quantum simulator of spin models in nontrivial settings
(two-dimensional geometries, including frustrated ones). It
shows that, although single-particle dephasing is so far a
limitation for the study of ground-state properties, it does
not prevent the observation of interesting features in the
dynamics of these systems, in particular concerning
the propagation of correlations during dynamical tuning
of the parameters.

(a)

(c)

(d)

(b)

FIG. 1. Studying the AF Ising model on 1d and 2d systems. (a) Examples of single-shot fluorescence images of single-atom arrays
used in our experiments: a 24-atom 1d chain with periodic boundary conditions, a 6 × 6 square array, and a 36-atom triangular array.
Each atom is used to encode a spin-1=2, whose internal states j↑i and j↓i are coupled with Rabi frequency Ω and detuning δ. (b) Time
dependence of the Rabi frequency ΩðtÞ and detuning δðtÞ used to probe the buildup of correlations. (c) Sketched ground-state phase
diagrams of the Ising model in Eq. (1), in the nearest-neighbor interaction limit, for a 1d chain, a 2d square lattice, and a 2d triangular
lattice. In the figure, AFM stands for antiferromagnetic, PM for paramagnetic, and OBD for order by disorder. (d) Typical experimental
correlation functions obtained for these geometries (see text). For the 1d chain, the correlation length ξ ¼ 1.5 sites (bottom left panel).
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The paper is organized as follows. In Sec. II, we describe
the experimental platform. After recalling the phase dia-
gram for the different array geometries (Sec. III), we
explore its impact on the buildup of correlations on the
square array (Sec. IV). In Sec. VA, we study the influence
of ramp speeds on the correlations. In Sec. V B, we observe
a delay in the buildup of the spin-spin correlations, a feature
linked to their finite speed of propagation. Finally, in
Sec. V C, we analyze the 2d spatial structure of the AF
correlations on the square and triangular geometries and
show that it is qualitatively captured by an analytical model
based on short-time expansion.

II. EXPERIMENTAL PLATFORM

Our experimental platform (see Appendix A) is based on
user-defined two-dimensional arrays of optical tweezers,
each containing a single 87Rb atom [30]. Here, we use the
arrays shown in Fig. 1(a) containing up to N ¼ 36 atoms: a
1d chain with periodic boundary conditions (PBC), a
square lattice, and a triangular lattice. We achieve full
loading of the arrays using our atom-by-atom assembler
[32]. The atoms are prepared in the ground state j↓i ¼
j5S1=2; F ¼ 2; mF ¼ 2i by optical pumping and then
coupled coherently to the Rydberg state j↑i ¼ j64D3=2;
mj ¼ 3=2i, with a two-photon transition of Rabi frequency
Ω and a detuning δ, while the traps are switched off. The
system is described by the Hamiltonian

H ¼
X
i

�
ℏΩðtÞ
2

σxi − ℏδðtÞni
�
þ 1

2

X
i≠j

Uijninj; ð1Þ

where ni ¼ j↑ih↑ji is the projector on the Rydberg state for
atom i, and σx ¼ j↑ih↓j þ j↓ih↑j is the x-Pauli matrix. The
interaction term Uij arises from van der Waals interactions
between the atoms and, thus, scales as 1=r6ij, with the
distance rij between atoms i and j. This short-range
character allows us to neglect interactions beyond near-
est-neighbor (NN) atoms for this work [33], and we thus
restrict Eq. (1) to NN terms only. For the D states that we
use, the van der Waals interaction is anisotropic [25,34],
and the lattice spacings in the arrays are tuned such that
the NN interactions anisotropy is below 10%. We use
typical values Ωmax=ð2πÞ ∼ 2 MHz and U=h ∼ 1–3 MHz;

see Table I. The driving parameters Ω and δ can be
considered constant over the entire array (see Appendix A).
The system thus realizes an Ising-like model with a

transverse field ∝ Ω and a longitudinal field ∝ δ, which
gives rise to antiferromagnetic (AF) order for U > 0 (see
below). We probe the system by using time-dependent
ramps ΩðtÞ and δðtÞ, as shown in Fig. 1(b). The Rabi
frequencyΩ is switched on and off in trise, tfall ∼ 250 ns at a
constant detuning δ, and, in between, δ is ramped linearly
from δ0=ð2πÞ ¼ −6 MHz to δfinal during the time tsweep.
The total duration of the ramp is then ttot ¼ triseþ
tsweep þ tfall. After this, the trap array is switched on again.
Atoms in j↓i are observed by fluorescence, while those in
j↑i are lost from their trap. For a given set of parameters, the
experiment is repeated a few hundred times to reconstruct
quantities of interest such as the Rydberg density (equivalent
to the magnetization), spin-spin correlation functions, or the
sublattice density histogram. When δfinal lies in the AF
region [see Fig. 1(c)], correlation functions show the
emergence of short-range order [Fig. 1(d)] (see more details
on the measurements in Sec. IV).

III. THEORETICAL PHASE DIAGRAMS AND
STATE PREPARATION CONSIDERATIONS

As one of the stated goals of quantum simulations is the
experimental exploration of phase diagrams of complex
quantum many-body systems, we present an overview of
the current understanding of the ground-state phase dia-
grams of the Hamiltonian under study. The calculated
ground-state phase diagrams for the nearest-neighbor Ising
model are shown in Fig. 1(c) for the three geometries
considered in this paper. On the 1d chain, the phase
diagram is well known and features an AF phase and a
paramagnetic phase delimited by a second-order quantum
phase transition line of the ð1þ 1Þd Ising universality class
[35]. For ðℏδ=UÞTFI ¼ z=2, with the coordination number
z ¼ 2, the Hamiltonian corresponds exactly to the analyti-
cally solvable transverse field Ising (TFI) model without
a longitudinal field, where in 1d the critical point
ðℏΩ=UÞc ¼ 1=2 is known analytically.
The phase diagram for the NNHamiltonian on the square

lattice (z ¼ 4) is qualitatively similar to the phase diagram
on the chain, with again an AF phase and a paramagnetic
phase delimited by a second-order quantum phase tran-
sition line in the ð2þ 1Þd Ising universality class. For the
transverse field Ising line ðℏδ=UÞTFI, the critical point is

TABLE I. Experimental parameters used for the data presented in the main text.

Figures U=h (MHz) Ωmax=ð2πÞ (MHz) δfinal=ð2πÞ (MHz) trise ðμsÞ tsweep ðμsÞ tfall ðμsÞ
2 1.0 2.3 ½−2; 6� 0.25 fðδfinal − δ0Þ=½2π · 10ðMHzÞ�g 0.5
3 2.7 1.8 4.5 0.25 [0.1, 1.3] 0.25
4 2.7 1.8 4.5 0.25 0.44 0.25
5(a) 2.7 1.8 4.5 0.25 0.44 0.25
5(b) 0.8 0.6 1.6 0.25 5.5 0.25
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known to high precision from Monte Carlo simulations,
ðℏΩ=UÞc ¼ 1.52219ð1Þ [36]. Finally, on the triangular
lattice (z ¼ 6), the NN Hamiltonian features a much richer
phase diagram. A Rydberg crystal with filling fraction 1=3
(at Ω ¼ 0), where one of the three triangular sublattices is
occupied by Rydberg states and the atoms in the other
sublattices remain in the ground state, appears in a region
within 0 < ℏδ=U < z=2. The conjugate crystals obtained
by flipping all the spins (filling fraction 2=3 atΩ ¼ 0) lie in
the region within z=2 < ℏδ=U < z. The most interesting
feature occurs when ℏδ=U ¼ z=2, where an “order by
disorder” process occurs [37]. When including the open
boundary conditions for the square and triangular N ¼ 36
arrays studied here, the “phase diagrams” present the same
phases with some modifications (see Appendix B).
In the experiments reported here, we initialize the

system in the product state with all atoms in their ground
state j↓i. Since the system is not at equilibrium with a
thermal bath, we cannot simply cool to the ground state.
Therefore, we use an experimental protocol involving
sweeps of ΩðtÞ and δðtÞ in order to characterize the
ground states. Ideally, we would use adiabatic state
preparation to reach the targeted ground state and would
so be able to explore the phase diagrams of the highly
nontrivial Hamiltonian in Eq. (1) on diverse lattices. In
order for this approach to succeed, the duration of the
sweep, which scales as the inverse of the square of the
energy gap Δ above the instantaneous ground states [38],
should be smaller than the coherence time of
the system. In the 1d chain and the 2d square lattice,
the minimal gap at the quantum phase transition scales as
the inverse of the linear size of the system: Δ ∼ 1=N in 1d
and Δ ∼ 1=L ¼ 1=

ffiffiffiffi
N

p
in 2d [35,39]. The gap also

depends on the excitation velocity at the quantum critical
point, which can vary substantially along the quantum
phase transition lines. For the triangular lattice, we expect
a first-order quantum phase transition between the para-
magnet to either the 1=3 or 2=3 filling Rydberg crystals,
resulting in a minimal gap exponentially small in N [40].
Because of these scalings, the gaps are small for the
number of atoms used here. As a consequence, adiabatic
state preparation would require long pulses. In the absence
of any imperfections such as dephasing, pulse durations
ttot of a few μs would allow us to reach strong correlations
extending over the entire system. While such durations
are experimentally accessible, state-of-the-art platforms
[27,30,31] show significant dephasing over these time-
scales. For this reason, we approach here the question of
state preparation from the opposite side and investigate the
maximal strength of correlations that can be built, as well
as their spatial structure, in a fixed amount of time.
Answering these questions also informs us about the
minimal time required to build up highly correlated states
starting from a product state [4], a notion which is closely
related to “quantum speed limits” in an optimal control
context [41,42].

IV. EXPLORING THE SQUARE LATTICE
PHASE DIAGRAM

In the first set of experiments, we explore the influence
of theΩ ¼ 0 “phase diagram” [see Fig. 1(c)] on the buildup
of correlations on an L × L square array with L ¼ 4 and
L ¼ 6 after relatively short ramps. In order to do so, we
use the ramps shown in Fig. 1(b), with ℏΩmax=U ¼ 2.3.
From the analysis of the final fluorescence images, we
reconstruct the Rydberg density n ¼ P

ihnii=N, and the
connected spin-spin correlation function

gð2Þðk; lÞ ¼ 1

Nk;l

X
ði;jÞ

½hninji − hniihnji�; ð2Þ

where the sum runs over atom pairs ði; jÞ whose separation
is ri − rj ¼ ðka; laÞ, and Nk;l is the number of such atom
pairs in the array [43]. For a perfect antiferromagnetic Néel
ordering, gð2Þ takes the values �1=4 for jkj þ jlj even and
odd, respectively.
Figure 2(a) shows the spin-spin correlation function at

the end of the ramp as a function of x ¼ ℏδfinal=U. We
observe strong AF correlations; i.e., the sign of gð2Þðk; lÞ
changes according to the parity of the Manhattan distance
jkj þ jlj, in the region 0 < x < 4 where AF order is
expected, while the correlations vanish outside of this
region. The amplitude of the AF correlations decreases
with distance, in a way that is well captured by an
exponential decay with a correlation length ξ, defined by
gð2Þðk; lÞ ∝ ð−1Þjkjþjlj exp½−ðjkj þ jljÞ=ξ�, of about 1.5 sites
[see Figs. 1(d) and 3(b)]. Repeating the same experiment
with a 1d chain yields the same correlation length (the
particularity of the triangular lattice is discussed in
Appendix F). Importantly, even though the correlation
length is smaller than two sites for both the 1d chain
and the square lattice, we are able to detect finite corre-
lations with the expected sign structure for up to five
Manhattan shells, i.e., almost over the whole array.
Another way to highlight AF correlations is to partition

the array into the two Néel sublattices A and B and plot a
two-dimensional histogram PðnA; nBÞ with the j↑i pop-
ulations nA and nB of each sublattice as axes. For a perfect
AF ordering, one would observe populations only in the
two corners ðnA ¼ 0; nB ¼ N=2Þ and ðnA ¼ N=2; nB ¼ 0Þ.
The experimental results in Fig. 2(b) show that, for x ¼ 2.5
(central plot), the sublattice population histogram is sub-
stantially elongated along the antidiagonal nB ¼ N=2 − nA,
which is not observed for x < 0 or x > 4. For comparison,
the dotted circles indicate the shape of the sublattice
histograms that would be obtained for an uncorrelated
random state with the same average Rydberg density:
There, the elongation along the antidiagonal is absent. In
Fig. 2(c), we show as a comparison simulated histograms
for pure Hamiltonian evolution for a lattice with L ¼ 4,
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where we again see the typical elongation for the center
panel induced by the short-range Néel ordering.
In Figs. 2(d) and 2(e), we attempt to locate the bounda-

ries of the AF phase. Panel (d) shows the mean Rydberg
density n. For the Ω ¼ 0 ground state of Eq. (1) in the NN
limit with periodic boundary conditions, it should rise in
steps, from 0 for x < 0, to 1=2 for 0 < x < 4, and to 1 for
x > 4 [44]. For open boundary conditions, additional steps
are present in the 0 < x < 4 region; see Appendix B.
Experimentally, the curve nðxÞ varies continuously due to
the finite duration of the sweep, as also observed in
Refs. [20,27]. This mean density is, therefore, not a good
observable to differentiate the paramagnetic and AF
regions. Instead, we introduce the Néel structure factor
SNéel to detect antiferromagnetic correlations in the AF
region of the phase diagram:

SNéel ¼ 4 ×
X

k;l≠ð0;0Þ
ð−1Þjkjþjljgð2Þðk; lÞ: ð3Þ

This quantity is an estimator for the correlation volume, i.e.,
the number of spins correlated antiferromagnetically with a
given spin. In a situation with true long-range order, SNéel
diverges linearly with the total “volume” N of the system,

while it stays almost constant for short-range ordered
correlations when the system sizes are larger than the
correlation length. As shown in Fig. 2(e), this quantity
indicates the presence of substantial short-range AF corre-
lations for 0 < x < 4, which incidentally coincides with the
antiferromagnetic region in the ground-state phase diagram.
The results presented so far demonstrate that antiferro-

magnetic correlations, although remaining short ranged, are
strongest when the detuning at the end of the ramp is in the
very same parameter range as the antiferromagnetic phase
in the ground-state phase diagram (0 < x < 4). We attrib-
ute this coincidence to the fact that the very different nature
of the three phases (i.e., the Rydberg density zero state, the
antiferromagnetic phase, and the completely Rydberg filled
state) and the first order transitions between them occurring
at Ω ¼ 0 are discernible even to our relatively short ramps.
In the next section, we will study how the correlations build
up in time.

V. EXPLORING THE TIME AND SPACE
DEPENDENCE OF CORRELATIONS

In the following, we first investigate in Sec. VA how
SNéel depends on the ramp speed and find a duration ttot that
maximizes its value. Then, with these settings, we study in

(e)

(a) (d)

(b)

(c)

FIG. 2. Exploring the Ω ¼ 0 line of the phase diagram for an L × L square lattice with L ¼ 4 and L ¼ 6. (a) Experimental spin-spin
correlation function gð2Þðk; lÞ for different values of the final detuning. (b) Corresponding experimental histograms of the populations of
the two Néel sublattices A and B, to be contrasted with those for uncorrelated random states with the same Rydberg density (the dotted
circles indicate the positions where the random state histogram falls off to a value of 5 × 10−4). (c) Simulated histograms (without
dephasing) for L ¼ 4 as a comparison. (d) Average Rydberg density n, and (e) Néel structure factor SNéel as a function of the final
detuning. The shaded areas highlight the region of the AF phase in the phase diagram forΩ ¼ 0. In (d) and (e), the error bars (sometimes
smaller than the symbol size) denote the standard error on the mean (s.e.m).
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Sec. V B the temporal buildup of correlations during the
optimized sweep and observe delays between the growth
of correlations at increasing distances. Eventually, in
Sec. V C, we analyze the spatial structure of these corre-
lations and give a qualitative explanation of the observed
patterns in terms of a short-time expansion.

A. Correlations after ramps of varying durations

We perform experiments on a 36-site square lattice using
the sweep shown in Fig. 1(b) with fixed parameters
ℏδfinal=U ¼ 1.7, ℏΩmax=U ¼ 0.7 < ðℏΩ=UÞc. In contrast
to the previous experiment, the quantum phase transition
line is crossed while ramping the detuning δ, and we vary
the duration of the sweep tsweep (and, therefore, ttot). The
initial parameters are chosen such that the ground state at
t ¼ 0 corresponds to j↓↓ � � �i (no Rydberg excitation) and
the ground state at the final parameters is an AF [45].
Figure 3(a) shows two-dimensional plots of the exper-

imental gð2Þ correlation functions for four different values

of ttot. For the shortest sweeps, the correlations remain
weak. For intermediate durations (ttot ∼ 1 μs), strong cor-
relations emerge, with a staggered structure extending over
many Manhattan shells, as shown in Fig. 3(b). For even
larger sweep durations, the correlation signal decreases
with increasing sweep duration. In Fig. 3(c), we show the
value of SNéel as a function of ttot: starting from small values
for short ramps, it exhibits a broad maximum for ttot ∼ 1 μs
and slowly decreases for longer ramp durations.
In order to gain a better understanding of the behavior

described above, we compare the data with numerical
simulations of the dynamics of the system governed by
the Hamiltonian of Eq. (1) with the full van der Waals
interactions for the sweeps used in the experiment [46]. We
show in Fig. 3(c) the results of the simulation on a 4 × 4
square lattice. The green line corresponds to a unitary
evolution that models well the experiment only for short
sweep durations. The dashed yellow line includes the
decoherence through a simple, empirical model assuming

(a)

(b)

(d)

(c)

FIG. 3. Buildup and decay of correlations in a 2d square lattice antiferromagnet for different ramp durations ttot. (a) Experimental
results for the 2d correlation function gð2Þðk; lÞ for four different values of ttot, showing short-range AF ordering, with a pronounced
sweep duration dependence. (b) The correlation function gð2Þ (averaged within a Manhattan shell m ¼ jkj þ jlj) decays exponentially
with the Manhattan distance m, with a correlation length ξ of about 1.4 lattice sites. (c) Néel structure factor SNéel as a function of ttot.
The green solid line shows the result of a numerical simulation using exact diagonalization for a 4 × 4 system without dephasing, while
the yellow dashed line denotes a numerical simulation including dephasing (see Appendix C). (d) Dependence of the correlations on ttot
for nearest, second-nearest, third-nearest, and fourth-nearest neighbors. One observes a dependence not only on the Manhattan distance
jkj þ jlj, but also on k − l (see Sec. V C). The dashed lines represent a numerical simulation including dephasing (the shaded area
corresponds to the s.e.m. obtained therein).
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a local (i.e., single-atom) dephasing, with a rate γ ≃
3.0 μs−1 obtained from fits of single-atom Rabi oscillations
(see Appendix C 2). We observe a remarkable agreement
between this local dephasing model with no adjustable
parameters and the experiment over a large range of ttot.
This indicates that the saturation and the decay of the
correlations for longer sweeps are dominated by single-
particle decoherence, which makes it possible for numeri-
cal simulations on smaller systems to adequately model the
observed correlation functions on the larger lattices realized
in the experiment.
We now analyze the spin-spin correlations for different

Manhattan distances jkj þ jlj. In Fig. 3(d), we observe the
buildup of correlations up to the fourth shell jkj þ jlj ¼ 4,
all of them being antiferromagnetically staggered,
gð2Þðk; lÞ ∝ ð−1Þjkjþjlj. For short sweeps, the correlations
sharply increase with increasing duration, saturate for
longer sweeps, and decay, again due to decoherence. The
simulation including dephasing (dashed lines) reproduces
well this trend.

B. Buildup of correlations along a ramp
of fixed duration

In a subsequent experiment, we analyze how the AF
correlations build up in time, during the sweep that max-
imizes SNéel (ttot ¼ 1.0 μs) identified in the previous sub-
section. Stopping the dynamics after a variable time
0 < t < ttot, Fig. 4 shows the time evolution of the corre-
lations after entering the AF region identified in Fig. 2 at
δðtÞ>0 (t > 0.5 μs). We observe that most of the correla-
tions build up for 0.6<t<0.8μs and then freeze at larger
times.When comparing again to the numerical simulation of
the dynamics, including the single-particle dephasing, we
obtain a remarkable agreement with the data.
Figure 4 also features a striking effect: We observe a

delay in the buildup of correlations between the different

Manhattan shells m ¼ jkj þ jlj, highlighting the finite
speed for the spread of correlations. To quantify this effect,
we normalize the correlations for each distance such that
the corresponding dephasing-free simulation reaches a
maximum of 1 at large time [Fig. 4(b)]. Fixing an arbitrary
threshold of 0.2, we observe that the nearest neighbor shell
(m ¼ 1) reaches this threshold at t ≈ 0.64 μs, the second
shell (m ¼ 2) at t ≈ 0.71 μs, and, finally, the third shell
(m ¼ 3) at t ≈ 0.79 μs (see gray vertical lines). This delay
is a manifestation of the finite propagation speed of
correlations; such a finite propagation speed is theoretically
predicted by Lieb-Robinson bounds [3,4]. Finite propaga-
tion speeds for correlations and other signals are well
explored in the context of sudden quench protocols with
constant postquench Hamiltonians [18,20,23,47,48], but
their importance for state-preparation protocols (with a
time-dependent Hamiltonian) is not equally well known
(see Appendix D for a brief review on Lieb-Robinson
bounds and effective propagation speeds adapted for the
present context).
Figure 4(b) also reveals that when the correlations on the

first shell reach the threshold, correlations for higher
Manhattan distances are suppressed, but still detectable
for m ¼ 2. This resembles the known fact that the correla-
tions outside a Lieb-Robinson cone are finite, albeit expo-
nentially suppressed (see also Appendix D). To recover this
fact, we introduce a simple analytical approach based on a
short-time expansionmethod (seeAppendixE for details and
specific results). We find analytical expressions in powers of
the duration T of the ramp for the connected gð2Þ correlation
functions for differentManhattan distancemvalid in the limit
(UT=ℏ;ΩT; δT ≪ 1). We obtain nearest-neighbor correla-
tions (m ¼ 1) of order T6 and next-nearest-neighbor corre-
lations (m ¼ 2) of order T10. More generally, the leading
order of the expansion for two sites separated by aManhattan
distance m appears at order T2þ4m, thus suggesting that at a
given (short) time the correlation decreases exponentially

(a) (b) (c)

(d)

FIG. 4. Time evolution of a 6 × 6 square array along a ramp with ttot ¼ 1.0 μs. (a) Buildup of correlations along the ramp.
(b) Observation of a time delay between the buildup of significant correlations in increasing Manhattan shells m. This is the
manifestation of a finite propagation speed of correlations in their buildup between distant sites (see text). (c) Néel structure factor and
(d) correlation length ξ. All figures: The dotted (dashed) lines correspond to the result of a numerical simulation for a 4 × 4 lattice
without (with) dephasing.
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with m (see more details in Appendix E). This scaling
explains qualitatively the observed time dependence in
Figs. 4(a) and 4(b), even though, strictly speaking, the range
of applicability of the short-time expansion is limited to times
much shorter than those shown there (for which the corre-
lations would still be extremely small, and thus, very
challenging to measure experimentally). However, our
numerical results without and with dephasing, as well as
the experiment, show that the qualitative features of the short-
time expansion prevail for the considered nonperturbative
times and the actual ramp shapes.

C. Buildup of spatial structures on the square
and triangular lattices

We finally analyze the spatial structure of the correla-
tions in more detail. Figures 3(d), 4(a), and 4(b) show that
the correlations do not depend only on the Manhattan
distance m ¼ jkj þ jlj, but also, for fixed m, on k − l
[49,50]. For instance, for second neighbors (m ¼ 2), the
correlations for ðk; lÞ ¼ ð0; 2Þ or (2,0) are about half of
those along the diagonal ðk; lÞ ¼ ð1; 1Þ. This spatial struc-
ture, absent in a 1d setting, has not, to our knowledge, been
experimentally observed in 2d.
The observed spatial structures in the correlations within

a given Manhattan shell m can also be captured by the

short-time expansion. The leading order coefficient of a
given correlator gð2Þðk; lÞ depends on the number of paths on
the lattice linking the two sites as detailed in Appendix E 2.
Figure 5 shows a comparison of the spatial structure in
experimental data for both a square and a triangular lattice
after a ramp of finite duration. In panels (a) and (c), the
number of linking paths is given for k ≥ l ≥ 0 by the
binomial coefficient Cm

k for both lattices and is shown in
brackets. In panels (b) and (d), we analyze the correlations
on the square and triangular lattice. The green dotted lines
show the k − l dependence of gð2Þðk; lÞ, assumed to be given
only by the binomial coefficients, normalized to the maxi-
mal correlation value for each subplot.
The precision of the experiment even allows us to

observe a small asymmetry in each shell m ¼ const.,
because of a slight residual anisotropy of the interaction.
An extension of the short-time expansion to the anisotropic
case yields an analytical expression from which we extract
the ratio Uz=Uw of the nearest-neighbor interactions. We
use this interaction anisotropy in the analytical expression
to obtain the correlation for larger jkj þ jlj. The results are
shown as red dashed lines.
Interestingly, for triangular lattices, in contrast with the

case of square arrays, the spatial structures of the corre-
lations that one observes experimentally, and which are
well reproduced by the short-time expansion, do not reflect

(a)

(c) (d)

(b)

FIG. 5. Spatial structure of the spin-spin correlations on the 36-site square (a),(b) and on the 36-site triangular lattice (c),(d).
Experimental data after a sweep is shown in (a) and (c), together with the values of ðk; lÞ for the first three shells jkj þ jlj [see Fig. 1(d) for
the full range]. The numbers in brackets [c] give the number of linking paths contributing to the short-time expansion. (b) and
(d) Dependence of the correlation on ðk; lÞ for several Manhattan distances with a qualitative comparison to binomial coefficients (green
dotted lines) and leading-order short-time expansion (red dashed lines); see text for details. The shaded region corresponds to the s.e.m.
of the experimental data.
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directly those one would obtain in the ground state (see
Appendix F). This specific behavior may be a dynamical
signature of the frustrated character of the triangular
geometry: In order for a system to explore its frustrated
nature, large enough times are needed, such that the
dynamics is able to explore the frustrated loops (i.e.,
triangles). In a perturbative expansion, like the short-time
expansion, this means that large enough times are neces-
sary such that the higher order contributions containing
these loops are able to overcome the leading-order con-
tributions, which, we have shown, are of a Manhattan-like
structure. A detailed discussion is, however, beyond the
scope of the present work.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have used a Rydberg-based platform
to study antiferromagnetic correlations in a synthetic Ising
magnet with different geometries. Using dynamical varia-
tions of the parameters, we explored the phase diagram and
prepared arrays exhibiting antiferromagnetic order with
pronounced Manhattan structures. We also studied the
growth of the correlations during the sweeps of the
parameters. We observed delays in the buildup of corre-
lations between sites at different distances, a feature linked
to the Lieb-Robinson bounds for the propagation of
correlations in a system with nearest-neighbor interactions.
We were able to understand the spatial structure of the
correlations after short to intermediate evolution times
using an analytical short-time expansion of the evolution
operator. Finally, we obtained remarkable agreement
between the data on the dynamics of the correlations
and numerical simulations using a local (i.e., single-
particle) dephasing model.
In the future, the time over which coherent simulation

can be performed in such artificial quantum magnets could
be extended by a better understanding of the dephasing
mechanisms at play in the coherent excitation of Rydberg
states [51]. We will then be able to explore geometric
frustration on triangular or Kagome lattices [52,53].
Alternatively, it could be interesting to explore the limit
of strong dephasing to study dissipative phase transitions
(see, e.g., Ref. [54]). Another promising avenue is the study
of magnets described by the XY model implemented using
resonant dipole-dipole interactions [55–57]: There, the
coherent drive is obtained by using microwaves, and much
lower dephasing rates are expected; moreover, the inter-
action decays slowly, as 1=r3, and long-range effects
should be more prominent [58].
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Note added.—Recently, similar antiferromagnetic correla-
tions in 2d have been observed at Princeton University by
Elmer Guardado-Sanchez et al. [59], using a system of Li
Rydberg atoms in a quantum gas microscope.

APPENDIX A: EXPERIMENTAL DETAILS

Here, we give more details about our experimental setup
and on the mapping of the Rydberg system onto an Ising
antiferromagnet.
We use a two-photon excitation scheme to excite the

atoms to the Rydberg state. The two lasers at 795 and
475 nm, with corresponding Rabi frequencies Ωr and Ωb,
and a detuning Δ ≃ 2π × 740 MHz from the intermediate
j5P1=2; F ¼ 2i state result in an effective Rabi frequency
Ω ¼ ΩrΩb=ð2ΔÞ for the coupling between j↓i and j↑i, but
also introduce lightshifts ðΩ2

r −Ω2
bÞ=ð4ΔÞ that add up to

the two-photon detuning δ. In order to generate the ramps
shown in Fig. 1(b), we thus compensate for these additional
lightshifts. An AOM is used for changing dynamically the
amplitude and frequency of the red beam. Because of the
finite size of our excitation beams, the atoms do not all
experience exactly the same δ and Ω. For our arrays with a
size of approximately 40 μm, the inhomogeneities of Ω are
below 15%, while the detuning does not differ from its
value on the central atom by more than 150 kHz.
The detection of the state of each atom relies on the loss

of atoms in the Rydberg state, which are not recaptured in
the optical tweezers. This detection method is, thus, subject
to small detection errors [51]. In particular, an atom actually
in j↓i has a small probability ε to be lost and, thus,
incorrectly inferred to be in j↑i. As in Ref. [30], we
measure ε in a calibration experiment, and then we include
the effect of detection errors on all the theoretical curves.
An antiferromagnetic phase is expected when inter-

actions between parallel spins are repulsive, corresponding
to the case where U > 0 in the Hamiltonian of Eq. (1).
Figure 6(a) shows the energy levels for a 2 × 2 squarematrix
of atoms as a function of the detuning δ, with U > 0 and
ℏΩ ≃ 0.5U. The lowest energy configuration with two j↑i
spins is then an antiferromagnetic state for 0 < ℏδ < 2U.
Then, starting from a detuning δ < 0, with all atoms in j↓i,
and ramping it up to δ ≈ U=ℏ (dashed arrow), the lowest
energy state is evolving adiabatically to the antiferromag-
netic state. In our experiment, the interactions between
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j↑i ¼ j64D3=2; mj ¼ 3=2i spin states are in fact attractive
(U < 0). Consequently, the antiferromagnetic state is never
the lowest energy configuration whatever the value of δ; see
Fig. 6(b). Nevertheless, starting from a detuning δ > 0 and
ramping it down to δ ≈U=ℏ, the system evolves from the
initial state to an antiferromagnetic state while following the
highest-energy level. In this case, preparing the antiferro-
magnetic state actually means obtaining the ground state of
−H and, hence, the change of sign of the detunings needed to
reach the correlated phase. For our parameters, the van der
Waals interaction is not only attractive, but also slightly
anisotropic [25,34,60], being about three times as small in
the horizontal direction as in the vertical one (along ẑ). We
compensated for this difference by slightly distorting the
arrays along ẑ by a factor of approximately 31=6.

APPENDIX B: FINITE-SIZE EFFECTS

The two-dimensional arrays used here present open
boundary conditions (OBC). The lattice sites along the
boundary have fewer neighbors than the sites in the
bulk and, therefore, experience fewer interactions. This
modifies the “phase diagram” with respect to the bulk
phase diagrams presented in Fig. 1. In Fig. 7, we show the
classical (i.e., Ω ¼ 0) ground-state configurations for the

N ¼ 36 square and triangular arrays used in the experiment
and compare them to the bulk phase diagrams. The sites at
the boundary are more easily excited to the Rydberg state
when δ increases, leading to a larger number of density
plateaus. We have checked that, for the parameters used in
this paper, the OBC and bulk phases feature the same
typical short-range correlations.
The Néel structure factor SNéel shows almost no

finite-size effects for short-range ordered systems as long
as the system sizes are larger than the correlation length.
For finite arrays, the number of pairs of sites with larger
distances jkj þ jlj is strongly reduced, leading to larger
errors for the connected correlations gð2Þðk; lÞ due to
reduced statistics. In order to keep reasonable values and
errors for the Néel structure factor, we have restricted the
summation to jkj þ jlj ≤ 4 in the experimental evaluation
of SNéel.

APPENDIX C: NUMERICAL METHODS

We perform numerical simulations of the time evolution
on medium-size lattices for both Hamiltonian systems
without any decoherence and the same systems with
additional dephasing terms in the framework of a master
equation in Lindblad form. In both cases, we construct the
complete many-body Hilbert space of the system on the
finite lattice and do not perform any truncation to calculate
the time evolution. Therefore, during the time evolution,
the system can explore the entire Hilbert space and all
phases in the phase diagram can potentially be obtained.

1. Unitary time evolution

To simulate the unitary time evolution of a time-
dependent Hamiltonian HðtÞ, we approximate HðtÞ by a
piecewise constant Hamiltonian HapproxðtÞ on nsteps inter-
vals of length Δt, such that

FIG. 6. Influence of the sign of C6 on the many-body spectrum.
Eigenenergies of a small 2 × 2 square system as a function of δ
for ℏΩ=U ≃ 0.5. (a) For a repulsive interaction C6 > 0, the
ground state of H is antiferromagnetic for 0 < ℏδ < 2U. It
can be reached from j↓i⊗4 by adiabatically following the ground
state starting from negative values of δ (trajectory in dashed
arrows). (b) For an attractive interaction C6 < 0, the antiferro-
magnetic state is the most excited state, and the sign of the
detuning needed to reach it from j↓i⊗4 is reversed.

FIG. 7. Classical (Ω ¼ 0) phase diagrams for arrays with open
boundary conditions, with Rydberg density n as a function of
x ¼ ℏδ=U for the N ¼ 36 square and triangular arrays used in the
experiment. Blue lines correspond to open boundary conditions,
while red dashed lines correspond to periodic boundary con-
ditions (bulk phase diagram). The numbers indicate the degen-
eracy of the classical configurations for the distinct plateaus.
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HapproxðtÞ ¼
HðnΔtÞ þH(ðnþ 1ÞΔt)

2
; ðC1Þ

for nΔt ≤ t < ðnþ 1ÞΔt. We then compute the evolution
operator within each interval with a Krylov-type matrix
exponential approach [61] and use the evolved state of the
previous interval as the starting state. We choose nsteps such
that the results do not differ from a simulation with nsteps=2
intervals within a demanded accuracy. In most of the
presented simulations, nsteps ¼ 200.
We are able to calculate the unitary time evolution of

system sizes of up to about 30 lattice sites with a reasonable
amount of resources. In the present study, most of the
numerical results have been obtained on 4 × 4 and 5 × 5
square lattices. Because of the relatively short correlation
lengths observed in the experiments, the numerical results
on the smaller systems can nevertheless be used to model
the observed correlation functions on the larger, exper-
imentally realizable lattices.

2. Time evolution in the presence of dephasing

The experimental system features several sources of
imperfections [51], and the description of its evolution as a
pure Hamiltonian is not exact. In particular, phase noise of
the excitation lasers and Doppler shifts lead to dephasing,
already for a single particle. We thus perform simulations
with a phenomenological local dephasing model with a rate
γ obtained by fitting experimental single-atom Rabi oscil-
lations, as shown in Fig. 8(a). We obtain dephasing rates
γ ≈ 3–4 μs−1 for Ω=ð2πÞ ¼ 1.8 MHz (for pure dephasing
with a rate γ, the 1=e damping time of the envelope of the
Rabi oscillation is 4=γ). The time evolution of the density
matrix ρðtÞ of the many-body system is then described by
the following master equation in Lindblad form:

d
dt

ρ ¼ −
i
ℏ
½H; ρ� þ L½ρ�; ðC2Þ

with a Liouvillian

L½ρ� ¼
X
i

γ

2
ð2niρni − niρ − ρniÞ: ðC3Þ

Direct simulations of the master equation are only
possible for small lattices as the memory demand for
saving density matrices grows as Oð4NÞ for the considered
Hilbert space on N sites. Thus, we use a Monte Carlo wave
function (MCWF) method [62–64], where only a single
wave function has to be stored such that one can simulate
system sizes of up to around 20 sites. The MCWF method
evolves a starting state with an effective non-Hermitian
Hamiltonian; at each time step, a quantum jump corre-
sponding to the given decoherence operator collapses the
evolved state with a given probability. Averaging over
many such quantum trajectories—we use 1280 for the
presented results—allows reconstructing the density matrix

and, thus, computing any observable during the time
evolution. In Figs. 8(c) and 8(d), we compare experimental
data with simulations using different dephasing rates γ and
observe that the best agreement is indeed achieved by
choosing γ obtained from fitting the single-particle Rabi
oscillations.
In practice, to perform simulations with dephasing, we

use the Python toolbox “QuTiP” [65].

APPENDIX D: LIEB-ROBINSON BOUNDS

In nonrelativistic quantum mechanics, one might believe
that information propagation is instantaneous because there
is no explicit speed of light limiting the propagation.
However, in 1972, Lieb and Robinson [3] proved that,
in an extended quantum many-body system with a finite-
dimensional local Hilbert space and sufficiently local
interactions, there is nevertheless a characteristic velocity

(a)

(b) (c)

FIG. 8. (a) Single-atom Rabi oscillations, averaged over a
typical square array (dark red symbols). We perform a fit (dashed
line) to the analytical model including detection deficiency to
obtain the dephasing rate γ and the Rabi frequencyΩ. The value of
γ thus obtained is then used for the simulations of the experiments
with Ωmax ¼ Ω [cf. Figs. 3(c) and 3(d)]. (b),(c) Simulation of the
many-body real-time evolution as in Figs. 4(c) and 4(d), with
different values of the dephasing rate γ for (b) the Néel structure
factor and (c) the correlation length. The rate γ ¼ 3 μs−1 used in
the main text as obtained in (a) is indicated by a solid line.
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emerging, which defines an approximate light cone for the
propagation of information and implementing causality.
In Ref. [4], the Lieb-Robinson bound has been gener-

alized to equal-time connected correlation functions of
two operators (normalized to unity), acting on spatial
regions A and B (of size jAj and jBj), at a distance d apart
from each other, after some time evolution of duration t,
and starting from an initial state with exponentially
decaying correlations, with a correlation length χ.
Then, the connected equal-time correlation gð2Þðd; tÞ ≔
hOAðtÞOBðtÞi − hOAðtÞihOBðtÞi is bounded as follows:

jgð2Þðd; tÞj ≤ c̄ðjAj þ jBjÞ exp½−ðd − 2vtÞ=χ0�; ðD1Þ

with χ0 ¼ χ þ 2ζ. The coefficients c̄; v, and ζ depend on the
Hamiltonian and the considered operators OA and OB. The
velocity v is particularly important and is called the Lieb-
Robinson velocity.
The importance of this result for the present study is that

correlations at a distance d are exponentially suppressed in
ðd − 2vtÞ=χ0 as long as the time t < d=ð2vÞ. After that
time, the correlations are bounded by a number of Oð1Þ.
This time dependence is visualized in Fig. 9.
We want to point out that the Lieb-Robinson theorem

proves rigorous theoretical bounds on the speed with which
phenomena can propagate in such systems; however, the
actual dynamics does not necessarily saturate these bounds.
One reason might be that the rigorous velocity bound is not
tight, but the dynamics can be accurately modeled with a
smaller velocity (as seems to be the case here; see below).
More generally, however, the Lieb-Robinson bounds do not
imply that signals have to spread ballistically, obeying a
linear light cone. In most nonintegrable, ergodic systems, it
is actually expected that signals propagate more slowly and
show diffusive dynamics, thereby satisfying the Lieb-
Robinson bounds broadly.

We have estimated the rigorous, maximal Lieb-Robinson
velocity [4,66] for our system in Eq. (1) restricted to nearest-
neighbor interactions and obtain v ¼ 8emaxtF½UðtÞ;ΩðtÞ;
δðtÞ�, where we have absorbed the dependence on the
coupling constants in a function F and e ¼ expð1Þ; for
the ramp used in Fig. 4, this evaluates to v ≈ 3.67 × 2π ×
8e a μs−1 (a denotes the lattice spacing). The maximal
velocity for the spreading of correlations 2v is approxi-
mately 70 times faster than the observed time delay in
Fig. 4(b), such that this experiment easily fulfills the bounds.
Obviously, the rigorous velocity bound is much larger

than thevelocity derived from the experimental time delay in
the buildup of correlations. We try to address this discrep-
ancy in the following. It has been observed in the past that, in
some systems, the dynamically visible velocity—while
bounded by the Lieb-Robinson velocity—can actually also
depend on the initial state [67], a fact whose explanation
requires a deeper knowledge of the dynamics, beyond the
generic technology used to derive the Lieb-Robinson
bounds.
In Ref. [68], the picture was introduced that quasiparticle

excitations on top of a state are responsible for the light-
cone-like spreading of correlations. The spreading of such
quasiparticles—often computed based on effective models
for a given physical situation—gives rise to a maximal
spreading velocity, typically regarded as an effective Lieb-
Robinson velocity [18,69,70], although it often does not
imply rigorous bounds. In order to obtain such effective
velocities for our strongly interactingHamiltonian, we apply
a linear spin-wave theory approach: For a given set of
Hamiltonian parameters, we compute the classical ground
state and its semiclassical spin-wave excitation spectrum
using standard linear spin-wave theory. From the so-
obtained dispersion relation ϵðkÞ, we compute the maxi-
mum magnon (group) velocity vM ¼ ð1=ℏÞmaxkj∇kϵðkÞj.
Figure 10 shows this instantaneous spinwavevelocity along
the ramp used in Fig. 4 (see also Table I).We observe that the
maximum velocity is reached when the ramp crosses the
quantumphase transition line between the paramagnetic and
antiferromagnetic phase at t ≈ 0.5 μs; this maximal velocity

FIG. 9. The Lieb-Robinson bounds. “Significant” correlations
spread along a light cone d ¼ 2vt. Along and inside the light
cone (grey shaded area), correlations of order Oð1Þ can develop.
Outside the light cone, d > 2vt correlations are immediately built
up for each t > 0, but are exponentially suppressed in d − 2vt.

FIG. 10. Quasiparticle velocity along the ramp used in Fig. 4
obtained by linear spin-wave theory (a denotes the lattice
spacing). The maximal velocity is reached when the ramp crosses
the phase boundary at t ≈ 0.5 μs.
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veff ≈ 1.11 × 2π a μs−1 can be regarded as an effectiveLieb-
Robinson velocity and is substantially smaller than the
previously computed rigorous velocity. The correlation
spreading rate 1=ð2veffÞ ≈ 70 ns per lattice site is in good
agreementwith the time delays observed experimentally and
numerically in Fig. 4.

APPENDIX E: SHORT-TIME EXPANSION

In this appendix, we provide more details on the short-
time expansion of the connected correlation function gð2Þ.

1. Theoretical description

In order to simplify the notation, we use the nearest-
neighbor Hamiltonian (ℏ ¼ 1):

HðtÞ ¼
X
hi;ji

Uijninj − δðtÞ
X
i

ni þ Ω=2
X
i

σxi : ðE1Þ

Here, we keep the possibility that nearest-neighbor inter-
actions could be different from atom to atom. We consider
simple ramp shapes characterized by a constant Ω, a
duration T, and a linear δðtÞ dependence between δð0Þ ¼
δ0 and δðTÞ ¼ δfinal.
We are interested in the limit of very short duration T and

in particular how the correlations at various distances build
up as we vary the duration T. Formally, we compute the full
many-body propagator ÛðTÞ, which solves the time-
dependent Schrödinger equation for the time-dependent
Hamiltonian in Eq. (E1), allowing us to determine the
many-body wave function at any time T via jψðTÞi ¼
ÛðTÞjψð0Þi. We then express the connected correlation
function as

gð2Þ½ðk; lÞ�ðTÞ ¼ hψðTÞjnð0;0Þnðk;lÞjψðTÞi
− hψðTÞjnð0;0ÞjψðTÞihψðTÞjnðk;lÞjψðTÞi:

ðE2Þ

For the linear ramps considered here, a Magnus expan-
sion [71] of the propagator is appropriate. We rely on the
leading Magnus expansion term, which can be written as

ÛðTÞ ≈ exp½−iTHavg�; ðE3Þ

with

Havg ¼
1

T

Z
T

0

Hðt0Þdt0: ðE4Þ

For the ramp shape considered here,Havg is independent of
T and is of the same form as Eq. (E1), with Uij and Ω
unchanged, while δðtÞ is replaced by δavg ¼ ðδ0 þ δfinalÞ=2.
We now calculate symbolic expressions for the power

series in T of the connected correlators in Eq. (E2), relying

on the propagator in the leading Magnus expansion form
and starting from an initial state with all sites in the atomic
ground state. When (UT=ℏ;ΩT; δT ≪ 1), we find the
following expressions for the leading order in T for a
single path on a lattice, linking sites (0,0) and ðk; lÞ (for the
sake of simplicity, the results are only given for Uij ¼ U):

(i) nearest-neighbor correlation jkj þ jlj ¼ 1

gð2ÞðTÞ ¼ −
1

288
ðU2 − 3UδavgÞΩ4T6; ðE5Þ

(ii) next-nearest-neighbor correlation jkj þ jlj ¼ 2

gð2ÞðTÞ¼ Ω6T10

2419200
ð77U4−340U3δavgþ375U2δ2avgÞ;

ðE6Þ

(iii) third-nearest-neighbor correlation jkj þ jlj ¼ 3

gð2ÞðTÞ ¼ −
Ω8T14

26824089600
ð4279U6 − 24766U5δavg

þ46725U4δ2avg − 28350U3δ3avgÞ: ðE7Þ

While the expressions look complicated, a common
structure emerges: The leading T dependence for a
Manhattan distance m ¼ jkj þ jlj is proportional to
T2þ4m. Neglecting the actual value of the coefficients for
the moment in an admittedly crude approximation, these
results suggest that correlations at a next shell are sup-
pressed by a factor T4 compared to the previous shell,
suggesting an exponential spatial decay of the connected
correlations at short times with m. These results also
provide an insight as to why more distant shells require
longer times to develop appreciable correlations: They
require larger values of T to overcome the initial suppres-
sion of the correlations resulting from the high powers in T.
Importantly, the neglected higher-order terms in the

Magnus expansions do not alter the leading order in T
for the considered ramp shapes, but only affect the
subleading T-coefficients. Finally, we note that, at very
short times, correlations induced by the direct van der
Waals tail of the interactions compete with the high-order
nearest-neighbor considerations here. Although strictly
speaking this leads to a breakdown of the exponential
suppression of correlations beyond the light cone, the
smallness of this effect prevents its observation in the
present experiments.

2. Lattice embedding

The expressions derived above are lattice independent, as
long as there is a chain of m (m ¼ jkj þ jlj above)
successive nearest-neighbor interactions linking the two
considered sites [72]. These expressions can now be
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embedded in any lattice (e.g., cubic, Kagome, honeycomb,
etc.), and the actual coefficients of the short-time series can
be derived by determining the corresponding embedding
coefficients. The embedding counting is illustrated in
Fig. 11 for the square and the triangular lattice, yielding
binomial coefficients multiplying the symbolic expressions
for a single path derived above. Note that, for the case
Uz ≠ Uw, the coefficients of the single paths can already
differ before taking the embedding factors into account.

APPENDIX F: CORRELATIONS ON THE
TRIANGULAR LATTICE: SHORT-TIME VERSUS

GROUND-STATE CORRELATIONS

The short-time expansion on the square lattice produces
the same staggered correlation pattern as the one of the
ground state of an AF ordered phase. There is, thus, a
similarity between the sign structure of the correlations at
short times and at very long times (i.e., the adiabatic limit).
On the triangular lattice, however, the correlations

obtained in the experiment [see Fig. 12(a)], which are in
good agreement with the short-time expansion as shown in

Figs. 5(c) and 5(d), differ significantly from the ones
expected for the AF ground state with density 1=3
[Fig. 12(b)]. The origin of this discrepancy may be related
to the frustrated character of the triangular geometry and
will be the subject of future work.
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