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A key goal of quantum chaos is to establish a relationship between widely observed universal spectral
fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such
RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation
function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the
spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the
problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985)] within the so-called diagonal
approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form
factor KðtÞ (Fourier transform of the spectral pair correlation function) from semiclassics has been
completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004)]. In recent years, the questions of long-time
dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to
the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such
systems display two universal types of behaviour which are termed the “many-body localized phase” and
“ergodic phase.” In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for
very simple interactions and in the absence of any external source of disorder. Here we provide a clear
theoretical explanation for these observations. We compute KðtÞ in the leading two orders in t and show its
agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical
counterparts, a generic example of which are Ising spin-1=2 models in a periodically kicking transverse
field. In particular, we relate KðtÞ to partition functions of a class of twisted classical Ising models on a ring
of size t; hence, the leading-order RMT behavior KðtÞ ≃ 2t is a consequence of translation and reflection
symmetry of the Ising partition function.
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I. INTRODUCTION

Random matrix theory (RMT) was introduced into
physics in the 1950s by Wigner [1] to provide a statistical
description of nuclear resonance or excitation spectra. It
should be intuitively clear that a system consisting of a few
tens of nucleons coupled via short- and long-range inter-
actions is complicated enough that a successful description
of experimental spectral fluctuations in terms of an ensem-
ble of random Hamiltonians with independent stochastic
matrix elements is not that surprising. An example of a
robust phenomenological measure of fluctuations is the
statistical variance of the number of energy levels in an

interval of fixed length ΔE which, in RMT and exper-
imental nuclear spectra [2], grows as ∼ log jρ̄ΔEj (known
as spectral stiffness), rather than ∼

ffiffiffiffiffiffiffiffiffiffi
ρ̄ΔE

p
as in the

Poissonian random spectrum (ρ̄ is the average density of
states). The atomic spectra observed already by 1960
exhibited the so-called “level repulsion,” which can be
quantitatively explained [3] with Wigner’s RMT. However,
in the early 1980s a much more surprising fact was
revealed, namely, that RMT also works extremely well
for capturing spectral fluctuations of simple single-particle
systems whose corresponding classical dynamics are com-
pletely chaotic, such as dispersive (Sinai) billiards or
hydrogen or Rydberg atoms in external magnetic or micro-
wave fields. These observations [4–6], termed the quantum
chaos conjecture, which has been concisely stated in
Ref. [7], have driven the field of quantum chaos for
decades. The first, partial explanation for the success of
RMT in simple chaotic systems came from Berry’s semi-
classical (small effective ℏ) calculation [8] of the spectral
form factor KðtÞ in terms of a double sum over classical
unstable periodic orbits, which we explain below. KðtÞ is
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defined as a Fourier transformation of the two-point corre-
lation function of the spectral density ρðEÞ ¼ P

jδðE − EjÞ,
with fEjg being the energy spectrum,

KðtÞ ¼
Z

e−iϵt=ℏ
��

ρ

�
Eþ ϵ

2

�
ρ

�
E −

ϵ

2

��
E
− ρ̄2

�
dϵ
ρ̄
;

ð1Þ

where ρ̄ ¼ hρðEÞiE and h� � �iE represents local energy
average over an energy shell (say, of width ΔE) containing
many levels ρ̄ΔE ≫ 1, in the case of autonomous (time-
independent) systems. In the case of periodically driven, i.e.,
Floquet systems, that we discuss later in this paper, the
average over the full range ½0; 2πÞ of quasienergies—
eigenvalues of the unitary Floquet (one-period) propagator
U—is normally considered as the physical properties are not
expected to depend on the particular value of quasienergy. A
fruitful intuition stems from the observation that KðtÞ
characterizes all pair-correlation properties including the
level repulsion and spectral stiffness, since in RMT fEjg
can be considered as a fictitious one-dimensional (Dyson’s)
gas with a logarithmic pairwise interaction [9].
For integrable systems, possessing a complete set of

conserved quantities, the energy spectrum fEjg is conjec-
tured [10] to represent a Poisson random uncorrelated
sequence, so the spectral form factor Eq. (1) can be exactly
computed as KðtÞ≡ tH¼ 2πℏρ̄ ¼ const for all t > 0, and
thus provides a clear discriminator between integrable and
chaotic systems, since for the latter KðtÞ ∝ t, in agreement
with explicit predictions of RMT, as we explain in Sec. I A.
A clear heuristic derivation of the RMT spectral form

factor KðtÞ for classically strongly chaotic (hyperbolic)
systems from semiclassical periodic orbit theory, starting
from Berry’s diagonal approximation [8], upgraded to
second order in t by Sieber and Richter [11,12], and finally
completed to all orders in a tour de force by Müller et al.
[13,14], has been arguably the main accomplishment of the
field of quantum chaos of single- or few-particle systems.
Nevertheless, a rigorous proof of the quantum chaos
conjecture has so far only been possible for a much more
abstract class of single-particle systems, specifically for
mixing quantum graphs [15,16]. These semiclassical peri-
odic-orbit approaches have a natural generalization to a
quantum many-body problem for bosons when the number
of quanta per mode is large [17–20].
However, RMT has also been found to excellently

describe spectral fluctuations in the simplest, say, low-
dimensional and locally interacting, nonintegrable many-
body systems where local degrees of freedom have no
classical limit at all, such as spin-1=2’s, qubits, fermions,
etc. [21–24], and where no semiclassical or mean-field
approach can be applied. Because of such phenomeno-
logical success, RMT statistics of level spacings is nowa-
days used essentially as a definition of the so-called

quantum chaotic or ergodic phase (see, e.g., Refs. [25–30]).
Moreover, the ergodic phase has been intensively theoreti-
cally investigated in recent years and its most concise
characterization is provided by the so-called eigenstate
thermalization hypothesis (see, e.g., Refs. [25,31]). Never-
theless, there has so far been no proposition of the underlying
dynamical (or microscopic) mechanism (such as unstable
periodic orbit pairings in semiclassical chaotic systems
discussed above). Recent studies of out-of-time-ordered
correlations in many-body systems, some of which establish
exponential growth [in particular in (0þ 1)-dimensional
systems such as the Sachdev-Ye-Kitaev model], have no
clear connection to Lyapunov instability, as it is understood
in classical dynamical systems theory, and is the only
mathematically meaningful definition of chaos. This has
to do with the lack of the concept of classical orbits and the
corresponding unstable (nonlinear) equations of motion,
which result in sensitive dependence on initial conditions
(e.g., the butterfly effect). In short, the concept of orbits and
Lyapunov chaos does not make sense at ℏ ∼ 1. One thus
urgently needs alternative concepts which would enable
one to explain the surprising success of RMT in simple
many-qubit systems.
Providing one such concept is the main objective of this

article. We identify a coherent structure, in a class of
generic many-body quantum systems with the lowest, two-
dimensional local Hilbert space (qubits, or spin-1=2’s),
which is responsible for building up level (spectral)
correlations. Expanding KðtÞ, which is written as the
product of two traces of the quantum mechanical propa-
gator (see Sec. I A), in the computational spin basis and
writing it in a discrete-path-integral-like fashion, we find
that the leading contribution comes from constructive
interference, which corresponds to a partition function of
a classical one-dimensional Ising model. Furthermore,
subleading contributions can be interpreted as a family
of partition functions of so-called twisted Ising models
which are classified using a novel diagrammatic technique.
In terms of this expansion, the leading contributions toKðtÞ
are shown to exactly correspond to RMT results KðtÞ ≃ 2t
for times longer than a certain crossover time t�, while the
nonuniversal results at t < t� are shown to reproduce
numerical data extremely well. The timescale t�, which
scales logarithmically with the system size, can be inter-
preted as a quantum many-body analogue of the Ehrenfest
(or Thouless) time. Finally, we identify the nonsemiclass-
ical analog of the Sieber-Richter pairing mechanism [11]
and exactly reproduce the subleading RMT term −2t2=tH
as well.

A. Spectral form factor in Floquet systems
and periodic orbit theory

In order to address the setup with a minimal amount of
inessential technical complications, we decided to study
periodically driven (Floquet) many-body systems in the
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absence of any conserved charges or unitary symmetries.
Even in a single-particle context, these are the minimal
models of quantum chaos [9] and correspond to Dyson’s
circular ensembles of random unitary matrices [32].
In this section we define the main object of our study,

namely, the spectral form factor for Floquet systems, and
for comparison with the main derivation in Sec. II of our
paper, we outline the key steps of historical semiclassical
derivation of the RMT form factor in terms of periodic-orbit
theory. For a unitary one-period Floquet propagator U,
we write the eigenphases φn and eigenvectors jni as
Ujni ¼ e−iφn jni, n ¼ 1;…;N , where N denotes the
dimension of the Hilbert space. The spectral density
(one-point function) is now defined as

ρðφÞ ¼ 2π

N

X
n

δðφ − φnÞ; ð2Þ

and is normalized to a unit mean level density

hρðφÞiφ ≡ 1

2π

Z
2π

0

dφρðφÞ ¼ 1: ð3Þ

Locally averaged density is expected to be φ independent,
which makes Floquet systems particularly appealing for
studying spectral fluctuations. These are encapsulated in
the connected (two-point) spectral correlation function,

RðϑÞ ¼ hρðφþ ϑ=2Þρðφ − ϑ=2Þiφ − hρi2φ; ð4Þ

which is, again, expected to be homogeneous (φ indepen-
dent). An equivalent, and very convenient quantity, is the
spectral form factor KðtÞ, t ∈ Z, defined as an appropri-
ately scaled Fourier transform:

KðtÞ ¼N 2

2π

Z
2π

0

dϑRðϑÞe−iϑt

¼
X
n

e−itφn

X
n0
eitφn0 −N 2δt;0 ¼ jtrUtj2 −N 2δt;0: ð5Þ

Finally, one writes

KðtÞ ¼ hðtrUtÞðtrU−tÞi −N 2δt;0; ð6Þ

where h� � �i represents an appropriate additional averaging,
either over local windows of time t (moving time average)
or over an ensemble of similar systems, which is needed
since the spectral form factor Eq. (5) is not a self-averaging
quantity [33].
For circular random matrix ensembles [32], which are

expected to model Floquet systems in RMT [orthogonal
(OE) ensemble or unitary ensemble (UE) for systems
with or without time-reversal or more general antiunitary
symmetry], the spectral form factor up to Heisenberg
time, t < N , reads

KOEðtÞ ¼ 2t − t lnð1þ 2t=N Þ ¼ 2t − 2t2=N þ � � � ; ð7Þ

KUEðtÞ ¼ t: ð8Þ

Note that exactly the same expressions hold as well
for Gaussian ensembles of RMT which model time-
independent systems.
For Floquet systems with a well-defined classical limit,

where the motion is hyperbolic (chaotic) everywhere in the
phase space, one can write trUt in terms of a Feynman path
integral and evaluate it by the method of stationary phase
in terms of a finite sum over all periodic orbits p of
length t, with classical actions Sp, and amplitudes Ap which
are proportional to the inverse square root of stability
exponents:

trUt ≃
X
p

Ape−iSp=ℏ: ð9Þ

Note that we choose to work at fixed t rather than at fixed
energy E as is customary in semiclassical analysis of time-
independent systems. Here one assumes that the effective ℏ
is small, i.e., Sp ≫ ℏ for all p, which is justified for large
Hilbert space dimensions N ≫ 1. A semiclassical repre-
sentation of the spectral form factor can then be written as

KðtÞ ≃
�X

p;p0
ApA�

p0e−iðSp−Sp0 Þ=ℏ
�
: ð10Þ

Berry identified the leading RMT contribution KðtÞ ≃ t
from the diagonal terms of paired orbits, arguing that the
nondiagonal terms of unequal orbit pairs average out in
the leading order due to random phases. The diagonal
contribution then results from the Hannay–Ozorido de
Almeida sum rule [34],

P
pjApj2 ¼ t, which is just a

restatement of classical ergodicity. For systems with
time-reversal invariance, the leading order of the RMT
result Eq. (7), KðtÞ ≃ 2t, then simply follows by pairing
each orbit with itself p0 ¼ p and its time-reversed partner
p0 ¼ p̄, noting that Sp̄ ¼ Sp and Ap̄ ¼ Ap. However,
Berry’s result only holds on timescales much shorter than
the Heisenberg time t ≪ tH, which translates to spectral
correlations on quasienergy ranges much larger than the
mean level spacing. That result can thus be considered as
the leading order of a power-series expansion (in t) of the
RMT expression for KðtÞ. Further progress came only 16
years later when Sieber and Richter [11,12] correctly
identified the next-to-leading RMT term of KðtÞ ¼ 2t −
2t2=tH þOðt3=t2HÞ for time-reversal invariant systems via
the self-encountering periodic orbit doublets. Specifically,
they decomposed the periodic-orbit sum into two parts, the
first containing a majority of orbits which never come close
to themselves before the full period, and in the second part,
they considered orbits which experience a close self-
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encounter. They argued that the orbits from the second
group form doublets with very similar actions Sp and
amplitudes Ap, which thus coherently interfere in the
double sum Eq. (10) and result, after careful bookkeeping,
exactly in the second-order term −2t2=tH of RMT. It took
another few years of efforts until this endeavor was finally
completed in Ref. [13,14] (see also Ref. [35] for the
analysis of unitary-to-orthogonal ensemble crossover) by
correctly identifying all the terms in the power-series
expansion of KðtÞ from sums over chaotic periodic orbits
with an arbitrary number of self-encounters.

II. PARTITION FUNCTION EXPANSION
OF THE SPECTRAL FORM FACTOR

Here, however, we consider an interacting many-body
system of quantum excitations without any meaningful
classical limit, so the semiclassical periodic orbit is not
applicable. We consider a system of l spin-1=2’s (qubits)

described by Pauli spin operators σðαÞx , α ∈ f1; 2; 3g,
x ∈ f1;…;lg, where the time evolution is given by the
following two-step unitary Floquet propagator of a peri-
odically pulse-driven Hamiltonian,

HðtÞ ¼ H0 þH1

X
m∈Z

δðt −mÞ ð11Þ

(time is measured in units of pulse period),

U ¼ T − exp

�
−i

Z
1

0

dtHðtÞ
�

¼ VW;

W ¼ e−iH0 ; H0 ¼
X
x

J1xσ
ð3Þ
x þ

X
x<x0

J2x;x0σ
ð3Þ
x σð3Þx0 þ � � � ;

V ¼ e−iH1 ¼ v⊗l; H1 ¼ h
X
x

σð1Þx ; ð12Þ

where v is a 2 × 2 matrix with elements v00 ¼ v11 ¼ cos h,
v01 ¼ v10 ¼ −i sin h. In the basis of N ¼ 2l joint eigen-

states of σð3Þx , σð3Þx jsi ¼ ð−1Þsx jsi, labeled by classical spin
configurations s ¼ ðs1;…; slÞ, sx ∈ f0; 1g, W acts as a
pure phase factor,

Wjsi ¼ e−iθs jsi; ð13Þ

θs ¼
X
x

J1xð−1Þsx þ
X
x<x0

J2x;x0 ð−1Þsxþsx0 þ � � � ð14Þ

while the matrix elements of V factorize

hsjVjs0i ¼
Yl
x¼1

vsx;s0x : ð15Þ

The propagator Eq. (12) defines a generic family of Ising
models periodically kicked with a uniform transverse field

(generalizing the kicked Ising chain [36,37], where RMT
spectral fluctuations have been verified to a high precision
[38]). See also Ref. [39] for a related discussion of transfer-
matrix evaluation of the many-body propagator. In more
abstract terms, one can also viewH0 as a generic integrable

or many-body localized system with l-bits σð3Þx and V as a
global perturbation. The model is time-reversal invariant as
the matrices of H0;1 are real; i.e., V, W are symmetric.
We note immediately that the method that we develop

below can be used as well to study a continuous-time
version of the transverse field Ising model, where the
kicked model Eq. (11) represents its trotterization (via
the Trotter formula) by substituting Jkx… → ðΔtÞJkx…,
h → ðΔtÞh, and carefully performing double scaling l →
∞ and Δt → 0 where the thermodynamic limit should
be considered first. Further, more general forms of off-
diagonal perturbations V can be considered by allowing an
arbitrary spatial dependence of the magnetic field h → hx.
Nonetheless, the particular system that we choose to study
in the present paper represents a minimal generic model of
many-body quantum chaos at ℏ ∼ 1.
We start by considering an expression Eq. (6) for

the spectral form factor of Floquet systems KðtÞ ¼
hðtrUtÞðtrU−tÞi, defined for positive integer time t.
Inserting multiple identities

P
sτ
jsτihsτj ¼ 1 in trUt andP

s0τ
js0τihs0τj ¼ 1 in trU−t, we obtain

KðtÞ ¼
X

s1;…;st

X
s0
1
;…;s0t

he−i
P

t
τ¼1

ðθsτ−θs0τ Þi

×
Yl
x¼1

Yt
τ¼1

vsx;τ;sx;τþ1
v�s0x;τ;s0x;τþ1

: ð16Þ

Note that taking the trace implies periodic boundary
conditions in time tþ 1≡ 1. Assuming pseudorandomness
of the phases θs, one has

he−i
P

t
τ¼1

ðθsτ−θs0τ Þi ¼ δhs1;…;sti;hs01;…;s0ti þ fluctuations; ð17Þ

where hs1; s2;…; sti represents a lexicographically ordered
string of words s1; s2;…; st. In the ideal case, where all 2l

phases θs can be assumed to be independent random and
uniform in ½0; 2πÞ (which is equivalent to the assumption
that all the coupling constants Jkx;x0… are independent
identically distributed), the fluctuation term in Eq. (17)
exactly vanishes.
We refer to such an ideal situation in which fluctuations

in Eq. (17) are set to zero as a random phase model (RPM).
Below we show how to compute KðtÞ for the RPM and
demonstrate that the result describes both the universal
(RMT) and nonuniversal (short-time) regimes of large
families of clean kicked Ising models excellently.
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For times much shorter than the Heisenberg time
tH ¼ 2l, one may assume that all configurations sτ in
the string s1; s2;…; st are different. Then, Eq. (17) implies
that there exists a permutation π ∈ St: τ → πðτÞ, such that
s0τ ¼ sπðτÞ; therefore,

KðtÞ ¼
X
π∈St

Zl
π ; ð18Þ

where

Zπ ¼
X

s1;…;st

Yt
τ¼1

vsτ;sτþ1
v�sπðτÞ;sπðτþ1Þ ; ð19Þ

up to Oðt=2lÞ. Denoting by wðsÞ ¼ 1
2

P
t
τ¼1ð1 − δsτ ;sτþ1

Þ a
half-number of domain walls in a periodic spin sequence s
(which is always an integer), Zπ can be rewritten as

Zπ ¼ ðcos hÞ2t
X

s∈f0;1gt
ð−j tan hjÞwðsÞþw(πðsÞ): ð20Þ

Note that for the identity permutation, Zid is a partition
function of a classical one-dimensional Ising model
(on a ring of circumference t) which can be calculated
via a 2 × 2 transfer matrix Tss0 ¼ jvss0 j2, namely,
Zid ¼ trTt ¼ 1 þ ðcos 2hÞt. Zπ equals Zid for any other
permutation which does not change any neighbors in the
string s, i.e., conserves the domain wall counting function
wðsÞ. These are exactly the t cyclic permutations and t
anticyclic permutations—compositions of cyclic permuta-
tions with inversion τ → tþ 1 − τ. For all other permuta-
tions π which contain at least one pair of neighbor changes,
one can show that the twisted partition functions Zπ≠id are
strictly smaller, and can be systematically computed using a
diagrammatic technique (see Appendix A). Upon
approaching the thermodynamic limit l → ∞ at fixed t,
one thus finds an exact asymptotic result:

KðtÞ ≃ 2t½1þ ðcos 2hÞt�l
≃ 2t for t ≫ t�; ð21Þ

t� ¼ −
lnl

ln cos 2h
: ð22Þ

This result can be interpreted as an analogue of Berry’s
diagonal approximation and yields the first order of RMT
[Eq. (7)], while exact nonuniversal behavior is predicted for
times t≲ t� ¼ Oðh−2 lnlÞ. The timescale t� which sepa-
rates the universal from nonuniversal behavior can be
interpreted as a kind of quantum many-body Ehrenfest
time. Note that in the limit h → 0, the spectral form factor
grows to the saturation value N at t ∼ 1, and one obtains
the expected Poissonian behavior,

Kh¼0ðtÞ ¼ N ; ð23Þ

which is typical for completely integrable systems [10]. At
the two points, h ¼ 0 and h ¼ ðπ=2Þ, where the crossover
time t� [Eq. (22)] formally diverges (and close to them, for
finite l), our expansions in t break down (see Appendix A
and Fig. 4). The case h ¼ π=2 actually corresponds to a
generic realization of a Floquet time crystal [29,40], which
is nonergodic and where the discrete translational invari-
ance in time is spontaneously broken. This corresponds to a
staggered behavior of the spectral form factor:

Kh¼π=2ðtÞ ¼
	
N t even

0 t odd
: ð24Þ

We note that in the range h ∈ ðπ=4; π=2Þ, the RPM spectral
form factor Eq. (21) in the non-RMT regime, t < t�, still
displays characteristic period-2 oscillations.
Carefully subtracting double-counted terms where

exactly one configuration (word) in the string (“orbit”)
s1; s2;…; st appears twice, one obtains exactly the RMT
result Eq. (7) up to the second order:

KðtÞ ¼ 2t − 2t2=2l þOðt3=4lÞ ð25Þ

(see Appendix B). This can be considered as a many-qubit
analogy of the Sieber-Richter pairing mechanism [11,12].
We conjecture that it should be possible to obtain a RMT
result to all orders by implementing the multiple-counting
technique generalizing the diagrammatics sketched in
Appendixes A and B.

III. KICKED TRANSVERSE FIELD ISING MODEL:
THEORY EXPLAINS NUMERICS

We compare analytic results for the RPM to exact
numerical computations of the spectral form factor in the
following family of kicked Ising models:

J1x ¼ aþ N1b
xα

; J2x;x0 ¼
N2J

ðx0 − xÞα ; Jk>2x;x0… ≡ 0;

ð26Þ

with normalization constants defined as

1

N1

¼
X
x

1

xα
;

1

N2

¼ 1

l − 1

X
x<x0

1

ðx0 − xÞα ; ð27Þ

and interaction effectively being short range, N1;2 ¼
Oðl0Þ for α > 1. Power-law decaying one-spin terms
and two-spin interactions are motivated by a requirement
for the spectrum of H0 to be nondegenerate and free from
any other discrete symmetry, which should be a generic
situation. Our results are not sensitive to the exact choice of
α, as long as we are sufficiently far away from either strictly
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local interactions α ¼ ∞ or very long-ranged interactions
α ≈ 0, where the model becomes mean-field-like and
describable by a single semiclassical degree of freedom.
In order to avoid the need of ensemble averaging, we

define a time-integrated spectral form factor as

KintðtÞ ¼
Xt

τ¼1

KðτÞ; ð28Þ

shown in Fig. 1, which is indeed a self-averaging quantity
as demonstrated in the inset. We observe very good
agreement with the RPM. As KintðtÞ propagates deviations
at short times to longer times, we also show the non-self-
averaging KðtÞ at short times in Fig. 2 and again observe
very good agreement with RPM upon averaging over an
ensemble of values of parameter J or taking a moving time
average over a short window of time for fixed J (and a, b,
α). Even the fluctuations of the two averages around the
theoretical prediction (RPM) for similar statistical sample
size (n ¼ 10) look quantitatively comparable.
The data reported in Figs. 1 and 2 were obtained for

locality exponent α ¼ 3=2. In Fig. 3, we investigate the role
of α in more detail. When the model becomes increasingly
short ranged, i.e., increasing α, the fluctuations part in
Eq. (17) can no longer be neglected and the model develops
deviations from RPM. The crossover time t� at which KðtÞ
begins to follow RMT becomes larger and starts to depend
on the parameter J. But even for strictly local, nearest-
neighbor interactions (α → ∞) at fixed J this time seems to
scale polynomially, perhaps like ∝ l2, and is still much
smaller than the Heisenberg time tH ¼ 2l.
In order to quantify a transition between RPM and non-

RPM physics, we define the following order parameter:

FIG. 1. Time-integrated spectral form factor for the kicked
Ising model for up to ten Heisenberg times and at four different
values of the transverse field h. The black dashed lines show
predictions of the random phase model, while dotted (solid) lines
give the Poissonian (RMT OE) result. The colored dots show
numerical data averaged over 100 realizations of J sampled
uniformly in the interval [5.5, 55], for the kicked Ising model
introduced in Eq. (26). In the inset we show that averaging is only
necessary for very short times. Thin blue lines are particular
realizations of the model for J ¼ 10; 11;…19 and the shaded
area shows the second to ninth decile assuming exponential
distribution for realizations of KðtÞ resulting in a hypoexponen-
tial distribution for the integrated spectral form factor. Other
parameters are fixed to l ¼ 14, a ¼ 1, b ¼ 5, α ¼ 1.5.

(a) (b)

FIG. 2. Spectral form factor for the kicked Ising model at short times. (a) Comparison of a moving average over ten consecutive time
steps and fixed model realization (J ¼ 10) with the averaging over ten realizations J ¼ 10; 11;…; 19. All other parameters are fixed to
l ¼ 14, a ¼ 1, b ¼ 5, α ¼ 1.5. Shaded area shows the second to ninth decile assuming exponential distribution for realizations of KðtÞ
resulting in the gamma distribution for the averages. (b) J-averaged spectral form factor (now averaged over a sample of 100 values of
J ∈ ½5.5; 55�) at short times shows deviations from the RMT, and the deviations are well captured by the random phase model.
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ψðαÞ ¼





Xtmax

τ¼1

KRPMðτÞ − KðτÞ
KRPMðτÞ





: ð29Þ

Since the RPM prediction for long times becomes equiv-
alent to RMT and is expected to match KðtÞ well, provided
the model is nonintegrable and ergodic, the order parameter
ψ becomes independent of tmax as long as t� ≪ tmax ≪ tH.
As shown in Fig. 3, we indeed find a phase-transition-
like behavior of ψðαÞ with two, short-range and long-
range critical points, α�long∼0.5 and α�short∼2.5: For
α�long<α<α�short, agreement with RPM is excellent and
ψðαÞ is small and of the order of expected statistical
fluctuation due to averaging over J, while outside the
range, ψðαÞ quickly grows.

IV. CONCLUSION

Our work discloses the first theoretical mechanism
which connects RMT to simple many-qubit systems in
(effectively) low dimensions. There are many immediate
further questions and generalizations which are to be
studied. (i) The assumption of the pure δ correlator of
phases Eq. (17) is on the same level of rigor as the random
phase approximation in standard semiclassics, but one may
hope to find a more rigorous justification here. (ii) The
interesting case of local Ising interactions (α ¼ ∞) also
obeys RMT physics [38] but needs to be studied separately
as the rhs of Eq. (17) then acquires extra systematic
contributions. (iii) One may generalize our technique to
study universal behavior of dynamical correlation functions
(i.e., spin structure factors) in the quantum chaotic regime.
(iv) Furthermore, one may expand our methods by intro-
ducing quenched disorder, say, in the transverse field, and

attempt to approach the many-body localization transition
[25] from the ergodic side, for instance, by tuning the
locality exponent α.
Our results have a direct relevance for understanding the

vast body of numerical experiments, simulations, and in the
near future possibly also experimental spectra of highly
excited simple many-body systems, which correspond to
ever longer accessible observation times of perfectly
coherent out-of-equilibrium quantum systems (see, e.g.,
Ref. [30]). The ideas of many-body quantum chaos and
random matrix theory are also vividly debated in the
context of high-energy physics and holography [41–43],
where our results and methods could also be applied.
Recently, we learned of a series of related works [44,45],

where the RMT spectral form factor has been computed for
a local Haar-random unitary nearest-neighbor quantum
circuit propagator, which corresponds to the UE univer-
sality class of RMT, in the limit of large local Hilbert space
dimension q. It is remarkable that in Ref. [45], where the
authors consider a related variant of RPM, but insist on
the strict locality of the (nearest-neighbor) interaction at the
expense of having to consider a large q limit, they found
the exact same scaling of the Ehrenfest-Thouless timescale
t� ∝ logl.
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(a) (b)

FIG. 3. (a) Spectral form factor for the kicked Ising model at short times for different values of locality exponent α. When the model
becomes increasingly short ranged, it develops deviations at short times different from the prediction of the random phase model. (b) The
order parameter as defined in Eq. (29) for different values of α, which shows that the model starts to develop deviations from the random
phase model when α≲ 0.5 or α≳ 2.5. The shaded area guides the eye to the section with small, statistically insignificant deviations.
Averaging over 500 realizations of J ∈ ½5.5; 255� is performed, other parameters are fixed to l ¼ 14, a ¼ 1, b ¼ 5, and tmax ¼ 100.
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APPENDIX A: DIAGRAMMATIC EXPANSION OF
THE LEADING CORRECTIONS

When computing KðtÞ, Eq. (18), we have to sum over all
permutations π ∈ St. As we already noted, the (anti)cyclic
permutations together with the identity permutation, which
form a subgroup of St (the so-called dihedral group), yield
identical leading contributions which become exponentially
(in l) dominant in the thermodynamic limit. Here, we
identify and explicitly calculate the contributions of the
permutations which yield the leading (first-order) corrections.
From Eq. (20) it follows that each contribution to Zπ depends
only on the number of domain walls in periodic strings

s ¼ ðs1; s2;…; stÞ and πðsÞ¼ðsπ1 ;sπ2 ;…;sπtÞ. Therefore,
Zπ depends solely on a diagram obtained by plotting a
directed graph of sequentially arranged nodes ðs1;s2;…;stÞ
with the links sπ1 → sπ2 ; sπ2 → sπ3 ;…; sπt → sπ1 . For exam-
ple, the (anti)cyclic permutations are then represented as
circular loops, meaning that they preserve sequential order.
The next-to-leading order ZX comes from the so-called X
diagrams (shown in the diagrammatic expression below and
illustrated numerically in Fig. 4), where all connections apart
from two (order changes) are kept intact (sequential). The
diagrammatic expression for the case where the first sequen-
tial stretch has length τ, and the second length t − τ − 2,
reads

ðA1Þ

Circular black arcs represent summations over stretches of
sequential spins ½τ0; τ00�, namely, over all sτ, τ0 < τ < τ00.
These are given by the powers of the transfer matrix Tτ00−τ0þ1

sτ0 ;sτ00 ,

specifically, Tp
ss0 ¼ 1

2
½1þ ð−1Þs−s0λp�, where λ ¼ cos 2h

plays the role of the coupling constant. Red dots correspond
to remaining spins, which one still needs to sum over while
putting the matrix element vss0 for each broken sequential
link s → s0 (dotted) and v�ss0 for each crossed link s → s0.
Of similar importance are the XX diagrams with two

sequential crossings:

which are straightforwardly evaluated:

ZXXðτÞ ¼
1

2

�
1þ λτþ2 þ λt−τ−2 þ 2λt−4

�
λ4 − λ2 þ 1

2

��
:

ðA2Þ

(a) (b)

FIG. 4. Partition function Zπ of the twisted one-dimensional Ising model for different permutation families is plotted against the field
parameter h. Since in the expression the contribution occurs at a large power l, only the largest contribution matters in the first order
(red), which corresponds to (anti)cyclic permutations. The first subleading corrections are given by the X diagrams for τ ¼ 1, 2. The
colored lines are numerical data for t ¼ 13, 14 shown in (a) and (b), respectively. Dashed lines are the exact expressions for ZXðτÞ given
by Eq. (A1). Note that all terms have multiplicities which are multiples of 2t.
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One can show that contributions of all other diagrams,
starting with two crossings separated by sequential
stretches, triple crossings, etc., are of the form
ZotherðτÞ ¼ 2−n½1þOðλkÞ�, with n ≥ 2 and k ≥ 1, so they
contribute to Zl only beyond the second order in t=2l and
are ignored here.
Each X and XX diagram (for fixed τ) has multiplicity t2

(or t2=2 for τ ¼ t=2), since any Zπ is invariant under 2t
cyclic and anticyclic permutations and we can start drawing
the diagram at t=2 inequivalent points.
We now see that the smallest gap of Zid − Zπ > 0 comes

from ZXð1Þ for λ > 0 and ZXð2Þ for λ < 0 (see Fig. 4).
Since these terms enter to power l, the subleading con-
tributions to KðtÞ are exponentially suppressed by a factor
of the order of ∼t½ð1þ λÞ=2�l for λ > 0 and t½ð1þ λ2Þ=2�l
for λ < 0. When we approach the Heisenberg time
t ∼ tH ¼ 2l, these contributions become important, as
we see in Appendix B.

APPENDIX B: SECOND-ORDER
TERM IN t=tH

RMT predicts that the next term in the expansion is
−2t2=2l, Eq. (7). We now show that the contributions of the
X and XX diagrams and the possible repetitions of the spin
configurations almost cancel, yielding exactly the RMT
result.
In the first-order approximation in t=2l, we neglect the

possibility that the spin configurations sτ, τ ¼ 1;…; t, can
repeat after some time. The leading-order correction to this
consists of cases with a single repetition sτ1 ¼ sτ2 . Then,
Eq. (17) renders the permutation π to run over a factor
group St=Sfτ1;τ2g, where Sfτ1;τ2g is a two-element permu-
tation group. Because our leading-order sum Eq. (18) still
runs over the entire permutation group St, we end up
counting each element twice, so we need to subtract the
overcounted terms,

KðtÞ ¼
X
π∈St

Zl
π −

X
1≤τ1<τ2≤t

1

2

X
π∈St

Xsτ1¼sτ2

s1;…;st

FπðsÞ ¼
X
π∈St

Zl
π −

1

2

t
2

Xt−1
τ¼1

X
π∈St

Xsτ¼st

s

FπðsÞ; ðB1Þ

whereFπðsÞ ¼
Q

l
x¼1

Q
t
τ¼1 vsx;τ;sx;τþ1

v�s0x;τ ;s0x;τþ1
and s≡ ðsx;τ; 1 ≤ x ≤ l; 1 ≤ τ ≤ tÞ. In the second line we use time invariance

to set τ2 ¼ t and τ1 ¼ τ. Since the repeated spin contributes the same regardless of its value, the sum trivializes for π ¼ id to
a product of sums for separate spins, each contributing

Xsτ¼st

s

Fl¼1
π ðsÞ ¼ 2Tτ

00T
t−τ
00 ¼ 1

2
ð1þ λτ þ λt−τ þ λtÞ: ðB2Þ

Following the same argument as before, invariance under cyclic and anticyclic permutations again yields multiplicity 2t. But
because of the repetition of spin configurations, the X and XX diagrams where the crossed link contains the repeated spin
yield the contribution in the same order 1

2
½1þOðλτÞ�:

ðB3Þ

On the right-hand side, the corresponding diagrams are
shown for clarity, where the blue diamond sites connected
with a dashed line depict the repeating spin. The first two
sums come from enumerating all X and XX diagrams (as

explained in Appendix A). The sum from the repeating spin
configurations comes next, and is written in two parts. The
combinatorial factor of the diagrams is 4t when τ ¼ 1, 2,
t − 1, t − 2 and 8t otherwise, which we take into account by
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writing two sums with different starting and final values of τ.
In the last line of Eq. (B3) we note a remarkable cancellation
of all terms apart from the RMT result for times
t > t⋄ ¼ Oðl log λÞ, where tH=t⋄ is still exponentially large
in l. This could be viewed as a quantummany-body analogy
of the Sieber-Richter self-encountering-orbits mechanism.
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