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Verification is a task to check whether a given quantum state is close to an ideal state or not. In this paper,
we show that a variety of many-qubit quantum states can be verified with only sequential single-qubit
measurements of Pauli operators. First, we introduce a protocol for verifying ground states of
Hamiltonians. We next explain how to verify quantum states generated by a certain class of quantum
circuits. We finally propose an adaptive test of stabilizers that enables the verification of all polynomial-
time-generated hypergraph states, which include output states of the Bremner-Montanaro-Shepherd-type
instantaneous quantum polynomial time (IQP) circuits. Importantly, we do not make any assumption that
the identically and independently distributed copies of the same states are given: Our protocols work even if
some highly complicated entanglement is created among copies in any artificial way. As applications, we
consider the verification of the quantum computational supremacy demonstration with IQP models, and
verifiable blind quantum computing.
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I. INTRODUCTION

Quantum computing is expected to solve several prob-
lems exponentially faster than classical computing, and
therefore, realizing universal quantum computers is one of
the most central goals in modern quantum information
science. Output states of even simpler quantum circuits are
also useful. For example, quantum circuits consisting of
only Clifford gates, which are actually classically simulat-
able [1], can generate important resources for quantum
metrology [2] and measurement-based quantum computing
(MBQC) [3]. Furthermore, it has recently been shown that
output states of several subuniversal circuits, such as boson
sampling, instantaneous quantum polynomial time (IQP),
and deterministic quantum computation with one quantum
bit (DQC1), can generate certain probability distributions
that cannot be classically efficiently sampled unless the
polynomial-time hierarchy collapses [4–21]. Other quan-
tum advantages have also been actively studied [22,23].

Moreover, ground states of Hamiltonians are important.
Generating ground states of local Hamiltonians is, in
general, quantum Merlin-Arthur (QMA)-hard [24] (which
suggests that it is much harder than polynomial-time
quantum computing), but several local Hamiltonians offer
important quantum abilities with their ground states, such
as topologically protected quantum memory [25], adiabatic
quantum computing [26], and MBQC [3,27–42]. In this
way, many-qubit quantum states are essential resources for
quantum information processing.
When an experimentalist generates these many-qubit

resource states in his or her own laboratory [Fig. 1(a)],
or when a client of cloud quantum computing receives
these resource states from a remote server [Fig. 1(b)], it
is important to check the correctness of given states
[43]. More precisely, let us consider the following
game between two people, the verifier and the prover
[44]. The prover sends a certain quantum state Φ to the
verifier claiming that it is the tensor product of many copies
ρ⊗k of a many-qubit state ρ. The state ρ is an important
resource state for the verifier. For example, ρ is a ground
state of a Hamiltonian or a resource state of MBQC.
However, the prover is not necessarily trusted, and there-
fore, the verifier has to check the correctness of the
given state.
If Φ is guaranteed to be at least the tensor product of

many copies σ⊗k of the same state σ, i.e., the states are
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independent and identically distributed (i.i.d.), and if the
size of σ is small, the quantum tomography [46] is enough.
However, useful resource states are often large-size quan-
tum states, and therefore, the quantum tomography suffers
from the exponential blowup. The exponential increase of
parameters is somehow mitigated by using the compressed
sensing idea, especially for low-rank quantum states [47],
but the scaling is, in general, exponential. If we are
interested only in the fidelity, by direct fidelity estimation
[48] and by using fidelity witnesses [49], we achieve the
goal without reconstructing the full state, which is more
efficient than quantum tomography.
However, these protocols also assume the i.i.d. property

of quantum states. In reality, such an i.i.d. property does not
hold. Because of environmental noises, the generated state
in a laboratory is not a tensor product of the same states. In
cloud quantum computing, moreover, the situation is worse
because a malicious prover might generate highly compli-
cated entanglement among samples to fool the verifier. In
other words, what the verifier actually receives is not ρ⊗k

but Eðρ⊗kÞ with a completely positive and trace-preserving
(CPTP) map E. If Eðρ⊗kÞ is a state generated by a well-
controlled experimental setup, E is a time evolution
generated by a physically natural Hamiltonian describing
the interaction between the system and the environment. If
Eðρ⊗kÞ is a state given by the server of cloud quantum
computing, E can be any CPTP map [50].
In addition to the non-i.i.d. property of samples, another

realistic assumption in verifications is that the verifier’s
ability is severely limited. (In fact, otherwise the verifica-
tion task would be trivial. For example, if the verifier can
generate the correct state by his or herself, the verification is
straightforward by doing the SWAP test between the given
state and the correct state generated by him or her [51].) If

the verifier is severely restrictive, the verification is a highly
nontrivial problem. For example, can the verifier verify a
highly entangled many-qubit state by measuring each qubit
individually?
In summary, a verification protocol should satisfy the

following three conditions:
(i) It runs in polynomial time.
(ii) The i.i.d. property of samples is not assumed.
(iii) No entangling operation is required for the verifier.

Verification protocols that satisfy these three conditions
have been proposed for some specific classes of states, such
as graph states [52,53] and hypergraph states with low
connectivity [54], including the Union Jack state [55].
Here, hypergraph states are generalizations of graph states
by replacing the controlled-Z (CZ) gates of graph states
with generalized CZ gates. A generalized CZ gate is a
unitary gate that flips the phase �1 if and only if all qubits
are j1i. (See Sec. IVA for the definition of hypergraph
states.) We say that a hypergraph state has a low con-
nectivity if the connectivity

ξ≡max
v∈V

ξv ð1Þ

is constant with respect to jVj, where ξv is the number of
generalized CZ gates acting on the vertex v, V is the set of
vertices, and jVj is the size of V.
These protocols, Refs. [52–54], satisfy all the above

conditions (i)–(iii). In particular, in these protocols, the
verifier only needs sequential single-qubit measurements of
Pauli operators. However, these protocols leave the follow-
ing two problems open:
(1) Are there other more general classes of states that are

verifiable with only sequential single-qubit measure-
ments of Pauli operators? For example, can we
verify ground states of Hamiltonians and states
generated by general quantum circuits with sequen-
tial single-qubit measurements of Pauli operators?

(2) Can we verify hypergraph states with high connec-
tivity by using only sequential single-qubit mea-
surements of Pauli operators?

Here, high connectivitymeans that Eq. (1) is polynomialwith
respect to jVj. The second open problem is important for the
verification of the quantum computational supremacy dem-
onstration because output states of the Bremner-Montanaro-
Shepherd-type IQP circuits [12] are hypergraph states with
high connectivity. (See Sec. V for details.)
In this paper, we solve the two open problems by

proposing three verification protocols. We first introduce
a protocol for verifying ground states of Hamiltonians
(Sec. II). We next show a protocol for verifying quantum
states generated by a certain class of quantum circuits
(Sec. III). As a common technique used in these two
verification protocols, we decompose an operator such as a
Hamiltonian or a generalized stabilizer into Pauli operators
and estimate overlaps between the verified state and Pauli

FIG. 1. The prover-verifier game considered in this paper.
(a) An experimentalist (verifier) wants to verify the correctness
of a state Φ from the experimental setup (prover). (b) In cloud
quantum computing of the type of Ref. [45], a client (verifier)
asks a remote server (prover) to generate and send a certain
quantum many-qubit state Φ. The client wants to verify the
correctness of the state sent from the server.
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operators. A similar technique was used in the direct
fidelity estimation [48]. We finally explain a verification
protocol for hypergraph states with high connectivity
(Sec. IV). For the construction of the third protocol, we
propose a novel test, which we call the adaptive stabilizer
test, by combining the stabilizer test of Ref. [52] with
adaptive classical processing. This adaptivity is the key that
enables the verification of hypergraph states with high
connectivity. The previous protocol [54] is not enough to
verify hypergraph states with high connectivity. The
adaptive classical processing we introduce in Secs. IV B
and IV C is the key idea to realize a verification protocol for
hypergraph states with high connectivity.
The validness of our protocols is demonstrated by

showing their completeness and soundness. Roughly
speaking, if the verifier accepts the ideal quantum state
with high probability, we say that the verification protocol
has the completeness. On the other hand, if the protocol
guarantees that a quantum state passing the verification
protocol is close to the ideal state with high probability, we
say that the protocol has the soundness. The precise
statements are given later as theorems.
In Sec. V, we discuss applications of our protocols to the

verification of quantum computational supremacy demon-
strations with the IQP model and its variants. We also
consider an application to verifiable blind quantum com-
puting. Sections VI and VII are devoted to the discussion
and the conclusion, respectively.
Note that in addition to Refs. [52–54] and the present

paper, other papers have proposed verification protocols for
quantum computational supremacy demonstrations.
Hangleiter et al. have proposed a polynomial-time verifi-
cation protocol for ground states of frustration-free
Hamiltonians [56]. A disadvantage of this protocol when
it is used for the verification of quantum computing is that
the Feynman-Kitaev history state [24,57] corresponding to
the quantum circuit, which is more complicated than the
mere output state of the circuit, has to be generated.
Furthermore, their verification protocol requires multiqubit
measurements. Based on the verification protocol of
Ref. [56], Gao et al. [14] and Bermejo-Vega et al. [15]
have proposed verification protocols for quantum computa-
tional supremacy demonstrations of their architectures.
Miller et al. [16] have proposed a polynomial-time veri-
fication protocol for the output states of the Bremner-
Montanaro-Shepherd-type IQP circuits [12]. Their protocol
is a special case of our third protocol when the target state is
restricted to hypergraph states. With respect to the boson
sampling model [4], a verification protocol has already
been proposed [58], but this protocol requires at most
exponentially many copies of a verified quantum state. As a
common drawback of all these protocols [14–16,56,58],
they assume the i.i.d. property of samples.
All verification protocols introduced above and our

present protocols require the ability of the verifier to make

measurements. On the other hand, there are complement
protocols where a verifier is required to prepare quantum
states [59,60]. The protocol in Ref. [59] uses trap qubits
[61,62] to perform verified quantum computational
supremacy demonstrations for an Ising sampler [14] or
an IQP circuit [10–12], and does not assume the i.i.d.
property. The protocol in Ref. [60] can verify that the server
has the ability to sample from an IQP circuit. For some
experimental setups, measurements are easier than prepa-
rations, and vice versa for other experimental setups.
Therefore, at this moment, we do not know which approach
is better.

II. VERIFICATION OF GROUND STATES
OF HAMILTONIANS

In this section, we explain our verification protocol for
ground states of Hamiltonians. In Sec. II A, we define a
test. In Sec. II B, we explain how to verify ground states by
using the test.

A. Test

Let H be an N-qubit Hamiltonian. We want to verify its
ground state corresponding to the ground energy E0. Let
Δð> 0Þ be a lower bound of the energy gap, i.e.,
E1 − E0 ≥ Δ, where E1 is the first excitation energy.
From H, we define a rescaled Hamiltonian

H0 ≡H − E0I⊗N

Δ
: ð2Þ

Since H0 is Hermitian, if we decompose H0 in the Pauli
basis as

H0 ¼
Xh
i¼0

ciτi; ð3Þ

ci is a real number, where h ¼ 4N − 1,

τi ≡ ⊗
N

j¼1
σijj;

σijj ∈ fI; X; Y; Zg, and τ0 ≡ I⊗N . From Eq. (2), the ground
energy of H0 is 0. Accordingly,

c0 ¼ c0
Tr½I⊗N �
2N

þ
Xh
i¼1

ci
Tr½τi�
2N

¼ Tr

�
H0 I

⊗N

2N

�
≥ 0: ð4Þ

Hereafter, we consider Hamiltonians that satisfy the fol-
lowing three conditions:

(i) The probability distribution from fjcij=Rghi¼0 can be
sampled exactly in polynomial time. Here, R≡P

h
i¼0 jcij.

(ii) R ¼ O(polyðNÞ).
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(iii) R is known or can be computed in polynomial time.
Condition (i) is necessary to perform the test defined in
the next paragraph. Condition (ii) is required to extract the
information of Tr½ρH0� from ppass in Eq. (5) using only the
polynomial number of quantum states ρ. Condition (iii) is
needed to define the accept or reject criteria in Eq. (6). Note
that it is obvious that for the usual Hamiltonians in
condensed matter physics, such as Ising models and
Heisenberg models, these conditions are satisfied if the
energy gap is constant or polynomially decays. On the
other hand, if the energy gap exponentially decays, then
condition (ii) is not satisfied. In fact, for a Hamiltonian
H ¼ P

h
i¼1 diτi with jdij ≤ const and h ¼ O(polyðNÞ),

R ¼
P

h
i¼1 jdij þ jE0j

Δ
≥
P

h
i¼1 jdij
Δ

¼ Oð2polyðNÞÞ:

The test on an N-qubit quantum state ρ is defined as
follows: The verifier selects i with probability jcij=R. If the
verifier selects i, the verifier measures the jth qubit of ρ in
the Pauli basis σijj. Letmj ∈ f1;−1g be the outcome of the
measurement on the jth qubit. Note that if σijj ¼ I, the
verifier sets mj ¼ 1. We say that the verifier passes the test
on ρ if

YN
j¼1

mj ¼ sgnðciÞ:

Here, sgnð·Þ is the sign function.
The expected probability ppass that the verifier passes the

test on ρ, where the expectation is taken over the sampling
of i, is

ppass ¼
jc0j
R

þ
Xh
i¼1

jcij
R

Tr

�
ρ
I⊗N þ sgnðciÞτi

2

�

¼ jc0j
R

Tr
�
ρ
I⊗N þ sgnðc0ÞI⊗N

2

�

þ
Xh
i¼1

jcij
R

Tr

�
ρ
I⊗N þ sgnðciÞτi

2

�

¼ 1

2
þ Tr½ρH0�

2R
; ð5Þ

where we have used Eqs. (4) and (3) to derive the second
and the last equalities, respectively. Note that in order to
relate ppass to Tr½ρH0�, i ¼ 0 is included in the test.

B. Verification

In this subsection, we propose a verification protocol for
ground states based on the test explained in the previous
subsection. Our protocol runs as follows:
(1) The prover sends the verifier an Nðkþmþ 1Þ-qubit

state ρB [see Fig. 2(a)]. The state ρB consists of

kþmþ 1 registers, and each register stores N
qubits. If the prover is honest, the prover sends
the tensor product of the ideal state. On the other
hand, if the prover is malicious, the prover sends an
Nðkþmþ 1Þ-qubit, completely arbitrary, quantum
state instead of the tensor product of the ideal state.

(2) The verifier chooses m registers uniform randomly
and discards them to guarantee that the remaining
Nðkþ 1Þ-qubit state ρ0B is close to an i.i.d. sample by
using the quantum de Finetti theorem [63]. Next, the
verifier chooses one register–which we call the
target register, whose state is ρtgt–uniform randomly
and uses it for the verifier’s purpose. The verifier
performs the test on each of the remaining k registers
[see Fig. 2(b)]. Let Kpass be the number of times that
the verifier passes the test. If

Kpass

k
≤
1

2
þ ϵ

2R
; ð6Þ

we say that the verifier accepts the prover, where
0 < ϵ < 1 is specified later.

Note that since the random selection is equivalent to
random permutation of registers, ρB becomes permutation
invariant after the random selection in step 2. Accordingly,
we can use the quantum de Finetti theorem [63]. This idea
comes from Ref. [54]. Hereafter, we consider the case
where ϵ ¼ 1=ð4N2Þ,m ≥ 2N5k2 log 2, and k ≥ 32R2N5 are
satisfied. In this case, the following theorems hold.
Theorem 1 (Completeness). If the prover is honest, i.e.,

the state of each register is a ground state of H, the
probability that the verifier accepts the prover is larger
than 1 − e−N .
Proof.—When the state of each register is a ground state

of H, ppass ¼ 1=2. Because of the Hoeffding inequality,

(a)

(b)

FIG. 2. (a) The quantum state ρB in step 1. Each rectangle
represents a register that stores N qubits, and ρB consists of kþ
mþ 1 registers. If the prover is honest, the state of each register is
the ideal quantum state. On the other hand, if the prover is
malicious, registers may be entangled with each other. (b) A
quantum state in step 2. Randomly chosen black registers are
discarded, and then the remaining m blue registers and one green
register become close to i.i.d. samples because of the quantum de
Finetti theorem [63]. Randomly chosen m blue registers are used
for the test. The green register is the target state ρtgt.
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Pr½the verifier accepts the prover�

¼ 1 − Pr

�
Kpass

k
>

1

2
þ ϵ

2R

�

¼ 1 − Pr

�
Kpass

k
> ppass þ

ϵ

2R

�
≥ 1 − e−2ϵ

2k=ð4R2Þ

≥ 1 − e−N: ▪

Theorem 2 (Soundness). If the verifier accepts the
prover, the state ρtgt of the target register satisfies

Tr½Πρtgt� ≥ 1 −
1

N

with a probability larger than 1 − 1=N. Here, Π is the
projector onto the ground-energy eigenspace of H, and we
consider the case where N ≠ 2.
Proof.—Let Π⊥ ≡ I⊗N − Π, and T be the positive-

operator-valued-measure (POVM) element corresponding
to the event where the verifier accepts the prover. When
N ≠ 2, we can show that for any N-qubit state ρ,

Tr½ðT ⊗ Π⊥Þρ⊗kþ1� ≤ 1

2N2
: ð7Þ

Its proof is given later. Because of the quantum de Finetti
theorem [for the fully one-way local operations and
classical communication (LOCC) norm] [63] and Eq. (7),

Tr½ðT ⊗ Π⊥Þρ0B� ≤ Tr

�
ðT ⊗ Π⊥Þ

Z
dμρ⊗kþ1

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nk2 log 2

m

r

≤
1

2N2
þ 1

2N2
¼ 1

N2
:

Here, μ is a probability measure on ρ. We have

Tr½ðT ⊗ Π⊥Þρ0B� ¼ Tr½ðT ⊗ IÞρ0B�Tr½Π⊥ρtgt�:
Therefore, if

Tr½Π⊥ρtgt� >
1

N
;

then

Tr½ðT ⊗ IÞρ0B� <
1

N
:

This means that if the verifier accepts the prover,

Tr½Πρtgt� ≥ 1 −
1

N

with a probability larger than 1 − 1=N.
To complete the proof, we show Eq. (7). First, we

consider the case where Tr½H0ρ� ≤ 2ϵ. Let fjE0
ii; E0

igi be

the set of excited eigenstates of H0 and their eigenvalues.
Since E0

i ≥ 1,

Tr½Π⊥ρ� ¼
X
i

hE0
ijρjE0

ii

≤
X
i

E0
ihE0

ijρjE0
ii

¼ Tr½H0ρ� ≤ 2ϵ:

Therefore,

Tr½ðT ⊗ Π⊥Þρ⊗kþ1� ¼ Tr½Tρ⊗k�Tr½Π⊥ρ� ≤ 1

2N2
: ð8Þ

Next, we consider the case where Tr½ρH0� > 2ϵ. In this
case,

ppass ¼
1

2
þ Tr½ρH0�

2R
>

1

2
þ ϵ

R
:

Therefore, because of the Hoeffding inequality,

Tr½Tρ⊗k� ¼ Pr

�
Kpass

k
≤
1

2
þ ϵ

2R

�

≤ Pr

�
Kpass

k
< ppass −

ϵ

2R

�
≤ e−2ϵ

2k=ð4R2Þ

≤ e−N:

Hence,

Tr½ðT ⊗ Π⊥Þρ⊗kþ1� ¼ Tr½Tρ⊗k�Tr½Π⊥ρ� ≤ e−N: ð9Þ

From Eqs. (8) and (9), when N ≠ 2,

Tr½ðT ⊗ Π⊥Þρ⊗kþ1� ≤ max

�
1

2N2
; e−N

�

¼ 1

2N2
: ▪

III. VERIFICATION OF QUANTUM STATES
GENERATED BY A CERTAIN CLASS OF

QUANTUM CIRCUITS

In this section, we explain our second verification
protocol, namely, the protocol for quantum states generated
by a certain class of quantum circuits. In Sec. III A, we
explain a stabilizer test. In Sec. III B, we show the
verification protocol based on the stabilizer test.
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A. Stabilizer test

Let us assume that we want to verify the quantum state
jψi≡ Ujþi⊗N , where jþi≡ ðj0i þ j1iÞ= ffiffiffi

2
p

, and U is a
certain N-qubit unitary operator whose properties are
specified later. The ith stabilizer gi of jψi is defined by

gi ≡UXiU†; ð10Þ

where Xi is performed on the ith qubit of jψi. Note that gi is
not necessarily a tensor product of Pauli operators, and
therefore, it should be considered as a “generalized
stabilizer.” From Eq. (10),

YN
i¼1

I⊗N þ gi
2

¼ jψihψ j:

Since gi is Hermitian, if we decompose gi in the Pauli
basis as

gi ¼
X
j

cðiÞj τj;

cðiÞj is a real number, where

τj ≡ ⊗
N

k¼1
σjjk;

and σjjk ∈ fI; X; Y; Zg. Hereafter, we consider the U that
satisfies the following three conditions:

(i) The probability distribution from fjcðiÞj j=Rigj can be
sampled exactly in polynomial time. Here, Ri≡P

jjcðiÞj j.
(ii) R≡maxðR1;…; RNÞ ¼ OðpolyðNÞÞ.
(iii) Ri is known or can be computed in polynomial time

for all i.
Condition (i) is necessary to perform the stabilizer test
defined in the next paragraph. Condition (ii) is required to
extract the information of Tr½ρgi� from ppassðiÞ in Eq. (11)
using only the polynomial number of quantum states ρ.
Condition (iii) is needed to define the accept or reject
criteria in Eq. (12).
The stabilizer test for gi on ρ is defined as follows: The

verifier selects j with probability jcðiÞj j=Ri. The verifier
measures the kth qubit of ρ in the Pauli basis σjjk. Let
mk ∈ f1;−1g be the outcome of the measurement on the
kth qubit. Note that if σjjk ¼ I, the verifier sets mk ¼ 1. We
say that the verifier passes the stabilizer test for gi on ρ if

YN
k¼1

mk ¼ sgnðcðiÞj Þ:

Since quantum states satisfying the above three properties
include graph states and hypergraph states with low

connectivity as special cases, our stabilizer test can be
considered as a generalization of previous stabilizer
tests [52,54].
The expected probability ppassðiÞ that the verifier passes

the stabilizer test for gi on ρ, where the expectation is taken
over the sampling of j, is

ppassðiÞ ¼
X
j

jcðiÞj j
Ri

Tr

�
ρ
I⊗N þ sgnðcðiÞj Þτj

2

�

¼ 1

2
þ Tr½ρgi�

2Ri
: ð11Þ

B. Verification

In this subsection, we propose a verification protocol for
jψi ¼ Ujþi⊗N . Our protocol runs as follows:
(1) The prover sends the verifier an NðNkþmþ 1Þ-

qubit state ρB. The state ρB consists of Nkþmþ 1
registers, and each register stores N qubits. If the
prover is honest, the prover sends jψi⊗Nkþmþ1. On
the other hand, if the prover is malicious, the prover
sends an NðNkþmþ 1Þ-qubit, completely arbi-
trary, quantum state instead of jψi⊗Nkþmþ1.

(2) The verifier chooses m registers uniform randomly
and discards them to guarantee that the remaining
NðNkþ 1Þ-qubit state ρ0B is close to an i.i.d. sample
by using the quantum de Finetti theorem [63]. Next,
the verifier chooses one register—which we call the
target register, whose state is ρtgt—uniform ran-
domly and uses it for the verifier’s purpose. The
remaining Nk registers are divided into N groups
such that which register is assigned to the ith group
is uniformly random. The verifier performs the
stabilizer test for gi on every register in the ith
group. LetKi be the number of times that the verifier
passes the stabilizer test for gi. If

Ki

k
≥
1

2
þ 1 − ϵ

2Ri
; ð12Þ

we say that the verifier passes the stabilizer test for
the ith group, where 0 < ϵ < 1 is specified later. If
the verifier passes the stabilizer test for all i, we say
that the verifier accepts the prover.

Hereafter, we consider the case where ϵ ¼ 1=ð2N3Þ,
m ≥ 2N7k2 log 2, and k ≥ 8R2N7 are satisfied. In this case,
the following theorems hold.
Theorem 3 (Completeness). If the prover is honest, i.e.,

the state of each register is jψi, the probability that the
verifier accepts the prover is larger than 1 − Ne−N .
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Proof.—When the state of each register is jψi,

ppassðiÞ ¼
1

2
þ 1

2Ri
:

Because of the union bound and the Hoeffding inequality,

Pr½the verifier accepts the prover�

¼ Pr

�
⋀
N

i¼1

�
Ki

k
≥
1

2
þ 1 − ϵ

2Ri

��

≥ 1 −
XN
i¼1

Pr

�
Ki

k
< ppassðiÞ −

ϵ

2Ri

�

≥ 1 −
XN
i¼1

e−2ϵ
2k=ð4R2

i Þ

≥ 1 − Ne−2ϵ
2k=ð4R2Þ

≥ 1 − Ne−N: ▪

Theorem 4 (Soundness). If the verifier accepts the
prover, the state ρtgt of the target register satisfies

hψ jρtgtjψi ≥ 1 −
1

N

with a probability larger than 1 − 1=N. Here, we consider
the case where N ≠ 2.
Proof.—Let Π⊥ be the N-qubit projector I⊗N − jψihψ j,

and T be the POVM element corresponding to the event
where the verifier accepts the prover. When N ≠ 2, we can
show that for any N-qubit state ρ,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ≤ 1

2N2
: ð13Þ

Its proof is given later. Because of the quantum de Finetti
theorem (for the fully one-way LOCC norm) [63] and
Eq. (13),

Tr½ðT ⊗ Π⊥Þρ0B� ≤ Tr

�
ðT ⊗ Π⊥Þ

Z
dμρ⊗Nkþ1

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N3k2 log 2

m

r

≤
1

2N2
þ 1

2N2
¼ 1

N2
:

Here, μ is a probability measure on ρ. We have

Tr½ðT ⊗ Π⊥Þρ0B� ¼ Tr½ðT ⊗ IÞρ0B�Tr½Π⊥ρtgt�:

Therefore, if

Tr½Π⊥ρtgt� >
1

N
;

then

Tr½ðT ⊗ IÞρ0B� <
1

N
:

This means that if the verifier accepts the prover,

hψ jρtgtjψi ≥ 1 −
1

N

with a probability larger than 1 − 1=N.
To complete the proof, we show Eq. (13). First, we

consider the case where Tr½giρ� ≥ 1–2ϵ is satisfied for all i.
From the union bound,

1 − hψ jρjψi ¼ 1 − Tr

�
ρ
YN
i¼1

I⊗N þ gi
2

�

≤
XN
i¼1

�
1 − Tr

�
ρ
I⊗N þ gi

2

��

≤ Nϵ:

Therefore,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ¼ Tr½Tρ⊗Nk�Tr½Π⊥ρ�

≤
1

2N2
: ð14Þ

Next, we consider the case where Tr½giρ� < 1–2ϵ is
satisfied for at least one i. In this case, for the i0 that
satisfies Tr½gi0ρ� < 1–2ϵ,

ppassði0Þ ¼
1

2
þ Tr½gi0ρ�

2Ri0
<

1

2
þ 1 − 2ϵ

2Ri0
:

Therefore, because of the Hoeffding inequality,

Tr½Tρ⊗Nk� ≤ Pr

�
Ki0

k
≥
1

2
þ 1 − ϵ

2Ri0

�

≤ Pr

�
Ki0

k
> ppassði0Þ þ

ϵ

2Ri0

�

≤ e−2ϵ
2k=ð4R2

i0 Þ

≤ e−2ϵ
2k=ð4R2Þ

≤ e−N:

Hence,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ¼ Tr½Tρ⊗Nk�Tr½Π⊥ρ�
≤ e−N: ð15Þ
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From Eqs. (14) and (15), when N ≠ 2,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ≤ max

�
1

2N2
; e−N

�

¼ 1

2N2
: ▪

IV. VERIFICATION OF HYPERGRAPH STATES

Although the verification protocol proposed in Sec. III
can verify hypergraph states with low connectivity, it
cannot verify hypergraph states with high connectivity.
To verify hypergraph states with high connectivity, we now
explain our third protocol, which uses a new adaptive
stabilizer test. In Sec. IVA, we review the definition of
hypergraph states. In Sec. IV B, we explain our basic idea
with a simple example. In Sec. IV C, we define the adaptive
stabilizer test in a general form. In Sec. IV D, we explain
how to verify hypergraph states with high connectivity by
using the adaptive stabilizer test.

A. Hypergraph states

In this subsection, we review the definition of hyper-
graph states [64] and their properties. A hypergraph G≡
ðV; EÞ is a pair of a set V of vertices and a set E of
hyperedges, where a hyperedge is a set of vertices. We
define N ≡ jVj. The hypergraph state jGi corresponding to
the hypergraph G is defined by

jGi≡
�Y

e∈E

fCZe

�
jþi⊗N;

where fCZe is the generalized CZ gate acting on vertices in
e; i.e., it is the gate that flips the phase �1 if all qubits in e
are j1i. Since a hypergraph has at most 2N − 1 hyperedges,
the time required to generate a hypergraph state is at most
Oð2NÞ. However, in many quantum-information processing
protocols, only quantum states that can be generated in
polynomial time are used. To focus on such efficiently
generatable quantum states, we assume that 2 ≤ jej ≤ c for
all e ∈ E, where jej is the size of e. Here, cð≥ 3Þ is a
constant integer. The size jEj of E is then polynomially
upper bounded:

jEj ≤
Xc
k¼2

�
N
k

�
¼ OðNcÞ:

The ith stabilizer gi of jGi (i ¼ 1; 2;…; N) is defined by

gi ≡
�Y

e∈E

fCZe

�
Xi

�Y
e∈E

fCZe

�
; ð16Þ

where Xi is the Pauli-X operator acting on the ith qubit. We
can show the useful relation

YN
i¼1

I⊗N þ gi
2

¼ jGihGj;

which is derived by applying
Q

e∈E
fCZe from both the right

and the left on both sides of the trivial equation

YN
i¼1

I þ Xi

2
¼ jþihþj⊗N;

and by using Eq. (16).

B. Simple example

Before introducing the general formalism of our adaptive
stabilizer test, here we briefly explain our basic idea with a
simple example. Let us consider the three-qubit hypergraph
state,

jGi ¼ fCZ1;2;3jþi⊗3

¼ ðj00i þ j01i þ j10iÞ1;2jþi3 þ j11i1;2j−i3
2

;

where j−i≡ ðj0i − j1iÞ= ffiffiffi
2

p
. From the definition Eq. (16),

its stabilizers are calculated as

g1 ¼
X

a∈f0;1g
X ⊗ jaihaj ⊗ Za;

g2 ¼
X

a∈f0;1g
jaihaj ⊗ X ⊗ Za;

g3 ¼
X

a∈f0;1g
jaihaj ⊗ Za ⊗ X:

The adaptive stabilizer test for g1 on a three-qubit
quantum state ρ proceeds as follows:
(1) The verifier measures the first qubit of ρ in the X

basis. Let x1 ∈ f1;−1g be the measurement result.
(2) The verifier measures the second and third qubits in

the Z bases. Let zj ∈ f1;−1g (j ¼ 2, 3) be the
measurement result for the jth qubit.

(3) If z2 ¼ 1 and x1 ¼ 1, the verifier accepts. If z2 ¼ −1
and x1z3 ¼ 1, the verifier accepts. Otherwise, the
verifier rejects.

It is easy to check that the acceptance probability ppass of
this test is

ppass ¼ Tr

�
ρ
I⊗3 þ g1

2

�
:

(The intuitive idea is illustrated in Fig. 3. When z2 ¼ 1, the
three-qubit hypergraph state jGi becomes jþi1 ⊗ jþi3.
When z2 ¼ −1, it becomes the two-qubit graph state that is
stabilized by X1Z3.) Therefore, the correct state jGi passes
the test with probability 1. We will see later that the
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estimation of ppass (and therefore the estimation of Tr½g1ρ�)
is possible in our verification protocol. With respect to g2
and g3, a similar argument holds.

C. Adaptive stabilizer test

For general polynomial-time-generated hypergraph
states, we define the adaptive stabilizer test for gi using
the idea explained above. Let V ¼ fv1; v2;…; vNg and
E ¼ fe1; e2;…; ejEjg. The generalized CZ gate acting on

vertices fvðjÞ1 ; vðjÞ2 ;…; vðjÞjejjg that are connected by the jth

hyperedge ej can be written as

ð17Þ

where ða ∈ f0; 1gÞ. From Eq. (16), the ith
stabilizer gi of jGi can be calculated as

gi ¼ Xvi

� Y
vi0∈W

ðiÞ
Z

Zvi0

�� Y
ṽðjÞ∈WðiÞ

CZ

fCZṽðjÞ

�
; ð18Þ

where

WðiÞ
Z ≡ fvi0 ∈ Vjðvi; vi0 Þ ∈ Eg;

WðiÞ
CZ≡ ∪ej∈E0 Wði;jÞ

CZ ;

Wði;jÞ
CZ ≡ fṽðjÞjðvi; ṽðjÞÞ ¼ ejg:

Here, E0ð⊆ EÞ is a set of hyperedges that connect more than

two vertices, and ṽðjÞ ≡ ṽðjÞ1 ;…; ṽðjÞjejj−1 is a shorthand

notation. By substituting Eq. (17) into Eq. (18),

ð19Þ

where

W̃ðiÞ
P ≡ ∪

ṽðjÞ∈WðiÞ
CZ

fṽðjÞgnfṽðjÞjejj−1g; ð20Þ

ð21Þ

Here, aðjÞ ≡ fa
ṽðjÞ
1

;…; a
ṽðjÞjej j−2

g, a≡ ∪
ṽðjÞ∈WðiÞ

CZ
aðjÞ, αði;aÞ ∈ f0; 1g, and fðaðjÞ ∪ fa

ṽðjÞjej j−1
gÞ is a function, where it is equal to

1 if and only if all elements of fa
ṽðjÞ
1

;…; a
ṽðjÞjej j−1

g are 1, and it is equal to 0 in other cases. Note that αði;aÞ and W̃ði;aÞ
Z are

defined by Eq. (21), and W̃ði;aÞ
Z ∩ W̃ðiÞ

P ¼ ∅. From Eq. (20), the time required to derive W̃ðiÞ
P is at most OðNc−1Þ. When the

FIG. 3. A quantum state after the Z2-basis measurement on jGi.
Solid-line and dashed-line circles represent jþi and a measured
qubit, respectively. The yellow triangle and the black solid line
represent fCZ1;2;3 and fCZ1;3, respectively.
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values of all elements of a are given and W̃ðiÞ
P is known, the

time required to calculate the rhs of Eq. (21) is at most

OðNc−1Þ. Accordingly, we can derive αði;aÞ, W̃ði;aÞ
Z , and W̃ðiÞ

P
in classical polynomial time.
The adaptive stabilizer test for gi on an N-qubit quantum

state ρ is defined as follows: The verifier measures the ith
qubit of ρ that corresponds to the vertex vi in the X basis,
and each of the other qubits of ρ in the Z basis, respectively.
Let xi ∈ f1;−1g be the outcome of the X-basis measure-
ment, and zi0 ∈ f1;−1g be the outcome of the Z-basis
measurement on the i0th qubit. Then, the verifier calculates

W̃ðiÞ
P . From W̃ðiÞ

P and measurement outcomes, the verifier
knows the values of a. We say that the verifier passes the
adaptive stabilizer test for gi on ρ if

ð−1Þαði;aÞxi
Y

vi0∈W̃
ði;aÞ
Z

zi0 ¼ 1:

Note that the adaptiveness is not needed in the special case

of graph states because WðiÞ
CZ ¼ ∅.

The expected probability ppassðiÞ that the verifier passes
the adaptive stabilizer test for gi on ρ, where the expectation
is taken over the sampling of a, is

ppassðiÞ

¼
X

a∶pðaÞ≠0
pðaÞTr

�
Pði;aÞρPði;aÞ

pðaÞ
I⊗jW̃ði;aÞ

Z jþ1 þ Sði;aÞ

2

�

¼ 1

2

X
a∶pðaÞ≠0

ðTr½ρPði;aÞ� þ Tr½ρPði;aÞSði;aÞ�Þ

¼ 1

2

X
a∈f0;1gjW̃

ðiÞ
P

j

ðTr½ρPði;aÞ� þ Tr½ρPði;aÞSði;aÞ�Þ

¼ 1

2

�
1þ Tr

�
ρ

X
a∈f0;1gjW̃

ðiÞ
P

j

Pði;aÞSði;aÞ
��

¼ 1

2
ð1þ Tr½ρgi�Þ; ð22Þ

where

We have used Eq. (19) to derive the last equality.

Let us explain why our adaptive stabilizer test can verify
hypergraph states with high connectivity, while our second
protocol (Sec. III) and the previous protocol [54] cannot.
For the nonadaptive stabilizer test (Sec. III), the probability
ppassðiÞ of passing the stabilizer test for gi is given in
Eq. (11). If Ri ¼ O( expðNÞ), exponentially many tests are
required to distinguish ppassðiÞ from 1=2, which means that
no polynomial-time verification is possible. On the other
hand, since Ri does not appear in Eq. (22), such a problem
does not occur for the adaptive stabilizer test.

D. Verification

In this subsection, we propose a verification protocol for
hypergraph states based on the adaptive stabilizer test
explained in the previous subsection. Our protocol runs
as follows:
(1) The prover sends the verifier an NðNkþmþ 1Þ-

qubit state ρB. The state ρB consists of Nkþmþ 1
registers, and each register stores N qubits. If the
prover is honest, the prover sends jGi⊗Nkþmþ1. On
the other hand, if the prover is malicious, the prover
sends an NðNkþmþ 1Þ-qubit, completely arbi-
trary, quantum state instead of jGi⊗Nkþmþ1.

(2) The verifier chooses m registers uniform randomly
and discards them to guarantee that the remaining
NðNkþ 1Þ-qubit state ρ0B is close to an i.i.d. sample
by using the quantum de Finetti theorem [63]. Next,
the verifier chooses one register—which we call the
target register, whose state is ρtgt—uniform ran-
domly and uses it for the verifier’s purpose. The
remaining Nk registers are divided into N groups
such that which register is assigned to the ith group
is uniformly random. The verifier performs the
adaptive stabilizer test for gi on every register in
the ith group. Let Ki be the number of times that the
verifier passes the adaptive stabilizer test for gi. If

Ki

k
≥ 1 − ϵ; ð23Þ

we say that the verifier passes the adaptive stabilizer
test for the ith group, where 0 < ϵ < 1 is specified
later. If the verifier passes the adaptive stabilizer test
for all i, we say that the verifier accepts the prover.

When the prover is honest, i.e., the prover sends
jGi⊗Nkþmþ1 to the verifier, the verifier accepts him with
probability 1, which is obvious from Eq. (22). This means
that our verification protocol has the completeness.
Hereafter, we consider the case where ϵ ¼ 1=ð4Nk2=7Þ,
m ≥ 2N3k18=7 log 2, and k ≥ ð4NÞ7 are satisfied. In this
case, the following theorem holds.
Theorem 5 (Soundness). If the verifier accepts the

prover, the state ρtgt of the target register satisfies
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hGjρtgtjGi ≥ 1 − k−1=7

with a probability larger than 1 − k−1=7.
Proof.—Let Π⊥ be the N-qubit projector I⊗N − jGihGj,

and T be the POVM element corresponding to the event
where the verifier accepts the prover. We can show that for
any N-qubit state ρ,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ≤ 1

2k2=7
: ð24Þ

Its proof is given later. Because of the quantum de Finetti
theorem (for the fully one-way LOCC norm) [63] and
Eq. (24),

Tr½ðT ⊗ Π⊥Þρ0B� ≤ Tr

�
ðT ⊗ Π⊥Þ

Z
dμρ⊗Nkþ1

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N3k2 log 2

m

r

≤
1

2k2=7
þ 1

2k2=7
¼ 1

k2=7
:

Here, μ is a probability measure on ρ. We have

Tr½ðT ⊗ Π⊥Þρ0B� ¼ Tr½ðT ⊗ IÞρ0B�Tr½Π⊥ρtgt�:

Therefore, if

Tr½Π⊥ρtgt� > k−1=7;

then

Tr½ðT ⊗ IÞρ0B� < k−1=7:

This means that if the verifier accepts the prover,

hGjρtgtjGi ≥ 1 − k−1=7

with a probability larger than 1 − k−1=7.
To complete the proof, we show Eq. (24). First, we

consider the case where Tr½giρ� ≥ 1–4ϵ for all i. Because of
the union bound,

Tr½Π⊥ρ� ¼ 1 − Tr

�YN
i¼1

I⊗N þ gi
2

ρ

�

≤
XN
i¼1

�
1 − Tr

�
I⊗N þ gi

2
ρ

��

≤ 2Nϵ

¼ 1

2k2=7
:

Therefore,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ¼ Tr½Tρ⊗Nk�Tr½Π⊥ρ�

≤
1

2k2=7
: ð25Þ

Next, we consider the case where Tr½giρ� < 1–4ϵ is
satisfied for at least one i. In this case, for the i0 that
satisfies Tr½gi0ρ� < 1–4ϵ,

ppassði0Þ ¼
1þ Tr½gi0ρ�

2
< 1 − 2ϵ:

Therefore, because of the Hoeffding inequality,

Tr½ðT ⊗ IÞρ⊗Nkþ1� ≤ Pr

�
Ki0

k
≥ 1 − ϵ

�

≤ Pr

�
Ki0

k
> ppassði0Þ þ ϵ

�
≤ e−2ϵ

2k

¼ e−k
3=7=ð8N2Þ

≤ e−2k
1=7
:

Hence,

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ¼ Tr½Tρ⊗Nk�Tr½Π⊥ρ�
≤ e−2k

1=7
: ð26Þ

From, Eqs. (25) and (26),

Tr½ðT ⊗ Π⊥Þρ⊗Nkþ1� ≤ max

�
1

2k2=7
; e−2k

1=7

�

¼ 1

2k2=7
:

▪

V. APPLICATIONS

In this section, we discuss applications of our protocols
to the verification of quantum computational supremacy
demonstrations with IQP circuits and its variants, and
verifiable blind quantum computing.
First, we discuss the verification of quantum computa-

tional supremacy demonstrations with IQP circuits. An N-
qubit IQP circuit is the following restricted quantum circuit:

(i) The initial state is j0i⊗N .
(ii) The N-qubit unitaryH⊗NDH⊗N is applied, whereH

is the Hadamard gate, and D is a quantum circuit
consisting of a polynomial number of Z-diagonal
gates, such as Z, CZ, and eiθZ.

(iii) Finally, each qubit is measured in the computa-
tional basis.

The IQP model does not seem to be universal, but it is
known that the output probability distributions of the IQP
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model cannot be classically efficiently sampled with a
constant multiplicative error unless the polynomial-time
hierarchy (PH) collapses to the third level [11] or the
second level [8]. Here, we say that a probability distribution
fpzgz is sampled with a multiplicative error ϵ if

jpz − qzj ≤ ϵpz

for all z, where qz is the probability that the classical
sampler outputs z.
Recently, Bremner, Montanaro, and Shepherd [12] have

shown that, assuming a certain unproven conjecture, the
no-go result can be generalized to the l1-norm error
sampling, which is more realistic. Here, we say that a
probability distribution fpzgz is sampled with an l1-norm
error ϵ if X

z

jpz − qzj ≤ ϵ;

where qz is the probability that the classical sampler
outputs z. More precisely, they have shown the following
theorem.
Theorem 6 (Ref. [12]). Assume the below conjecture is

true. If it is possible to classically sample from the output
probability distribution of any IQP circuit in polynomial
time, up to an error of 1=192 in l1 norm, then there is a
BPPNP algorithm to solve any problem in P#P. Hence, the
PH would collapse to its third level.
Conjecture 1 (Ref. [12]). Let f∶f0; 1gN → f0; 1g be a

uniformly random degree-3 polynomial over F2. Then, it is
#P-hard to approximate ðgapðfÞ=2NÞ2 up to a multiplicative
error of 1=4þ oð1Þ for a 1=24 fraction of polynomials f.
Here, gapðfÞ≡jfx∶fðxÞ¼0gj−jfx∶fðxÞ¼1gj.
Here, complexity classes BPP, NP, P, and #P are

abbreviations of bounded-error probabilistic polynomial
time, nondeterministic polynomial time, polynomial time,
and sharp P, respectively.
Importantly, the theorem holds for the IQP model that

uses only Z, CZ, and CCZ gates, where CCZ is the
controlled-controlled-Z gate defined as

CCZ ¼ I⊗3 − 2j111ih111j:

The theorem therefore shows the hardness for the sampling
of the probability distribution of the X-basis measurement
outcomes on hypergraph states. In other words, if the
verifier generates a hypergraph state in his or her laboratory
or receives it from a remote server, the verifier can
demonstrate the quantum computational supremacy.
However, one problem is that what the verifier receives
deviates from the ideal hypergraph state because of the
experimental imperfections or the server’s dishonesty. The
verifier therefore has to verify the correctness of the state,
where the verification task becomes important.

In Ref. [12], all gates, Z, CZ, and CCZ, are applied
uniformly random. The anticoncentration lemma, which is
essential for their proof, is satisfied when Z and CZ gates
are applied uniformly random, but Conjecture 1, which is
often called “average case vs worst case hardness con-
jecture,” seems to be more plausible when the application
of CCZ gates is also uniformly random. In other words, the
hypergraph states generated by the IQP circuits of Ref. [12]
can have high connectivity.
Our third protocol can verify such hypergraph states with

high connectivity. From Theorem 5, we can guarantee that

1

2
kρtgt − jGihGjk ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hGjρtgtjGi

q
≤

1

polyðkÞ ;

which means

1

2

X
x

jTr½Mxρtgt� − hGjMxjGij ≤
1

2
kρtgt − jGihGjk

≤
1

polyðkÞ
for any POVM fMxgx. Here, k · k is the trace norm. In
particular, if we take the POVM as the X-basis measure-
ments,

X
z

jpz − p0
zj ≤

1

polyðkÞ ;

where pz is the probability of obtaining the outcome zð∈
f0; 1gNÞ when jGi is measured in the X bases, and p0

z is the
probability of obtaining the outcome z when ρtgt is
measured in the X bases:

pz ¼ jhzjH⊗N jGij2;
p0
z ¼ hzjH⊗NρtgtH⊗N jzi:

Assume that fp0
zgz is classically efficiently sampled with

the l1-norm error 1=193:

X
z

jp0
z − qzj ≤

1

193
;

where qz is the probability that a classical sampler outputs
z. Then,X

z

jpz − qzj ≤
X
z

jpz − p0
zj þ

X
z

jp0
z − qzj

≤
1

polyðkÞ þ
1

193
≤

1

192
;

which causes the collapse of the PH according to Theorem6.
In conclusion, the probability distribution of the X-basis
measurement outcomes on the verified state ρtgt through our
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third protocol cannot be classically efficiently sampled with
the l1-norm error. Similarly, our third protocol can also be
used to verify variants of the IQP model such as those
introduced in Refs. [13–16,23].
Recently, several other verification protocols for IQP

circuits have also been proposed. For example, Hangleiter
et al. have proposed a polynomial-time verification proto-
col [56] using the Feynman-Kitaev history state [24,57]

1ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

p
XL
t¼0

�Yt
i¼0

Uijϕ0i
�

⊗ jti

corresponding to the quantum circuit
Q

L
i¼1Ui with an initial

state jϕ0i, whereU0 ¼ I. In their protocol, the prover sends
the Feynman-Kitaev history state to the verifier. Since the
Feynman-Kitaev history state is, in general, more compli-
cated than the mere output state ðQL

i¼1 UiÞjϕ0i, their pro-
tocol is more demanding for the prover than ours. Their
protocol is also more demanding for the verifier because
multiqubit measurements are necessary for the verifier.
Moreover, their protocol assumes the i.i.d. property of
samples unlike ours. Miller et al. have proposed another
polynomial-time verification protocol for IQP circuits [16].
Although the prover in their protocol only has to generate
hypergraph states like our protocol, their protocol also
assumes the i.i.d. property of samples.Averification protocol
proposed in Ref. [54] does not assume any i.i.d. property of
samples, but the protocol cannot be used for hypergraph
states with high connectivity because exponentially many
quantum states are required to distinguish the probability of
passing a test from 1=2, which means that no polynomial-
time verification is possible. Accordingly, this protocol
cannot be used to verify the Bremner-Montanaro-
Shepherd-type IQP circuits of Ref. [12].
As another application, our verification protocol for

hypergraph states can also be used to construct a verifiable
blind quantum computing protocol in a similar way to
Ref. [54]. Since the Union Jack state [55], which is a
hypergraph state, is a universal resource state for MBQC
with only adaptive single-qubit measurements of Pauli
operators, the client is required to perform only single-qubit
Pauli measurements.

VI. DISCUSSION

We have seen that if the honest prover sends the correct
state to the verifier, the verifier accepts it with high
probability. However, in reality, it is not easy for the
verifier to receive the perfectly ideal state: Imperfections
in the prover’s machine and noises in the channel from the
prover to the verifier change the state even if the prover is
honest. In this section, we point out that even if the state is
slightly deviated from the ideal one, the verifier still accepts
with high probability. In other words, our protocols are

robust to some extent. We also discuss possibilities of using
the quantum error correction.
To understand our argument, let us consider a simple

example. Assume that the verifier receives the slightly
deviated state

½ð1 − ϵ0ÞjGihGj þ ϵ0η�⊗Nkþmþ1 ð27Þ

instead of jGihGj⊗Nkþmþ1, where 0 < ϵ0 < 1, jGi is the
ideal hypergraph state, and η is any state. The trace distance
between the deviated state and the ideal state is

1

2
kð1 − ϵ0ÞjGihGj þ ϵ0η − jGihGjk ≤

ffiffiffiffi
ϵ0

p
;

and therefore, if ϵ0 ¼ Oð1=polyÞ, the deviated state is still
useful for the quantum computational supremacy demon-
stration. This means that the deviated state should also be
accepted by the verifier with high probability. In fact, our
protocol accepts it with high probability. From Eq. (22),

ppassðiÞ ¼
1þ Tr½ρgi�

2

¼ 1 −
ϵ0

2
ð1 − Tr½ηgi�Þ

for each i ¼ 1; 2;…; N. Therefore, the probability that the
verifier accepts the deviated state is

Pr½verifier accepts� ¼ Pr

�
⋀
N

i¼1

�
Ki

k
≥ 1 − ϵ

��

≥ 1 −
XN
i¼1

Pr
�
Ki

k
< 1 − ϵ

�

≥ 1 − Ne−2ðϵ0−ϵÞ2k:

Since k ≥ ð4N7Þ, if ϵ0 − ϵ ¼ OðN−3Þ, 1 − Ne−2ðϵ0−ϵÞ2k
approaches 1 asymptotically.
For simplicity, in the above example, we have considered

the tensor product of the same states, Eq. (27), but it is easy
to confirm that a similar argument holds even if the tensor
product state is replaced with a slightly entangled state.
In this way, we have seen that our protocols are robust to

some extent. However, we have to mention that our
protocols are not perfectly fault tolerant. For example,
let us consider the state

ðZ1 ⊗ I⊗N−1ÞjGi;

where only the first qubit of the ideal hypergraph state is
phase flipped. Such a state should also be accepted with
high probability because such a tiny error can be easily
corrected with a quantum error correction; thus, the
corrected state is a useful resource state for the verifier.
However, it is also easy to check that our protocols cannot
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accept such a state with high probability because such a
state is stabilized by −g1, where g1 is the first stabilizer of
the ideal state jGi.
A solution to the problem is to ask the prover to send the

encoded version of jGi with the Calderbank-Shor-Steane
(CSS) code [65,66]. (This means that the prover encodes
each qubit of jGi into a logical qubit with the CSS code.) A
great advantage of our protocols is that only Pauli mea-
surements are required for the verifier. Since in the CSS
code logical Pauli measurements can be done with the
transversal physical Pauli measurements, the verifier can do
the verification and the syndrome measurements with only
physical single-qubit Pauli measurements; i.e., no entan-
gling gate is required for the verifier.
In Refs. [67,68], more elaborated methods have been

proposed. Instead of physically encoding states, the prover
sends special states, such as the Raussendorf-Harrington-
Goyal (RHG) topological graph state [69], so that the verifier
can do the topological quantum error correction with only
physical single-qubit Pauli measurements. Unfortunately,
such a scheme is known only for graph states, and at this
moment, we do not know how to generalize it to hypergraph
states. If a similar scheme is found for hypergraph states, we
can apply it to our verification protocols so that the verifier
can accept a broad class of deviated but topologically
correctable states with high probability.
With respect to other verification protocols for ground

states of Hamiltonians and output states of quantum
circuits, a similar argument holds from Eqs. (6) and (12).

VII. CONCLUSION

In this paper, we have proposed verification protocols for
ground states of Hamiltonians, quantum states generated by
a certain class of quantum circuits, and all polynomial-
time-generated hypergraph states. As applications of our
verification protocols, we have considered the verification
of IQP circuits and its variants, and verifiable blind
quantum computing.
As an outlook, let us finally provide several open

problems. First, our verification protocol for ground states
of Hamiltonians requires knowledge of, for example, the
ground energy and energy gap. It is, in general, QMA-hard
to know these quantities, and therefore, it is an important
open problem whether or not a protocol that does not use
this knowledge exists. If it exists, it is desirable to invent
such a protocol. More precisely, it is unknown whether or
not the conditions (i)–(iii) for the Hamiltonian in Sec. II can
be relaxed. Related to this open problem, it is interesting to
consider the physical relevance of the conditions. This is
also the case for our second verification protocol, namely,
the verification protocol for quantum circuits. It is an
important open problem to find physical meaning of
conditions (i)–(iii) for the circuit and to relax these
conditions.

Second, it would be useful to consider verification pro-
tocols for other quantumstates such asweighted graph states,� Y

ði;jÞ∈E
eiθijZiZj

�
jþi⊗N;

and higher-dimensional quantum states including the con-
tinuous-variable ones. Here,E is a set of edges, and θij ∈ R.
Those states are important resources in quantum information
and condensed matter physics [27,70].
Finally, with respect to the verification of quantum

computational supremacy demonstrations, it would be
interesting to explore good verification protocols for sub-
universal circuits other than the IQP, such as the DQC1
model [6–9], the boson sampling model [4], the depth-four
model [71], the Fourier sampling model [17], and the
conjugated Clifford model [21].
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