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Quantum systems can be exquisite sensors thanks to their sensitivity to external perturbations. This same
characteristic also makes them fragile to external noise. Quantum control can tackle the challenge of
protecting a quantum sensor from environmental noise, while strongly coupling the sensor with the field to
be measured. As the compromise between these two conflicting requirements does not always have an
intuitive solution, optimal control based on a numerical search could prove very effective. Here, we adapt
optimal control theory to the quantum-sensing scenario by introducing a cost function that, unlike the usual
fidelity of operation, correctly takes into account both the field to be measured and the environmental noise.
We experimentally implement this novel control paradigm using a nitrogen vacancy center in diamond,
finding improved sensitivity to a broad set of time-varying fields. The demonstrated robustness and
efficiency of the numerical optimization, as well as the sensitivity advantage it bestows, will prove
beneficial to many quantum-sensing applications.
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I. INTRODUCTION

Quantum control has been demonstrated to be a crucial
tool both in quantum information processing [1] and in
quantum sensing [2,3] on a variety of experimental plat-
forms, ranging from trapped ions [4,5] to ultracold atoms
[6,7] and superconducting qubits [8,9], as well as nuclear
[10,11] and electronic spin qubits [12,13]. Quantum
sensing poses peculiar challenges to control, as sensor
qubits need to interact strongly with the target field to be
probed, but this also leads to undesired coupling with
external noise of the same nature of the target field, which
often gives rise to either energy losses or decoherence.
A paradigmatic scenario is when one wants to measure a
frequency shift of a spin qubit sensor, as due to a magnetic
field, in the presence of magnetic dephasing noise.
Optimal control theory [14,15] exploits numerical opti-

mization methods [16–20] to find the best control fields that
steer the dynamics of a system towards the desired goal.
Quantum optimal control has been successfully applied in
the case of one- and few-body systems [21–27], as well as in

ensembles [28] and correlated many-body quantum sys-
tems [7,29,30].
Typically, the optimal control problem involves the

search for the optimal transformation that, given a system
Hamiltonian H dependent on a set of time-dependent
control fields, drives the system from an initial state into
a target state, whose desired properties are expressed
by a cost function F that one wants to minimize. Often
this means maximizing the fidelity of the unitary
operation, which describes this transformation, with the
desired one.
However, the goal of quantum sensing is different. Since

there is at most only some partial knowledge of the external
field to be measured, the expected unitary dynamics is
unknown, and thus the fidelity cannot be used to optimize
control. In addition, quantum sensing is usually concerned
with optimizing sensitivity, a quantity that intrinsically
includes noise, also arising from the external environment.
Here, we devise and experimentally demonstrate a robust

and efficient scheme for optimal control of a sensing qubit,
which enhances its sensitivity to the amplitude of time-
varying target fields. For this purpose, we use an unconven-
tional optimization metric, the sensitivity, and develop a
practical way of computing it (which allows for fast
numerical searches). Furthermore, our search method
includes, in the cost metric itself, the presence of an
environment and the consequent decoherence induced on
the qubit. While optimal control has been used before for
sensing [31–33], the optimization was only targeted at
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improving the control fidelity and bandwidth, not the
sensitivity itself.
Here, we tackle the complex task of measuring multi-

chromatic ac target fields and different significant wave-
forms, such as trains of magnetic impulses, which are
relevant for applications in biology, physiology, and neuro-
science [34–37]. We show that, in these cases, optimal
control demonstrates better performance than traditional
dynamical decoupling since it allows for both a larger
accumulation of the spin phase that encodes the field
information and for an improved compensation of envi-
ronment-induced decoherence, thus boosting the qubit’s
sensitivity and enabling detection of very weak magnetic
fields.

II. OPTIMAL CONTROL OF A QUBIT SENSOR
WITH DEPHASING NOISE

We use the electron spin states of a nitrogen vacancy
(NV) center in diamond as a sensing qubit of time-varying
magnetic fields in the presence of magnetic noise, which
induces dephasing of the sensing qubit. While the NV
center forms a spin S ¼ 1, a static bias magnetic field
removes the degeneracy of levels with spin projection
Sz ¼ �1, and a microwave (mw) excitation selectively
addresses the Sz ¼ 0 → −1 transition; therefore, the NV
center can be effectively described as a single two-level
system [38]. The electron spin qubit can be prepared in a
well-defined initial state, coherently manipulated, and read
out [40].
The spin qubit couples both with a time-dependent

external field to be measured, and with environmental
magnetic noise. We model those couplings with the
Hamiltonian

H ¼ γbðtÞσz þ γβðtÞσz; ð1Þ

where the field to be measured has the general form
bðtÞ ¼ bfðtÞ, and βðtÞ is a stochastic variable with power
spectral density SðωÞ in the frequency domain. γ ¼ 2.80 ×
104 Hz=μT is the gyromagnetic ratio, and σz is the z
component of the spin operator, ẑ being the NV symmetry
axis. Performing metrology means reaching a compromise
between two conflicting tasks, i.e., minimizing the noise
effects while maximizing the signal stemming from the
field, during the sensing time. Here, in particular, we
assume to know the temporal dependence fðtÞ of the field,
and we aim at measuring its amplitude b (we are thus
interested in a parameter estimation task). We note that by
embedding our scheme in an adaptive strategy, one could
also tackle waveforms of unknown time dependency [41].
While different control strategies can be used for

sensing, here we consider control via pulsed dynamical
decoupling, which is realized with a series of π pulses that
repeatedly flip the spin, thus reversing its evolution [42].
The control field can thus be described by a modulation

function ynðtÞ, with a sign switch at the position of each π
pulse, indicating the direction of time evolution, forward or
backward. The squared Fourier transform of ynðtÞ defines
the filter control function Yn;TðωÞ.
The phase accumulated by the spin during the sensing

time T, under the action of the control field, is

φnðTÞ ¼
Z

T

0

γbðtÞynðtÞdt≡ bϕn: ð2Þ

To read out the phase due to the target field, we embed the
control sequence within a Ramsey interferometer, which
enables the mapping of the phase accumulated into the
observable population of the spin projection Sz ¼ −1.
As said, during the sensing process, the sensor qubit is

also subject to noise. In the case of the NV center, this is
mainly due to the nuclear spin bath that generates a
stochastic time-varying field. Therefore, the qubit acquires
a random phase during its coherent evolution, which leads
to a reduction of the observed population.
The state of the qubit after the sensing process is

described, as in a Ramsey interferometer, by population
and coherence of the density matrix

ρ1;1ðTÞ ¼
1

2
; ρ1;2ðT; bÞ ¼

1

2
e−iφnðTÞe−χnðTÞ; ð3Þ

where χnðTÞ is temporal coherence function, describing
noise-induced decoherence, that also depends on the
control field through Yn;TðωÞ,

χnðTÞ ¼
Z

dωSðωÞjYn;TðωÞj2=ðπω2Þ: ð4Þ

Thus, a projective measurement on the σx basis,
j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

, gives a signal

sðTÞ ¼ hþjρðT; bÞjþi ¼ 1

2
(1þ e−χnðTÞ cosφnðTÞ): ð5Þ

We point out that we treat the environment as a source of
pure decoherence noise and further assume a classical bath
described by its spectrum SðωÞ, as this allows the simple
expression in Eq. (4) to describe its effects [44,45] (see
Appendix A 2 for further discussion of this approximation
validity). While a classical bath is a good model for many
physical systems [46–55], the same formalism can tackle
more complex and quantum baths [56,57]. More generally,
using Eq. (4) to calculate the environmental effects on the
sensor only simplifies the numerical optimization, but a
more complex noise model could also be taken into
account.
To assess the quality of parameter estimation, as achiev-

able under a given control protocol and within the exper-
imental constraints, we can evaluate the Fisher information
FN [43,58] associated with the measurement,
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FN ¼
X
x

1

pNðxjbÞ
�∂pNðxjbÞ

∂b
�

2

: ð6Þ

Here, pNðxjbÞ ¼ Tr½EðNÞ
x ρ⊗

N

b � are conditional probabilities
of obtaining x as a measurement result for a given field b
over N repeated measurements, Ex being the measurement
estimator and ρ the density matrix of each independent
copy of the system. Sensitivity, that is, the minimum
detectable signal per unit time, is simply related to the
Fisher information by

η ¼
ffiffiffi
T

p
ffiffiffiffiffiffiffiffiffiffi
NFN

p ; ð7Þ

where T ¼ NT is the total sensing experiment time. For the
one-qubit sensing schemeswe are considering, this reduces to

η ¼ min

�
Δs
∂bs

� ffiffiffiffi
T

p
¼ eχnðTÞ

jϕnj
ffiffiffiffi
T

p
: ð8Þ

This is indeed the cost function that we want to
minimize. In practice, for a given field bðtÞ, we are
searching for the optimal control field that steers the spin

trajectory of the electronic spin on the Bloch sphere in such
a way that, while the accumulated phase φnðTÞ is maxi-
mized, the effect of non-Markovian noise described by
χnðTÞ is minimized.
For this purpose, we have designed a direct and fast

search method that looks for the optimal modulation
function yoptn ðtÞ that minimizes the cost function η. We
have investigated various multidimensional parameter
spaces, up to dimension M ¼ 51, and analyzed which
optimization parameters (e.g., total sensing time, π-pulse
positions, signal phase, signal trigger time) provide the
largest improvement without requiring excessive computa-
tional resources, as we detail in the following. The
constraints of the parameter space are chosen to describe
realistic experimental conditions. The search of the
optimal control field is performed by means of a simplex
(Nelder Mead) minimization numerical algorithm that
allows us to reach global convergence in the parameter
space, as illustrated in Fig. 1(b). The method requires a
precise knowledge of the temporal coherence function of
the electronic spin sensor, which depends on the noise
spectrum induced by its spin bath, as detailed in the
Appendix A 2.

(a) (b)

FIG. 1. One-qubit optimization strategy. (a) The electronic spin of a single NV center is optically initialized in the j0i state and read out
after the sensing period by means of a confocal microscope. An antenna delivers both the resonant control field (mw) and the target
magnetic field bðtÞ to be measured, in the proximity of the spin qubit. Each measurement shot is repeated N ¼ 2 × 105 times (see also
Appendix A 1). (b) Illustration of the optimization protocol. The starting point is an initial guess for the control sequence described by a
modulation function y0nðtÞ, which depends on a given number of parameters. While in the paper we consider more general cases, for the
sake of simplicity, the central panel shows a search in a two-parameter space (sensing time T and phase shift α) for a Carr-Purcell (CP)
control sequence used to detect a monochromatic ac field bðtÞ ¼ b cosð2πν0tþ αÞ, with frequency ν0 ¼ 20.5 kHz and unknown
amplitude b to be measured. The map represents the experimentally measured inverse sensitivity E ¼ C=η (see text). The algorithm

computes the sensitivity η under the initial control sequence and then produces and evaluates a number of other trial points yðiÞn ðtÞ and
moves in the multidimensional parameter space until global convergence is reached. The final point, described by yoptn , represents the
optimal control sequence.
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III. RESULTS

The experiment is sketched in Fig. 1(a) (see also
Appendix A 1). The electronic spin of a single NV center
is optically initialized and read out by means of a confocal
microscope. The spin qubit is coherently controlled with a
resonant field and radiated with the off-resonance, time-
varying, target magnetic field to be measured. We obtain the
sensitivity of the spin qubit to the target field by sweeping the
amplitude of the magnetic field and measuring the slope of
the signal sðTÞ ¼ (1þ e−χnðTÞ cosðϕnbÞ)=2 at the points of
maximumslope (where s ¼ 0.5), as shown inFig. 2(a). From
this quantity, we extract the experimental observable E ¼
maxf∂bsg=

ffiffiffiffi
T

p
. Following Eq. (8), this experimental

observable is simply related to sensitivity through the relation
E ¼ C=η, where C is the only calibration constant, indepen-
dent of the target field strength and of the control sequence
(see Appendix A 4).
In the following, we consider different time-varying

target fields that mimic signals of interest and highlight
the advantage of our optimal control method. The method
can, however, be applied more broadly (see Ref. [59]), over
the same frequency range accessible by a nonoptimized
sensor, with a typical bandwidth of the sensor under pulsed
control set by the pulse length and by the control-dependent
decoherence time T2 (∼2 kHz–15 MHz).

A. Optimized sensing of an oscillating field

We first focus on the simple case of monochromatic
sinusoidal signals bðtÞ ¼ b cosð2πνtþ αÞ, with ν ≈
20–1900 kHz (see Ref. [59]). We note that measuring

signals in this frequency range at a magnetic field B ∼
39.4 mT is a difficult task since the signal is obscured by
the carbon-13 bath field. We start from a common pulsed
dynamical decoupling sequence, the Carr-Purcell (CP)
multipulse sequence, originally devised in nuclear mag-
netic resonance [60,61], which has been demonstrated to
extend the qubit’s coherence [62] and has been successfully
employed in sensing to measure monochromatic ac mag-
netic fields (see, e.g., Refs. [63–67]). CP is composed of n
π pulses, equally spaced by τ ¼ T=n, which periodically
flip the spin qubit. This kind of sequence is highly selective
in frequency: Its filter function Yn;TðωÞ is indeed peaked at
ν ¼ 1=ð2τÞ [68]. In the case of interest, the qubit is subject
to colored noise due to a nuclear spin bath in diamond,
where the main component is due to carbon-13. If the target
signal has frequency close to the center of the noise
spectrum, CP control may not be the best choice since
the sequence achieving noise cancellation also leads to a
significant attenuation of the signal to be measured.
As a warmup for the full optimization, we optimize the

control over a restricted space of two parameters, the
sensing time T and the initial phase shift α, with a fixed
number of pulses, n ¼ 8. First, fixing α ¼ 0, we find the
optimal sensing time as a function of the ac frequency, as
reported in Fig. 2(b). Taking into account decoherence
effects appreciably modifies the optimal sensing time
(purple curve), compared to the results obtained in the
absence of noise sources (black curve), where the opti-
mization routine recovers the expected analytic solutions
Topt ¼ n=ð2νÞ. Then, we optimize both T and α. To
evaluate the global convergence of the optimization, we

FIG. 2. Optimized sensing of monochromatic fields. (a) Experimental signal measured in the presence of a monochromatic target ac
magnetic field, bðtÞ ¼ b cosð2πνtþ αÞ, with ν ¼ 9.24 kHz and α ¼ 0, as a function of the target magnetic field amplitude b. Here, the
spin sensor is controlled with a Carr-Purcell sequence of n ¼ 4 equidistant π pulses. Dots are the experimental data, the curve is a
cosinusoidal fit. Error bars are the statistical errors over 2 × 105 repeated measurements. (b) Theoretical prediction of the optimal
sensing time of a Carr-Purcell sequence of n ¼ 8 equidistant π pulses (CP-8), calculated for a target ac magnetic field
bðtÞ ¼ b cosð2πνtþ αÞ, as a function of the ac frequency ν. The black empty squares are the optimized solutions of the sensing
problem when neglecting the presence of the noisy environment, and the black curve represents the expected optimal time,
Topt ¼ n=ð2νÞ, with no fitting parameters. Purple dots are optimized solutions including the noise-induced decoherence of the spin qubit
(the line is a guide to the eye). (c) Inverse of sensitivity, in the presence of a cosinusoidal field bðtÞ of frequency ν0 ¼ 20.5 kHz under CP
control, with α ¼ 0 (in red), and with α ¼ 102° (that is, an initial delay time t0 ¼ 0.28=ν0) resulting from optimization (in blue). Dots are
experimental value of E (left side vertical axis—see text), lines are theoretical 1=η (right side vertical axis). The experimental error bars
come from the slope uncertainty of the experimental signal s.
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have also mapped 1=η in the two-dimensional (2D)
parameter space (T, α). Figure 1(b) shows this map for
an ac field of frequency ν0 ¼ 20.5 kHz. This allows the
results of the optimization to be compared with the brute-
force approach of an extensive search in the parameter
space. The full optimization of the two parameters, includ-
ing noise effects, is able to find the global minimum of
sensitivity (the optimized parameters are T ¼ 216 μs and
α ¼ 102°, corresponding to an initial delay time t0 ¼
0.28=ν0 of the control sequence). Figure 2(c) shows some
cuts of the previous 2D map as a function of T, with α ¼ 0
(red solid line) and with α ¼ 102° (the optimal value
resulting from the numerical search, blue line). Using
Eq. (8), we also calculate the experimental observable E ¼
C=η [left side, vertical axis in Fig. 2(c)], which can be
directly compared with the experimental findings at fixed
α ¼ 0 (red dots) and with α ¼ 102° (blue dots). We find
good agreement of the experiments with the results of the
optimization. We also remark that even in the simple case
of one-parameter optimization, including the noise effects
yields a different optimal sensing time than what was
calculated in the absence of noise [T ¼ n=ð2ν0Þ, gray
vertical dashed line], and this is also reflected in the
observed experimental peak of E vs T.

B. Optimized sensing of multitone ac signals

We now tackle the more complex task of measuring
arbitrary time-dependent signals. We consider multitone

magnetic fields, in the form bðtÞ¼b
P

m
i wicosð2πνitþαiÞ,

where m is the number of Fourier components, bi ¼ bwi
their amplitudes (with

P
iwi ¼ 1), νi their frequencies, and

αi the initial phases. We employ our optimization tool to
engineer optimal control sequences of nonequidistant π
pulses that may extract information from multitone target
signals while refocusing spin dephasing better than common
dynamical decoupling solutions.
As already mentioned, common multipulse control

sequences like CP are, in general, highly selective in
frequency. For this reason, these sequences may exhibit
suboptimal performances when probing a multitone target
field due to attenuation of some frequency components. In
addition, increasing the interrogation time to enable a larger
phase accumulation, thus improving measurement sensi-
tivity, also further narrows the width of the filter function
Yn;T as ∼1=ðTÞ [3]. When the magnetometry task consists
in measuring the signal amplitude of a spectrally charac-
terized source, as we assume here, CP can mostly collect
information about just one frequency component, for any
fixed sensing time. When fixing the number of pulses n and
sweeping the total time T ¼ nτ, the phase accumulated by
the spin qubit sensor under CP control reflects the spectral
composition of the signal, showing peaks at times
τi ¼ 1=ð2νiÞ. This is exemplified in Fig. 3(b), where we
consider a field made ofm ¼ 3 Fourier components under a
CP train of n ¼ 50 pulses (green solid line). However, the
sensor’s decoherence influences the final sensitivity by

FIG. 3. Optimized sensing of multitone ac fields. (a) Upper panel: Sample multitone target field, bðtÞ ¼ b
P

3
i wi cosð2πνitþ αiÞ, with

αi ¼ 0, frequencies νi ¼ ð77; 96; 141Þ kHz, and amplitudes wi ¼ ð0.12; 0.43; 0.45Þ, respectively. Bottom panel: In green, position of
the first 19 π pulses of a Carr-Purcell sequence of 50 equidistant π pulses (CP-50) with optimized sensing time (T ¼ 260 μs); in blue,
position of the first 27 π pulses of an optimal control sequence of 50 non-equally-distributed π pulses with optimized time intervals and
optimized initial phase (T ¼ 187 μs, αi ¼ 0.3). (b) Phase ϕnðTÞ ¼ φnðTÞ=b accumulated by the spin qubit sensor during the sensing
time T in the presence of the field bðtÞ, under a control field of n ¼ 50 π pulses, in the cases of CP-50 (solid line) and optimized control
(blue squares). (c) Experimentally measured E ¼ C=η in the presence of the field bðtÞ under CP-50 (dots) and optimized control
(diamonds). The curves represent the theoretical prediction for E, for CP-50 (solid green line) and optimized control (blue line),
respectively, obtained by rescaling 1=η (right-hand side, vertical scale) with the unique factor C. The shaded area takes into account the
experimental uncertainty due to C (see Appendix A 4).
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suppressing the response of one of the three frequency
components, as shown both in theory and in experiment
[green solid line and yellow dots in Fig. 3(c)].
For this kind of scenario, optimal control strategies offer a

key advantage. Optimal control can indeed be exploited to
find optimal distributions of theπ-pulse positions. Sequences
of non-equally distributed pulse spacings, devised by means
of analytical models, have been indeed demonstrated to
correct for selectivity of CP in certain cases [69–72], also for
different experimental platforms [50]. In the case of multi-
tone ac signals to be measured, such sequences enable to
simultaneously collect signal from all the various frequency
components thus achieving a faster phase accumulation. The
results of optimization for the multitone field considered
above are shown in Fig. 3 [73]. For the optimization, we keep
the number of pulses fixed to n ¼ 50, and optimize all the
π-pulse positions and the initial phase (αi ¼ α), in all 51 free
parameters. We impose the time intervals around to each
π pulse to be symmetric with respect to the pulse position in
order to ensure cancellation of static noise and better
refocusing of low-frequency noise (see Appendix A 4). As
shown in Fig. 3(b), the optimization method leads to a
remarkable improvement in the accumulated phase per unit
field amplitude ϕn (blue squares) compared to CP (green
line), over an extremely wide range of sensing times. The
overall-optimal control sequence (obtainedwith sensing time
T ¼ 187 μs and phase shift α ¼ 0.3) realizes a sensitivity
ηbestopt ¼ 12 nT=

ffiffiffiffiffiffi
Hz

p
. Since each of our sensing experiments

is typically obtained by averaging over N ¼ 2 × 105 meas-
urement shots, the optimized control sequence enables the
measurement of a local field of 2 nT. The improvement in
sensitivity is more than 2 orders of magnitude compared to
the sensitivity of CP (ηCP ¼ 8.3 μT=

ffiffiffiffiffiffi
Hz

p
) at the same

sensing time. We remark that the best sensitivity obtained
with CP control is still a factor of 1.75 worse than the
best sensitivity achieved with the optimized control
(ηbestCP ¼ 21 nT=

ffiffiffiffiffiffi
Hz

p
) and with an acquisition time (T ¼

260 μs) that is 40% longer than the optimal sequence. In
addition, optimized control is able to achieve the same ηbestCP 3
times faster than CP [T ¼ 75 μs, compared to T ¼ 260 μs;
see black arrow in Fig. 3(c)]. Thus, optimal control is able to
attain a remarkable enhancement of sensitivity compared to
standard control when measuring multitone ac fields at fixed
interrogation time.Besides, optimal controlmakes it possible
to speed up the measurement while maintaining the same
sensitivity of standard control, e.g., when measuring target
signals with inherently short coherence times or in the
presence of fast experimental drifts that limit the available
coherent single-shot measurement time.

C. Optimized sensing of trains of magnetic impulses

We have applied optimal control to the different scenar-
ios where the target magnetic field is a train of impulses.
This is, in general, the case of the temporal shape of electric
and magnetic fields associated with cardiac, neural, and

nervous activities of human and animal organs [34–37]. For
this kind of application, the NV sensors may offer the
remarkable advantages of subcellular spatial resolution, in
addition to high sensitivity and biocompatibility [74].
As illustrative models for these biological applications,

we consider a train of Gaussian-shaped impulses. The
target field is thus of the general form, shown in Fig. 4(a),

bðtÞ ¼ b
Xmr

i¼0

e−½ðt−iΔtÞ2=2σ2�; ð9Þ

where 1=Δt is the repetition rate and mr is the number of
repetitions, with mrΔt ≫ T. In this case, standard dynami-
cal decoupling may be underperforming since the target
signal bðtÞ is positive definite in the whole temporal
domain; thus, the product ynðtÞbðtÞ may be alternately
positive and negative, reducing the accumulation of a
useful phase [see Eq. (2)]. In other words, each time a π
pulse reverses the spin dynamics, it can partially cancel not
only the effect of unwanted noise but also the phase
associated with the field to be measured.
Figures 4(b)–4(i) compare the results of CP control

(green-colored curves) and optimal control (in blue), when
varying the width σ of the target Gaussian pulse train and its
repetition rate 1=Δt [59]. In this case as well, we evaluate
the effect of control sequences made of n ¼ 50 π pulses. In
the optimization, all the time intervals between the control
pulses, symmetrized around the π-pulse positions, are free
parameters. The left panels represent the modulus of the
phase accumulated by the spin qubit sensor per unit of the
target magnetic field amplitude jϕnj, whereas the right
panels represent the inverse of sensitivity 1=η, as a function
of the sensing time T.
Optimal control outperforms CP in accumulating a

useful phase due to bðtÞ over a large sensing-time range.
Both CP and optimal control lead to their largest phase
accumulation when T ≃ nΔt=2, where they give similar
results in ϕn. This condition corresponds to having couples
of π pulses located in each “empty” time window between
two Gaussian pulses of the target field, albeit optimal
control corrects, in a nontrivial way, the distribution of
π-pulse positions to minimize η, as represented in Fig. 4(a)
(CP, green vertical bars; optimal control, blue vertical bars).
Thus, the π pulses partially reverse the spin qubit dynamics
due to undesired noise but do not cancel the phase due to
the target field bðtÞ.
We note that, even when the phases accumulated with CP

and with optimal control are comparable, optimal control
compensates better than CP for decoherence, leading to
better overall sensitivity. While here we did not explore this
result further, it seems to indicate that numerically opti-
mized sequences might also be useful for other quantum
information tasks, such as building a robust memory.
Figures 4(e), 4(g), and 4(i) show that optimal control of
the spin qubit improves its sensitivity to Gaussian
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multipulse signals up to a factor of 2, enabling the
measurement of multipulse magnetic fields down to
3 nT. As shown in Fig. 4(c), the measurement of the
experimental observable E ¼ C=η confirms the theoretical
prediction of sensitivity both for the CP control (yellow
dots) and for optimal control (blue diamonds).

IV. DISCUSSION

We have devised a versatile and robust method of
optimal control for quantum metrology with one qubit,
and we have applied this optimal control method to the
measurement of weak time-varying magnetic fields with a
NV spin sensor.
The key insight of our optimal control strategy is the

introduction of an unconventional optimization metric,
the qubit sensor’s sensitivity. The minimization of sensi-
tivity is made by searching the optimal control field
that realizes the optimal compromise between useful

accumulation of the spin phase due to the external field
to be measured and noise refocusing. The developed
optimization algorithm offers the advantage of fast con-
vergence and simplicity. We have further investigated the
robustness of this method for different kinds of real target
fields. Optimal control outperforms standard dynamical
decoupling in different scenarios, ranging from multi-
component ac target fields in a wide frequency range of
the radio-frequency (rf) domain, to trains of impulses,
which are illustrative examples of the typical shape
of the electromagnetic field of interest in biology and
physiology.
In the cases investigated, optimal control enables larger

phase accumulation over wide sensing-time windows, as
well as better cancellation of the effect of external noise on
the spin dynamics. Sensitivity of the qubit sensor under
optimized control shows an improvement by up to a factor
of 2, enabling the measurement of a pulsed magnetic field
down to amplitudes of 2 nT. The comparison of 1=η with

FIG. 4. Optimal sensing of Gaussian impulses. (a) Upper panel: Target signal made of a train of Gaussian impulses of width σ and
repetition rate 1=Δt. Bottom panel: Position of the first 10 pulses of a CP-50, with total sensing time T ¼ 280 μs optimized to sense a train
of Gaussian impulses with σ ¼ 2 μs,Δt ¼ 11.2 μs (in green), and optimal position of the first 10 pulses of a control sequence of 50 pulses
(in blue), optimized to sense the same target field (50 optimization parameters). (b)–(i)Modulus of the phase accumulated by the spin qubit
sensor in the presence of the target field (left panels), and the inverse of sensitivity 1=η (right panels), as a function of the sensing time T,
under CP-50 control (green solid curves) and under optimized control (blue lines with squares) with bounds τ ∈ ð0.6–10Þ μs (see
Appendix A 3). (c) Measurement of the experimental observable E as resulting from CP experiments (yellow dots) and from optimized
control (blue diamonds), scaling as indicated on the right-hand side, vertical axis. The target field parameters of panels (b)–(i) are as
follows: (b,c) σ ¼ 1.0 μs, Δt ¼ 10 μs; (d,e) σ ¼ 0.5 μs, Δt ¼ 11.2 μs; (f,g) σ ¼ 1.0 μs, Δt ¼ 11.2 μs; (h,i) σ ¼ 2.0 μs, Δt ¼ 11.2 μs.
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the experimental observable E demonstrates the reliability
of this optimal control method applied to the NV spin
sensor.
Beyond the results obtained in exemplary situations, our

novel method is one of the first extensions of optimal
control methods to quantum sensing. This application
raises novel challenges and opportunities, in particular,
related to the need for new metrics for optimization, as well
as the challenge to include nonunitary evolution in the
numerical optimization. We underline that our optimization
method can be extended to a larger multidimensional space
of parameters; for instance, one can optimize the number of
π pulses that flip the spin qubit during the sensing time,
according to the target signal to be measured. Moreover,
while we always considered control sequences given by a
series of π pulses, our scheme can also be generalized to
other control strategies of the NV spin qubit.
Our strategy can be useful for metrology in the face of

more and more demanding requirements for the NV spin
qubit to sense weak time-varying electric and magnetic
fields in noisy environments, with the sensing task aimed at
measuring their amplitude, e.g., for detecting the number of
spins in small electronic or nuclear ensembles [75–77],
revealing excitations in nanostructured antiferromagnetic
or multiferroic materials [78], or measuring biological
activity at the nanoscale [37]. Adaptive strategies could
also be used to extend this scheme to fields with an
unknown temporal profile. Moreover, the method can also
be applied to other physical platforms, such as ultracold
atoms or trapped ions. Furthermore, the demonstrated
enhanced protection of the spin qubit against noise-induced
decoherence also makes optimal control a strategic tool for
building memories in solid-state systems.
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APPENDIX: METHODS

1. Experimental setup

The host diamond crystal used in this study is a
monocrystalline electronic-grade sample (Element Six),
grown via chemical vapor deposition, with a natural
1.1% abundance of 13C impurities and 14N concentration
≪5 ppb. All of the experiments have been performed on a
single, negatively charged NV center, located at about
13.5 μm below the diamond surface.
A permanent NdFeB magnet produces an external static

magnetic field, B ¼ 39.4 mT, aligned along the symmetry
axis of the NV center (ẑ axis). The field lifts the degeneracy
of the ms ¼ þ1 and ms ¼ −1 energy levels.

We exploit a home-built confocal microscope to focus a
532-nm laser beam on the defect and to collect the emitted
fluorescence [39]. The laser excitation initializes theNV spin
in the ms ¼ 0 state. We perform the spin-state readout after
manipulation by measuring the fluorescence photon count
rate (about 5 × 104 cps, with contrast of about 30%) with a
single photon detector. The measured fluorescence is then
normalized to the difference between the fluorescence
intensities of the pure states ms ¼ 0 and ms ¼ −1 to obtain
the signal s, that is, the probability of the electron spin state to
be in the state ms ¼ −1. Each data point is averaged over
N ¼ 2 × 105 repetitions to increase the signal-to-noise ratio.
Control of theNVspin dynamics is obtained by irradiating

the defect with microwave pulses. We routinely use mw π
pulses that repeatedly flip the spin, in order to periodically
reverse its temporal evolution and refocus the noise effect.
Themwpulse trains are applied through a 60-μm thin copper
wire that works as an antenna. We exploit the same wire to
deliver time-varyingmagnetic fields in the rf range generated
by an arbitrary waveform generator. These rf signals are the
target magnetic fields to be measured by the NV. Using two
different terminals of the wire, we can simultaneously apply
both mw and rf fields.

2. Measuring the sensor noise spectrum

Our optimal control strategy depends on knowledge of
the coherence function χnðTÞ. As shown in Eq. (4), χnðTÞ
depends on both the noise spectrum and the frequency filter
Yn;TðωÞ given by the specific sensing sequence. In order to
compute the sensitivity η [Eq. (8)], the optimization
algorithm calculates the value of χnðTÞ for different trial
sequences; thus, it needs the noise spectral density SðωÞ as
an input. Various methods to measure the noise spectrum
have been suggested in the literature [48,53,79–83]. Here,
we follow the procedure described in Ref. [79].
The filter functionYn;TðωÞ ¼ jynðω; TÞj2, where ynðω; TÞ

represents the Fourier transform of the modulation function
ynðtÞ, has a simple form for periodic sequences. In the limit of
large pulse numbers, it can be approximated by a delta
function at the angular frequency π=τ, where τ is the
pulse spacing. Then, the coherence signal decays as sðtÞ∼
e−t=T

CP
2
ðτÞ, where TCP

2 ðτÞ is a coherence time directly related
to the noise spectral density via [79]

1

TCP
2 ðτÞ ≃

4

π2
Sðπ=τÞ: ðA1Þ

For each value of τ (which sets the noise frequency that we
are considering), we measured the signal decay as a function
of the number of pulses, obtaining TCP

2 ðτÞ. By varying the
time τ between mw π pulses, we can extract the main
frequency components of the noise spectral density using
Eq. (A1). The spectrum was finally obtained by fitting the
raw data with a sum of Gaussian functions.
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The experimental spectrum SðωÞ obtained for sequences
with different numbers of pulses showed some variation.
Thus, we further refine SðωÞ by fitting the signal sðTÞ
measured after a CP decoupling sequence as in Ref. [46]
(see, e.g., Fig. 5). This procedure is aimed at correcting
SðωÞ for sequence-dependent noise and control imperfec-
tion, e.g., due to the finite π-pulse duration [84], which are
not taken into account in our model. We finally find a noise
spectrum that, for a fixed number of pulses n, is completely
independent of the timing at which each π pulse occurs;
thus, it can be used for sequences that are very different
from CP in the optimization procedure.
The experimental signal sðTÞ exhibits periodic collapses

due to the nuclear spin bath, with additional dips below 0.5
(see Fig. 5) that are a signature of a quantum environment,
more precisely, of a hyperfine interaction between the NV
electronic spin and isolated nearby nuclear spins [65,85].
As the latter interactions give rise to unitary evolution of the
NV, we exclude them from our noise model. This allows us
to use Eq. (4), which cannot take them into account but
provides a speedup of the numerical optimization. We
emphasize that good agreement between predicted and
measured sensitivity (also for 150 μs < T < 200 μs,
where we see a population of less than 0.5; see Fig. 3
and Ref. [59]) is proof of the robustness of the model to the
effects of weak couplings between NV and isolated spins,
as well as to imperfections in the empirical function χnðTÞ.
Including pure quantum noise effects would be an inter-
esting technical extension of the present method.

3. Optimization algorithm

The core of our optimal control technique for sensing is
an optimization algorithm that minimizes the sensitivity as
a function of the parameters of the control function, e.g.,

total sensing time, phase of the ac field, and time intervals
between π pulses.
We use a MATLAB routine based on the simplex mini-

mization algorithm to achieve global optimization of the
figure-of-merit, the sensitivity η. The twomain ingredients of
this quantity are the electron spin phase φnðTÞ and the
coherence function χnðTÞ. We consider pulsed control
sequences described by the π-pulse times ftjg. For any
time-varying external magnetic field bðtÞ ¼ bfðtÞ to be
measured, we can define FðtÞ ¼ ð1=tÞ R t

0 fðt0Þdt0, the inte-
gral of the magnetic field (known) temporal profile fðtÞ. The
phase φn ¼ bϕn acquired by the NV qubit can then be
calculated for any given control sequence as

ϕn ¼ ð−1Þnþ1FðTÞT − 2
Xnþ1

j¼0

ð−1ÞjFðtjÞtj: ðA2Þ

The coherence χnðTÞ is instead obtained from the exper-
imentally measured spectrum via Eq. (4). From χnðTÞ and
ϕnðTÞ, we can calculate η for each trial sequence according
to Eq. (8).
In order to verify the global convergence of the opti-

mization algorithm, we tested different initial guesses and
found the same optimized parameters for a given ac target
field. In most cases, we used a constrained search, by
setting bounds for each parameter or constraining the
overall result, for instance, to keep the total time T constant.
We note that our procedure is quite general and could be

applied to a broad range of sensing scenarios. To demon-
strate its reliability, in this work we considered a few
exemplary target fields and related control models, varying,
e.g., the number of parameters tackled by the optimization
algorithm. We first considered ac fields with single or
multiple frequencies, and we started optimizing η as a
function of total time T and the ac field phase α, while
fixing the number of pulses (n ¼ 8) and setting τ ¼ T=n for
all time intervals between the π pulses. We then proceeded
to allow more flexibility in the optimization by varying the
duration of each time interval between π pulses, starting
from an initial guess given by a periodic (CP) sequence
with n ¼ 50. We optimized the time intervals by keeping
the time symmetric around each pulse, as shown in Fig. 6.
Including also the optimization of the phase of the

FIG. 5. NV spin coherence under the CP sequence. Measured
signal sðTÞ (gray dots) after a CP decoupling sequence with
n ¼ 50, as a function of time T ¼ nτ. Here, the sensor is not
irradiated with any external target field bðtÞ to be measured. The
solid red line is a fit of the signal based on a classical model of the
bath (see text).

FIG. 6. Time interval τj engineering. Optimization scheme
of the n time intervals τj of a measurement sequence with n
pulses. Here, τj ¼ ðtj þ tjþ1Þ=2, where tj are the nþ 1 time
intervals between the π pulses, with j ¼ 0;…; n, and
t0 ¼ tnþ1 ¼ 0.
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multitone field, or equivalently, the initial time of the
measurement sequence, this optimization manages 51 free
parameters. We performed different optimization runs as a
function of the total measurement time, keeping T constant
in each of them. The only additional constraint that
we imposed was to force the times τj between different
π pulses to be longer than about 10 times the π pulse
duration, which in our case means τj > 600 ns. This
restriction was to ensure that no mw pulses would be very
close to each other, as that would have resulted in the π
pulses canceling each other, giving an effective sequence
with a different n.

4. Comparison between optimal control
theory and experiment

To experimentally validate the optimal control, we
compare the optimized sensitivity η with the corresponding
measured quantity. However, since we do not have
an independent measure of the local amplitude of the
magnetic field at the position of the NV center, in the
experiment we measure E ¼ maxf∂bsg=

ffiffiffiffi
T

p ¼ C=η, where
s is the normalized signal and C represents a conversion
factor between the generated rf field amplitude and the
unknown magnetic field at the defect. As C does not
depend on the control sequence, it can be evaluated once
and then used for all the control scenarios considered in
the paper.
In particular, we estimate C from the experimental

results for CP sequences. We experimentally evaluate
EðTÞ as a function of the sequence total time T and fit
the curve to extract the maximum ECPM

. Similarly, we
evaluate the theoretical value of η and obtain its minimum
ηCPM

. We then define C as the productC ¼ ECPM
ηCPM

. This
procedure allows us not only to define C but also to
estimate its uncertainty ΔC, from the fit error. We can then
compare the (inverse) experimental sensitivity Ei and the
theoretical sensitivity ηi for each control sequence by
rescaling the theoretical sensitivity by C.
Finally, we investigate the effect of the finite mw

pulse duration. Considering the case of a Gaussian-
shaped train of magnetic impulses under a CP control
sequence, we calculate phase accumulation and sensitivity
when excluding from the spin evolution the time intervals
where the π pulses occurs, finding the same theoretical
values of η, for all the considered total sensing times T.
We underline that this procedure does not correct the model
for the contribution to χnðTÞ given by mw pulse imperfec-
tions or finite duration [84], but it confirms that the pulses can
be considered instantaneous in our picture for the accumu-
lated spin phase φnðTÞ; we verified that this approximation
is valid up to πmw ≤ 0.5 μs for n ¼ 50 andT ∼ 250 μs and is
very effective for pulses duration πmw ¼ 56 ns and
T ≥ 50 μs.
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