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Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science
and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions
have to be made in the thermodynamic limit, substantially increasing the computational cost of many-
electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for
solids and surfaces using the “gold standard” coupled cluster ansatz of quantum chemistry with
unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals,
adsorption energies of water on h-BN, as well as the cohesive energy of the Ne solid, demonstrating the
increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
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I. INTRODUCTION

Modern ab initio methods to solve the electronic
Schrödinger equation for real solids and molecules such
as density functional theory or wave-function-based meth-
ods are becoming increasingly accurate and efficient [1–4].
However, in contrast to molecular systems, properties of
solids and surfaces need to be calculated in the thermo-
dynamic limit. The convergence towards the thermody-
namic limit with respect to the number of particles is very
slow, often exceeding the computational resources of even
modern supercomputers. This is particularly the case for
many-electron wave-function-based theories that allow for
a systematic improvability upon the description of the
electronic correlation energy. Nonetheless, these methods
are becoming increasingly popular in theoretical physics as
well as in chemistry to treat electronic correlation in

periodic condensed-matter systems with high accuracy
[3–13].
Electronic correlation is, for the most part, a short-ranged

phenomenon. The proper description of the wave-function
shape at short interelectronic distances allows for capturing
the largest fraction of the correlation energy in solids
[2,14]. Significant progress has been achieved for many-
electron wave-function-based theories by exploiting the
locality of electronic correlation in large molecules and
solids. The development of so-called local correlation
methods and embedding theories has improved their
computational efficiency considerably [15–24]. However,
theories that approximate long-range correlation effects
such as van der Waals interactions must carefully be
checked for convergence with respect to the employed
cutoff parameters to allow for accurate and predictive
ab initio studies of real materials. This is of particular
importance in condensed-matter systems where the accu-
mulation of weak van der Waals interactions can become a
non-negligible contribution to the property of interest, as,
for example, in the case of the energy difference between
carbon diamond and graphite or the adsorption of a water
molecule on an h-BN sheet. Pairwise additive interatomic
van der Waals interactions cause a 1=N convergence of the
electronic correlation energy per unit cell in insulating
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three-dimensional systems, where N is the number of
explicitly correlated atoms. However, in general, the exact
form of these scaling laws depends on the dimensionality
and electronic response properties of the system; e.g., the
adsorption energy of molecules on two-dimensional insu-
lating surfaces exhibits a 1=N2 convergence. Moreover, we
note that collective phenomena such as plasmons in
metallic systems can also modify the observed scaling
laws [25]. For these reasons, robust and reliable approx-
imations to long-range correlation effects are nontrivial.
Many-body methods such as coupled cluster or con-

figuration interaction theory can describe both long- and
short-ranged electronic correlation effects with high accu-
racy. However, the scaling of the computational complexity
of these theories with respect to system size is either of a
high-order polynomial or an even exponential form.
Therefore, it is difficult to treat long-range correlation
effects in a computationally efficient manner using these
theories. This has led to the development of various
techniques that partition the correlation problem according
to a predefined criterion such as the distance between
electron pairs or fragment size. Local theories employ
correlation energy expressions that depend on localized
electron pairs, making it possible to treat long-distance
pairs using computationally more efficient yet less accurate
theories. Embedding theories typically aim at combining
the computational efficiency of mean field theories for the
long range, with the high accuracy of wave-function-based
methods applied to small fragments only. In this work, we
introduce an efficient method that seamlessly integrates
long-range correlation effects for solids without any pre-
defined criteria such as cutoff distance or fragment size.
Our approach is inspired by structure factor interpolation
techniques as performed in the field of quantum
Monte Carlo theory [26]. However, in coupled cluster
theory, the structure factor, being the functional derivative
of the total energy with respect to the Coulomb kernel, is
not directly available. Instead, we seek to interpolate the
partial functional derivative of the coupled cluster corre-
lation energy expression with respect to the Coulomb
kernel. The interpolation scheme is chosen such that it is
directly transferable to systems with arbitrary dimensions
including solids and surfaces. Because of the adverse
scaling of the computational complexity in coupled cluster
theories, the proposed method allows for reducing the
computational cost by several orders of magnitude without
compromising accuracy compared to previous studies [4].

II. THEORY

The electronic correlation energy can be calculated in a
plane-wave basis set using the following expression [27]:

Ec ¼ hΨ0jH − E0jΨi ¼
X

G

0 vðGÞSðGÞ: ð1Þ

In the above equation, G corresponds to a plane-wave
vector that is defined as G ¼ gþ Δk, where g is a
reciprocal lattice vector and Δk is the difference between
any two Bloch wave vectors that are conventionally chosen
to sample the first Brillouin zone. Note that vðGÞ is the
Coulomb kernel in reciprocal space that diverges at G ¼ 0,
making it numerically necessary to disregard this contri-
bution to the sum, as indicated by the apostrophe. Thus,
SðGÞ is the partial functional derivative of the correlation
energy with respect to vðGÞ, and we will return to its
explicit definition later, as well as in Ref. [28] (see also
Ref. [27]).
The thermodynamic limit is approached as N → ∞,

where N is the number of particles in the simulation cell
while the density is kept constant. Finite-size errors are
defined as the difference between the thermodynamic limit
and the finite simulation cell results. For electronic corre-
lation energies obtained using many-electron perturbation
theories, these errors typically decay as 1=N as a conse-
quence of long-range interatomic van der Waals forces. In
the thermodynamic limit,

P
G of Eq. (1) is replaced by

R
G.

Therefore, finite-size errors in the correlation energy of
periodic systems originate from two sources [29]: (i) quad-
rature errors in the summation over G, and (ii) the slow
convergence of SðGÞ with respect to the employed super-
cell size or k-point mesh. In the following, we discuss how
to reduce both errors substantially.
We first seek to discuss finite-size errors originating from

the quadrature in the summation over G. These contribu-
tions can be partitioned into the G ¼ 0 volume element
contribution and the remaining terms. We note that, as a
result of the Coulomb divergence, the integrable contribu-
tion of Sð0Þvð0Þ to the correlation energy is usually
neglected in computer implementations of Eq. (1) [11,27].
However, this is the dominant contribution to the finite-size
error of the correlation energy of insulators. A Taylor
expansion of SðGÞ around G ¼ 0 shows that SðGÞ exhibits
a quadratic behavior close to zero, explaining the 1=N
decay of the finite-size error for three-dimensional insula-
tors [27]. An estimate of Sð0Þvð0Þ can be obtained by
spherically averaging SðGÞ and interpolating around
G ¼ 0. Subsequently, the interpolated function is multi-
plied by the analytic Coulomb kernel and integrated over a
sphere around G ¼ 0, yielding an estimate of Sð0Þvð0Þ
[27]. However, this approach is not well defined for
anisotropic systems because it requires a spherical cutoff
parameter. In this work, we propose to interpolate SðGÞ
using a tricubic interpolation without spherical averaging.
Once obtained, the interpolation of SðGÞ and the analytic
expression for the Coulomb kernel allows for integrating
over G on a very fine grid, simulating the thermodynamic
limit integration. This approach accounts for the Sð0Þvð0Þ
contribution to the correlation energy and reduces quad-
rature errors originating from too coarse a Brillouin zone
sampling. We refer to coupled cluster correlation energies
obtained using this interpolation strategy as CC-FS.
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To illustrate the importance of the interpolation method,
we consider the following example. Figure 1 shows slices
and an isosurface of the interpolated SðGÞ for carbon
graphite in the ABC stacking. Black dots indicate sampling
points of SðGÞ obtained using coupled cluster singles and
doubles theory and a 4 × 4 × 4 k-point mesh. This figure
illustrates that SðGÞ is very anisotropic around G ¼ 0.
Furthermore, we show that even a 4 × 4 × 4 k-point mesh
sampling, indicated by the black dots, corresponds to a
relatively coarse grid, causing non-negligible quadrature
errors. We return to the discussion of the results for the
correlation energy later.
We now turn to the discussion of finite-size errors in

semiconductors and metals. We stress that small gap
systems suffer from a relatively slow convergence of
SðGÞ with respect to the studied system size. This behavior
can be understood by considering the definition of SðGÞ in
second-order Møller-Plesset perturbation (MP2) theory,

SðGÞ ¼
X

ki;kj;ka

X

ni;nj;na;nb

Γab
ij ðGÞ

ϵi þ ϵj − ϵa − ϵb
; ð2Þ

where ϵi correspond to one-electron energies usually
obtained from Hartree-Fock theory. The indices i, j and
a, b label occupied and virtual orbitals, respectively, and
are understood to be a shorthand for the Bloch wave vector
ki and a band index ni. Because of momentum conserva-
tion, kb can be calculated from the other Bloch wave
vectors in the above equation. Note that Γab

ij ðGÞ is defined
in Ref. [28]. The summation over Bloch vectors in Eq. (2)

introduces quadrature errors that cause the slow conver-
gence of SðGÞ towards the thermodynamic limit. In the
case of semiconductors or metals, these errors can become
significant because 1=ðϵi þ ϵj − ϵa − ϵbÞ varies strongly
depending on ki, kj, ka, and kb. In particular, materials
with a Dirac cone at the Fermi surface such as graphene
exhibit a large variation of the denominator between zero
and several eV depending on k. As a result, Eq. (2) needs to
be calculated using a finer k-point mesh to reduce quad-
rature errors. In this work, we show that the above
quadrature errors can be substantially reduced by calculat-
ing and averaging SðGÞ for a set of shifted k-point meshes.
Note that the vectors G are not affected by shifting the
employed k-mesh because G depends only on the differ-
ence between any two Bloch wave vectors Δk. We replace
SðGÞ in Eq. (1) with an average obtained for Nt different k
meshes shifted from Γ by ti such that

S̄ðGÞ ¼ 1

Nt

XNt

i¼1

StiðGÞ: ð3Þ

The shifts ti are chosen such that they sample the first
Brillouin zone uniformly. Coupled cluster theory calcula-
tions for different shifts can be performed independently
from each other, and the computational complexity scales
only linearly with respect to Nt. Coupled cluster theory
energies that have been obtained using this twist-averaging
technique are referred to as CC-TA or CC-TA-FS if the
interpolation method has been employed as well.
We note that quantum Monte Carlo (QMC) methods

employ finite-size corrections that share similarities with
the methods outlined above [29–31]. However, QMC
methods such as diffusion Monte Carlo are real-space
theories that provide estimates of total energies rather than
partitioning the energy into a Hartree-Fock and an elec-
tronic correlation contribution. An advantage of the parti-
tioning ansatz is that Hartree-Fock energy contributions can
be converged to the thermodynamic limit independently
from the correlation energy at little extra computational
cost. Consequently, finite-size corrections are only required
for the comparatively smaller correlation energy contribu-
tions. In passing, we note that auxiliary-field quantum
Monte Carlo theory employs finite-size corrections that are
based on parametrized density functionals obtained from
finite, uniform, electron gas simulation cells [32]. Such
corrections work for solids but have not yet been applied to
surfaces or molecular crystals, where they are expected to
be less accurate.

III. RESULTS

We now turn to the discussion of the results obtained
using the methods outlined above. The present computa-
tions were performed using the VASP code [33,34] and the
projector augmented-wave method [35]. The coupled

FIG. 1. Partial derivative of correlation energy with respect to
the Coulomb kernel for graphite. Slices and isosurface of SðGÞ
for carbon graphite in the ABC stacking. Darker colors indicate
more negative values. White corresponds to zero. The blue
isosurface is a hexagonally shaped torus, and it reflects the
anisotropic shape for SðGÞ. Black dots represent the sampling
points using a 4 × 4 × 4 k-point mesh.
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cluster theory calculations were partly performed using the
newly developed cc4s code [36] interfaced with VASP and
employing the automated tensor contraction engine CTF
[37]. More technical details are outlined in Ref. [28].
As a first application, we investigate the carbon diamond

and graphite crystals. Before discussing the thermody-
namic limit convergence, we seek to address the conver-
gence of the calculated correlation energy differences with
respect to the employed orbital basis. We employ MP2
natural orbitals that are obtained using a procedure outlined
in Ref. [38]. Figure 2 shows the convergence of coupled
cluster singles and doubles (CCSD) and perturbative triples
(T) correlation energy differences with respect to the
number of bands using a 2 × 2 × 2 k-point mesh, respec-
tively. We find that calculations using 16 orbitals per carbon
atom yield an energy difference that agrees to within
4 meV=atom compared to results obtained using 40 natural
orbitals per atom. The (T) correction to CCSD converges
even faster with respect to the number of orbitals and is
fortuitously close to zero in the case of the 2 × 2 × 2 k-
point mesh. We stress that natural orbitals allow for a
significantly more systematic truncatability and improved
basis-set incompleteness error cancellation between differ-
ent systems compared to virtual Hartree-Fock or density
functional theory orbitals. Achieving the same level of
accuracy requires several hundred virtual Hartree-Fock
orbitals per atom. Convergence with respect to other
computational parameters has been checked and is dis-
cussed in Ref. [28].
We now turn to the discussion of finite-size errors in total

correlation energies. The top and middle panels in Fig. 3
show CCSD correlation energies retrieved as a function of
the number of k points of graphite and diamond, respec-
tively. We note that twist averaging (TA) is necessary for
CCSD correlation energies to achieve a smooth 1=N
convergence to the thermodynamic limit, in particular,
for graphite. Accounting for quadrature errors by means
of the tricubic interpolation method (CCSD-TA-FS) yields

rapidly convergent correlation energies for both carbon
diamond and graphite. CCSD-TA-FS correlation energies
obtained using a 2 × 2 × 2 k mesh only deviate from
extrapolated CCSD thermodynamic limit energies by
approximately 60 meV=atom. We note that correlation
energies obtained using the same k mesh and CCSD-TA
theory exhibit finite-size errors on the scale of
200–300 meV=atom. The CCSD(T) correlation energies
are obtained using twist averaging for the (T) contribution
and adding the correction to the CCSD-TA-FS result
obtained using a 4 × 4 × 4 k-point mesh. This allows for
investigating the finite-size errors of the (T) correction
independently from finite-size errors of CCSD theory. We
find that (T) converges rapidly with respect to the employed
k-mesh size, reflecting its short-ranged nature.
The bottom panel in Fig. 3 shows the differences of the

total energies of both carbon allotropes, including zero-
point corrections retrieved as a function of the employed k-
point mesh. Results obtained using CCSD theory without
finite-size corrections are depicted by the blue line and
oscillate strongly with increasing k-point mesh density. By
using too-coarse k-point meshes, we can predict graphite to
be more stable than diamond, whereas denser k-point
meshes predict diamond to be the more stable allotrope.
Employing the averaging over different shifts yields
CCSD-TA results that converge significantly smoother
with increasing k-point mesh density as shown by the

FIG. 2. Convergence of the energy difference between the
carbon diamond and graphite using CCSD and 2 atomic unit cells
with respect to the number of natural orbitals used. The (T)
correlation energy contribution has been added to the CCSD
energy using 16 natural orbitals per atom.

FIG. 3. Energy difference between carbon diamond and graph-
ite phases. The dotted line represents the linear fit of the
uncorrected values with shifts. (T) corrections (black) are on
top of CCSD-TA-FS energy obtained using a 4 × 4 × 4 k-point
mesh (red). Zero-point energies are included, and they stabilize
graphite compared to diamond by 9 meV=atom.
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green line. Furthermore, performing the newly proposed
tricubic interpolation and integration in addition to the twist
averaging referred to as CCSD-TA-FS yields rapidly
convergent energy differences shown by the red line. We
note that CCSD-TA-FS using a 2 × 2 × 2 k-point mesh is as
close to the thermodynamic limit as CCSD-TA using a
4 × 4 × 4 k-point mesh. Since the computational complex-
ity scales at least as OðN4

kÞ with respect to the number of k
points, this corresponds to a reduction in the computational
cost by 3 orders of magnitude. From these calculations, we
conclude that CCSD theory predicts diamond to be more
stable than graphite by 22 meV=atom, including zero-point
energies. We have also performed perturbative triples
calculations and added the corresponding correlation
energy correction to our CCSD findings. CCSD(T) theory
predicts graphite to be slightly less stable than diamond by
7 meV=atom, including zero-point corrections. We note
that our CCSD(T) results agree with experimental findings
to within the observed precision of CCSD(T) for similar
applications, which is generally better than 1 kcal=mol
(43 meV=atom). The difference in the experimental Gibbs
free energy of carbon diamond and graphite at room
temperature has been reported to be 25 meV=atom [39],
predicting graphite to be more stable than diamond.
Having demonstrated the ability of the proposed method

to correct for finite-size errors on the scale of about
100 meV=atom, we now study the thermodynamic limit
of the cohesive energy of the weakly bound neon solid. In
this case, we need to correct for finite-size errors on the
scale of a few meV/atom. The dominant contribution to the
attractive long-range interatomic interaction of neon atoms
originates from van der Waals forces. Table I summarizes
MP2, CCSD, and CCSD(T) cohesive energies obtained
with and without the proposed finite-size correction. The
correction yields MP2 and CCSD cohesive energies using
3 × 3 × 3 k meshes that deviate from the thermodynamic
limit results by approximately 1–2 meV=atom, whereas the
uncorrected estimates deviate by 2–4 meV=atom. Although
the finite-size errors are small on an absolute scale, we
stress that the corresponding relative finite-size errors of the
cohesive energy are non-negligible. Our best estimates for
the MP2, CCSD, and CCSD(T) cohesive energies using
finite-size corrections and a 4 × 4 × 4 k mesh agree with

results obtained using the incremental method to within
3 meV=atom [6,10]. Furthermore, CCSD(T) predicts a
cohesive energy of 30 meV=atom, which is in good
agreement with experimental estimates of 27 meV=atom
corrected for zero-point fluctuations [6].
As a final demonstration of the applicability of the

proposed method to reach the thermodynamic limit, we
study the adsorption energy of a single water molecule on
an h-BN sheet. The same system has recently been studied
using diffusion Monte Carlo (DMC), the random-phase
approximation (RPA), and dispersion functionals [40,41],
as well as molecular MP2 [42] and periodic coupled cluster
theory [43], demonstrating the need for reliable methods
that can account for long-range van der Waals interactions
and also to provide benchmark data. Furthermore, the
recent work of Al-Hamdani et al. [40] illustrates the
importance of long-range correlation effects that account
for approximately 25% of the reference adsorption energy
computed in a (4 × 4) unit cell of h-BN. Figure 4 shows
calculated adsorption energies at the level of RPA
plus second-order screened exchange, MP2, CCSD, and
CCSD(T) theories retrieved as a function of the number of
atoms in the h-BN sheet. Convergence with respect to other
computational parameters has been checked and is dis-
cussed in Ref. [28]. Using MP2 theory, it is possible to
study very large systems [40], and we find that the MP2
adsorption energy converges slowly to a thermodynamic
limit value of 119 meV. We note that finite-size errors
for adsorption energies on two-dimensional insulators are
expected to decay as 1=N2, which is the predicted scaling
from pairwise additive van der Waals interactions [40].
Applying the proposed finite-size correction to MP2 theory
for the (4 × 4) unit cell h-BN sheet with 32 atoms yields an

TABLE I. Cohesive energies of solid neon obtained using MP2,
CCSD, and CCSD(T) theory. The summarized results have been
extrapolated to the complete basis set limit using pseudized aug-
cc-pV(D,T)Z basis sets and corrected for basis-set superposition
errors using counterpoise corrections. All units are in meV=atom.

k mesh MP2 MP2-FS CCSD CCSD-FS CCSD(T)-FS

2 × 2 × 2 −5 25 4 36 47
3 × 3 × 3 13 17 16 21 32
4 × 4 × 4 17 17 19 19 30
Ref. [10] 19 22 27

FIG. 4. Adsorption energy of a single water molecule on an
h-BN sheet. The energies are retrieved as a function of atoms in
the sheet using MP2, RPAþ SOSEX, CCSD, and CCSD(T)
theory. FS indicates that finite-size corrections are included. The
results have been obtained using pseudized aug-cc-pVTZ basis
sets and corrected for basis-set superposition errors using
counterpoise corrections.
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adsorption energy of 113 meV, in close agreement with the
thermodynamic limit result. We observe a similar speed-up
in convergence using RPAþ SOSEX-FS theory, illustrat-
ing the transferability of the proposed method. The water
adsorption on the 32-atom h-BN sheet can also be studied
using the more sophisticated CCSD theory [43]. CCSD
with and without finite-size corrections yields an adsorp-
tion energy of 83 meVand 68 meV, respectively. The finite-
size corrections of MP2 and CCSD theory agree to within a
few meV. However, we note that CCSD theory underbinds
the water molecule. We estimate the (T) contribution using
the 18-atom cell only and find that CCSD(T) theory yields
adsorption energy of 102 meV and 87 meV with and
without finite-size corrections, respectively. The DMC
adsorption energy was reported to be 84 meV without
finite-size corrections and agrees well with our CCSD(T)
results using the same 32-atom h-BN sheet, disregarding
finite-size corrections.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have introduced an efficient and
accurate thermodynamic limit correction for wave-
function-based theory calculations of solids and surfaces
that is free of adjustable parameters and easy to implement.
We have demonstrated that this correction allows for
reducing the computational cost by several orders of
magnitude without compromising accuracy. We have stud-
ied ground-state problems, where the convergence to the
thermodynamic limit is crucial and finite-size errors span a
range of 1–100 meV=atom. Despite the local character of
electronic correlation, we stress that a proper treatment of
long-range correlation effects is of paramount importance
for reliable and highly accurate many-electron theories in
condensed-matter systems. We have applied the proposed
finite-size correction in combination with the gold standard
of quantum chemistry CCSD(T) theory to calculate the
cohesive energy of the Ne solid, and the energy difference
between carbon diamond and graphite crystals, as well as
the adsorption of a water molecule on an h-BN sheet. In
general, our CCSD(T) results are in good agreement with
experimental findings and DMC results. This paves the way
for a routine use of highly accurate coupled cluster theories
in the field of surface science and solid-state physics. We
believe that the ability to predict accurate benchmark
results will help the entire electronic structure theory
community to improve further upon computationally effi-
cient ab initio theories and to help interpret experimental
findings more reliably. To expand the scope of the proposed
techniques even further, we will aim at combining them
with explicit correlation and low-rank factorization meth-
ods [43–45].
In future studies, we will extend the proposed finite-size

corrections to the study of excited states and metallic
systems. We note that excited states and spectral functions
can be calculated in the framework of equation-of-motion

coupled cluster theory for solids, yielding excited-state
structure factors that are expected to exhibit similar finite-
size errors [46]. In metallic systems, the structure factor is
still algebraic around G ¼ 0. We are therefore confident
that the proposed methods can also be transferred to the
study of such systems, and we expect that the outlined
twist-averaging methodology will be of significant impor-
tance when approaching the thermodynamic limit. We note,
however, that the perturbative triples (T) contribution
requires methodological improvements when applied to
metals.
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