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When a beam of light is laterally confined, its field distribution can exhibit points where the local
magnetic and electric field vectors spin in a plane containing the propagation direction of the
electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density.
Here, we experimentally investigate this transverse spin density of both magnetic and electric fields,
occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-
refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in
the visible spectral range. Because of the directional emission of dipole moments that spin around an axis
parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and
electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to
said interface. We exploit the achieved experimental results to emphasize the difference between magnetic
and electric transverse spin densities.
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I. INTRODUCTION

The transverse spin density (TSD) of light describes
field vectors, which spin transversely with respect to the
local propagation direction of the electromagnetic wave
[1–3]. In nature, such polarization states occur when
electromagnetic waves experience strong lateral confine-
ment since the appearance of transverse spin is intimately
linked to the presence of longitudinal field components
[1–3]. Typical optical systems exhibiting a TSD are wave-
guide modes [4–7], surface plasmon polaritons [8–10],
near fields of nanostructures [11], whispering gallery
modes [12], interfering plane waves [13], and tightly
focused beams [14–16].
In recent years, a wide variety of applications have led to

a continuously increasing interest in the TSD (see, for
instance, Refs. [1–3,7] and references therein), particularly
because of a related directional emission and coupling
effect [17]. The phenomenon, which is often referred to as
spin-momentum locking [18,19], can be used to implement
spin-dependent signal routing [17,20,21] and single-atom

optical devices such as isolators and circulators [22,23].
Thus, the TSD constitutes the foundation for novel quan-
tum information processing concepts at the nanoscale [5,7].
Further potential applications of the TSD can be found in
particle manipulation experiments in optical tweezers
[10,13,14] and sensing, for example, of magnetically
induced circular dichroism [24,25]. This interest in the
TSD also led to the development of highly sensitive
techniques, capable of measuring the TSD in propagating
and evanescent waves [15,26].
Although the experimental techniques introduced in

Refs. [15,26] are mainly concerned with the TSD of the
electric field, from a theoretical point of view, both
magnetic and electric components contribute equally to
the total spin density s [1–3]:

s ¼ Im½μ0H� ×Hþ ϵ0E� ×E�=4ω≡ sH þ sE; ð1Þ

where ω refers to the angular frequency of the time-
harmonic wave, H and E denote the magnetic and the
electric fields, and μ0 and ϵ0 represent the permeability and
the permittivity in vacuum. This equally weighted split into
sE and sH is often referred to as dual symmetry [27] or
electromagnetic democracy [28]. While in the highly
symmetric case of a single circularly polarized plane wave
the spin density is purely longitudinal and the magnetic and
electric components are equal, szH ¼ szE [1,2,28,29], in
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more general fields of light, this equivalence of sH and sE
does not hold.
Here, we explore, both theoretically and experimentally,

the fundamental difference between the TSD of the
magnetic and the electric field. At first, we theoretically
elaborate on the distribution and composition of the TSD in
the simplified exemplary scenario of a linearly polarized
Gaussian beam. Then, we experimentally investigate the
TSD of the magnetic and the electric field in tightly focused
beams of light. While for the electric TSD a suitable
measurement technique has been presented in Ref. [15], the
magnetic component of the TSD has, to the best of our
knowledge, not been experimentally studied so far. On
these grounds, we detail, for the first time, a versatile
experimental approach for reconstructing the TSD of the
magnetic field at the nanoscale, which, at the same time,
allows us to access the TSD of the electric field. Finally, we
apply the technique to three different tightly focused
polarization tailored beams of light and compare the
reconstructed components of the respective TSD.

II. MAGNETIC AND ELECTRIC
TRANSVERSE SPIN

We begin the discussion by exemplarily considering a
paraxial, linearly x-polarized, monochromatic Gaussian
beam of light, whose electric field distribution can be
approximated by [30]

Eðx; y; zÞ ≈ E0

z0ex
z0 þ {z

exp

�
{kz −

kr2

2z0 þ {2z

�
; ð2Þ

where z0 and E0 represent the Rayleigh range and ampli-
tude of the beam, with r ¼ ðx2 þ y2Þ1=2 as a radial
coordinate. Evidently, such a field distribution does not
fulfill the transverse constraint of Maxwell’s equations—
Gauss’s law in vacuum [31]—∇ ·E ¼ 0. However, it is
possible to revise Eq. (2) accordingly by introducing
a longitudinal field component [32,33]. In the focal
plane (z ¼ 0), a suitably adapted field distribution can
be written as [1,2]

Eðx; yÞ ≈ E0

�
ex þ

{xez
z0

�
exp

�
−k

r2

2z0

�
: ð3Þ

Following this line of arguments, we can derive a
similar expression for the focal distribution of the magnetic
field of the described Gaussian beam. By starting with a
y-polarized magnetic field—perpendicular to the x-polarized
electric field—and by applying Gauss’s law of the magnetic
field [31], ∇ ·H ¼ 0, we obtain [1]

Hðx; yÞ ≈H0

�
ey þ

{yez
z0

�
exp

�
−k

r2

2z0

�
; ð4Þ

with H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵ0=μ0

p
E0. It is important to note that Eqs. (3)

and (4) represent approximations and are only valid for
paraxial or weakly focused Gaussian beams of light.
However, the equations contain several important features,
which illustrate the central message of this paper: a nonzero
phase difference between longitudinal and transverse field
components, and differing spatial distributions of the mag-
netic and the electric TSD.
At first, we elaborate on the relative phases of the

individual field components. As indicated by the imaginary
units in Eqs. (3) and (4), the longitudinal field components
are �π=2 out of phase with respect to the transverse field
components, resulting in transversely spinning magnetic
and electric field vectors wherever the corresponding field
components Hy and Hz or Ex and Ez overlap [2]. For
further investigation of the resulting transverse spin, we
calculate the focal spin density distribution by inserting
Eqs. (3) and (4) in Eq. (1), which yields [1]

s ≈ ðϵ0E2
0xey − μ0H2

0yexÞ
exp ð−k r2

z0
Þ

2ωz0
: ð5Þ

As we can see, s is a purely transverse, azimuthally oriented
vector field, since the longitudinal component sz is zero.
For illustration, in Fig. 1(a), we depict the TSD, s⊥ ¼
s⊥H þ s⊥E ¼ ðsxH þ sxEÞex þ ðsyH þ syEÞey (see the yellow
arrowheads), on top of the Gaussian distribution of the
x component of the electric field intensity (jExj2), using
x and y coordinates normalized to the beam waist
w0 ¼ ð2z0=kÞ1=2. The amplitude of the total TSD depends
on the radial distance to the optical axis, but it is
independent of the azimuth within the beam. However,
despite the cylindrical symmetry of the total TSD, its type
(electric or magnetic) changes depending on the azimuth.
To emphasize the spatially dependent composition of the
TSD, we plot the individual contributions sxE, s

y
E, s

x
H, and

syH in Fig. 1(b). The TSD of the electric field exhibits a two-
lobe pattern along the x axis for syE (sxE ¼ 0), while the two
lobes of the TSD of the magnetic field are arranged along
the y axis for sxH (syH ¼ 0). Different color codes are used to
highlight the differences between magnetic and electric
TSDs. The two distributions of s⊥H and s⊥E are rotated by 90°
with respect to each other, which is a direct consequence of
the orthogonality of the magnetic and electric transverse
field components of the linearly polarized Gaussian beam
exemplarily studied here.
In conclusion, the results we derived from this simplified

model beam highlight the difference of the distributions of
s⊥H and s⊥E in spatially confined light [1]. This notion is
essential, for instance, in spin-momentum locking experi-
ments based on silicon nanophotonics [21,34], where both
electric and magnetic dipolar modes are supported [35–37].
The example also emphasizes the importance of distin-
guishing s⊥H and s⊥E experimentally [21]. While techniques
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for measuring s⊥E have been presented recently [15,26], in
the following we discuss a measurement concept for s⊥H,
allowing for a direct comparison between s⊥H and s⊥E in
complex and highly confined light fields.

III. EXPERIMENTAL CONCEPT

Our experimental approach for simultaneously measur-
ing s⊥H and s⊥E relies on a field probe that exhibits a
magnetic as well as an electric dipole resonance. In this
regard, suitable field probes, which support both types of
modes, are high-refractive-index nanoparticles [35,38,39].
Here, we utilize a silicon (Si) nanosphere with core radius
rSi ¼ 79 nm and an estimated silicon dioxide (SiO2) shell
of thickness δ ¼ 8 nm as a probe. The particle is sitting on
a glass substrate [see sketch in Fig. 2(a)] attached to a 3D-
piezo stage, enabling us to scan the field probe through the
focal plane of a tightly focused beam. A scanning electron
micrograph of the particle is shown in the inset. In order to
understand the actual scattering behavior of our probe, we
first analyze its scattering cross section [see Fig. 2(b)] using
Mie theory [40]. For the calculation, we assumed a particle
in free space, not considering the glass substrate. The black

line indicates the total scattering cross section of the
particle, with the red and blue lines representing the
contributions of the magnetic and electric dipolar modes,
respectively. Due to the spectral overlap between the
electric and magnetic resonances, a generic input field
excites a dipolar mode with simultaneously electric and
magnetic contributions in the shown spectral range
[35,38,41,42]. With the objective to induce electric and
magnetic dipole moments with a comparatively high
efficiency, we choose an excitation wavelength between
the maxima of both resonances (here, λ ¼ 630 nm) for the
TSD sensing experiment. Using a point dipole approxi-
mation, the electric (p) and magnetic (m) dipole moments
of the particle are thus both proportional to the local
excitation fields, p ∝ E and m ∝ H, while higher-order
multipoles can be neglected.
The direct link between the excitation field and the

induced dipole moments is the basis of our TSD
reconstruction approach. When we can determine the
magnetic and the electric transversely spinning dipole
moments of our probe particle from the light that it scatters
into the far field, we effectively measure the TSD of the
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FIG. 1. TSD of a linearly polarized Gaussian beam. Panel
(a) depicts the energy density w and the spin density s (yellow
arrowheads). Panel (b) illustrates the transverse x and y compo-
nents of sE and sH .
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FIG. 2. Experimental concept and setup. (a) Sketch of an
incoming tightly focused beam being probed by a silicon nano-
particle sitting on a glass substrate. The light scattered and
transmitted into the glass half-space is collected in the far field.
Only the light emitted into the solid angle above the critical angle
(NA ¼ 1, indicated by the dashed black lines) is required.
Blocking the light collected below NA ¼ 1 results in a ringlike
far-field pattern visualized by red color coding. A scanning
electron micrograph depicted in the inset shows the particle (the
black scale bar indicates 100 nm). (b) Scattering cross section
σscat of a core-shell nanosphere (silicon core with a diameter of
158 nm and silicon dioxide shell with 8-nm thickness) calculated
using Mie theory. (c) Directional emission (red line) of a
transversely spinning magnetic dipole [dipole moment spinning
clockwise, m ∝ ð0; 1; {Þ, indicated by the black arrow] sitting on
a glass substrate with refractive index n ¼ 1.5. (d) Experimental
setup. An incoming monochromatic beam of light (λ ¼ 630 nm)
is focused onto the nanosphere sitting on a glass substrate by a
microscope objective with a NA of 0.9. The transmitted light is
collected by a microscope objective with a NA of 1.3. A
Wollaston prism (WP) is utilized to determine the polarization
state (x and y polarization) of the far-field pattern, which is
measured by imaging the back focal plane of the lower micro-
scope objective onto a CCD camera.
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excitation field [15]. In order to achieve an unambiguous
reconstruction of s⊥H and s⊥E , a detailed analysis of the
simultaneous emission of magnetic and electric dipoles
close to a dielectric interface is required.
In comparison to a dipole in free space, the far-field

emission pattern of a dipole above a dielectric substrate is
strongly altered by the air-glass interface [32,43]. Because
of the dominant emission of a dipole into the higher-index
material [43], we are specifically interested in the light
transmitted into the glass half-space. To calculate the
directional emission, we use a plane-wave decomposition
with the transverse electric (Es) and transverse magnetic
(Ep) polarization states as a basis. Following Ref. [32], the
far field in the glass half-space, Ef ¼ Epep þ Eses, of an
arbitrarily polarized electromagnetic dipole can be written
in compact form as

Efðkx; kyÞ ∝ CT̂ðM̂pþ R̂ M̂m=c0Þ; ð6Þ

with C ¼ ðk20n2 − k2⊥Þ1=2=kz · exp ½{kzd�. The transverse
wave number is defined as k⊥ ¼ ðk2x þ k2yÞ1=2, while
the longitudinal wave number can be calculated by
kz ¼ ðk20 − k2⊥Þ1=2. The parameter d represents the distance
between the dipole and the interface, and c0 refers to the
vacuum speed of light. The matrix T̂ consists of the Fresnel
transmission coefficients ts and tp [32],

T̂ ¼
�
tp 0

0 ts

�
; ð7Þ

while M̂ is a rotation matrix, representing the overlap of the
electric and the magnetic dipole moments with the field
vectors of the plane waves of the angular spectrum [44],

M̂ ¼

0
B@

kxkz
k⊥k0

kykz
k⊥k0 − k⊥

k0

− ky
k⊥

kx
k⊥ 0

1
CA: ð8Þ

To calculate the far field of the magnetic components of the
dipole emitter, a second rotation matrix R̂ is introduced,
which is required because of interchanging electric and
magnetic field vectors [31,32]:

R̂ ¼
�

0 1

−1 0

�
: ð9Þ

We utilize Eq. (6) to exemplarily calculate the far-field
emission pattern (I ¼ Ip þ Is ∝ jEpj2 þ jEsj2) of a mag-
netic dipole spinning around an axis parallel to the air-glass
interface. For m ¼ ð0; 1; {Þ, we obtain the emission pattern
depicted as the side-view plot in Fig. 2(c), where, for the
sake of completeness, we show the emission into the air
half-space as well. For the distance between the dipole and

the interface in the calculations, we use the radius of the
particle, r0 ¼ rSi þ δ ¼ 87 nm. We see that, similar to a
transversely spinning electric dipole moment (see, for
example, Refs. [20,45]), the transversely spinning magnetic
dipole moment results in a directional far-field emission
into the angular region above the critical angle [k⊥ > k0,
kz ¼ ðk20 − k2⊥Þ1=2 ¼ {jkzj]. By assumingm ∝ H, this links
the TSD of the magnetic field to the far-field directionality.
In this context, the objective of the following theoretical

discussion is the derivation of a quantitative connection
between the TSD (magnetic and electric) and the direc-
tional emission pattern of the probe particle above the
critical angle. For that purpose, we need to calculate the
difference of the light scattered into opposite transverse
directions for a general electromagnetic dipole [15]. First,
we consider the directionality along the x direction, kx ¼
�k⊥ and ky ¼ 0, and above the critical angle, k⊥ > k0.
Calculating the difference between the light scattered in
the positive and negative x directions for both polariza-
tion states, Δk⊥

x Ip ¼ Ipðk⊥; 0Þ − Ipð−k⊥; 0Þ and Δk⊥
x Is ¼

Isðk⊥; 0Þ − Isð−k⊥; 0Þ, results in

Δk⊥
x Ip ∝ Djtpj2

�jkzjImðp�
zpxÞ

k0
−
Reðm�

ypzÞ
c0

�
; ð10Þ

Δk⊥
x Is ∝ Djtsj2

�jkzjImðm�
zmxÞ

k0c20
þ Reðp�

ymzÞ
c0

�
; ð11Þ

with D ¼ 4jCj2k⊥=k0. By performing a similar calculation
for the y direction, Δk⊥

y Ip ¼ Ipð0;−k⊥Þ − Ipð0; k⊥Þ and

Δk⊥
y Is ¼ Isð0;−k⊥Þ − Isð0; k⊥Þ, we obtain

Δk⊥
y Ip ∝ Djtpj2

�jkzjImðp�
ypzÞ

k0
−
Reðp�

zmxÞ
c0

�
; ð12Þ

Δk⊥
y Is ∝ Djtsj2

�jkzjImðm�
ymzÞ

k0c20
þ Reðm�

zpxÞ
c0

�
: ð13Þ

For each of Eqs. (10)–(13), we can discern two different
terms. The first terms include only electric or magnetic
dipole components, while the second terms consist of a
mixture of both electric and magnetic dipole components.
A comparison of the purely magnetic and purely electric
terms with the magnetic and electric components of the
TSD—sxH ∝ ImðH�

yHzÞ, syH ∝ ImðH�
zHxÞ, sxE ∝ ImðE�

yEzÞ,
and syE ∝ ImðE�

zExÞ—reveals a strong similarity. Consi-
dering the aforementioned dipole approximation of the
scattering response of the particle, p ∝ E and m ∝ H, we
see that the first terms in Eqs. (10)–(13) are proportional to
the individual components of the TSD. However, the four
equations contain additional terms, which represent the
interference of electric and magnetic dipole components. A
simple difference measurement of the scattered light—as
discussed in Ref. [15]—would therefore not be sufficient to
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reconstruct the TSD. Nonetheless, it is possible to unam-
biguously distinguish between the terms representing the
TSD and the nonrelevant electromagnetic interference
terms by measuring the directional emission for two
different transverse wave numbers, k⊥1 and k⊥2, since
only the terms corresponding to the TSD exhibit factors
depending on k⊥. For example, by measuring Δk⊥1

x Is and
Δk⊥2

x Is, we obtain two linearly independent equations,
which can be solved for the term representing syH. The
same approach can be utilized for the three other compo-
nents of the transverse spin density—sxH, s

x
E, and syE.

With this theoretical consideration in mind, we can
finally design an experimental procedure, capable of
measuring the magnetic and electric TSDs of an incoming
tightly focused beam. Figure 2(d) shows a sketch of our
setup. A polarization tailored beam is tightly focused by a
microscope objective with NA ¼ 0.9. The resulting focal
field is probed by the Si particle immobilized on a glass
substrate. The probe can be scanned through the focal
plane by a 3D-piezo stage. Below the substrate, an oil-
immersion-type objective with NA ¼ 1.3 collects the light
transmitted through the interface and scattered into the
glass half-space. The far-field emission pattern of the
particle, to be observed in the back focal plane (BFP) of
the collection objective, is subsequently analyzed in its
polarization distribution. Hence, the collected light is
passed through a WP, splitting the beam into two orthogo-
nal polarization states. Imaging the BFP with a lens through
the WP onto a camera therefore results in two BFP images
representing a decomposition into x and y polarization,
respectively.
To exemplarily demonstrate the reconstruction of s⊥E

and s⊥H from such polarization-resolved BFP images, we
place the Si probe in the focal plane of a tightly focused
linearly x-polarized, Gaussian beam, and we shifted the
particle with respect to the center of the focal spot by
150 nm along the y direction. The resulting x- and
y-polarized BFP intensity distributions, Ix and Iy, are
shown in Figs. 3(a) and (b). In order to determine s⊥E
and s⊥H for this position of the probe particle, we average the
far-field intensity in 2 × 4 small regions in both BFP
images (see small black circles) and obtain Ijsi and Ijpi,
with i ¼ 1, 2, 3, 4 indicating the azimuthal position and
j ¼ 1, 2 referring to two different transverse k vectors,
k⊥1=k0 ≡ 1.1 and k⊥2=k0 ≡ 1.25. It is important to note
that, although we measured the BFP images in the x- and
y-polarization basis, we can assign the indices p and s
to the averaged intensity values since, along the kx and ky
axes in k space, the transverse magnetic and transverse
electric polarization basis coincides with the x- and
y-polarization basis. Therefore, the distribution of sxH ∝
Imðm�

ymzÞ can, for example, be calculated from Δk⊥1
y Is¼

I1s3− I1s1 and Δ
k⊥2
y Is¼ I2s3− I2s1. Correspondingly, we obtain

sxE from Δk⊥1
y Ip ¼ I1p3 − I1p1 and Δk⊥2

y Ip ¼ I2p3 − I2p1, syH
from Δk⊥1

x Is ¼ I1s2 − I1s4 and Δk⊥2
x Is ¼ I2s2 − I2s4, and syE

from Δk⊥1
x Ip ¼ I1p2 − I1p4 and Δk⊥2

x Ip ¼ I2p2 − I2p4. The
actual measurement results, which represent scans of the
particle through different tightly focused beams, are shown
in the following.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

At first, we utilize our approach to reconstruct the TSD
components of a tightly focused linearly x-polarized
Gaussian beam. Considering the simplified TSD distribu-
tion described in Eq. (5) and depicted in Figs. 1(a) and 1(b),
we expect to obtain two-lobe patterns for sxH and syE rotated
by 90° with respect to each other. The actual experimental
results are shown in the left column of Fig. 4, while a sketch
of the cross section of the input beam is shown in the inset
above (red and gray vectors indicate x-polarized electric
and y-polarized magnetic fields, respectively). We clearly
recognize the expected two-lobe patterns of sxH and syE in
Figs. 4(a) and 4(d), and we observe their rotation of 90°
with respect to each other. The experimental results are in
very good agreement with the theoretical distributions (see
insets) calculated with vectorial diffraction theory [32,46].
Minor deviations are caused by imperfections of the
incoming beam, the probe particle, and the elements in
the detection path. In particular, imaging the BFP after
passing through theWP can be identified as one of the main
sources of error since the two partial beams are impinging
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FIG. 3. Polarization-resolved BFP images. Panels (a) and
(b) show exemplarily measured x- and y-polarized BFP images
in the angular range defined by 1 ≤ k⊥=k0 ≤ 1.3. Both images are
normalized to their common maximum value. The inner dashed
black circle corresponds to the critical angle k⊥=k0 ¼ 1. The
inner and outer semitransparent blue circles indicate k⊥1=k0 ≡
1.1 and k⊥2=k0 ≡ 1.25. The outer dashed black circle indicates
k⊥=k0 ¼ 1.3, representing the NA of the collection objective. An
additional eight small black circles mark regions in the BFP, for
which an averaged intensity value is determined, Ijsi and I

j
pi, with

i ¼ 1, 2, 3, 4 indicating the azimuthal position and j ¼ 1, 2
referring to k⊥1 and k⊥2.
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onto the imaging lens under an angle [see Fig. 2(d)] and the
optical path lengths through the WP are slightly different
for x- and y-polarized light. It should also be mentioned
here that, in contrast to the simplified TSD distributions in
Fig. 1(b), where syH and sxE are exactly zero, both distri-
butions exhibit weak four-lobe patterns in the case of a
tightly focused beam [see insets in Figs. 4(b) and 4(c)].
Although the measured distributions of syH and sxE are
indeed much weaker than the two-lobe patterns of sxH and
syE, they do not perfectly resemble the theoretical expect-
ations. Nonetheless, it can be seen that our measurement
approach is sensitive and allows for demonstrating the main
features of s⊥E and s⊥H for the case of a tightly focused
linearly polarized Gaussian beam.
In order to verify our experimental scheme and addi-

tionally explore and highlight differences between the
magnetic and the electric TSD in more complex light
fields, we investigate two tightly focused cylindrical vector
beams with azimuthal and radial polarization distributions.
We have chosen these beams because they can be trans-
formed from one to the other by interchanging electric and
magnetic fields, allowing for cross-checking of our exper-
imental results. As an illustration, we depict sketches of the
incoming azimuthally and radially polarized beams as
insets on top of the central and right columns of Fig. 4,
respectively. As we can see, the azimuthal polarization of
the electric field is accompanied by a radially polarized
magnetic field, while the radial polarization of the electric
field implies an azimuthally polarized magnetic field.
An important feature of azimuthally polarized beams is

their purely transverse electric field distribution, which

remains purely transverse even when the beam is tightly
focused [47]. Therefore, the electric TSD must be zero. In
contrast, the magnetic field of such a tightly focused beam
exhibits a strong longitudinal component [41] and, in
particular, transversely spinning magnetic fields. The theo-
retical predictions and the experimentally measured dis-
tributions of s⊥H and s⊥E are shown in Figs. 4(e)–4(h). We see
a good overlap of theory and experiment, effectively
verifying the aforementioned statements. In particular,
we see a strong magnetic TSD and a very weak (theoreti-
cally zero-valued) electric TSD.
When comparing these results with the distributions of

the tightly focused radially polarized beam plotted in
Figs. 4(i)–4(l), we see that, as expected, s⊥H and s⊥E are
essentially interchanged. This time, we obtain a strong
electric TSD accompanied by a weak (ideally zero-valued)
magnetic TSD. The apparent minor rotations of the
experimental distributions of s⊥E with respect to the theo-
retical prediction are caused by aberrations of the incoming
beam and deviations in the response of the probe particle in
combination with the aforementioned imperfections of the
detection path.

V. CONCLUSION

In conclusion, we presented a probe-based scanning
technique, which allows for the simultaneous recon-
struction and distinction of the TSD of the magnetic and
the electric field. This was achieved by analyzing the far-
field directionality of the light scattered off the nanoprobe.
We utilized the technique to emphasize the importance of
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distinguishing the magnetic and the electric components of
the TSD in the case of highly confined light. In the process,
we demonstrated the difference between the distributions of
s⊥H and s⊥E in a tightly focused linearly polarized beam. In
particular, we showed their 90° rotation with respect to each
other. Additionally, we investigated s⊥H and s⊥E in tightly
focused azimuthally and radially polarized beams. Thereby,
we emphasized that the radially polarized beam exhibits
purely electric TSD, while the azimuthally polarized beam
exhibits purely magnetic TSD.
These beams can be used, for instance, to distinguish

whether an observed effect is dependent on s⊥H, s⊥E , or their
interplay. A possible application can be found in the optical
manipulation of particles exhibiting magnetic and electric
dipole resonances. There, azimuthally and radially polar-
ized beams could be used to investigate light-matter spin-
angular-momentum transfer for magnetic and electric fields
individually [13,48]. On the other hand, the interplay
between s⊥H and s⊥E can be an important factor in mag-
netoelectric coupling [48,49].
From a general and more conceptional point of view,

although the interaction of light and matter is, in many
scenarios, mainly governed by the electric field and the
corresponding spin density, our results demonstrate the
relevance of the dual symmetry (electromagnetic democ-
racy) representation of the spin angular momentum of light.
In this regard, our work takes its place alongside recent
experimental efforts to distinguish the different and more
elusive components of linear and angular momenta of
light [50].
Most importantly, by being able to influence and tailor

the magnetic and electric parts of the TSD separately, we
anticipate that the spin-momentum locking of transversely
spinning magnetic dipoles, an effect that has recently
been investigated in Refs. [51,52], will gain relevance in
upcoming experimental and theoretical studies, similar to
the spin-momentum locking of spinning electric dipoles
[1–3,7]. Especially in the field of silicon-based nanopho-
tonics [35–37], the spin-momentum locking of combined
electric and magnetic dipoles represents a promising route
towards signal routing and polarization multiplexing at
the nanoscale.
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