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Thermalization and scrambling are the subject of much recent study from the perspective of many-body
quantum systems with locally bounded Hilbert spaces (“spin chains”), quantum field theory, and
holography. We tackle this problem in 1D spin chains evolving under random local unitary circuits
and prove a number of exact results on the behavior of out-of-time-ordered commutators (OTOCs) and
entanglement growth in this setting. These results follow from the observation that the spreading of
operators in random circuits is described by a “hydrodynamical” equation of motion, despite the fact that
random unitary circuits do not have locally conserved quantities (e.g., no conserved energy). In this
hydrodynamic picture, quantum information travels in a front with a “butterfly velocity” vB that is smaller
than the light-cone velocity of the system, while the front itself broadens diffusively in time. The OTOC
increases sharply after the arrival of the light cone, but we do not observe a prolonged exponential regime of
the form ∼eλLðt−x=vÞ for a fixed Lyapunov exponent λL. We find that the diffusive broadening of the front
has important consequences for entanglement growth, leading to an entanglement velocity that can be
significantly smaller than the butterfly velocity. We conjecture that the hydrodynamical description applies
to more generic Floquet ergodic systems, and we support this idea by verifying numerically that the
diffusive broadening of the operator wavefront also holds in a more traditional nonrandom Floquet spin
chain. We also compare our results to Clifford circuits, which have less rich hydrodynamics and
consequently trivial OTOC behavior, but which can nevertheless exhibit linear entanglement growth and
thermalization.
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I. INTRODUCTION

The past decade has seen a great revival of interest in the
foundations of quantum statistical mechanics. This
renewed interest has been driven by theoretical advances
involving the long-sought demonstration that many-body
localization (MBL) exists [1], as well as by the study of
quantum information theory and integrable systems [2]. It
has been equally driven by experimental advances in the
study of cold atomic gases, which provide examples par
excellence of closed macroscopic quantum systems for
which the foundational questions of quantum statistical
mechanics are especially acute [3]. Perhaps the broadest
question has to do with identifying possible “ergodic
universality classes” in quantum many-body systems and
understanding their more detailed physics. Much work for

such a potential classification has focused on fully MBL
systems, which are believed to exhibit a breakdown of
statistical mechanics [4].
Most recently, much attention has focused on the related

question of how to quantify “scrambling” in many-body
systems [5–9]. In this work, we use the word scrambling to
denote those features of the spreading of quantum infor-
mation that are quantified by the out-of-time-ordered
commutator (OTOC) [10], which has been studied in the
Sachdev-Ye-Kitaev (SYK) model and its descendants
[11,12], as well as in MBL systems [13–17], in field-
theoretic settings [18–22], and numerically in interacting
spin chains [23–29]. We report some exact analytical results
and supporting numerics for interacting nonintegrable spin
chains that are interesting in the context of scrambling.
In the following, we discuss OTOC behavior and entan-

glement growth (building on the work in Refs. [30–32]) for
the following three spin-chain models: (I) a random circuit
[see Eq. (4)], where the two-site gates are randomly chosen;
(II) an ergodic Floquet system with nearest-neighbor inter-
actions, defined in Eq. (28); and (III) a periodic Clifford

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 021013 (2018)

2160-3308=18=8(2)=021013(19) 021013-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.021013&domain=pdf&date_stamp=2018-04-11
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


circuit defined in Eq. (33). Our approach relies on quantify-
ing operator spreading, i.e., how the support of operators
changes under Heisenberg picture evolution. We derive
analytical formulas for operator spreading in model (I),
which we support with additional numerics, while for model
(II), we rely entirely on numerical calculations. Our numeri-
cal method is based on the matrix product operator (MPO)
[33] representation. Since all three types of time evolution
that we consider can be represented as a network of two-site
gates (see Fig. 1), the MPO can be time evolved straight-
forwardly by using the time-evolving block decimation
(TEBD) algorithm [34]. Our results for the three models
are as follows:

(I) In the random circuit model (Sec. III), we find that
operator spreading can be described by a remarkably
simple hydrodynamical picture, which gives rise to a
biased diffusion equation. Using this, we find that
the typical extent of an operator grows with velocity
vB, which is less than the light-cone velocity vLC,
while the width of the front broadens diffusively in
time (see Fig. 2). We use these results to derive exact
formulas for the OTOC and entanglement growth.
The OTOC travels with the same velocity vB—in the
context of quantum field theory at finite temperature,
the characteristic velocity scale of the OTOC has
been referred to as the “butterfly velocity” (e.g.,
Ref. [35]), so we adopt the same terminology for vB
in this work. The behavior of the OTOC near the
front is also sensitive to the diffusive broadening
[Eq. (20)]. At early times, before the arrival of the
main front, the OTOC grows exponentially, with an
exponent that increases with the initial separation of
the two operators [Eq. (19)]. At long times, the
OTOC saturates to 1. This result is summarized in
Fig. 3. Our front propagation results also lead to
an exact formula for the entanglement growth of an
initial product state, from which we can extract an
entanglement velocity vE [Eq. (27)]. We find that the
diffusive broadening of the operator front gives rise

to the inequality vE < vB. This exact result is con-
sistent with general nonrigorous arguments [32,36],
the heuristic operator-spreading model of Ref. [[32]],
numerous results in holography [37–39], and the
results derived for Clifford circuits in Ref. [30].

(II) In Sec. IV, we verify numerically that, for a family of
ergodic Floquet circuits, there is a similar diffusively
broadening front behavior as observed in the random
circuit (see Fig. 7). This leads to the tentative
conjecture that the diffusive front picture is valid
for generic ergodic 1D Floquet spin chains, along
with the resulting consequences for OTOC and
entanglement dynamics.

(III) Finally, in Sec. V, we compare (I) and (II) to Clifford
circuits. Within such circuits, strings of Pauli oper-
ators evolve to other particular strings, rather than
superpositions of such; in particular, Clifford circuits
do not exhibit a diffusively broadening operator
front. We connect this fine-tuned nature of local

FIG. 1. Structure of the local unitary circuits studied in this
paper. The on-site Hilbert space dimension is q. Each two-site
gate is a q2 × q2 unitary matrix. For the random circuit model of
Eq. (4), each gate is randomly chosen from the Haar distribution.
For the Floquet models considered in Secs. IVand V, the two-site
gates are defined by the Floquet unitaries in Eqs. (28) and (33),
respectively.

(a)

(b)

(c)

FIG. 2. Spreading of a one-site operator averaged over random
unitary circuits. Note that ρRðs; τÞ (ρLðs; τÞ) is the total weight
carried by Pauli strings with a right (left) endpoint at site s at time
τ. Panel (c) shows the sum of these two functions (multiplied byffiffiffi
τ

p
to show the position of the front more clearly). Almost

all the weight is carried by operators with endpoints at the
two fronts propagating out from the initial site with speed
vB ¼ ðq2 − 1=q2 þ 1Þ. These fronts in turn broaden diffusively
in time as

ffiffiffi
τ

p
. The two other velocity scales, the light-cone

velocity vLC and the entanglement velocity vE [see Eq. (27)], are
also indicated, satisfying vE < vB < vLC. The values of ρR and
ρL after 100 layers of the circuit are shown in panel (b). Panel
(a) shows the integrated operator weights R̄ðsÞ (L̄ðsÞ), denoting
the total weight left (right) of site s, along with the OTO
commutator Cðs; τÞ. The OTOC saturates to 1 inside the front
and has the value 1=2 exactly at τ ¼ s=vB.
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Clifford circuits to the fact that such circuits always
exhibit trivial (in a sense that we clarify below)
OTOC behavior. Nevertheless, they can still have
linear entanglement growth, and their local observ-
ables thermalize to infinite temperature. This dem-
onstrates the broader point that the presence of
ballistic entanglement growth and thermalization
is not sufficient to predict scrambling behavior
(i.e., the behavior of the OTOC).

The systems above do not have local conserved quan-
tities (in particular, they do not conserve energy), so it is
surprising that hydrodynamics arises in (I) and (II). We
conjecture that such hydrodynamic behavior is universal,
generically appearing in 1D ergodic Floquet systems with
local unitary evolution and a bounded local Hilbert space.
(In this connection, our work has obvious parallels with
Ref. [30], although, as we discuss in Sec. III, the hydro-
dynamics in our case has a different physical origin.)
Moreover, our work makes a clear and precise connection
between the spreading dynamics of operators, the scram-
bling behavior captured by the OTOC, and other metrics of
ergodicity such as entanglement entropy and the late-time
behavior of local correlation functions (see Appendix D).

The content of the Appendixes is as follows: Appendix A
and Appendix B contain technical lemmas used in
quantifying the operator weight and OTOC functions.
Appendix C presents exact results on the averages of
certain operator-spread coefficients. Appendix D contains
exact results on time-ordered correlation functions in
random circuits. Appendix E lists Haar averaging identities,
while Appendix F rigorously bounds the recurrence times
in a class of translation-invariant Clifford circuits.

II. QUANTIFYING OPERATOR SPREADING

Consider a one-dimensional chain of L sites, for which
the Hilbert space of a single site is Hsite ¼ Cq. There exist
operators X, Z on the single-site Hilbert space obeying

ZX ¼ e2πi=qXZ; ð1aÞ

Zq ¼ Xq ¼ 1: ð1bÞ

These generate a convenient complete basis for all
operators on Hsite, namely, fσμ ≡ Xμð1ÞZμð2Þ∶μ ∈ Z⊗2

q g.
Here, μ is shorthand for the doublet μð1Þ, μð2Þ ∈
f0; 1;…; q − 1g ¼ Zq. This basis is orthonormal, such
that trðσμ†σνÞ=q ¼ δμν. The operators σμ can be regarded
as generalizations of Pauli matrices, where the usual Pauli
matrices correspond to the q ¼ 2 case. Generalizing this to
the Hilbert space of a 1D chain, Hchain ¼ ðCqÞ⊗L, a
complete orthonormal basis of operators is given by the

q2L Pauli strings, defined as σμ ≡ ⊗
L

r¼1
σμrr , where each string

is indexed by a vector μ ∈ ðZ⊗2
q Þ⊗L.

Our goal is to quantify how an initial Pauli string spreads
over the space of all Pauli strings under local unitary time
evolution. At time τ, the Pauli string σμ becomes

σμðτÞ≡U†ðτÞσμUðτÞ ¼
X
ν

cμνðτÞσν: ð2Þ

This defines a set of “operator-spread coefficients”
cμνðτÞ≡ tr(σν†U†ðτÞσμUðτÞ)=qL. The full set of coeffi-
cients fcμνðτÞg encodes all information regarding the
unitary time evolution. However, as we show below, the
values of particular coefficients are not so useful for
accessing the most physically interesting quantities, such
as entanglement entropies [30–32] or out-of-time-order
commutators. It is more useful to consider “coarse-grained”
quantities like the total weight on all operators with the
right endpoint s appearing in σμðτÞ, i.e.,

ρμRðs; τÞ≡
X
ν

jcμνðτÞj2δ(RHSðνÞ ¼ s); ð3Þ

where RHSðνÞ denotes the rightmost site on which ν is
nonzero [40]. Note that the “density” ρμR is conserved; i.e.,

(a)

(b)

FIG. 3. Time dependence of the average OTOC in the random
circuit model. (a) Different time regimes for fixed separation
s ¼ 100. The exact result for the OTOC follows Eq. (19) after the
light cone hits site s. The behavior then goes over to the regime
described by Eq (20) after the front with speed vB arrives. The
inset shows the exponential decay of the OTOC to its final value
1, as described by Eq. (21), for different separations. (b) Scaling
collapse of the OTOC at the front.
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P
sρ

μ
RðsÞ ¼ 1 at all times. Motivated by this, we refer to ρμR

as the operator density of the time-evolved Pauli string σμ.
In this paper, we consider systems where the time

evolution can be represented as a circuit of two-site unitary
gates, arranged in the geometry shown in Fig. 1. Sites of the
1D chain are indexed by s ¼ 1;…; L, while the layers of
the circuit are indexed by the variable τ. It is useful to
introduce coarse-grained coordinates x and t that label pairs
of sites and pairs of layers, respectively, as defined in
Eq. (8) and illustrated in Fig. 1. Note that, because of the
geometry of the circuit, all such models have a well-defined
light-cone velocity vLC ¼ Δs=Δτ ¼ Δx=Δt ¼ 1, corre-
sponding to the fact that, with each successive time step,
a local operator can spread at most one additional site in
each direction.
In the following, we investigate the three models (I)–(III)

discussed in the Introduction, all three of which can be
represented by local circuits of the kind shown in Fig. 1.
In Sec. III A, we show that for model (I) the average of ρμR
obeys a classical biased diffusion equation, and we use this
to derive exact formulas for the behavior of OTOCs and the
dynamics of entanglement. In Sec. IV, we investigate model
(II) and find that it shares many features with the random
circuit model, such as a broadening of the propagating
wavefront, which suggests that the random walk descrip-
tion obtained in Sec. III has applications in a wider class of
ergodic systems. In Sec. V, we contrast this with model
(III), where there is no diffusion and ρμR remains a delta
function at all times, which corresponds to a nongeneric
behavior of the OTOC.

III. RANDOM CIRCUIT MODEL

In the present paper, we are mostly concerned with
one-dimensional local random unitary circuits, with the
geometry shown in Fig. 1. Random circuits were also
investigated in Ref. [30] with regards to the growth of
entanglement from an initial product state, albeit with a
different geometry, where the location of the unitary gates
is randomly chosen, instead of the regular arrangement
used here. In that work, it was argued that the evolution of
entanglement obeys an equation belonging to the KPZ
universality class, which determines certain universal
exponents that appear in the average value and fluctuations
of the entanglement entropy. Here, we shift our focus from
states to operators and derive exact results for their spread-
ing, for arbitrary on-site Hilbert space dimension. In
Sec. III D, we relate our operator-spreading results to the
dynamics of bipartite entanglement, as captured by the
second Rényi entropy, and we find no sign of the universal
KPZ fluctuations observed in Ref. [30]. It could be the case
that the fluctuations mentioned only become apparent on
time scales longer than those accessible in our numerics.
Alternatively, they might not be present at all, and the KPZ-
like behavior observed by Nahum et al. could be specific to
their setup [41].

The random circuits we discuss are defined as follows.
Consider a discrete time evolution, consisting of layers of
two-site unitary gates acting on pairs of neighboring sites.
Odd numbered layers act on all the odd bonds of the chain,
while even numbered layers act on even bonds. Each two-
site gate is chosen independently from the Haar distribution
over q2 × q2 unitary matrices. The time evolution after an
even number of 2t layers is given by

UðtÞ ¼
Y2t;←
τ¼1

YL=2
x¼1

Wð2x − 1þ nτ; τÞ; ð4Þ

where nτ ¼ ½1þ ð−1Þτ=2� and Wðs; τÞ is a Haar random
two-site unitary acting on sites s, sþ 1. The product

Q2t;←
τ¼1

is defined to be time ordered. Such a circuit is graphically
illustrated in Fig. 1.
The primary goal of this work is to quantify the spread of

operators under random circuits, Eq. (4), and to relate
operator spread to entanglement growth. A related question
is how correlation functions of local observables behave in
this random circuit model in the thermodynamic limit. As
we confirm in Appendix D, such correlations tend to their
infinite-temperature values at long times, similarly to the
case of Floquet ergodic systems [42–46]. This result holds
for any random realization of the circuit.
Focusing on the problem of operator spreading in this

random circuit model, we find that the average of the
operator density ρR, defined in Eq. (3), performs a biased
random walk, independent of the internal structure of the
operator considered. Solving the random walk problem
allows us to derive exact formulas for the averages of out-
of-time-order commutators and entanglement growth,
which we detail in Secs. III B and III D, respectively. In
Sec. III C, we numerically quantify the fluctuations
between different random realizations of the circuit.

A. Random walk dynamics of operator density

In the following, we quantify how operators spread
under the time evolution generated by the random circuit
defined above in Eq. (4). We focus on the average of the
operator density, defined in Eq. (3), for which we derive an
exact equation of motion. Upon solving this equation, we
find that the operator density moves in a front whose
velocity vB is an increasing function of the on-site Hilbert
space dimension and with a front width increasing dif-
fusively in time.
We start by noting that under Haar averaging, the

operator-spread coefficient cμνðτÞ vanishes for any time
τ ≥ 1, provided that μ is nontrivial, since cμν and −cμν have
equal probability. However, the average of its modulus

squared, jcμνðτÞj2, can be nonzero. (An explicit expression
for this quantity is written down in Appendix C, using a
mapping to a classical Ising model, but we will not require
it for the subsequent discussion).
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Following Eq. (3), we define the average operator
density as

ρμRðs; τÞ≡
X
ν

jcμνðτÞj2 δ(RHSðνÞ ¼ s): ð5Þ

As we show below, this quantity satisfies an equation of
motion, Eq. (9), which does not depend explicitly on μ.
Preempting this, we drop the explicit μ dependence ρμR →
ρR to declutter notation. In fact, μ will enter considerations
only as an initial condition on the operator density

ρRðs; 0Þ ¼ δ(RHSðμÞ ¼ s); ð6Þ

which is the same for all initial operators sharing the same
right endpoint.
To understand how ρR evolves in time, consider the

effect of applying a single two-site gate on sites s and sþ 1.
There are q4 − 1 nontrivial operators acting on this two-
site Hilbert space. Of these, q2 − 1 contribute to ρRðs; τÞ
(the ones that are trivial on site sþ 1), while the other
q2ðq2 − 1Þ contribute to ρRðsþ 1; τÞ. Under a two-site
Haar random unitary transformation, all the possible
transitions between any of these q4 − 1 operators have,
on average, the same probability [6]. The upshot is that
after the application of the unitary gate, the density ρR
evolves as

ρRðs; τ þ 1Þ ¼ ð1 − pÞ½ρRðs; τÞ þ ρRðsþ 1; τÞ�; ð7aÞ

ρRðsþ 1; τ þ 1Þ ¼ p½ρRðs; τÞ þ ρRðsþ 1; τÞ�; ð7bÞ

with probabilities p¼ðq2=q2þ1Þ and 1 − p ¼ ð1=q2 þ 1Þ.
To apply a similar argument for two subsequent layers of
the circuit, it is useful to redefine the density by grouping
together the pairs of sites on which the first layer of the
circuit acts. We abuse notation and denote this quantity as

ρRðx; tÞ≡ ρRðs ¼ 2x − 1; τ ¼ 2tÞ þ ρRðs ¼ 2x; τ ¼ 2tÞ;
ð8Þ

where we now only consider the value of the operator
density at even time steps τ ¼ 2t. Applying Eq. (7) for two
layers, we arrive at the equation

ρRðx; tþ 1Þ ¼ 2pð1 − pÞρRðx; tÞ
þ p2ρRðx − 1; tÞ þ ð1 − pÞ2ρRðxþ 1; tÞ:

ð9Þ

Thus, the right endpoints of Pauli strings perform a biased
random walk on the lattice, where in each step, they move
to the right with probability p2, to the left with probability
ð1 − pÞ2, and stay on the same site otherwise. A feature of

the above equation is that the time evolution of ρR is
independent of the internal structure of the operator, and
thus the solution ρRðx; tÞ will be the same for all initial
Pauli strings, modulo a shift x → x − x0, where x0 is
defined by the right endpoint of the initial string.
The result of the random walk process outlined above is

a front that propagates to the right from its initial position
x0 as hxi − x0 ¼ vBt with a butterfly velocity
vB ¼ p2 − ð1 − pÞ2 ¼ ðq2 − 1=q2 þ 1Þ. Thus, the speed
at which the operator weight travels is smaller than the
light-cone velocity: vB < vLC ¼ 1. This resonates some-
what with the result of Ref. [35]. The width of the front
increases in time as hx2i − hxi2 ¼ 2Dt, with diffusion
constant D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2B

p
=4 ¼ ðq=2=q2 þ 1Þ. Note that in

the limit q → ∞, the “particle” described by ρRðx; tÞ hops
to the right with probability 1 in each step, and conse-
quently, the front becomes infinitely sharp with velocity
vB → vLC ¼ 1.
The total weight of left endpoints, ρLðx; tÞ, obeys a

similar equation except that it propagates to the left with
velocity −vB, while diffusing at the same rate, as shown in
Fig. 2. This means that at time t, the vast majority of
quantum information initially stored in σμ with left (right)
endpoint xl (xr) is carried by operators with support
½xl − vBt; xr þ vBτ�, but where the precise position of
either endpoint can be uncertain within a region of width
Δx ∼

ffiffiffiffiffiffi
Dt

p
.

We can find the full distribution of ρRðx; tÞ using a
standard generating functional method. In the rest of this
section, we use coordinates relative to the initial position of
the front, i.e., x − x0 → x. The solution to Eq. (9) then reads

ρRðx; tÞ ¼
q2ðtþxÞ

ð1þ q2Þ2t
�

2t

tþ x

�
: ð10Þ

In the scaling limit, t, x → ∞, but keeping x=t ≈ vB fixed,
this becomes (using Stirling’s approximation)

ρR(x ¼ vBtþOð ffiffi
t

p Þ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1 − v2BÞt

p e
−ðx−vB tÞ2

ð1−v2
B
Þt : ð11Þ

Thus, the traveling front has the shape of a Gaussian, as one
would expect from the solution of the continuum limit of
the lattice diffusion equation (9).
As we see in the next section, it is also useful to compute

the total weight of all Pauli strings contained entirely to the
left of position x. This quantity, which we denote by RðxÞ,
is given by

RðxÞ≡X
y≤x

ρRðyÞ: ð12Þ

Around the position of the front, where x ≈ vBt, we can
integrate Eq. (11) to obtain
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R̄(x ¼ vBtþOð ffiffi
t

p Þ) ≈ 1

2

�
erf

�
x − tvBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − v2BÞ

p �
þ 1

�
; ð13Þ

where erfðxÞ is the error function.
Later in Sec. III B, we will also need an approximation

for R well away from the front. Using the fact that in the
large t limit ρRðx; tÞ increases sharply with x for x=t < vB,
the sum in Eq. (12) is dominated by its largest term (i.e.,
y ¼ x). Using the fact that R̄ðx ≥ vLCtÞ ¼ 1, we can
similarly approximate R̄ for x=t > vB to obtain

R̄ðxÞ ≈ ð1 − 2ρRðxÞÞΘðx − vBtÞ þ ρRðxÞ; ð14Þ

where Θ is the Heaviside step function. This result
is accurate up to multiplicative Oð1Þ constants when
jx − vBtj=t ¼ Oð1Þ in the large t limit. See the discussion
in Appendix A for a precise statement and derivation
of Eq. (14).
Using our results for the coarse-grained density ρRðx; tÞ,

we can also write a formula for the density in terms of the
site coordinate s. Note that because of Eq. (7), the ratio
ρRðs ¼ 2xþ 1Þ=ρRðs ¼ 2xÞ ¼ q2 is fixed at any time
τ ¼ 2t. Using this, the density on site s after applying
an even number of layers becomes

ρRðs¼ 2xþ n; τ ¼ 2tÞ ¼ q2ðtþx−1þnÞ

ð1þ q2Þ2t
�

2t− 1

tþ x− 1

�
; ð15Þ

where n ¼ 0, 1. We can use Eq. (15) to derive the total
operator weight to the left of site s, i.e., RðsÞ ¼ P

r≤sρðrÞ,
which, as we see in the next section, is closely related to the
OTOC between sites 0 and s.

B. Behavior of out-of-time-order commutators

We relate our results for the time evolution of operator
weights to another oft-used measure of information
spreading in many-body systems, the so-called OTOC
[8,9,18,27,47–49]. For concreteness, consider the follow-
ing OTOC between two Pauli operators separated by
distance s (in this section, we work in a shifted coordinate
system where one of the Pauli operators resides at site 0),

Cðs; τÞ≡ 1

2
hψ j½Z0ðτÞ; Zs�½Z0ðτÞ; Zs�†jψi

¼ 1 − Rehψ jZ0ðτÞZsZ−1
0 ðτÞZ−1

s jψi; ð16Þ

where s and τ are the original time or lattice coordinates [as
opposed to the coarse-grained coordinates t, x below
Eq. (8)]. Here, Zr denotes the generalized Pauli operator
introduced in Eq. (1), situated on site r. We show how the
OTOC Cðs; τÞ behaves in the scaling limit τ → ∞, with
κ ≡ s=τ held fixed. As we detail below, for s outside of the
light cone (1 < κ), it is zero. As s enters the light cone
(κ < 1 and close to 1), it increases exponentially. When s is

near the operator front (κ ¼ vB < 1), the OTOC becomes
Oð1Þ. After the front has passed (κ < vB), the OTOC
exponentially saturates to the value 1 with an exponent that
is independent of s. See Fig. 3 for a summary.
Let C̄ denote the average of the OTOC over all unitary

circuits, with the geometry shown in Fig. 1. Note that
because of the averaging, this quantity is independent of the
choice of Pauli operator; i.e., it would be the same if we
replaced either or both operators in Eq. (16) with another
local Pauli that is different from Z. We are concerned with
the second term in Eq. (16), which equals

1 − C̄ðs; τÞ ¼
X
μν

cμ0ðτÞc�ν0 ðτÞRehψ jσμZsσ
†νZ−1

s jψi

¼
X
μ

jcμ0ðτÞj2 cos θμ;Zs
; ð17Þ

where eθμ;Zs is a qth root of unity arising from commuting
σμ past Zs, and c

μ
0ðτÞ are the operator-spreading coefficients

of Z0ðτÞ. Notice that the Haar average forces μ ¼ ν, which
removes all dependence on the particular initial state ψ
[50]. In particular, the average OTOC value in any state,
pure or mixed, will be identical to the average OTOC value
at infinite temperature, i.e., trð1

2
j½Z0ðτÞ; Zs�j2Þ=2L. At this

point, we can use Eqs. (17) and (C2) to write an exact
closed-form expression for the OTOC. However, instead of
doing that, we write a more manageable asymptotic
expression for Eq. (17) using simpler results from
Sec. III A.
To perform the sum over Pauli strings in Eq. (17), we

first need to prove the following statement: jcμ0ðτÞj2
depends only on the position of the two endpoints of the
string μ. The proof goes as follows. First, it is easy to verify
that under Haar averaging, jcμνðτÞj2 ¼ jcνμðτÞj2 for any ν,
and indeed for “ν ¼ 0” in particular. This implies that the
average probability of the one-site operator Z0 evolving
into a specific string μ is the same as the probability of
string μ evolving into Z0. In the random walk picture, this
latter process corresponds to both left and right endpoints,
which end up on site 0 at time τ during their respective
random walks. As we noted previously, these random
walks are independent of the internal structure of the initial

string. Thus, jcμ0ðτÞj2 depends only on where the two
endpoints of μ are located. We confirm this argument more
concretely with an explicit expression for such operator-
spread coefficients in Appendix C.
The above statement has important consequences for the

OTOC. If site s lives in the support of μ, then the
contribution to Eq. (17) coming from the strings with
the same support as μ has an equal weight for each possible
value θμ;Zs

∈ ð2π=qÞf1;…; qg, so the cosine term averages
to zero. The remaining part is the total weight due to Pauli
strings that are supported on intervals that do not contain
site s (along with some corrections for Pauli strings that
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border on site s). Deferring the full justification to
Appendix B, the upshot is that, provided κ > 0 in the
τ → ∞ limit, the OTOC behaves as

C̄ðs; τÞ ≈ 1 − R̄ðs − 1; τÞ þ q−2ρRðs; τÞ; ð18Þ

up to exponentially small corrections in τ. Hence, the
OTOC physics is directly related to the operator density,
and it changes appreciably at the operator front s ¼ vBt, as
we show in Fig. 3.
Let us now summarize the behavior of the OTOC as a

function of space and time, as parametrized by the ratio
κ ≡ s=τ and taken in the limit τ → ∞. We distinguish four
regimes of OTOC behavior, which we illustrate in Fig. 3.
(1) Trivial OTOC at early times (1 < κ): In this regime

the events ðτ; 0Þ, ð0; sÞ are causally disconnected, so
the commutator in Eq. (16) (and hence the OTOC) is
exactly zero.

(2) Early OTOC growth (vB < κ < 1): This regime
describes the behavior after site s has entered the
light cone but before it encounters the main operator
front. Here, we approximate the OTOC using
Eq. (14), so C̄ðs;τÞ≈c1ρRðs−1;τÞþρRðs;τÞ, where
c1 > 1 is bounded in the s; τ → ∞ limit. Fortunately,
a simple closed-form expression already exists for
ρR, namely, Eq. (15). We obtain a more convenient
expression for the initial OTOC growth by expand-
ing Eq. (15) near the light cone in the δ2=s → 0
limit, where δ≡ τ − s is the distance between s and
the light cone,

C̄ðs;τÞ≈e
1
2
δ logðγsδ Þ− 1

6δ×

�
q2

q2þ1

�
s ð1þq2Þ ffiffiffi

δ
p

2s
ffiffiffi
π

p ; ð19Þ

up to multiplicative Oð1Þ constants, where
γ ¼ eð1 − v2BÞ=2. This formula demonstrates that
the OTOC will increase with an exponent λ ∼ log s
for 0 < δ ≪ s. Because of its dependence on s, and
its limited range of validity, it is unclear whether this
should be viewed as a Lyapunov exponent as in Ref.
[49]. Note that the exponential increase occurs in a
regime where the overall scale of the OTOC is still
exponentially small in s. In the regime where the
OTOC increases to an Oð1Þ value (i.e., when the
operator front hits, see next point), its behavior is not
exponential. Furthermore, we note that γ ∼ 1=q2 for
large q, such that the regime in which the exponen-
tial behavior can be observed becomes smaller in the
large q limit.

(3) Near the front (jκ − vBj ¼ Oð1= ffiffiffi
τ

p Þ): As men-
tioned, the above approximation breaks down when
the main front, which we recall travels at speed vB
and has width ∼

ffiffiffi
τ

p
, arrives at site s. In this

intermediate regime, we estimate the OTOC by
combining Eqs. (18) and (13),

C̄ðs; τÞ ≈ 1

2
erfc

�
s − vBτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τð1 − v2BÞ

p �
: ð20Þ

This formula describes the behavior of the OTOC in
the regime when it increases from a value exponen-
tially small in s to an Oð1Þ number.

(4) Late times (0 < κ < vB): After the main front has
passed, the OTOC relaxes exponentially to 1.
Expanding Eq. (14) for fixed s − vLCτ and large
τ, we find that the OTOC in this late-time regime is

1 − C̄ðs; τÞ ≈ ð1þ q−2Þqsffiffiffiffiffiffiffiffi
8πτ

p
�

2q
1þ q2

�
τ

: ð21Þ

Thus, the OTOC decays to its equilibrium value with
an exponent logð1þ q2=2qÞ.

C. Fluctuations from circuit to circuit

The results discussed above concern quantities averaged
over many different random circuits with the same geom-
etry but different choices of two-site gates. The question
remains as to whether these average quantities are also
“typical”; i.e., how large are the fluctuations between
different realizations of the random circuit? In this section,
we investigate this problem numerically. Our numerical
method relies on representing the operator Z0ðtÞ as a MPO,
which allows us to apply the two-site unitary gates
efficiently. Two layers of the random circuit can be applied
by just a single step of the TEBD algorithm, which allows
us to go up to bond dimension χ ¼ 20000. Both the
infinite-temperature OTOC and the total operator weight
contained in an arbitrary subregion can be extracted
straightforwardly from the MPO representation [both
calculations are similar to computing the overlap of two
matrix product states, but in the computation of RðsÞ, only
the legs corresponding to sites ≤ s are contracted].
To quantify the fluctuations, we look at an ensemble of

100 random circuit realizations (which is enough to reliably
reproduce the exact average quantities; see Fig. 4) with on-
site Hilbert space dimension q ¼ 2 and compute (a) the
OTOC Cðs; τÞ defined in Eq. (16) and (b) the total operator
weight Rðs; τÞ of Z0ðτÞ contained within the region to the
left of site s. Both Rðs; τÞ and Cðs; τÞ are functions of the
distance s and the number of layers τ. We find that for both
quantities, the circuit-to-circuit fluctuations are largest at
the traveling wavefront and become smaller deep behind it,
as shown in Fig. 4. We also see that there is a well-defined
front for the information propagation in each individual
circuit.
We also find that the fluctuations decrease in time.

Figure 4(c) shows the standard deviation of the weight RðsÞ
for different times. We find that the maximum of this
standard deviation over all values of s decreases in time,
approximately as ∝ τ−β with an exponent 0.4 < β < 0.5.
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D. Relationship to entanglement spreading

Another question closely related to operator hydrody-
namics is the problem of entanglement growth. An initial
product state develops spatial entanglement during time
evolution. In systems without quenched disorder, the
entanglement is expected to grow linearly in time, with
a growth rate characterized by the “entanglement velocity”
vE. In this section, we use our results for operator spreading
to compute the time evolution of the second Rényi entropy
Sð2Þ between two sides of a spatial entanglement cut and
extract the entanglement velocity from it. (More precisely,
we calculate a closely related quantity, namely, the loga-
rithm of the average of the exponentiated second Renyi

entropy Sð2Þexp ≡ − log e−S
ð2Þ
, which would coincide with the

second Renyi entropy in the absence of statistical fluctua-
tions). We find that the resulting entanglement velocity is
smaller than the butterfly velocity for any finite q, and it
approaches the light-cone velocity logarithmically slowly,

so that vLC − vE ∝ 1= logq for large q. At long times, Sð2Þexp

saturates to its maximal value with the saturation becoming
increasingly sharp as q is increased.
Consider an initial ferromagnetic product state of the 1D

chain, where the state on site s is an eigenstate of the local
Pauli operator Zs with eigenvalue þ1. (Note that for the
average behavior of the random circuit, the choice of initial
product state is unimportant.) The density matrix ω̂

corresponding to this state is then a sum over all possible
Z strings, i.e., Pauli strings that only contain powers of the
operator Z on each site:

ω̂ ¼ 1

qL
YL
s¼1

�Xq−1
k¼0

Zk
s

�
¼ 1

qL
X

ν∈Z strings

σν: ð22Þ

The density matrix at time t is obtained by replacing each
Pauli string σν in Eq. (22) with its time-evolved counter-
part σνðtÞ.
Let us now divide the system into two regions, A and B,

the first of which corresponds to sites 1;…; LA.
Generalizing the formula of Refs. [31,32], the second
Rényi entropy Sð2Þ ≡ − log trðω̂2

AÞ of the reduced density
matrix ω̂A ¼ trBðω̂Þ is related to the operator-spreading
coefficients by

e−S
ð2Þ ¼ 1

qLA

X
ν;ν0

X
μ⊂A

cνμcν
0�
μ ≈

1

qLA

X
ν

X
μ⊂A

jcνμj2; ð23Þ

where the strings ν and ν0 are both Z strings and μ has
support entirely in subsystem A. In the last equality of
Eq. (23), we assumed that the off-diagonal contributions
are negligible, which becomes exactly true in the random
circuit model once we average over different realizations.
Let us assume that LA is even. Reverting back to the

coarse-grained position x [see Eq. (8)], we recognize
Eq. (23) as the total operator weight in region A,
Rðx ¼ LA=2; tÞ, as defined in Eq. (12), summed over all
initial Z strings. As we noted previously, this quantity is, on
average, the same for all initial strings with the same
endpoints x0. The number of different Z strings with right
endpoint x0 is q2ðx0−1Þðq2 − 1Þ. After averaging over
random circuits, and assuming an even number of layers,
Eq. (23) thus becomes

e−S
ð2ÞðτÞ ¼ 1

qLA
þq2−1

q2
XL=2
x0¼1

R̄ðLA=2−x0; t¼ τ=2Þ
qLA−2x0

; ð24Þ

where we have used that ρRðxÞ [and consequently R̄ðxÞ]
only depends on the position x relative to the initial
endpoint x0. The first term in Eq. (24) is the contribution
coming from the identity operator, which is responsible for
the saturation of the entanglement at long times.
Using the exact solution Eq. (10), one can perform the

sum over initial positions to find

e−S
ð2ÞðτÞ ¼ q−LA þ ½1 − q−LA � qτ

ð1þ q2Þτ
XLA=2−1

x¼−τ=2

�
τ

τ
2
þ x

�
:

ð25Þ

(a)

(c)

(b)

FIG. 4. Average values and fluctuations of the (a) OTOC and
(b) the total weight to the left of site s for the time-evolved
operator Z0ðτÞ after τ ¼ 12 layers of the random circuit. Blue
dots correspond to average values of 100 different random
circuits, while the error bars signify 1 standard deviation. Panel
(c) shows the standard deviations of RðsÞ for different times. The
largest fluctuations decrease in time approximately as ∝ τ−1=2,
as shown by the inset.
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The sum over binomial coefficients can be expressed in
terms of a hypergeometric function.
Equation (25) describes an entanglement that initially

increases linearly with time and saturates to the maximum
value LA log q at long times. For τ ≪ LA, we find

e−S
ð2ÞðτÞ ≈

�
2q

1þ q2

�
τ

; ð26Þ

from which we can identify the entanglement velocity [51]

vE ≡ 1

log q
dSð2ÞexpðτÞ

dτ
¼ log qþq−1

2

log q
¼ log ð1 − v2BÞ

logð1−vB
1þvB

Þ : ð27Þ

Recall that Sð2Þexp ≡ − log e−S
ð2Þ
. Note that the entanglement

velocity approaches 1 logarithmically slowly for large q,
i.e., vE ∼ 1 − logð2Þ= logðqÞ. This is a separate velocity
scale, distinct from and smaller than the front speed
vE < vB. This difference comes from the diffusive broad-
ening of the operator wavefront. First, it is straightforward
to verify that if the wavefront is sharp, i.e., R̄ðx; tÞ ¼
Θðx − vBtÞ, then Eq. (24) gives vE ¼ vB. Second, we have
checked that Eq. (24) gives vE ¼ vB even if the wavefront
has a width that is finite but independent of time [52].
Hence, we attribute the difference between vB and vE to the
fact that the operator front broadens in time.
In the right panel of Fig. 5, we compare the exact formula

Eq. (25) to the second Rényi entropy as computed numeri-
cally (using a matrix product state representation), averag-
ing over 100 realizations of the circuit, and we find
extremely good agreement. Moreover, the numerical cal-
culation allows us to compare Sð2Þexp and the mean Renyi

entropy Sð2Þavg ≡ Sð2Þ, respectively. We find no significant
difference between the two values, showing that there are
no strong circuit-to-circuit fluctuations in the entropy and
both are captured well by our exact formula, at least for the
time scales accessible in the numerics. We also found

numerically that replacing the Rényi entropy with the von
Neumann entropy leads to a slightly larger entanglement
velocity.
The entanglement saturates when the contribution of the

identity becomes significant (i.e., when all other operators
have essentially left the subsystem). Note that the saturation
softens, compared to the prediction of the simple operator-
spreading model of Ref. [31], which is another conse-
quence of the diffusive broadening of the front. This
intermediate saturation regime becomes smaller with
increasing q, as shown in the left panel of Fig. 5.

IV. COMPARISON WITH THE KICKED
ISING MODEL

A natural question that emerges in relation to the results
stated above is to what extent they are representative of
other, more generic, thermalizing, quantum many-body
systems. To address this question, we investigate a system
with a periodically driven, nearest-neighbor Hamiltonian.
Our model has the same geometry as the random circuit,
shown in Fig. 1, and it similarly does not conserve energy.
However, unlike random circuits, it is periodic in time, and
its two-site (and one-site) gates take a specific form, rather
than being randomly chosen. Despite these two significant
differences, we find that several details of the operator
spreading described in Sec. III, such as the diffusive
broadening of the wavefront, remain approximately valid.
These features have also appeared in more recent numerical
studies of ergodic Hamiltonian spin chains [26,29].
For concreteness, we consider a model with on-site

Hilbert space dimension q ¼ 2 that consists of switching
back and forth between two Hamiltonians, such that
one period of the time evolution (with period time T) is
given by

Û ¼ e−i
T
2
g
P

s
Xse−i

T
2

P
s
½ZsZsþ1þhZs�: ð28Þ

This system—which we refer to as the “kicked Ising
model”—is known to be ergodic, provided that both g
and h are sufficiently large. Since at any given time the
terms in the Hamiltonian all commute with each other, the
time evolution can be represented as a circuit of two-site
unitaries (with the one-site rotations included in the two-
site gates) with the same geometry as in Fig. 1. As such, it is
in fact contained among the ensemble of random circuits
considered before. The question is to what extent the
properties of this specific circuit coincide with the average
quantities discussed above.
At first, operator spreading in the Floquet system seems

very different from the case of the random circuit. There is
no inherent randomness, and the evolution is completely
determined by the internal structure of the initial operator
σμ; however, for the random circuit, the average behavior is
independent of the internal structure. However, it is well
known that ergodic systems can behave as baths for

FIG. 5. Entanglement growth in the random circuit model. Left
panel: Comparing the exact formula, Eq. (25), to matrix product

state numerics shows that it captures both Sð2Þexp ¼ − log e−S
ð2Þ
and

the average Sð2Þavg ¼ Sð2Þ of the second Rényi entropy. The main
figure shows the time dependence for LA ¼ 50 sites, while the
inset is for LA ¼ 2. Right panel: The entanglement velocity
increases with q according to Eq. (27), while the saturation
regime becomes smaller.
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themselves [53,54] and, in effect, generate their own noise.
If the same reasoning can be applied to the question of
operator spreading in ergodic systems, then it is plausible
that the noise-averaged equation (9) holds in deterministic
ergodic systems, and as a result, the diffusively broadening
ballistic front picture continues to apply.
Another more hydronamical motivation for the result is

to note that the random unitary and deterministic Floquet
systems both involve evolution under a local unitary
circuit. Locality puts strong constraints on the evolution
of ρR: Not only does it obey the global conservation lawR
dxρRðx; tÞ ¼ const (we revert to a continuum notation for

ease of presentation), it should also obey a local conserva-
tion law

∂tρRðx; tÞ þ ∂xJðx; tÞ ¼ 0 ð29Þ

for some local current density Jðx; tÞ. This conservation law
puts severe restrictions on the equation of motion of ρR. For
example, one can imagine that in a coarse-grained picture,
on long enough time scales, the constitutive equation
J ∼ vρR þD∂xρR þ � � � becomes valid; note that the dis-
cretized version of this constitutive relation is exactly the
random walk equation we derived for the random circuit
averaged ρR [see Eq. (9)]. Therefore, it seems plausible that
in a sufficiently coarse-grained picture, the dynamics might
be well approximated by a biased diffusion similar to the
one described in Sec. III for the Floquet circuit, with
hopping probabilities depending on the microscopic cou-
plings. Here, we present numerical evidence in support of
this conjecture. Our results can be summarized in three
points:

(i) The butterfly velocity vB depends strongly on the
coupling g and can be tuned to be much smaller than
the light-cone velocity vLC.

(ii) When tuning the couplings to decrease vB from its
maximal value vB ≈ vLC, the front also becomes
wider, as expected for a random walk when increas-
ing the probability of hopping to the left at the
expense of the probability of hopping right.

(iii) The operator wavefront gets wider during time
evolution, with the width increasing in time as
∼tα, with an exponent 0.5≲ α≲ 0.6.

We find numerically a linearly propagating wavefront for
the time-evolved operator Z0ðtÞ, which shows up in both
the OTOC and the weight RðsÞ, with the OTOC Cðs; tÞ
saturating to 1 behind the front. While for the random
circuit the speed of the front was set by the on-site Hilbert
space dimension q, for the kicked Ising model we find that
this speed can be tuned continuously by changing the value
of the transverse field g [55], as shown in Fig. 6. Note that
changing g does not affect the light-cone velocity, which is
Δs=ΔT ¼ 1 because of the geometry of the circuit that
represents the Floquet time evolution. For g ¼ 0, an initial
operator Z0 remains localized on the same site. As we make

g larger, the butterfly velocity gradually increases, and it
reaches vB ≈ vLC for g ≈ 0.9 with period time T ¼ 1.6
[56]. Looking at Fig. 6, we notice that decreasing vB from
its maximum corresponds to an increased front width at any
given time. This is consistent with a coarse-grained
random walk description, wherein increasing the proba-
bility of hopping to the right results in both a larger
butterfly velocity and a suppression of the diffusion con-
stant. We note that the dependence of vB on microscopic
parameters is expected on general grounds (see, e.g.,
Refs. [35,58]), although, to our knowledge, this is the first
study of this dependence in infinite-temperature ergodic
systems.
The most important evidence in support of a hydro-

dynamic description comes from examining the front width
as a function of time. Similarly to the random circuit model,
we find that the wavefront of the operator spreading broad-
ens as we go to longer times. To quantify the width, we look
at the standard deviation of ρRðsÞ ¼ RðsÞ − Rðs − 1Þ, i.e.,

σðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
s

ρRðsÞs2 −
hX

s
ρRðsÞs

i
2

s
: ð30Þ

As shown in Fig. 7, at long times, the width grows
algebraically in time as σðtÞ ∝ tα, with an exponent
0.5≲ α≲ 0.6. This is roughly consistent with the random
walk description of operator spreading put forward in
Sec. III. This diffusive broadening is expected to result in
the strict inequality vE < vB for the entanglement velocity,
according to the arguments put forward in Sec. III D. We
confirmed numerically that this indeed holds in this model
for various values of g.
Finally, one might wonder whether the above story

continues to hold when we consider a system with energy
conservation, i.e., a time-independent Hamiltonian. Recent
unpublished work [26,29] shows evidence of a diffusively
growing front in energy-conserving ergodic spin chains.

FIG. 6. OTOC (left panel) and operator weight RðsÞ (right
panel) for different distances s after t=T ¼ 12 driving cycles of
the kicked Ising model with the strength of the transverse field
g ¼ 0.2; 0.3;…; 0.9, as indicated in the right figure. The longi-
tudinal field is fixed at h ¼ 0.809, while the period time is
T ¼ 1.6. The butterfly velocity shows a strong dependence on the
coupling g, with the front width increasing as one moves away
from the limit of maximal velocity.
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V. FRACTAL CLIFFORD CIRCUITS

In this section, we compare the results obtained for the
random circuit model of Sec. III to another set of circuits
that do not, in general, exhibit energy conservation, namely,
Clifford circuits. We show that despite the fact that Clifford
circuits can be “ergodic” in certain senses—they can
exhibit linear entanglement growth and correlations heating
up to infinite temperature—both their spectrum and their
OTOC behavior are anomalous and nonchaotic.
General Clifford circuits have a particularly simple struc-

ture to their operator-spreading coefficients: Under time
evolution by t steps, a simple Pauli string becomes another
Pauli string,

jcμνðtÞj ¼ δμ;MtðμÞ; ð31Þ
where Mt is a linear endomorphism acting on the set of
strings ðZ⊗2

q Þ⊗L. Thus, a Pauli operator evolves to a single
Pauli operator, rather than the superposition of Pauli oper-
ators allowed by Eq. (2). Here,Mt has to obey a number of
constraints. In particular, time evolution should preserve the
commutation relations amongst the Pauli strings [59–61].
(Incidentally, using these constraints, it is possible to classify
all translation-invariant Clifford circuits into three types
called fractal, glider, and periodic [60,61].)
In line with the stringency of the constraint Eq. (31), it is

unsurprising that Clifford circuits have pathological proper-
ties distinguishing them from more generic ergodic sys-
tems. Calculating the OTOC Eq. (16) for initial Pauli
strings σμ, σν for a Clifford circuit gives

1

2
hψ j½σμðtÞ; σν�½σμðtÞ; σν�†jψi ¼ 1 − cos θMtðμÞ;ν; ð32Þ

where θ is the phase obtained by commuting σMtðμÞ through
σν, and the final result is independent of the state ψ . For
generic Clifford circuits, this result shows persistent Oð1Þ
oscillations at late times and does not settle to a specific
limit even in the thermodynamic limit. We refer to this as
“trivial” OTOC behavior because we do not see the regime
of persistent decay and eventual saturation characteristic of

“chaotic” quantum systems (e.g., the SYK model or the
models of Secs. III B and IV).
Additionally, Clifford circuits tend to have pathological

spectral properties not associated with ergodic systems. For
instance, one can prove that translation-invariant Clifford
circuits have exact recurrences Utrec

f ∝ 1 on time scales
linear in system size trec ¼ OðLÞ (see Appendix F). This
directly implies that the eigenvalues of Utrec

f are trecth roots
of unity, which, in particular, implies that the average level
degeneracy is Oð2L=LÞ. This spectral structure does not
exhibit the level repulsion we expect in systems with ETH.
Although operators obey the stringent condition

Eq. (31), Clifford circuits can still exhibit many ergodic
properties usually associated with “ergodicity.” Indeed, it
can be rigorously proven that the above-mentioned “frac-
tal” Clifford circuits exhibit the following: (a) Linear
entanglement growth starting from certain so-called stabi-
lizer initial states [62] and relatedly (b) starting from an
initial product state, at long times, all local observables tend
towards their infinite-temperature expectation values [63].
These fractal Clifford circuits are periodic in time, in
addition to being spatially translation invariant. An explicit
example of such a circuit has q ¼ 2 and takes the form
UðtÞ ¼ Ut

f , where

Uf ¼ e
iπ
3
ffiffi
3

p
P

s
ð−XsþYs−ZsÞe

iπ
4

P
s
ZsZsþ1 . ð33Þ

Note that the resulting circuit has the geometry illustrated in
Fig. 1 (with the one-site rotations merged into the two-site
gates), and the circuit elements repeat every two layers.
Operators evolve under this circuit in a particularly simple
way:

Zs → Ys Ys → Ys−1XsYsþ1; Xs → Ys−1ZsYsþ1: ð34Þ

Note that for certain strings, there is a possibility of
cancelation, e.g., YsZsþ1 → Ys−1Xs1sþ1.
Figure 8 shows that for this particular circuit, even more

generic initial states show near linear entanglement growth,
with a rate that is mostly independent of the initial state at
long times.We can explain this using the operator-spreading
picture of entanglement growth, discussed in Sec. III D.
Looking at Eq. (34), we notice that a string with a Pauli
operator X or Y at its right endpoint will keep moving to the
right at a fixed speed of 1 site per 1 period forever, leading to
the fixed-rate linear entanglement growth seen for stabilizer
states. The deviations from this behavior for a random
product initial state come from strings that, up to time t,
failed to start growing to the right. However, such operators
need to have a very specific structure, and their number
is exponentially small in t (going roughly as 4−t).
Consequently, after the first few periods, most product
states settle to the same entanglement velocity exhibited
by stabilizer states. This is in contrast to the behavior of the

FIG. 7. Broadening of the operator wavefront with time in the
kicked Ising model for parameters h ¼ 0.809 and T ¼ 1.6. Left
panel: The weight ρðsÞ for transverse field g ¼ 0.7 at times
t=T ¼ 4; 6;…; 14. Right panel: The width of the front as defined
by Eq. (30) as a function of time for different g, showing a
roughly diffusive spreading.
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operator entanglement of any Pauli string σμðtÞ that remains
0 at all times because of Eq. (31).
In summary, Clifford circuits can be ergodic in the sense

that they can exhibit linear entanglement growth and
thermalization of local observables but do not have the
spectral or OTOC behavior expected of generic ergodic
systems. This suggests that linear entanglement growth is a
rather coarse measure of quantum information spreading,
sensitive only to the fact that operators tend to grow in
extent over time. The OTOC, on the other hand, is sensitive
to both the fact that operators grow in extent and the fact
that they become complicated superpositions of many Pauli
strings (i.e., operator entanglement in the sense of Ref. [64]
increases). Note also that the entanglement entropy tests the
behavior of a large ensemble of different Pauli strings,
while the OTOC characterizes the evolution of a single
initial Pauli operator, thus giving more detailed information
on the dynamics.

VI. CONCLUSIONS

We considered the spreading of quantum information in
one-dimensional systems with local unitary time evolution
but no conservation laws. Our key results are as follows.
For random circuit systems, we derived an exact hydro-
dynamical description of operator spreading. According to
this description, operators grow into superpositions of Pauli
strings, which tend to be supported at a front, propagating
with velocity vB, where vB is a velocity scale distinct from
the light-cone velocity (see Fig. 2). An important conse-
quence of the hydrodynamic equation is that the front itself
undergoes a diffusive broadening in time. We proved that
the velocity vB also determines the characteristic scale of
change of the OTOC between two local operators, while at
very early times, long before the arrival of the front, we find
a regime of exponential growth for the OTOC, with an
exponent that depends on the initial separation of the two
operators—it remains to be determined whether this

early-time exponential growth represents a quantum ana-
logue of the Lyapunov behavior present in classical chaotic
systems. The exact description of operator spreading in this
model also allows us to give an exact formula for evolution

of entanglement across a cut as measured by Sð2Þexp, starting
from an initial product state. We find that the entanglement
grows with a third distinct velocity scale, the entanglement
velocity vE, which is strongly affected by the diffusive
behavior, making vE < vB.
Comparing our exact results for the random circuit to an

ergodic Floquet spin chain, we verified the presence of a
diffusively broadening operator front in the kicked Ising
model. This leads us to a tentative conjecture that this
behavior is present for generic ergodic interacting quantum
systems in 1D, evolving under local unitary Floquet
evolution, allowing for a universal coarse-grained hydro-
dynamic description in these systems. We contrasted this
with the fine-tuned behavior observed in Clifford circuits,
for which operators can spread ballistically but do not
become entangled superpositions of many operators. The
ballistic spread of operators leads to the linear entangle-
ment growth and the thermalization of local observables
seen in certain Clifford circuits, but the fine-tuned nature of
the operator growth shows up in the pathological behavior
of OTOCs. This demonstrates that linear entanglement
growth and thermalization are not good predictors of the
scrambling behavior captured by the OTOC.
We note that within existing field-theoretic calculations

[19–21], the broadening of the operator wavefront is not
present, in contrast with our results. This discrepancy could
be connected to the weak-coupling limits implicit in these
works and the unbounded local Hilbert spaces associated
with continuum field theories; in any case, the discrepancy
should be resolved. Another possible direction for future
work is finding the exact range of validity of the hydro-
dynamic operator-spreading picture proposed here. It is
known, for example, that the propagation of the OTOC
becomes slower than ballistic in strongly disordered (but
still thermalizing) systems [65], and it is an interesting
question whether this effect can be incorporated into some
form of hydrodynamic description.
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FIG. 8. Time evolution of the second Rényi entropy between
two halves of a 40-site chain in the periodic Clifford circuit
defined in Eq. (33). The plot shows the growth of entanglement
for seven different initial random product states. After the first
few steps, the growth rate of entanglement becomes roughly the
same for all initial states, set by the fact that the majority of
operators travel with a fixed velocity of 1 site per 1 period.
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Note added.—Recently, we became aware of a related work
[66]. Where they overlap, our results appear to be con-
sistent with this work. Additional numerical work also
appeared recently, apparently confirming the presence of
diffusively broadening fronts in Hamiltonian systems [29].

APPENDIX A: VALIDITY OF EQ. (14)

It suffices to work in coarse-grained coordinates t, x.
Recall that

R̄ðxÞ ¼
X
y≤x

ρRðyÞ; ðA1Þ

ρRðx; tÞ ¼
q2ðtþxÞ

ð1þ q2Þ2t
�

2t

tþ x

�
: ðA2Þ

Our task is to justify Eq. (14), which can be more carefully
phrased as follows: In the limit t → ∞, with jx−vBtj=t¼ ε
a fixed nonzero number, the integrated operator density
obeys

R̄ðxÞ
ρRðxÞ

¼ c0 for − 1 < κ < vB; ðA3Þ

1 − R̄ðxÞ
ρRðxÞ

¼ c1 for vB < κ < 1; ðA4Þ

where c0;1 are positive numbers, bounded in the t → ∞
limit, and we defined κ ≡ x=t and work in units where
vLC ¼ 1. Define

Qx ≡ ρRðxþ 1; tÞ
ρRðx; tÞ

ðA5Þ

¼ q2
1 − κ

1þ κ þ 1
t

: ðA6Þ

The quotient Qx is always positive. It is easy to verify that
for −1 < κ < vB, the quotient is greater than 1 and is an
increasing function of x. On the other hand, for vB < κ < 1,
this quotient is less than 1 and a decreasing function of x.
When −1 < κ < vB, we use these facts to bound

R̄ðxÞ ≤ ρRðx; tÞð1þQ−1
x þQ−2

x …Þ

¼ ρRðx; tÞ
1

1 −Q−1
x

: ðA7Þ

On the other hand, we immediately see that R̄ðxÞ ≥
ρRðx; tÞ. Noting that in the large t limit Qx ¼ ½ð1þ vBÞ×
ð1 − κÞ=ð1 − vBÞð1þ κÞ�, we find

���� R̄ðx; tÞρRðx; tÞ
− 1

���� ≤ Q−1
x

1 −Q−1
x

¼ ð1þ κÞð1 − vBÞ
2ε

: ðA8Þ

Hence, c0≤1þ½ð1þκÞð1−vBÞ=2ε� is an Oð1Þ constant.
Similarly, we consider vB < κ< 1. Using 1¼P

yρRðy;tÞ,
it follows that R̄ðxÞ ¼ 1 −

P
y>xρRðy; tÞ. In the present

case, Qx < 1, and it is straightforward to derive a similar
bound,

���� 1 − R̄ðx; tÞ
ρRðx; tÞ

− 1

���� ≤ Qx

1 −Qx
¼ ð1 − κÞð1þ vBÞ

2ε
: ðA9Þ

Hence, c1 ≤ 1þ ½ð1 − κÞð1þ vBÞ=2ε� is an Oð1Þ number
in the large t limit. Note that near the edge of the light cone,
κ ¼ ∓1 respectively, Eq. (A3) becomes increasingly exact
as each of the bounds Eqs. (A8) and (A9) becomes tighter.
On the other hand, as we approach the front ε → 0, the
bounds become looser and Eq. (A3) is less reliable—in this
regime, the near front expansion Eq. (12) becomes more
useful.

APPENDIX B: APPLICATION TO OTOC

Following Sec. III B, the quantity fðs; τÞ≡ 1 − C̄ðs; τÞ
can be written as

fðs; τÞ ¼
X
μ

jcμðτÞj2 cos θμ;Zs
; ðB1Þ

where eiθμ;Zs is a qth root of unity acquired by commuting
σμ past Zs. We can reparametrize the sum by summing over
the left and right endpoints of the Pauli string μ,

fðs; τÞ ¼
Xt−1
l¼−t

Xt−1
r¼−t

hðl; rÞ
X

μ∈Fðl;rÞ
cos θμ;Zs

; ðB2Þ

where hðl; rÞ is simply the average jcμðτÞj2 for a Pauli
string μ with a left or right endpoint—recall that this value
does not depend on the internal structure of μ (see below
Eq. (9) or above), only on the endpoints of μ. Here,
Fðl; rÞ≡ fμ∶suppðμÞ ¼ ½l; r�g. Those intervals ½l; r� such
that s ∈ ðl; rÞ do not contribute to this sum because there is
a sum over qth roots of unity that disappears,

hðl; rÞ ¼
X

μ∈Fðl;rÞ
cos θμ;Zs

¼ 0:

There are also contributions to Eq. (B2) that arise when s is
on the left and/or right edge of an interval, i.e., s ¼ l
or s ¼ r.
First, perform the sum over μ in Eq. (B2) for the case

r ¼ s > l,
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X
μ∈Fðl;sÞ

cosθμ;Zs
¼−ðq−2δl<s−1þδl¼s−1;sðq2−1Þ−1ÞjFðl;sÞj:

ðB3Þ

Next, perform the sum over μ in Eq. (B2) for the case
l ¼ s < r,X
μ∈Fðs;rÞ

cos θμ;Zs

¼ −ðq−2δr>sþ1 þ δr¼s;sþ1ðq2 − 1Þ−1jFðs; rÞjÞ: ðB4Þ
Combining these sum identities, Eqs. (B3), and (B4),

back into Eq. (B2) yields (after some rearrangement)

fðs; τÞ ¼
� X

l≤r≤s−1
þ

X
sþ1≤l≤r

−
X
r¼s

X
l≤s

q−2 −
X
l¼s

X
r≥s

q−2
�

× hðl; rÞjFðl; rÞj

þ 1

q2
½−ðq2 − 1Þ(hðs − 1; sÞ þ hðs; sþ 1Þ)

þ ðq2 − 2Þhðs; sÞ�:

The first line is

f1stðs; τÞ ¼ R̄ðs − 1Þ þ L̄ðsþ 1Þ − q−2ðρRðsÞ þ ρLðsÞÞ:
ðB5Þ

It is readily verified that the second line disappears
exponentially quickly in τ as (2q=ðq2 þ 1Þ)2τ, for any s
using Eq. (C6). Hence, in the τ → ∞ fixed s=τ limit, we can
approximate

fðs; τÞ ≈ f1stðs; τÞ ¼ R̄ðs − 1; τÞ − q−2ρRðs; τÞ ðB6Þ
þ R̄ð−s − 2; τÞ − q−2ρRð−s − 2; τÞ; ðB7Þ

where we used the fact that L̄ðsþ 1Þ ¼ R̄ð−s − 2Þ and
ρLðsþ 1Þ ¼ ρRð−s − 2Þ. For 0 < s < τ=vLC, and for any
q, we can use Eqs. (12) and (15) to argue that the second
line is suppressed by a factor of ∼q−s relative to the first
line. Therefore, provided κ > 0 in the τ → ∞ limit, the
OTOC behaves as

fðs; τÞ ≈ R̄ðs − 1; τÞ − q−2ρRðs; τÞ ðB8Þ
up to exponentially small corrections in τ.

APPENDIX C: EXACT OPERATOR-SPREAD
COEFFICIENTS

In what follows, we give an exact expression for the
averaged operator-spread coefficients and a sketch of
the derivation. We leave a more detailed derivation to
future work. The averaged operator-spread coefficients are
defined as

jcνμðtÞj2 ¼
Z "Yt;←

τ¼1

YL
j¼1

dHaarWð2jþ pτ; τÞ
#

×

���� 1

qM
trðσν†U†ðtÞσμUðtÞÞ

����2: ðC1Þ

The Haar averaging can be performed explicitly using the
identity (E1) in Appendix E. After averaging, each two-site
gate can be represented by a classical, Ising-like variable
taking only two possible values. Because of the geometry
of the circuit, these Ising variables form a triangular lattice.
Equation (C1) becomes a classical partition function, i.e., a
sum over all possible spin configurations. The partition
function consists of two edge parts, which depend on the
configurations on the first (last) layer and the Pauli strings ν
(μ), and a bulk part, which is independent of the Pauli
strings in question. Because of the Haar averaging, the only
information that remains in the partition function about
the strings μ and ν is which sites they act on nontrivially.
The bulk transfer matrix enforces a light-cone structure on
the spin variables. A light cone with velocity vLC ¼ 1
emanates from the two endpoints of the string ν such that
all spins outside of the light cone have to point up
[otherwise, the configuration has zero weight in the

partition function for jcνμðtÞj2].
In the case of an initial Pauli operator acting on a single

site, the partition function for the operator spreading can be
evaluated exactly. In this case, the fact that μ acts on one
site only yields a boundary condition for the partition
function, wherein, in the first row, there is a single spin
pointing down while all others point up. The partition
function then becomes a sum over all possible ways this
initially one-site domain can spread within the light cone,
as shown in Fig. 9. Furthermore, the bulk interaction terms
are only nontrivial at the boundary between the two
domains; consequently, they give the same contribution
for all domain configurations with the same depth. Thus,
the calculation simplifies to counting the possible domain
configurations, which can be done by considering it as a
two-particle random walk for the two endpoints of the
domain.

FIG. 9. Example of a classical spin configuration contributing
to the operator-spreading coefficients of an initial one-site Pauli
operator. All such configurations have a single domain of down
spins spreading inside the light cone, and each of these con-
figurations contributes equally to jcνðtÞj2.
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The calculation outlined above yields all average squared
coefficients jcνμðtÞj2, where μj ¼ 0 if j ≠ 0. In the follow-
ing, we simplify the notation by dropping the first index

and denoting these as jcνðtÞj2. The exact formula for these
squared coefficients is given in Eq. (C2). A surprising
property of this formula only depends on the positions of
the right and left endpoints l, r of the Pauli string ν, and not
on more detailed information concerning the internal

structure of the string, i.e., jcνðtÞj2 ¼ hðl; rÞ. This is a
consequence of the Haar averaging, which, in each step,
washes out all memory of the internal structure.
We form a circuit with an even number of D layers.

Then, we number the spaces between the two-site
unitaries in the last layer, −D=2; 1 −D=2;…D=2. The
support of an operator string ν can be represented by
x; y ∈ f−D=2; 1 −D=2;…þD=2g, with x < y. The aver-
age square coefficient is obtained by plugging x, y into the
formula.

jcνj2 ¼ 1

ð1þ q−2Þ2ðD−1Þ
q−2ðy−xÞ−2D

1 − q−4
J ðx; y;DÞ

J ðx; y; DÞ≡ X
0≤a≤D

2
þx

X
0≤b≤D

2
−y

�
D

D
2
− b − y

�

×

�
D

D
2
− aþ x

�
q−2a−2b

bþ yþ a − x
D

:

ðC2Þ

Note that this expression depends only on x, y and q, so

we also denote it as jcμ1ν j2 ¼ hðx; y; DÞ, where we drop the
q dependence for simplicity. These expressions are of
course complicated. We note as an aside that this formula
has a slightly neater expression in terms of hypergeometric
functions.

1. Useful limits

Let us calculate the weight on an operator with endpoints
x, y in the largeD limit (in circuit coordinates) starting from
Eq. (C2). Reexpress the weight as

jcμ1ν j2 ¼ q−2D ×
1

ð1þ q−2Þ2ðD−1Þ
1

1− q−4
Gðx; y;DÞ

Gðx; y;DÞ≡ X
0≤a≤D

2
þx

×
X

0≤b≤D
2
−y

q−2b−2yq−2aþ2x

×

�
D

D
2
− b− y

��
D

D
2
− aþ x

�
bþ yþ a − x

D
:

Defining

Hðx; y; DÞ≡ q−2Dð1þ q2Þ2DvD
�
D
2
þ x

�
vD

�
D
2
− y

�
;

where

vDðΔÞ≡ ð1þ q2Þ−D
XΔ
j¼0

�
D
j

�
q2j; ðC3Þ

we find that

dHðx; y; DÞ
dq

¼ −2Dq−1 × G: ðC4Þ

Putting this altogether, we have

hðx; y;DÞ ¼ −
1

2D
q−2D

ð1þ q−2Þ2ðD−1Þ
1

1− q−4
d

d logq

×

�
q−2Dð1þ q2Þ2DvD

�
D
2
þ x

�
vD

�
D
2
− y

��
:

ðC5Þ

For fixed x, y, taking the largeD limit, the vD functions can
be approximated as [using the same reasoning as in
Eq. (14)]

vD

�
D
2
þ x

�
∼

ffiffiffiffiffiffiffi
2

πD

r
q2ðxþ1Þð 2q

q2þ1
ÞD

q2 − 1
:

Plugging in this approximation, we find

hðx; yÞ∼
�

2q
q2 þ 1

�
2D

×
ðq2 þ 1Þððq2 − 1Þðy− xÞ þ 2Þq2ðx−yþ2Þ

πD2ðq2 − 1Þ4 : ðC6Þ

So, fixing x, y, the weight on an operator with endpoints x, y
decays exponentially quickly ð2q=q2 þ 1Þ2D with large D.

APPENDIX D: LONG-TIME CORRELATIONS

In Sec. I, we anticipated that random unitary circuits
should “heat to infinite temperature,” much like ergodic
Floquet circuits. Here, we back up this claim by examining
the long-time behavior of various correlation functions,
demonstrating that they relax to their expected infinite-
temperature values. For simplicity, we consider one- and
two-point functions for specific one-site Pauli operators of
the form σα0—although most of the results below follow for
more general operators as well. Fix any initial state ω and
times t2, t1. We find that

hσα0ðt2Þσβzðt1Þiω ¼ 0: ðD1Þ

This follows from two observations. First, the operator in
the expectation value can be written U01U12σ

α
0U21σ

β
xU10,

where Uij ¼ U−1
ji is shorthand for the unitary evolutions
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between times ti and tj. Now, U12 is statistically indepen-
dent from U01, so we can average over these disjoint
circuits independently. Provided t1 ≠ t2 and α ≠ 0, it is
straightforward to see that the Haar averageU12σ

α
0U21 ¼ 0.

This can be reexpressed succinctly as ¯cαμðtÞ ¼ 0 for all
t ¼ t2 − t1 ≠ 0, α ≠ 0. Note that this result is independent
of the initial state ω and the value β—in particular, we
can recover the behavior of one-point functions by
setting β ¼ 0.
While the above correlation functions disappear on

average, we may also quantify how their variance behaves
at long times. Indeed, the variance decays exponentially in
time, at least for random initial product states ψ . The
variance is

hσα0ðt2Þσβzðt1Þi2ω ¼
X
μ

jcαμðtÞj2 jhσμðt1Þσβzðt1Þiωj2: ðD2Þ

We argue that this variance vanishes as we increase t → ∞
while fixing t1. We can show this rigorously for an infinite-
temperature state in Appendix D 1.
For a random product state, we have a less-rigorous

argument, which proceeds as follows. First, given any
ϵ > 0, for sufficiently long times t, all of the weight of α is
invested in strings μ with left or right endpoints
l < −ðvB − ϵÞt, r > ðvB − ϵÞt, respectively, up to exponen-
tially small corrections in t. These statements follow from

Eq. (11). Second, as α is a one-site operator, jcαμðtÞj2 only
depends on the endpoints of μ rather than the detailed
internal structure [see the discussion under Eq. (17)].
Hence, up to exponentially small corrections in time,
σα0ðtÞ is made up of an equal amplitude superposition of
all operators μ with left or right endpoints near ∓vBt,
respectively. The vast majority of such strings contain an
extensive OðvBtÞ number of Pauli operators. The expect-
ation values of such strings on a random product state are
exponentially decaying in the number of Pauli operators.
As a typical μ string contains OðvBtÞ Pauli operators, we
find jhσμσβziωj2 ∼ e−ζvBt for some constant ζ. Hence, for

t1 ¼ 0, hσα0ðt2Þσβzð0Þi2ψ ∼ e−ζvBt. For t1 nonzero, we expect

even more marked decay hσα0ðt2Þσβzðt1Þi2ψ ∼ e−ζvBðtþt1Þ

because the support of σμσβz is further increased under
time evolution.

1. Infinite-temperature results

Consider the variance of the infinite-temperature expect-
ation value function

tr½2−Lσα0ðt2Þσβzðt1Þ�2 ¼
X
μ

jcαμðtÞj2 ×j2−LtrðσμσβzÞj2

¼ jcαβzðtÞj2: ðD3Þ

This is a Haar-averaged single-site weight. In the large t,
z=t → 0 limit, we have an expression for this quantity
(in the coarse-grained lattice basis). It is approximately
equal to Eq. (C6) using x ¼ z=2, y ¼ xþ 1, D ¼ 2t.
Asymptotically, the variance in the infinite-temperature
average then decays exponentially as

∼
�

2q
q2 þ 1

�
4t
: ðD4Þ

APPENDIX E: HAAR IDENTITIES

Note the following Haar moments for d × d random
unitary matrices:Z

dHU ×Ui1i2U
�̄
i1 ī2

¼ 1

d
δi1 ī1δi2 j̄2 :

The following higher moment is useful for deriving the
average square operator-spread coefficients:Z

dHU × Ui1
1
i1
2
U�̄

i1
1
ī1
2

Ui2
1
i2
2
U�̄

i2
1
ī2
2

¼ 1

d2 − 1
ðδi1

1
ī1
1
δi2

1
ī2
1
× δi1

2
ī1
2
δi2

2
ī2
2
þ δi1

1
ī2
1
δi2

1
ī1
1
× δi1

2
ī2
2
δi2

2
ī1
2
Þ

−
1

dðd2 − 1Þ ðδi11 ī21δi21 ī11 × δi1
2
ī1
2
δi2

2
ī2
2
þ δi1

1
ī1
1
δi2

1
ī2
1
× δi1

2
ī2
2
δi2

2
ī1
2
Þ:

This can be more elegantly expressed as a sum over
elements of permutation group S2,Z

dHU × Ui1
1
i1
2
U�̄

i1
1
ī1
2

Ui2
1
i2
2
U�̄

i2
1
ī2
2

¼
X
σ;η∈S2

WgðηÞRðησÞi11i21
ī1
1
ī2
1

× RðσÞi12i22
ī1
2
ī2
2

where WgdðηÞ≡ 1

d2 − 1

�
−1
d

�
δη¼ð1;2Þ

: ðE1Þ

APPENDIX F: RECURRENCE TIMES IN
TRANSLATION-INVARIANT CLIFFORD

QUANTUM CELLULAR AUTOMATA (CQCA)

The aim of this section is to show that translation-
invariant Clifford circuits have linear-in-system-size recur-
rence times (for a certain family of system sizes). We utilize
the technology and formalism of Ref. [[60] ].
Fact F.1. (Ref. [60], Theorem II.5) Clifford quantum

circuits with translation symmetry (unit cell size 1) are in
correspondence with the set of 2 × 2 matrices t with
elements in Z=2Z½u; u−1� (polynomials in u; u−1 over ring
Z=2Z) obeying

det t ¼ u2a

tijðuÞ ¼ ua × symmetric Laurent½u; u−1�;
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where t11 coprime t21, and t12 coprime t22. Here by
coprime, we mean the polynomials over ring Z=2Z do
not possess any common nontrivial factors. We say that a
Clifford quantum circuit is centered if a ¼ 0.
Fact F.2. (From Ref. [60], Proposition II.13). A cen-

tered CSCA t is periodic with period cþ 2 if tr t ¼ c for
c ∈ Z=2Z (so the period is either 2 or 3).
Proof.—This is actually quite straightforward. From Fact

F.1, we have t2 ¼ trðtÞtþ 1. If trðtÞ ¼ 0, then t2 ¼ 1.
Otherwise, t3 ¼ tðtþ 1Þ ¼ tþ 1þ t ¼ 1. ▪
Theorem 1. Translation-invariant centered CQCAs U

have linear-in-system-size recurrence times (at most
trec ¼ 12L), at least for system sizes L ¼ 2n.
Proof.—Let t be the 2 × 2 matrix corresponding to

Clifford unitary U. By the Cayley-Hamilton (CH) theorem
(which holds for matrices over arbitrary rings), and the fact
that det t ¼ 1, we have

t2 ¼ trðtÞtþ 1;

where the matrices are written over the ring of Laurent
polynomials with Z=2Z coefficients, i.e., Z=2Z½u; u−1�.
Recall from Fact.1 that, for a centered circuit, the elements
of t are symmetric Laurent polynomials. Note that the CH
theorem can be iterated,

t4 ¼ ðtrðtÞtþ 1Þ2
¼ t2trðtÞ2 þ 1þ 2 × ðstuffÞ
¼ t2trðtÞ2 þ 1

¼ ttrðtÞ3 þ trðtÞ2 þ 1

¼ tp3 þ p2 þ 1;

where, for convenience, we denote p≡ trðtÞ, which is of
course a symmetric Laurent polynomial. Proceeding induc-
tively, and squaring successive equations, one can show

t2
k ¼ t × p2k−1 þ 1

Xk
a¼1

p2k−2a :

Now, consider the trace of t2
k
:

trðt2kÞ ¼ p2k þ 2 ×
Xk
a¼1

p2k−2a ¼ p2k :

We can write

p ¼
X
r

crur;

where cr ¼ c−r ∈ Z=2Z. Now, we iteratively square this
expression. The cross terms disappear because the ring is
Z=2Z,

p2 ¼
X
r

cru2r;

p4 ¼
X
r

cru4r;

…

p2k ¼
X
r

cru2
kr:

For a system of size L, and periodic boundary con-
ditions, the constraint uL ¼ u0 ¼ 1 is imposed on our
polynomial ring. Hence, setting L ¼ 2n and k ¼ n, we get

trðt2nÞ ¼ p2n ¼
X
r

cr ¼ c0:

But c0 is just a constant. Using Fact F.2, and the fact that
trt2

n
is a constant, we have that UL¼2n is a periodic circuit.

Using this result, Gütschow et al. show that t2
nðc0þ2Þ ¼ 1 is

the identity matrix. This implies that U2nðc0þ2Þ does not
permute Pauli matrices—it only multiplies them by phases
(which can only be �1 in order to preserve generating
relations for Pauli matrices). This in turn implies that
U2nþ1ðc0þ2Þ ∝ 1, the identity matrix on the many-body
Hilbert space. Hence, as c0 þ 2 ¼ 2; 3, and both 2,3 divide
6, we certainly have U2nþ1×6 ∝ 1. In other words if U obeys
the conditions of the theorem then U12L ∝ 1 for L ¼ 2n.
The upshot is that all such Clifford circuits obeying the
conditions of the theorem have a linear-in-system-size
recurrence time trec ≤ 12L, for L ¼ 2n. ▪
Corollary 1.1. Translation-invariant CQCAs have, on

average, an exponential in system-size-level degeneracy.
Proof.—There are 2L states in the Hilbert space. The

linear-in-system-size κL recurrence time (e.g., κ ¼ 12)
means the eigenvalues are WLOG κLth roots of unity.
Hence, the unitary has at most κL eigenvalues. Therefore,
the average level degeneracy is 2L=κL—exponentially
large in system size. ▪
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