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We generate and characterize entangled states of a register of 20 individually controlled qubits, where
each qubit is encoded into the electronic state of a trapped atomic ion. Entanglement is generated amongst
the qubits during the out-of-equilibrium dynamics of an Ising-type Hamiltonian, engineered via laser
fields. Since the qubit-qubit interactions decay with distance, entanglement is generated at early times
predominantly between neighboring groups of qubits. We characterize entanglement between these groups
by designing and applying witnesses for genuine multipartite entanglement. Our results show that, during
the dynamical evolution, all neighboring qubit pairs, triplets, most quadruplets, and some quintuplets
simultaneously develop genuine multipartite entanglement. Witnessing genuine multipartite entanglement
in larger groups of qubits in our system remains an open challenge.
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I. INTRODUCTION

The ability to generate quantum entanglement [1,2]
between large numbers of spatially separated and individu-
ally controllable quantum systems—such as qubits—is
of fundamental importance to a broad range of current
research endeavors, including studies of nonlocality [3],
quantum computing [4], quantum simulation [5], quantum
communication [6,7], and quantum metrology [8–11]. For
example, in order for quantum computers and simulators to
go beyond the capabilities of conventional computers, large
amounts of entanglement (or other quantum correlations)
must be generated between their components [12].
As such, there is an ongoing effort to generate and

characterize entangled states of increasing numbers of
qubits, in systems which permit preparation of arbitrary

initial states, the control of interactions between constituent
particles, and readout of individual sites. In such systems,
the largest number of qubits entangled to date is 14,
achieved in a trapped-ion system [13], followed by 10
entangled superconducting qubits [14], and 10 entangled
photonic qubits [15].
Since every qubit added to an experimental system doubles

the Hilbert space dimension in which the collective quantum
state is described, the task of characterization of an unknown
state in the laboratory can soon become a significant
challenge. Indeed, all generated entangled states of more
than 6 qubits to date have been of a highly symmetric form,
such as Greenberger-Horne-Zeilinger (GHZ) or W states,
for which efficient characterization techniques exist [16].
How to generate and detect more complex multiqubit
entangled states remains an open challenge.
In this paper, we report on the deterministic generation

of complex entangled states of 20 trapped-ion qubits and
their partial characterization via custom-built witnesses
for genuine multipartite entanglement (GME). Our states
are complex in the sense that they are generated during
quench dynamics of an engineered many-body
Hamiltonian and their exact description requires specifying
a number of parameters that grows exponentially in the
number of qubits involved. Each qubit in our system can
be, and is in this work, individually manipulated and read

*ben.lanyon@uibk.ac.at
†Present address: ARC Centre for Engineered Quantum

Systems, School of Physics, The University of Sydney, 2006
New South Wales, Australia.

‡These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 021012 (2018)

2160-3308=18=8(2)=021012(20) 021012-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.021012&domain=pdf&date_stamp=2018-04-10
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1103/PhysRevX.8.021012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


out, as required for universal quantum computation and
quantum simulation.
This paper is structured as follows. Section II presents

the experimental system and explains how the 20-qubit
quantum states are generated and measured in the labo-
ratory. Section III presents results of basic properties
measured for the generated 20-qubit states, using estab-
lished methods. Section IV introduces and applies analyti-
cally derived GME witnesses to reveal genuine tripartite
entanglement in all groups of 3 neighboring qubits. To go
beyond tripartite correlations, we then turn to more com-
putationally demanding witnesses in Sec. V, which enable
GME to be detected in groups of up to 5 neighboring
qubits. Finally, we discuss our results and possible future
directions in Sec. VI.

II. EXPERIMENTAL SETUP

Our register of N ¼ 20 qubits is realized using a 1D
string of 40Caþ ions confined in a linear Paul trap, with axial
(radial) center-of-mass vibrational frequency of 220 kHz
(2.712 MHz) [17]. A qubit is encoded into two long-lived
states of the outer valence electron in each ion. That is,
the computational basis states of the qubits are chosen
as j0i ¼ jSJ¼1=2;mj¼1=2i, j1i ¼ jDJ¼5=2;mj¼5=2i, which are
connected by an electric quadrupole transition at
729 nm [18].
Under the influence of laser-induced forces that off-

resonantly drive all 40 transverse normal vibrational modes
of the ion string, the interactions between the qubits are
well described by an “XY” model in a dominant transverse
field [19–21], with Hamiltonian

HXY ¼ ℏ
X
i<j

Jijðσþi σ−j þ σ−i σ
þ
j Þ þ ℏB

X
j

σzj: ð1Þ

Here Jij is an N × N qubit-qubit coupling matrix, σþi (σ−i )
is the qubit raising (lowering) operator for qubit i, B is the
transverse field strength (B ≫ maxfjJijjg), and σzj ≡ Zj is
the Pauli Z matrix for qubit j with eigenvectors satisfying
Zj0i ¼ −j0i and Zj1i ¼ j1i. Interactions reduce approx-
imately with a power law Jij ∝ 1=ji − jjα with qubit
separation number ji − jj, where in this work α ≈ 1.1.
The ground state of HXY has all qubits in the state j0i.

The excited states are split into m uncoupled and non-
degenerate manifolds. Each manifold contains an integer
number of qubit excitations (qubits in the state j1i), with
the mth manifold containing states with m qubit excita-
tions. In previous work, we have shown that an initial state
consisting of a single localized qubit excitation coherently
disperses in the system, distributing quantum correlations
as it propagates [22]. Here, we study the entanglement
generated during the time evolution of the initial 20-qubit
Néel-ordered product state jψðt ¼ 0Þi ¼ j1; 0; 1;…i under
HXY . That is, we study the state in the laboratory that is

ideally described by jψðtÞi ¼ expð−iHXYtÞjψð0Þi. The
initial Néel state jψð0Þi contains localized qubit excitations
at every other site, which should ideally coherently
disperse in the subsequent dynamics, entangling groups
of neighboring qubits, as we have previously shown for
neighboring pairs with a string of up to 14 qubits [19].
While Ref. [19] presented scalable tomography techniques
[23–25], here we study multipartite entanglement dynamics
in the system.
The initial state is prepared as follows. Standard Doppler

cooling, optical pumping, and resolved-sideband cooling
prepare the initial qubit state j0; 0; 0;…; 0i and all 40
transverse vibrational string modes into the motional
ground state [19,20]. Next, a combination of qubit-resonant
laser beams that illuminate all ions simultaneously and off-
resonant single-ion-focused laser beams flip every second
qubit, preparing the state jψð0Þi. The interactions (laser-
induced forces) simulating HXY are then turned on.
After the desired evolution time t, the interactions are

turned off and the state [ideally jψðtÞi] is measured via
qubit-state-dependent resonance fluorescence, using a sin-
gle-ion-resolved electron multiplying charge coupled device
(EMCCD) camera. Specifically, detecting a fluorescing
(nonfluorescing) ion corresponds to the measurement out-
come j0i (j1i). Such a measurement corresponds to projec-
ting each of the 20 qubits into the eigenstates of the Pauli Z
operator, for which there are 220 possible outcomes each
corresponding to a 20-qubit projective measurement out-
come. After repeated state preparations and measurements in
the “Z basis,” any single-qubit expectation value (hZii),
2-qubit correlator (hZiZji), or indeed any other n-qubit
“Z-type” correlator can be estimated between any qubits (up
to n ¼ 20). Performing single-qubit operations, with a
single-ion-focused laser, before the aforementioned meas-
urement process enables projective measurement of any
qubit in any desired basis, and therefore the construction of
any multiqubit correlation function. That is, in this work full
local control over the individual qubits is available and
necessary for state preparation and analysis. A conceptual
schematic of our experimental protocol is presented in Fig. 1.
One approach to studying the entanglement properties

of an N-qubit system is to perform full quantum state
tomography to estimate theN-qubit density matrix and then
develop and apply entanglement measures to that matrix.
While this is technically possible for our 20-qubit system
(i.e., the required measurements can each be performed in
principle), it is practically not feasible as, e.g., billions of
measurement bases are required. In general, the number of
measurement bases required for full state tomography
grows exponentially in N as 3N . Several of us have recently
shown that matrix product state (MPS) tomography can
provide a pure-state estimate of states generated in quantum
systems with finite-range interactions, using a number of
measurements (and all other resources) that scales effi-
ciently (polynomially) with the system size [19]. However,

NICOLAI FRIIS et al. PHYS. REV. X 8, 021012 (2018)

021012-2



MPS tomography failed to produce a useful pure-state
description in our present 20-qubit system, probably due to
errors in preparation of the initial state that lead to mixed
states and the long-range nature of the interactions present
in our 20-qubit Hamiltonian.
A more favorable approach to detecting and character-

izing entanglement in N-qubit systems is to develop
entanglement witnesses that are not a function of every
element of the density matrix and can be directly measured
in the laboratory with a practical number of measurements.

III. INITIAL RESULTS: MAGNETIZATION
AND ENTANGLEMENT

As the first experimental step, we prepare the time-
evolved state of our system [ideally described by jψðtÞi]
and measure each qubit in the Z basis. The dynamical

evolution of hZii (proportional to the probability of finding
a qubit excitation at site i) shows how the multiple
excitations in the initial state disperse, and then partially
refocus at later times, in close agreement with predictions
from the exact model [see Figs. 2(a) and 2(b)]. One sees in
the data and theory [Figs. 2(a) and 2(b)] that the qubit
excitations at the ends of the string disperse more slowly
than those in the center of the string (the green color
representing “delocalized” excitations appears at later times
for qubits farther from the center of the string). The qubit-
qubit interactions (Jij) are not homogeneous across the
string, leading to slower evolution for qubits farther away
from the center. Jij for spin pairs near the string center is
approximately 25% larger than for spin pairs located at
either end of the string. The physical origin of this effect is a
combination of the Gaussian intensity profile of the laser
fields involved in generating the interactions (the laser
beam is centered on the middle ions and therefore weaker
on the outer ions) and the intrinsic interaction inhomoge-
neity across the string set by the ion-string vibrational mode
frequencies, for our chosen trapping parameters. Both
effects are taken into account in the theoretical model
presented in Fig. 2(b).
As the final experimental step, we perform the set of

measurements that would be sufficient to reconstruct (via
full quantum state tomography) the density matrices of all
neighboring k ¼ 3 qubits (qubit triplets), during the sim-
ulator dynamics. This set consists of 3k ¼ 27 measurement
bases (with 1000 measurements performed per basis),
corresponding to all possible combinations of choosing
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FIG. 2. Quantum dynamics of the 20-qubit register. (a) Exper-
imental data. Single-qubit magnetization hZii. (b) Theoretical
model. Single-qubit magnetization hZii for the exact time-
evolved state jψðtÞi. (c) Experimental data. Entanglement in
all 19 neighboring qubit pairs at evolution time t ¼ 2 ms,
quantified by the genuine multipartite negativity [26,27]. Values
for entanglement are calculated from experimentally recon-
structed 2-qubit density matrices. Errors are 1 s.d. derived from
Monte Carlo simulation of finite measurement number.

FIG. 1. Conceptual schematic of the experiment. The exper-
imental sequence proceeds as follows. (a) Standard Doppler
cooling, optical pumping, and resolved-sideband cooling prepare
the initial qubit state j0; 0; 0;…; 0i and all 40 transverse vibra-
tional string modes close (< 1 phonon per mode) to the motional
ground state [19,20]. An image of the 20 ions in our trap during
state-dependent fluorescence detection of the state j0; 0; 0;…; 0i
is shown. The string length is 108 μm. (b) A combination of
single-ion-focused and global laser beams prepares the initial
state jψðt ¼ 0Þi ¼ j1; 0; 1;…i. (c) A bichromatic light field is
applied to jψðt ¼ 0Þi, subsequently inducing qubit-qubit inter-
actions (not shown) as described in the text [19–21]. (d) After any
desired evolution time, the interactions are turned off, leaving a
nonclassical state of qubits (well approximated by) jψðtÞi. (e) A
combination of single-ion-focused and global laser beams is used
to rotate the basis of individual qubits, determining the desired
measurement basis in the next step. An example laser pattern is
shown. (f) The standard state-dependent resonant fluoresce
technique is used to determine the state of each qubit (see
Methods in Ref. [19] for more details). An example outcome,
imaged on an EMCCD camera, is shown schematically. The ions
are then cooled again and initialized, ready for the sequence to be
repeated.
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three Pauli operators. We carry out a simple scheme (choice
of measured Pauli operators) that allows measurements on
all 18 neighboring qubit triplets (out of the 20-qubit string)
to be performed in parallel, requiring a total of only twenty-
seven 20-qubit measurement bases. From this data set, we
could reconstruct the density matrices of all single qubits,
neighboring qubit pairs, and neighboring qubit triplets.
Generalizing this approach to arbitrary k, all N − kþ 1
groups of neighboring k-qubit density matrices in an N-
qubit string can be fully characterized by measuring in 3k

bases (independent of the number of qubits N). For fixed k,
this measurement approach is clearly efficient (constant
overhead) in the system size N. We nonetheless stop at
k ¼ 3, as the number of measurement bases for k ¼ 4 is
already quite demanding and, as we show, k ¼ 3 is already
sufficient to observe genuine multipartite entanglement in
groups of up to five qubits.
We reconstruct the density matrices of all neighboring

qubit pairs from the experimental data, via the standard
maximum likelihood method, which finds the most likely
physical density matrix to have produced the data. For each
of the reconstructed 2-qubit states we evaluate the genuine
multipartite negativity N g, an established measure for
GME [26,27]. A positive value of N g for a given k-qubit
state implies the existence of genuine k-partite entangle-
ment in this state, since N g vanishes for all biseparable
states. For two qubits, N g is directly related to the
logarithmic negativity [28]. More details on N g are given
in Sec. V. From the results one sees that all neighboring
qubit pairs become entangled during the time evolution of
the system, as is shown for t ¼ 2 ms in Fig. 2(c). Error
bars, on properties calculated using the tomographically
reconstructed density matrices, are derived from the finite
number of measurements (1000 for each global basis) used
to estimate expectation values and calculated using the
standard Monte Carlo method [29].
Naturally, one may wonder if entanglement extends

beyond qubit pairs, for instance, in the form of bipartite
entanglement between distant qubits or in terms of genuine
multipartite entanglement between groups of more than
two (adjacent) qubits. In fact, one may even be tempted to
ask, is multipartite entanglement not implied if every
neighboring qubit pair is entangled? The answer to this
question is simply no. One can indeed have states that
feature entanglement in every 2-qubit reduction, yet still
feature only bipartite entanglement [30]. Nonetheless, in
theory, it is often possible to detect GME purely from
inspection of the reduced density matrices of overlapping
groups of qubits [16]. This is the basis for our first approach
to detecting GME, presented in the next section, where we
derive GME witnesses purely from neighboring two-body
observables.
In general, the task of determining if and how an N-qubit

quantum system is entangled is highly nontrivial. For an
arbitrary known mixed state (e.g., reconstructed via full

state tomography), the problem is at least NP hard and even
the best known relaxations are semidefinite programs
(SDPs) that are not feasible beyond 5 qubits with our
computers [26,31]. However, if the density matrix is close
to a given pure target state jψTi, then targeted witnesses can
be constructed to detect its entanglement without resorting
to full tomography [16]. There, the canonical ansatz would
be to estimate the fidelity to the ideal target state
TrðρjψTihψT jÞ and check whether it is above the maximum
possible fidelity of a biseparable state. That is, a corre-
sponding witness would be W ¼ β1 − jψTihψT j, where
β ≔ minAjĀjjTrĀðjψTihψT jÞjj∞; see, e.g., Ref. [16], Sec. 3.
6. While this witness could in principle be successful in
detecting GME if the experimental state is indeed very
close to the intended pure state, it suffers from poor noise
resistance [32] and the task of determining the state fidelity
for arbitrary pure states still requires a number of meas-
urement settings that scales exponentially in qubit num-
ber [33].
For example, if the state is “well conditioned” [33], i.e.,

if only few Pauli-expectation values are of a significant
size and all others vanish, one could estimate the fidelity
via randomized measurements [33] with effort that scales
efficiently in qubit number. Although our states are not well
conditioned, in Ref. [19] we implemented this randomized
measurement strategy to obtain a fidelity estimate for a
14-qubit version of the states presented here, at one time
step. That experiment required preparing 5 × 105 sequen-
tial copies of the state and involved over 5 hours of data
taking (with periodic recalibration of experimental param-
eters). Numerical simulations of the randomized measure-
ment technique applied to the 20-qubit states considered
in this work show that more than 3 times the number of
copies, and therefore impractical measurement time, would
be required to yield accurate fidelity estimations. As such,
we aim to develop novel, and more time-efficient,
approaches to characterizing entanglement in our 20-qubit
system. As a first step in this direction, we focus on the
dynamics of subsystem entanglement percolating through
the system and are able to make statements about the
entanglement using measurements completed in a few tens
of minutes in our system.

IV. GME WITNESSES BASED ON
2-QUBIT OBSERVABLES

In this section, we construct analytical witnesses for
GME based on 2-qubit observables and use them to detect
GME in groups of up to three neighboring qubits (k ¼ 3)
within the 20-qubit (N ¼ 20) register. Recall that a (multi-
partite) pure state jψi is called biseparable if there exists a
bipartition AjB such that jψi ¼ jϕiAjχiB for some jϕiA and
jχiB, and is called genuinely multipartite entangled other-
wise. Mixed states are GME if their density operators
cannot be written as convex combinations of biseparable
pure states. For more details, see Appendix A 2.
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Following the observation in the previous section of
strong entanglement between neighboring qubits, the first
type of GME witnesses we consider is based on average
fidelities of the 2-qubit density matrices with Bell states. As
such, only expectation values of pairs of Pauli operators, on
k-qubit subsets of choice, are required. Linear combina-
tions of these expectation values are then evaluated and
compared to their respective thresholds for biseparable
k-qubit states. Surpassing a k-qubit biseparability threshold
then detects genuine k-partite entanglement.
We now present a short technical summary of our

method, and refer the reader to Appendix A for more
details. The main quantity of interest for detecting k-qubit
GME in this section is the k-qubit symmetric average Bell

fidelity F̄ ðkÞ
Bell, which we define as

F̄ ðkÞ
Bell ≔

1

4bk

 
bk þ

Xk
i;j¼1
i<j

ðjhX̃iX̃jij þ jhỸiỸjij þ jhZ̃iZ̃jijÞ
!
;

ð2Þ

where bk ¼
� k
2

�
¼ 1

2
fðk!Þ=½ðk − 2Þ!�g, and the subscripts

i and j denote operators acting nontrivially only on the ith
and jth qubits; i.e., Oi ≡ 11 ⊗ … ⊗ 1i−1 ⊗ Oi ⊗ 1iþ1 ⊗
… ⊗ 1N . The operator triple X̃i ¼ UiXU

†
i , Ỹi ¼ UiYU

†
i ,

and Z̃i ¼ UiZU
†
i is chosen unitarily equivalent to the usual

triple of Pauli operators X, Y, and Z, although the unitary
Ui ∈ SUð2Þ may be chosen differently for each qubit (for

each i). This ensures that F̄ ðkÞ
Bell can be written as a linear

combination (the absolute values can be replaced by
appropriate sign changes) of pairs of Pauli operators. As
we show in detail in Appendix A, any quantum state of k
qubits for which

F̄ ðkÞ
Bell >

(
1
12
ð3þ ffiffiffiffiffi

15
p Þ for k ¼ 3

1
4
ð1þ ffiffiffi

3
p Þ − 1

2k ð
ffiffiffi
3

p
− 1Þ for k ≥ 4

ð3Þ

is genuinely k-partite entangled for any choice ofU1;…; Uk.
For example, for k ¼ 3 and k ¼ 4 one can detect GME for

F̄ ð3Þ
Bell >

1
12
ð3þ ffiffiffiffiffi

15
p Þ ≈ 0.573 and for F̄ ð4Þ

Bell >
1
8
ð3þ ffiffiffi

3
p Þ≈

0.592, respectively. Meanwhile, the threshold for k ¼ 2

qubits, F̄ ð2Þ
Bell > 0.5, is a well-known result.

If the underlying N-partite quantum state is known (the
Ui are known), one could directly measure all of the 3bk
2-qubit correlators hÕiÕji appearing in Eq. (2) for opti-
mally chosen fUig. However, when the optimal local
measurements are unknown, one strategy is to measure
the 6k k-qubit basis settings corresponding to the set

n
OðiÞ

XY;O
ðiÞ
YX;O

ðiÞ
XZ;O

ðiÞ
ZX;O

ðiÞ
YZ; O

ðiÞ
ZY

o
i¼1;…;k

; ð4Þ

where OðiÞ
AB ¼ Ai

Q
i≠jBj, and perform the optimization

when evaluating the corresponding results. From the 2k

outcomes of each of these simultaneous measurements of k
qubits one can obtain the expectation values of all pairwise
combinations of Pauli operators.
For our purposes, we exploit the fact that the results from

the twenty-seven 20-qubit measurement bases already
taken in the laboratory are also sufficient to calculate all

the expectation values appearing in the witnesses F̄ ðkÞ
Bell for

k ¼ 2 and k ¼ 3. That is, they contain as a subset, all the

2-qubit observables required to calculate F̄ ð2Þ
Bell and F̄ ð3Þ

Bell,
without knowledge of the states. The results, for increasing
system interaction times and for the optimization of the Ui
limited to the X-Y plane for each qubit, are shown in Fig. 3.

First, the witness for bipartite entanglement (F̄ ð2Þ
Bell > 0.5)

reaffirms that all qubits are (bipartite) entangled with their
direct neighbors throughout the interaction time (from time
0.5 to 3.5 ms). Second, genuine tripartite entanglement
between neighboring qubit triples builds up more slowly
and is initially detected at time 1.5 ms. At time 2 ms, most
triples of neighboring qubits are genuinely tripartite
entangled, before the GME gradually disappears again at
later times.
The experimental uncertainties (error bars) in Fig. 3

originate from a finite number of measurements used to
estimate expectation values. Specifically, the error bars
show an estimate of 1 standard deviation of the mean.
When estimating the standard deviation of the mean, one
must consider possible correlations between 2-qubit
expectation values if they are estimated from outcomes
of the same 20-qubit measurement basis. We estimate the
relevant variance as described in Ref. [19] (therein see
Supplemental Material Secs. IV.A.4 and IV.A.5, pp. 9–13).
The small deviations between the theoretical and mea-

sured dynamics of F̄ ð2Þ
Bell and F̄ ð3Þ

Bell in Fig. 3 are due to
experimental imperfections, which we discuss in the next
section.
A number of interesting observations, based on analy-

ses beyond those presented in Fig. 3, are now made. First,
up to the evolution time presented in Fig. 3, entanglement
between any 2-qubits spaced farther apart than direct
neighbors was never detected–in agreement with the ideal
theoretical model. For instance, on these timescales, qubit
1 does not directly become entangled with qubit 3 alone,
but qubits 1, 2, and 3 do become genuinely tripartite
entangled with each other. In fact, the absence of next-
nearest-neighbor pairwise entanglement was necessary to
detect 3-qubit GME. Specifically, we found that a GME
witness based only on the entanglement between direct
neighbors (see Appendix A 2 b) is not able to verify
genuine tripartite entanglement, and it was only possible
to do so once the (separable) correlations between non-
neighboring qubits (e.g., qubits 1 and 3) are also taken
into account.
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Second, although there are states for which the witness of
Eqs. (2) and (3) could be used to detect GME between more
than 3 parties [34], it is not sensitive enough to do so for the
states presented here in our setup (neither for the theoretical
predictions nor for the experimental data).
To address the question of whether genuine multipartite

quantum correlations occur in groups of more than 3 qubits,
in our setup, we hence turn to more computationally
demanding procedures, which we present in the next section.
The observed and predicted entanglement peak ampli-

tude and dynamics for qubits near the center and those near
the ends (Fig. 3) are markedly different. We attribute those
differences to the interaction inhomogeneity across the
qubit string and boundary effects.

V. GME WITNESSES BASED ON
NUMERICAL SEARCH

In this section, we present and apply a method that
employs a numerical search to find k-qubit witnesses for
GME. This search is computationally intensive: an opti-
mization is performed that takes computational resources
that increase exponentially with k. Finding a GME
witness operator for mixed 5-qubit states is already at
the practical limit of our available computers and algo-
rithms. Nonetheless, we find witnesses that succeed in
detecting GME in groups of up to 5 qubits in our 20-qubit
experimental system. In the following, we give a brief

overview of the new witnesses and defer to Appendix B for
a more detailed discussion of the technical aspects.
We make use of the genuine multipartite negativity (N g),

an established measure for GME [26,27]. A positive value
of N g for a given k-qubit state implies the existence of
genuine k-partite entanglement in this state, since N g

vanishes for all biseparable states. The N g can be calcu-
lated given knowledge of the density matrix [26,27].
However, we have not performed a tomographically com-
plete set of measurements for more than k ¼ 3 qubits (we
do not have the density matrices for the state in the lab, for
k > 3). Our approach, to detect GME in any given group i,

of k qubits, is to find a k-qubit witness operator QðkÞ
i whose

expectation value provides a lower bound on the k-qubit
N g, and which can be written as a function of the set of
measurements that were carried out in our experiment. We
now provide more details on this approach.

We perform a search to find a k-qubit operator QðkÞ
i ,

subject to two important constraints. First, we search for an
operator which both maximizes the following inequality,

−TrðQðkÞ
i ρki Þ≡ SðkÞ

i ≤ N gðρki Þ; ð5Þ
for a specific k-qubit state of interest ρki , and satisfies the

inequality for all possible k-qubit states. We call QðkÞ
i a

quantitative entanglement witness (QEW) because it pro-
vides a lower bound on N g. It is straightforward to

(a)

(b)

FIG. 3. Entanglement witnesses based on symmetric average Bell fidelities. The experimental results (red) and theoretical predictions
based on ideal time-evolved state jψðtÞi (blue) for the entanglement witnesses F̄ ð2Þ

Bell and F̄
ð3Þ
Bell are shown in (a) and (b), respectively. The

horizontally arranged panels show the results at different time steps, 0.0 ms, 0.5 ms, 1.0 ms, etc., with intervals of 0.5 ms during the time
evolution of the 20-qubit chain, starting with 0 ms (the initial state). Within each panel, each dot represents a pair (a) or triple (b) of
neighboring qubits. The horizontal dashed lines indicate the detection thresholds for bipartite [(a) F̄ ð2Þ

Bell > 0.5] and genuine tripartite

entanglement [(b) F̄ ð3Þ
Bell >

1
12
ð3þ ffiffiffiffiffi

15
p Þ ≈ 0.573], respectively. The error bars for each qubit pair or triple represent 1 standard deviation

of the mean in each direction. It can be seen in (a) that all qubits immediately become entangled with their direct neighbors and remain
entangled throughout, whereas genuine tripartite entanglement is detected in time step 1.0 ms for the first time. At time step 2.0 ms, the
witness F̄ ð3Þ

Bell indicates that all neighboring qubit triples are genuinely tripartite entangled simultaneously (although the witness is less
than 1 standard deviation above the threshold for two of these triples).
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constrain the search in this way and also to verify that any

given QðkÞ
i is a QEW. When searching for the optimal

witness, we use a theoretical model for the time-evolved
k-qubit state for ρki . Second, we include the additional

constraint that theQðkÞ
i can be written as a linear function of

the k-qubit measurement operators (projectors) that were

done, involving qubit group i. Specifically, we restrict QðkÞ
i

to the form

QðkÞ
i ¼

X
s⃗;α⃗

cðkÞi;s⃗;α⃗P
ðkÞ
s⃗;α⃗; ð6Þ

where the projectors PðkÞ
s⃗;α⃗ correspond to the marginal

distributions of the twenty-seven 20-qubit projective meas-

urement settings carried out in the lab (Sec. III), and cðkÞi;s⃗;α⃗

denote some coefficients. Here, s⃗ and α⃗ label, respectively,
the qubit outcome and the local basis of the measurements;
see also Appendix B 2.

The search for the optimal witnesses operator QðkÞ
i is

carried out using a semidefinite program. The run time of
the SDP is polynomial in the dimension of the Hilbert space
[35,36], but the dimension of our Hilbert space naturally

increases exponentially with the number of qubits k. This
makes the optimization demanding already for medium
numbers of qubits: Our available computational resources
are not sufficient to determine optimal witnesses for states
of more than 5 qubits.

The QðkÞ
i which satisfies Eqs. (5) and (6), and maximizes

the left-hand side of Eq. (5), determines an optimal witness
tailored to the target state (from a theoretical model) and the

available measurements. Once this optimal QðkÞ
i is found we

can calculate its expectation value from the outcomes of the
measurement done on the state in the laboratory. A witness

expectation value (SðkÞ
i ) larger than zero then detects k-qubit

GME (N g > 0), for the ith group of k qubits.
The experimental results for k ¼ 3 presented in Fig. 4(a)

show that all neighboring qubit triplets soon develop GME
during the dynamics, to within many standard deviations,
reaching a maximum at t ¼ 2 ms. Furthermore, for the
times 2, 2.5, and 3 ms, Figs. 4(b) and 4(c) show that GME
is detected in the majority of all neighboring groups of 4
and 5 qubits, to within at least 1 standard deviation of
experimental uncertainty.
Figure 4 compares the witness results obtained from the

data with those derived from two theoretical models. The

(a)

(b)

(c)

FIG. 4. Entanglement witnesses derived by a numerical search. The entanglement witnesses Sð3Þ
i , Sð4Þ

i , and Sð5Þ
i (see Sec. V) are shown

in (a)–(c), respectively. The horizontally arranged subpanels show the results at different system evolution time steps with intervals of
0.5 ms during the time evolution of the 20-qubit chain, starting with 0 ms (the initial state). Within each panel, each dot represents results
for a given triplet [(a) k ¼ 3], quadruplet [(b) k ¼ 4], or quintuplet [(c) k ¼ 5] of neighboring qubits. GME is detected if the witness is
positive. The different theory plots are for the pure model (black circles without error bars) and mixed model (blue triangles with error
bars), as described in the text. The red squares with error bars show experimental data. All error bars show 1 standard deviation of the
mean and originate from a finite number of numerically simulated measurements per measurement basis (1000).
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first “pure” model employs the perfect pure 20-qubit time-
evolved state [jψðtÞi] and uses exact knowledge of k-qubit
density matrices to optimize and apply the witnesses.
The witness expectation value for the pure model yields

SðkÞ
i ¼ N gðρki Þ. Although the pure model succeeds in

qualitatively describing the multipartite entanglement
dynamics, the witness expectation values from the data
are generally offset to lower values. A more sophisticated
“mixed” model is able to explain part of this offset, which
includes known imperfections in preparing the initial
Néel-ordered state. Specifically, out of 1000 attempts to
generate the Néel state, we observe the correct output state
829 times. In the remaining 171 cases, 146 correspond to
single qubit flip errors and the rest to errors with two or
more qubit flips. We attribute these errors to uncontrolled
fluctuations in laser intensity and frequency, and model
them as leading to the preparation of a statistical mixture of
those different logical initial states, with corresponding
weights. The witnesses used for the data were obtained by a
search involving the mixed-model reduced states for the
targets. We attribute the remaining small differences
between data and theory, in Fig. 4, to additional mixing
processes that occur in the laser-induced qubit-qubit
interactions.
The mixed theory predictions in Fig. 4 include error bars

due to the use of a finite number of numerically simulated
measurements per measurement basis (1000). Error bars
indicate 1 standard deviation of the mean, which is
estimated as in Sec. IV, and show that the fluctuations in
the data are largely consistent with those expected from
such statistical noise. We conclude that, in order to witness
4- and 5-partite GME with greater statistical significance in
future work, we could benefit from taking more measure-
ments. However, it will be challenging to ensure that the
experimental configuration remains stable over the longer
time required to take such additional measurements.
The sizes of the error bars on both data and mixed

theory points, in Fig. 4, increase with increasing k. This can
be understood as follows: there are more measurement
outcomes available in the data for the k ¼ 3 witness
calculations than for larger k. Amongst the twenty-seven
20-qubit measurement bases, 3-qubit measurements are
repeated (duplicated) more often in the measurement
pattern than 4-qubit or 5-qubit measurements, leading to
better statistics.

VI. DISCUSSION AND CONCLUSION

We have experimentally generated and detected the
presence of entanglement in a register of 20 qubits. In
particular, we detected the dynamical evolution of genuine
multipartite entanglement in the system following a
quench, and developed new characterization techniques
to do so. While we cannot say that 20-qubit GME was
generated, we can say that every qubit simultaneously

became genuine multipartite entangled with a least two of
its neighbors and, in most cases, three and four of its
neighbors.
Our experimental apparatus represents the largest joint

system of individually controllable subsystems to date
where the presence of entanglement has been demon-
strated. Each qubit can be individually controlled and
qubit-qubit interactions can be turned on and off as desired
(and tuned to have various forms). As such, our system has
the capability to perform universal quantum simulation and
quantum computation.
Confirming GME beyond groups of 5 qubits, even

for the ideal states, is currently beyond our available
classical computational resources and algorithms. A pos-
sible approach to overcome that problem is to exploit
symmetries in the system and initial state, to reduce the size
of the search space for witnesses. Another is to tune the
experimental system Hamiltonian into regimes where more
symmetries are apparent or approximated, e.g., infinite or
nearest-neighbor-only qubit-qubit interaction ranges.
Finally, witnesses based on average Bell-state fidelities

are straightforward to use and measure in the lab. As with
all such witnesses, they detect entanglement without the
need to carry out state tomography and can be evaluated
with only a few measurements. This can be important for
the detection of weakly entangled states, where estimates
based on state tomography are known to overestimate
entanglement [37]. Our witnesses based on brute-force
numerical searching have the advantage of placing the least
constraints on the form of the state in the lab and the
measurements that should be taken: this can be important in
the case of unknown local rotations of qubits during the
dynamics. As such, our witnesses should find application
beyond the present trapped-ion setting.
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APPENDIX A: GME WITNESSES BASED ON
BIPARTITE CORRELATORS

In this section, we introduce a method for the detection
of genuine multipartite entanglement in N-qubit systems.
This method is based on 2-qubit observables and does not
require full state tomography. In particular, our detection
criteria can be phrased as biseparability thresholds for
average Bell fidelities, i.e., expectation values of linear
combinations of pairs of Pauli operators. At the heart of this
method lies the anticommutativity theorem (ACT) from
Refs. [38,39], which we use to provide bounds on the
average Bell fidelities. Although our approach is not able to
detect all types of GME in multipartite systems, its
advantage lies in providing linear entanglement witnesses
that can be practically evaluated with only a few measure-
ments. More specifically, our approach does not require
obtaining a good estimate of the N-partite correlation
tensor [40,41] with 3N components, but instead only needs
at most 6N measurements of strings of N local Pauli
operators to test for N-partite GME. As we discuss, the
linearity of the witness also makes it amenable to a simple
treatment of the potentially correlated statistical errors
arising from deriving expectation values of bipartite
observables from simultaneous measurements of N qubits.
Following the brief description of these results in Sec. IV

of the main text, we now present more detailed derivations
of the quantities and bounds that we consider. In
Appendix A 1, we briefly define and motivate the basic
quantities of interest, before we construct our GME wit-
nesses in Appendix A 2.

1. Framework

In this section, we explain the basic quantities and
notions of interest, i.e., the anticommutativity theorem
of Ref. [39] and the average Bell fidelities to establish a
basis for the more detailed discussion of GME that is to
follow in Appendix A 2.

a. Anticommutativity theorem

Let us consider a set fAngn¼1;2;…;k of self-adjoint,
normalized, anticommuting operators on a Hilbert space
H with dimðHÞ ¼ d, i.e.,

TrfAm; Angþ ¼ TrðAmAn þ AnAmÞ ¼ 2dδmn; ðA1Þ
for all m; n ¼ 1;…; k. The ACT [38,39] then states that
for all states ρ ∈ LðHÞ,

Xk
n¼1

hAni2ρ ≤ max
n

hA2
niρ: ðA2Þ

A simple example for the applicability of this theorem is the
set of single-qubit Pauli operators fX; Y; Zg. Since all of
these operators anticommute and square to the identity, the
ACT then simply requires that

hXi2ρ þ hYi2ρ þ hZi2ρ ≤ h1iρ ¼ 1: ðA3Þ

In other words, for single-qubit Pauli operators, the ACT
is equivalent to demanding that Bloch vectors are (sub)
normalized, i.e., positivity of the density operator ρ. A less
trivial example of the ACT arises for 2 qubits. Consider the
set of operators

fX1X2; Y1Y2; Z1Z2; X2X3; Y2Y3; Z2Z3g; ðA4Þ

where the shorthand notation for N-qubit operators is

Oi ≡ 11 ⊗ … ⊗ 1i−1 ⊗ Oi ⊗ 1iþ1 ⊗ … ⊗ 1N; ðA5Þ

and O ∈ fX; Y; Zg. We can sort the six operators in the set
displayed in Eq. (A4) into three pairs of anticommuting
operators; e.g.,

fX1X2; Y2Y3gþ ¼ 0; ðA6aÞ

fY1Y2; Z2Z3gþ ¼ 0; ðA6bÞ

fZ1Z2; X2X3gþ ¼ 0: ðA6cÞ

Since the spectra of all six operators are f�1g (with
twofold degeneracy), we further have hOiOiþ1i2 ≤ 1,
and the ACT theorem hence tells us that)

hX1X2i2ρ þ hY2Y3i2ρ ≤ 1; ðA7aÞ

hY1Y2i2ρ þ hZ2Z3i2ρ ≤ 1; ðA7bÞ

hZ1Z2i2ρ þ hX2X3i2ρ ≤ 1: ðA7cÞ

To see where these bounds can be of use, let us next
examine fidelities with 2-qubit Bell states.

b. Average Bell-state fidelities

We now want to consider ways of quantifying how close
a given 2-qubit state is to a maximally entangled Bell state.
To this end, note that the density operators for the four
Bell states can be written in a generalized Bloch decom-
position as

ρψ− ¼jψ−ihψ−j¼1

4
ð11;2−X1X2−Y1Y2−Z1Z2Þ; ðA8aÞ

ρψþ ¼ jψþihψþj¼1

4
ð11;2þX1X2þY1Y2−Z1Z2Þ; ðA8bÞ
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ρϕ− ¼jϕ−ihϕ−j¼1

4
ð11;2−X1X2þY1Y2þZ1Z2Þ; ðA8cÞ

ρϕþ ¼ jϕþihϕþj¼1

4
ð11;2þX1X2−Y1Y2þZ1Z2Þ: ðA8dÞ

For any 2-qubit density operator ρ, we can then compute
the fidelity with any of the Bell states. For this purpose we
use the Uhlmann fidelity F, given by

F ðρ; σÞ ¼
�
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

p
ρ
ffiffiffi
σ

pq �
2

; ðA9Þ

which reduces to

F ðρ; jψihψ jÞ ¼ hψ jρjψi ¼ Trðρjψihψ jÞ ðA10Þ

if one of the arguments is a pure state. For example, for the
Bell state jψ−i one can use Eq. (A8a) and the fact that all
Pauli operators are traceless to find

F ðρ;ρψ−Þ¼1

4
ð1−hX1X2iρ−hY1Y2iρ−hZ1Z2iρÞ: ðA11Þ

Since the only difference to the fidelities with any of the
other Bell states are the relative signs between the different
expectation values, we can immediately note that the
fidelity of ρ with any of the four Bell states is bounded
according to

F ðρ; ρBellÞ ≤
1

4
ð1þ jhX1X2ij þ jhY1Y2ij þ jhZ1Z2ijÞ;

ðA12Þ

where we have dropped the subscript for the state ρ on the
expectation values for brevity.

c. Nearest-neighbor average Bell fidelity

When the system consists of more than 2 qubits, we can
evaluate the fidelity with 2-qubit Bell states for any two of
the constituent qubits. For simplicity, let us first consider
the nearest neighbors for now and examine the case of three
qubits. The average fidelity with arbitrary nearest-neighbor
Bell states is then

1

2
½F ðρ; ρBell;12Þ þ F ðρ; ρBell;23Þ� ≤ F̄NNBell; ðA13Þ

where we define the quantity F̄NNBell as the upper bound

F̄NNBell ≔
1

8
ð2þ jhX1X2ij þ jhY1Y2ij þ jhZ1Z2ij

þ jhX2X3ij þ jhY2Y3ij þ jhZ2Z3ijÞ; ðA14Þ

but we refer to F̄NNBell as the average nearest-neighbor Bell
fidelity from now on for simplicity. Next, we make use of
the relation between the 1-norm jja⃗jj1 ¼

P
n
i¼1 jaij and the

2-norm jja⃗jj2 ¼ ðPn
i¼1 jaij2Þ1=2 in an n-dimensional vector

space, i.e., the fact that

jja⃗jj1¼
Xn
i¼1

jaij×1¼jða⃗; 1⃗Þj≤ jja⃗jj2
�Xn

i¼1

12
�

1=2

¼ ffiffiffi
n

p jja⃗jj2;

ðA15Þ

where we have taken 1⃗ ¼ ð1; 1;…; 1ÞT to be a vector whose
components (with respect to whichever basis is chosen for a⃗)
are all equal to 1, and we have used the Cauchy-Schwarz
inequality jða⃗;b⃗Þj≤ jja⃗jj2jjb⃗jj2. Combining this with the
ACT theorem from Eq. (A2), we find, e.g.,

jhX1X2ij þ jhY2Y3ij ≤
ffiffiffi
2

p
ðhX1X2i2 þ hY2Y3i2Þ ≤

ffiffiffi
2

p
:

ðA16Þ

Applying the same procedure to the other pairs of expect-
ation values of anticommuting operators in Eq. (A14), we
arrive at the bound

F̄NNBell ≤
1

8
ð2þ 3

ffiffiffi
2

p
Þ: ðA17Þ

The average nearest-neighbor Bell state fidelity can of
course be generalized to N qubits; i.e., the upper bound on
the average nearest-neighbor Bell fidelity is

1

N − 1

XN−1

i¼1

F ðρ; ρBell;iðiþ1ÞÞ ≤ F̄ ðNÞ
NNBell; ðA18Þ

where we have defined

F̄ ðNÞ
NNBell ≔

1

4ðN − 1Þ
�
ðN − 1Þ þ

XN−1

i¼1

X
O¼X;Y;Z

jhO1Oiþ1ij
�

¼ 1

4ðN − 1Þ ½ðN − 1Þ þ jhX1X2ij þ jhY1Y2ij

þ jhZ1Z2ij þ jhX2X3ij þ jhY2Y3ij
þ jhZ2Z3ij þ � � � þ jhXN−1XNij
þ jhYN−1YNij þ jhZN−1ZNij�: ðA19Þ

The expression on the right-hand side contains N − 1
triples of expectation values. If N is odd, then N − 1 is
even, and each expectation value of an operator OiOiþ1

can be paired with another expectation value of an
operator O0

iþ1O
0
iþ2 that anticommutes with it; i.e., O;O0 ∈

fX; Y; Zg and fOiOiþ1; O0
iþ1O

0
iþ2gþ ¼ 0. The bound of

Eq. (A16) can hence be used f½3ðN − 1Þ�=2g times, and we
arrive at
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F̄ ðNoddÞ
NNBell ≤

1

4ðN − 1Þ
�
ðN − 1Þ þ 3ðN − 1Þ

2

ffiffiffi
2

p �

¼ 1

8
ð2þ 3

ffiffiffi
2

p
Þ: ðA20Þ

However, when N is even, one triple of expectation values
(without loss of generality for i ¼ N − 1) remains unpaired
and can only be bounded by

jhXN−1XNij þ jhYN−1YNij þ jhZN−1ZNij ≤ 3: ðA21Þ

Thus we arrive at the following upper bound on the
nearest-neighbor average Bell fidelity for arbitrary N-qubit
states; i.e.,

F̄ ðNÞ
NNBell ≤

8<
:

1
8
ð2þ 3

ffiffiffi
2

p Þ ðN oddÞ
1

4ðN−1Þ
h
ðN − 1Þ þ 3ðN−2Þ ffiffi2p

2
þ 3
i

ðN evenÞ:
ðA22Þ

d. Symmetric average Bell fidelity

Instead of restricting the analysis to nearest neighbors as
in Eq. (A14), one can of course also average over all
pairings of 2 qubits, obtaining a quantity that is symmetric
with respect to the exchange of any 2 qubits. Noting that
there are bN ¼ ðN

2
Þ ¼ 1

2
fðN!Þ=½ðN − 2Þ!�g different such

pairings, we have the upper bound

1

bN

XN
i;j¼1
i<j

F ðρ; ρBell;ijÞ ≤ F̄ ðNÞ
Bell; ðA23Þ

with the definition

F̄ ðNÞ
Bell ≔

1

4bN

 
bN þ

XN
i;j¼1
i<j

X
O¼X;Y;Z

jhOiOjij
!
: ðA24Þ

For, instance, for 3 qubits we have b3 ¼ 3 and the
symmetric average Bell fidelity reads

F̄ ð3Þ
Bell ¼

1

12
ð3þ jhX1X2ij þ jhX2X3ij þ jhX1X3ij

þ jhY1Y3ij þ jhY1Y2ij þ jhY2Y3ij
þ jhZ2Z3ij þ jhZ1Z3ij þ jhZ1Z2ijÞ: ðA25Þ

Here, we have arranged the expectation values such that it
becomes immediately obvious that the triples of operators
corresponding to expectation values listed directly below or
above each other mutually anticommute. We can then apply

the bound of Eq. (A15) and the ACT of Eq. (A2), e.g., as
illustrated for the terms

jhX1X2ij þ jhY1Y3ij þ jhZ2Z3ij
≤

ffiffiffi
3

p
ðjhX1X2ij2 þ jhY1Y3ij2 þ jhZ2Z3ij2Þ ≤

ffiffiffi
3

p
:

ðA26Þ

We thus arrive at the bound

F̄ ð3Þ
Bell ≤

1

12
ð3þ 3

ffiffiffi
3

p
Þ ¼ 1

4
ð1þ

ffiffiffi
3

p
Þ: ðA27Þ

In fact, the same bound applies for arbitrary numbers of
qubits, since all 3bN expectation values can be collected in
groups of 3 mutually anticommuting operators. To see this,
we use an inductive proof. Assume that we have found bN
groups of three anticommuting operators for N ≥ 3 qubits
and we wish to add another qubit. This means that we have
to additionally consider the operators

X1XNþ1; X2XNþ1; X3XNþ1;… ; XNXNþ1;

YNYNþ1; Y1YNþ1; Y2YNþ1;… ; YN−1YNþ1;

ZN−1ZNþ1; ZNZNþ1; Z1ZNþ1;… ; ZN−2ZNþ1:

All columns contain three mutually anticommuting oper-
ators for N ≥ 3. If the original 3bN operators can be
arranged in mutually anticommuting triples, then also
the new set of 3bNþ1 operators can be grouped in this
way, which concludes the inductive step. We have already
demonstrated that this statement is true for N ¼ 3 and have
hence shown that for any N ≥ 3 we have the bound

F̄ ðN≥3Þ
Bell ≤ F̄ ðNÞmax

Bell ≔
1

4
ð1þ

ffiffiffi
3

p
Þ: ðA28Þ

Having established these general bounds that apply for
arbitrary quantum states, we next examine how these
bounds can be improved upon when the states in question
are biseparable. This will allow us to formulate criteria for
the detection of genuine multipartite entanglement.

2. GME witnesses

In this section, we establish upper bounds for the nearest-
neighbor and symmetric average Bell fidelities for bisepar-
able states. These new upper bounds are below the
respective bounds of Eqs. (A22) and (A28) and hence
leave room for GME states in between. That is, any states
for which the combinations of expectation values discussed
above provide values beyond these biseparability bounds
are GME. As we shall see, the biseparability bounds for
nearest-neighbor Bell fidelities are not directly useful for
detecting GME, but these bounds serve as a simple example
for discussing the method of construction, which will be
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helpful for identifying GME witnesses based on symmetric
average Bell fidelities.

a. Outline of the technique

In the following we consider bipartitions AjB of the
set κ ¼ f1; 2;…; Ng of all N qubits; that is, we split κ into
two sets,

A ¼ fa1; a2;…; akjai ∈ κ; ai ≠ aj ∀ i ≠ jg; ðA29aÞ

B ¼ fb1; b2;…; bN−kjbi ∈ κ; bi ≠ bj ∀ i ≠ jg; ðA29bÞ

such that A ∪ B ¼ κ and A ∩ B ¼ ∅. For N qubits, one has
2N−1 − 1 different bipartitions.
Before we continue, let us briefly recall the definitions

of biseparability and genuine multipartite entanglement.
In general, a pure, N-partite state jψi ∈ H1;2;…;N ¼ H1 ⊗
H2 ⊗ …HN is called k-separable if it can be written as a
tensor product with respect to some partition of H1;2;…;N

into k ≤ N subsystems. As a special case of this definition,
a pure state is called biseparable if it can be written as
a tensor product with respect to some bipartition, i.e., if
there exists a bipartition AjB such that jψi ¼ jϕiAjχiB.
Conversely, a pure state jψi ∈ H1;2;…;N that is not bisepar-
able is called genuinely N-partite entangled. A mixed state
with density operator ρ is considered to be genuinely
multipartite entangled if it cannot be written as a convex
combination of biseparable states, that is, if it cannot be
written as

ρbisep ¼
X
i

pijψ ðiÞ
bisepihψ ðiÞ

bisepj; ðA30Þ

where
P

ipi ¼ 1 with 0 ≤ pi ≤ 1 and jψ ðiÞ
bisepi are bisepar-

able pure states. Note that the jψ ðiÞ
bisepi for different i can be

separable with respect to different bipartitions.
Now, consider a bipartition AjB and an operator OiOj

such that i ∈ A and j ∈ B. If the system is in a pure state
jψi that is separable with respect to to this bipartition, i.e., if
jψiAB ¼ jϕiAjχiB, then we have

hOiOjiψ ¼ hOiiϕhOjiχ : ðA31Þ

When we have a triple of operators XiXj, YiYj, and ZiZj

for such a separable state across AjB, we have

jhXiXjij þ jhYiYjij þ jhZiZjij
¼ jhXiij jhXjij þ jhYiij jhYjij þ jhZiij jhZjij
≤
Y
n¼i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhXnij2 þ jhYnij2 þ jhZnij2

q
≤ 1; ðA32Þ

where we have used the Cauchy-Schwarz inequality in the
second-to-last step and the subnormalization of the Bloch
vector in the last step. The inequality Eq. (A32) can be used
to bound the Bell fidelities for pure biseparable states for
different bipartitions.
As an example, consider again the nearest-neighbor

average Bell fidelity for three qubits from Eq. (A14).
For the bipartition 1j23, we can apply (A32) to the first
three expectation values in Eq. (A14), while the remaining
three can each be bounded by 1. A similar argument can be
made for the bipartition 12j3 by exchanging the roles of the
two triples of expectation values, such that

F̄ 1j23;12j3
NNBell ≤

1

8
ð2þ 1þ 3Þ ¼ 3

4
; ðA33Þ

where the superscripts indicate that the inequality is
satisfied for states that are biseparable with respect to (at
least one of) the listed bipartitions. When we examine the
bipartition 2j13, the situation is slightly different, since
Eq. (A32) can be used for all expectation values, and we
have

F̄ 2j13
NNBell ≤

1

8
ð2þ 1þ 1Þ ¼ 1

2
: ðA34Þ

Any pure 3-qubit state that is separable with respect to one
or more of these bipartitions (any pure, biseparable state
of three qubits) must hence satisfy F̄NNBell ≤ 3

4
. Moreover,

since any mixed state is considered to be biseparable when
it can be written as a convex combination of biseparable
pure states (not necessarily with respect to the same
bipartition), all mixed, biseparable states must also respect
this bound. Conversely, the first 3 qubits of any state ρ
for which

1

8
ð2þ jhX1X2ij þ jhY1Y2ij þ jhZ1Z2ij

þ jhX2X3ij þ jhY2Y3ij þ jhZ2Z3ijÞ >
3

4
ðA35Þ

are genuinely 3-partite entangled.

b. Nearest-neighbor average Bell fidelity
as GME witness

In principle, the nearest-neighbor Bell fidelity could
hence provide a detection criterion for GME that can be
generalized to N qubits. However, at this point a remark on
the detection power of this quantity is in order, since even
some paradigmatic cases of genuinely tripartite entangled
states for 3 qubits cannot be detected with this bound. That

is, for the 3-qubit GHZ and W states jψ ð3Þ
GHZi and jψ ð3Þ

W i
(or the local unitarily equivalent 2-excitation Dicke state

jψ ð3Þ
D;2i), given by
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jψ ð3Þ
GHZi ¼

1ffiffiffi
2

p ðj000i þ j111iÞ; ðA36aÞ

jψ ð3Þ
W i ¼ 1ffiffiffi

3
p ðj100i þ j010i þ j001iÞ; ðA36bÞ

jψ ð3Þ
D;2i ¼

1ffiffiffi
3

p ðj110i þ j101i þ j011iÞ; ðA36cÞ

one finds nearest-neighbor average Bell fidelities of

F̄ ð3Þ
NNBellðjψ ð3Þ

GHZiÞ ¼
1

2
; ðA37aÞ

F̄ ð3Þ
NNBellðjψ ð3Þ

W iÞ ¼ 2

3
; ðA37bÞ

F̄ ð3Þ
NNBellðjψ ð3Þ

D;2iÞ ¼
2

3
; ðA37cÞ

whereas the corresponding bound for detecting GME is 3
4
.

One can hence try to improve the method or find an
alternative. One way to improve the bound is by way of
taking into account the purity of the biseparable states. That
is, if we consider again the worst-case bipartition 1j23 for 3
qubits under the assumption that the state is separable with
respect to this cut, i.e., that jψi123 ¼ jϕi1jχi23, we have

F̄ 1j23
NNBell ≤

1

8
ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhX2ij2 þ jhY2ij2 þ jhZ2ij2

q
þ jhX2X3ij þ jhY2Y3ij þ jhZ2Z3ijÞ

¼ 1

8

�
2þ jb⃗j þ

X3
n¼1

jtnnj
�
; ðA38Þ

where we have used the Bloch vector b⃗ of the second qubit
and the correlation tensor t ¼ ðtmnÞ of qubits 2 and 3. In
other words, the state jχi23 can be written in a generalized
Bloch decomposition as

ρχ ¼ jχihχj ¼ 1

4

�
1þ b⃗ · σ⃗⊗ 1þ1⊗ c⃗ · σ⃗þ

X3
i;j¼1

tijσi⊗ σj

�
;

ðA39Þ

where σ⃗ ¼ ðσnÞ is the vector of Pauli operators
ðσ1 ¼ X; σ2 ¼ Y; σ3 ¼ ZÞ. Now, since jχi23 is a pure state,
we have Trðρ2χÞ ¼ 1, which translates to

1

4

�
1þ jb⃗j2 þ jc⃗j2 þ

X3
m;n¼1

jtmnj2
�

¼ 1; ðA40Þ

and we can hence derive the bound

jb⃗j2 þ
X3
n¼1

jtnnj2 ≤ 3: ðA41Þ

Interpreting jb⃗j and jtnnj (n ¼ 1, 2, 3) as coordinates in R4,
we find that Eq. (A41) defines a four-dimensional sphere of
radius

ffiffiffi
3

p
. The sum of the coordinates is then maximal

when all coordinates take the same value
ffiffiffiffiffiffiffiffi
3=4

p
. Inserting

into Eq. (A38), we then get the bound

F̄ 1j23
NNBell ≤

1

8

�
2þ 4

ffiffiffi
3

4

r �
¼ 1

4
ð1þ

ffiffiffi
3

p
Þ ≈ 0.683 013:

ðA42Þ

Since the bipartition 12j3 is equivalent and for 2j13 we

have the lower value F̄ 2j13
NNBell ≤

1
2
, the “improved” bisepar-

ability bound for the nearest-neighbor average Bell fidelity
for three qubits is 1

4
ð1þ ffiffiffi

3
p Þ ≈ 0.683 013. This value is

still above the fidelity 2
3
obtained for pure GME states of 3

qubits in Eq. (A44). In addition, we have also conducted a
numerical search which did not reveal any pure 3-qubit
states with nearest-neighbor average Bell fidelities beyond
2
3
. At the same time, one can find biseparable states that

give values for F̄ ð3Þ
NNBell that are very close to

2
3
. For instance,

for the state ρbisep ¼ j0ih0j1 ⊗ ρ̃23, where j0i1 is an
eigenstate of Z, and the (nearly pure) state ρ̃ has Bloch
vectors b⃗ ¼ c⃗ ¼ ð0; 0; 0.447ÞT and a diagonal correlation

matrix t ¼ diagf0.894;−0.894; 1g, we find F̄ ð3Þ
NNBell ¼

0.654375. We therefore conclude that, in their present
form, GME witnesses based on the nearest-neighbor
average Bell fidelity are practically irrelevant for 3 qubits
and there is no reason to expect an improvement for more
than 3 qubits.
We therefore now continue with an analysis of a different

quantity, the symmetric average Bell fidelity.

c. Symmetric average Bell fidelity as GME witness

In this section, we discuss the usefulness of the sym-
metric average Bell fidelity as a witness for GME. To this
end, we again need to identify the bipartitions providing the

worst (largest) upper bound for F̄ ðNÞ
Bell under the assumption

of separability with respect to the respective bipartition.
Since the combination of expectation values that we
consider now is symmetric under the exchange of any 2
qubits, this task is rather straightforward.
First, we consider the case of 3 qubits separately, where

all three possible bipartitions (i.e., 1j23, 2j13, and 12j3)
are equivalent. If the system state is pure and separable with
respect to any of these bipartitions, two of the triples
of expectation values in Eq. (A25) are “cut” by the
bipartition and can be bounded by 1, while the remaining
triple consists of three commuting observables, whose
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expectation values are jointly bounded by 3. For any
labeling of the 3 qubits, we hence have

F̄ 1j23
Bell ≤

1

12
ð3þ 1þ 1þ 3Þ ¼ 2

3
: ðA43Þ

As we discussed in Appendix A 2 b, this bound has to be
compared with values achievable with pure GME states.
For the 3-qubit GHZ-, W-, and 2-excitation Dicke states,
we find symmetric average Bell fidelities

F̄ ð3Þ
Bellðjψ ð3Þ

GHZiÞ ¼
1

2
; ðA44aÞ

F̄ ð3Þ
Bellðjψ ð3Þ

W iÞ ¼ 2

3
; ðA44bÞ

F̄ ð3Þ
Bellðjψ ð3Þ

D;2iÞ ¼
2

3
; ðA44cÞ

which happen to coincide with the corresponding nearest-
neighbor average Bell fidelities of Eq. (A44). We must
hence try to improve the bound using a similar trick as
before in Appendix A 2 b. Again assuming a biseparable
pure state for the bipartition 1j23, we can write

F̄ 1j23
Bell ≤

1

12

�
3þ jb⃗j þ jc⃗j þ

X3
n¼1

jtnnj
�
; ðA45Þ

and in analogy to Eq. (A41) we can bound each of the
moduli jb⃗j, jc⃗j, and jtnnj (for n ¼ 1, 2, 3) by

ffiffiffiffiffiffiffiffi
3=5

p
, which

gives the bound

F̄ ð3Þbisep
Bell ≤

1

12

 
3þ 5

ffiffiffi
3

5

r !
¼ 1

12
ð3þ

ffiffiffiffiffi
15

p
Þ ≈ 0.572749:

ðA46Þ

Using numerical optimization, we can also provide a
pure biseparable state that comes very close to this bound.
That is, for the state ρbisep ¼ j0ih0j1 ⊗ ρ̃23, where j0i1 is an
eigenstate of Z, and the pure state ρ̃ has Bloch vectors
b⃗ ¼ c⃗ ¼ ½0; 0; ð1= ffiffiffi

2
p Þ�T and a diagonal correlation matrix

t¼diagfð1= ffiffiffi
2

p Þ;−ð1= ffiffiffi
2

p Þ;1g, we find F̄ ð3Þ
Bell ¼ 0.569 036.

As before, the pure state biseparability bound extends to
mixed states via convexity. Thus, any 3-qubit state for
which the combination of (moduli of) expectation values on
the right-hand side of Eq. (A25) exceeds 1

12
ð3þ ffiffiffiffiffi

15
p Þmust

be genuinely tripartite entangled.
Second, let us turn to the case of 4 qubits, where we are

interested in bounding the quantity

F̄ ð4Þ
Bell ¼

1

24
ð6þ jhX1X2ij þ jhX1X3ij þ jhX1X4ij

þ jhX2X3ij þ jhX2X4ij þ jhX3X4ij
þ jhY1Y2ij þ jhY1Y3ij þ jhY1Y4ij
þ jhY2Y3ij þ jhY2Y4ij þ jhY3Y4ij
þ jhZ1Z2ij þ jhZ1Z3ij þ jhZ1Z4ij
þ jhZ2Z3ij þ jhZ2Z4ij þ jhZ3Z4ijÞ: ðA47Þ

For any pure state that is separable with respect to a
bipartition into 1 versus 3 qubits, we find three triples
of expectation values that are cut (each bounded by 1),
while three triples pertaining to the same subsystem can be
combined into mutually anticommuting triples, each
bounded by

ffiffiffi
3

p
, obtaining

F̄ 1j234
Bell ≤

1

24
ð6þ 3þ 3

ffiffiffi
3

p
Þ ¼ 1

8
ð3þ

ffiffiffi
3

p
Þ ≈ 0.591506:

ðA48Þ

Instead, we can also use the bound arising from the purity
of the reduced state of qubits 234 of the biseparable pure
state. Since the local dimension for these three qubits is
23 ¼ 8 and we have 12 terms appearing [the Bloch vectors
of the ith qubit ja⃗ij (i ¼ 2, 3, 4) and the correlations tensor
elements jt23nnj, jt24nnj, and jt34nnj for n ¼ 1, 2, 3], we find the
bound

F̄ 1j234
Bell ≤

1

24

�
6þ 12

ffiffiffiffiffiffiffiffiffiffiffi
8 − 1

12

r �
¼ 1

8
ð6þ

ffiffiffiffiffi
84

p
Þ ≈ 0.631881:

ðA49Þ

However, this upper bound is larger than that arising just
from using the ACT, and Eq. (A49) is therefore of no
further consequence.
The only other possible type of bipartition of 4 qubits

is into two sets of 2 qubits. In this case, four triples are cut
by the bipartition, but in each set one triple of unpaired
operators remains (jointly bounded by 3), such that we have

F̄ 12j34
Bell ≤

1

24
ð6þ 4þ 3þ 3Þ ¼ 2

3
: ðA50Þ

As we have argued before, a biseparability bound for 3
qubits that is larger or equal to 2

3
is not very useful since

even pure GME states (e.g., the 4-qubit Dicke state with
two excitations) achieve only this value. We hence again
turn to using the purity of the subsystems for a biseparable
state jψi1243 ¼ jϕi12jχi34. In this case, the symmetric
average Bell fidelity can be bounded by
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F̄ 12j34
Bell ≤

1

24

�
6þja⃗1j ja⃗3jþ ja⃗1j ja⃗4jþ ja⃗2j ja⃗3jþ ja⃗2j ja⃗4j

þ
X

n¼1;2;3

jt12nnjþ
X

n¼1;2;3

jt34nnj
�
: ðA51Þ

Here, we encounter a different optimization problem than
before, since we no longer seek to maximize the sum of
absolute values, but some quantities (e.g., ja⃗1j and ja⃗3j) are
coupled. However, due to the symmetric form (with respect
to the exchange of qubits 12 with 34) of the expression, we
may write

F̄ 12j34
Bell ≤

1

24

�
6þ2

�
ja⃗1j2þja⃗2j2þ

X
n¼1;2;3

jt12nnj
��

: ðA52Þ

We hence seek to maximize fða; tÞ ¼ 3tþ 2a2 under the
constraints 2a2 þ 3t2 ¼ 3 and a2 ≤ 1, which is achieved
for a ¼ 1 and t ¼ ð1= ffiffiffi

3
p Þ, and hence

F̄ 12j34
Bell ≤

1

24

�
6þ2

�
2þ 3ffiffiffi

3
p
��

¼ 1

12

�
5þ

ffiffiffi
3

p �
≈0.561004:

ðA53Þ

Since this value is smaller than that for the bipartition 1j234
in Eq. (A48), we can identify the bound of Eq. (A48) with
the biseparability bound for the symmetric average Bell
fidelity for 4 qubits; i.e.,

F̄ ð4Þbisep
Bell ≤

1

8

�
3þ

ffiffiffi
3

p �
≈ 0.591 506: ðA54Þ

For more than 4 qubits, we can derive more general
expressions using the method based on the ACT, while
the exponentially increasing subsystem dimension makes
bounds based on the subsystem purity unfeasible. Consider
a system of N ≥ 4 qubits that is in a separable pure state
with respect to a bipartition into a single qubit versus the
remaining N − 1 qubits. One may then identify N − 1
triples of expectation values that factorize and can be
bounded by one, while the remaining bN−1¼bN−ðN−1Þ
triples form anticommuting sets of three which are each
bounded by

ffiffiffi
3

p
. We thus have

F̄ 1j23…N
Bell ≤

1

4

�
1þ 1

bN

n
N − 1þ ½bN − ðN − 1Þ�

ffiffiffi
3

p o�

¼ 1

4

�
1þ

ffiffiffi
3

p �
−

1

2N

� ffiffiffi
3

p
− 1
�
; ðA55Þ

where we have made use of the fact that ½ðN−1Þ=bN �¼
f½ðN−1Þ2ðN−2Þ!�=ðN!Þg¼ð2=NÞ. Note that, as required,
this bound reduces to the result obtained in Eq. (A48) for
N ¼ 4. Intuitively, it is now clear that other bipartitions will
provide smaller upper bounds, since more operators are

affected by the factorization. The exception being the case
N ¼ 4, where we have already seen that the separation into
two sets of two provides a larger upper bound since each
side then features unpaired expectation values.
To confirm this, let us briefly consider bipartitions into 2

and N − 2 qubits for N ≥ 5. In such a case, 2ðN − 2Þ
expectation values factorize for the respective pure, sepa-
rable states, and one triple of operators pertaining to the two
isolated qubits cannot be paired with anticommuting
partners, whereas bN−2¼bN−ðN−2Þ¼bN−2ðN−1Þþ1
triples of operators can be matched up in this way. Thus,
we have

F̄ 12j34…N
Bell ≤

1

4

�
1þ 1

bN

h
2ðN−2Þþ3þðbN−2Nþ3Þ

ffiffiffi
3

p i�

¼1

4

�
1þ

ffiffiffi
3

p ��
1þ 1

bN

�
−
1

N

� ffiffiffi
3

p
−1
�
: ðA56Þ

This expression provides a smaller upper bound when

1

2N

� ffiffiffi
3

p
− 1
�
>

1

4bN

�
1þ

ffiffiffi
3

p �
ðA57aÞ

⇒ 1 >
1

2ðN − 1Þ
�
1þ

ffiffiffi
3

p �
2
; ðA57bÞ

which is the case for N ≥ 5, as expected. We have also
confirmed that this intuition holds for bipartitions into k
versus N − k qubits for 3 ≤ k ≤ N − 3. We can hence
formulate the biseparability bound based on the symmetric
average Bell fidelity for arbitrary numbers of qubits in the
following way. For any biseparable state of N qubits, the
symmetric average Bell fidelity satisfies

F̄ ðNÞ
Bell ≤ F̄ ðNÞbisep

Bell

≔

8<
:

1
12

�
3þ ffiffiffiffiffi

15
p �

for N ¼ 3

1
4

�
1þ ffiffiffi

3
p �

− 1
2N

� ffiffiffi
3

p
− 1
�

for N ≥ 4:

ðA58Þ

Conversely, any state that violates the inequality Eq. (A58)
is genuinely N-partite entangled. Before we discuss the
practical usefulness of these witnesses, let us briefly
analyze possible improvements in Appendix A 2 d.

d. Optimizing GME witnesses based
on bipartite fidelities

To keep the notation simple during the derivations, we
have thus far used only expectation values of pairs of the
same Pauli operators, i.e., of the form jhOiOjij. In practice,
this corresponds to measuring the real part of certain off-
diagonal elements of the density operator. To see this,
consider a 2-qubit state ρ and note that
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Tr½ρðX1X2 þ Y1Y2Þ� ¼ 4Reðh01jρj10iÞ: ðA59Þ

Of course, the off-diagonal element h01jρj10i need not be
real for a given 2-qubit state. Here, one may note that the
derivations of all bounds that we have considered so far are
invariant under local unitary transformations. That is, we
can replace the triple of operators fXi; Yi; Zig for the ith
qubit with the rotated operators Õi ¼ UiOiU

†
i for any

unitary Ui. This is the case because such a rotation maps a
triple of anticommuting operators to another triple of
anticommuting operators, and the length of the Bloch
vectors also is left invariant. For instance, one could
perform a rotation in the equatorial plane of the Bloch
sphere, and map

Xi ↦ X̃i ¼ cosðθiÞXi − sinðθiÞYi; ðA60Þ

Yi ↦ X̃i ¼ sinðθiÞXi þ cosðθiÞYi: ðA61Þ

In the example of Eq. (A59) this means we can pick θ1 ¼ 0
and θ2 ¼ −ðπ=2Þ to obtain

Tr½ρðX̃1X̃2 þ Ỹ1Ỹ2Þ� ¼ Tr½ρðX1Y2 − Y1X2Þ�
¼ 4Imðh01jρj10iÞ: ðA62Þ

In particular, there exist rotation angles θ1 and θ2 such
that

Tr½ρðX̃1X̃2 þ Ỹ1Ỹ2Þ� ¼ 4jh01jρj10ij: ðA63Þ

In general, one hence has the freedom of N independent
transformations Ui ∈ Uð2Þ to optimize the GME witnesses
presented so far. In an experimental setting, this optimi-
zation can be done a priori if the quantum state ρ that one
expects to produce (approximately) in the experiment is
known. However, if the underlying state is unknown,
one may also measure all combinations of 2-qubit Pauli
operators for all pairs of qubits within the set of N qubits
[amounting to 9bN ¼ 9

2
NðN − 1Þ 2-qubit measurements]

and perform the optimization on the experimental data. For

instance, the results for F̄ ð3Þ
Bell presented in Fig. 3 of the main

text have been obtained by such a postprocessing of
available measurement data, and the corresponding opti-
mization has been restricted to rotations in the X-Y planes,
as shown in Eq. (A61).
In addition to a posteriori optimization, one may

perform some of these 2-qubit measurements on different
pairs simultaneously if the individual outcomes for each
qubit are recorded. For instance, in a register of N ≥ 3
qubits one may obtain the expectation values of X1X2 and
X2Y3 from measuring the first and second qubit in the
eigenbasis of X and the third in the eigenbasis of Y and
recording all three outcomes in each run. For measurements
of this kind, such as have been performed in our

experiment, data used to estimate different 2-qubit expect-
ation values may be correlated, which has to be taken into
account in the calculation of the estimate for the variance of
the GME witness. This is explained in more detail in
Ref. [19] (therein see Supplemental Material Secs. IV. A. 4
and IV. A. 5, pp. 9–13).

e. Usefulness of GME witnesses based
on bipartite fidelities

A crucial question when employing these witnesses is of
course whether or not states exist that can be detected by
them. To analyze this problem, we compare the upper

bound F̄ ðNÞbisep
Bell for biseparable states with the upper bound

F̄ ðNÞmax
Bell for arbitrary states from Eq. (A28) by calculating

their distance as a function of the number of qubits. We find
the expression

F̄ ðNÞmax
Bell − F̄ ðNÞbisep

Bell ¼
8<
:

1
12

ffiffiffi
3

p ð3 − ffiffiffi
5

p Þ ðN ¼ 3Þ
1
2N ð

ffiffiffi
3

p
− 1Þ ðN ≥ 4Þ;

ðA64Þ

where the numerical values for 3 and 4 qubits are 1
12

ffiffiffi
3

p ð3 −ffiffiffi
5

p Þ ≈ 0.110 264 and 1
8
ð ffiffiffi

3
p

− 1Þ ≈ 0.091 506 4, respec-
tively. The gap between the bounds is hence largest
for N ¼ 3, and shrinks with increasing number of
qubits. It is hence expected that there is some finite
N for which no GME states exist that are detected by
our witnesses, and at this point, we cannot say for
which N this occurs.
For 3 qubits, we have already found examples of

genuinely tripartite entangled states that can be detected,

i.e., the 3-qubit W state jψ ð3Þ
W i and the 2-excitation Dicke

state jψ ð3Þ
D;2i, which provide symmetric average Bell fidel-

ities of 2
3
. The experimental results discussed in the main

text (see Fig. 3) further show that F̄ ð3Þ
Bell is also a useful

witness for mixed states produced in realistic situations.

Beyond 3 qubits, the witnesses F̄ ðN≥4Þ
Bell (optimized only

over rotations in the X-Y plane; see Appendix A 2 d) have
not been able to detect GME in our experimental setting.
However, we know that 4-qubit states exist, e.g., the 4-qubit

2-excitation Dicke state jψ ð4Þ
D;2i which could be detected in

this way, since F̄ ð4Þ
Bellðjψ ð4Þ

D;2iÞ ¼ 2
3
. Unfortunately, the 2-

excitation Dicke state for 5 qubits only provides a value of

F̄ ð5Þ
Bellðjψ ð5Þ

D;2iÞ ¼ 0.6, whereas F̄ ðNÞbisep
Bell ¼ 1

20
ð7þ 3

ffiffiffi
3

p Þ≈
0.61. Tentative searches for other 5-qubit states for which

F̄ ð5Þ
Bell exceeds the biseparability bound have been unsuc-

cessful thus far. The question of whether GME states exist
that can be detected with our method for N ≥ 5 hence
remains open.
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APPENDIX B: CONSTRUCTION OF WITNESSES
BASED ON NUMERICAL SEARCH

1. Genuine multipartite negativity

We now discuss the genuine negativity (GMN) of
Ref. [27] that we use to quantify GME in the experiment.
We present its definition as a convex-roof construction and
the alternative way of writing it in terms of a semidefinite
program, which turns it into a numerically computable
measure of entanglement for an arbitrary mixed state.
We start by introducing the notation and presenting

preliminary definitions. Note that a bipartition of f1;…;Ng
can be specified by a subset A ⊂ f1;…; Ng and its
complement Ā ¼ f1;…; NgnA. With this, we define the
partial transposition on A for an operator XA ⊗ XĀ, where
XA and XĀ act on the Hilbert spaces associated to A and Ā,
respectively, as ðXA ⊗ XĀÞTA ¼ XT

A ⊗ XĀ. The definition
then extends to any operator on the N-particle Hilbert space
by linearity. Next, the negativity of a bipartite quantum
state ρ with respect to the bipartition AjĀ is given by
the sum of the negative eigenvalues of the partially trans-
posed density matrix; i.e., N AjĀðρÞ ¼

P
λi≤0jλiðρTAÞj ¼

N AjĀðρÞ ¼ ½ðkρTAk1 − 1Þ=2�, where λiðXÞ denotes the ith
eigenvalue of an operator X. With this, the GMN of an
N-particle state ρ is given by

N gðρÞ ¼ min
fpi;ρig

X
i

pimin
AjĀ

N AjĀðρiÞ; ðB1Þ

where the inner minimization is over the possible biparti-
tions AjĀ of f1;…; Ng and the outer minimization is over
decompositions ρ ¼Pipiρi, where fpigi is a probability
distribution and ρi are density matrices. For pure states, this
reduces to N gðjψihψ jÞ ¼ minAjĀN AjĀðjψihψ jÞ.
For mixed states the GMN can still efficiently be

computed using numerical tools from the field of semi-
definite programming. This follows from the fact that the
GMN is given by the optimal value of the following
optimization:

N gðρÞ ¼ max
Q;PA;RA

½−TrðQρÞ�

Q ¼ KA þQTA
A ∀ AjĀ;

0 ≤ KA and 0 ≤ RA ≤ 1; ðB2Þ

where Q, KA, and RA are operators acting on the Hilbert
space. The GMN is zero for all (bi)separable states and,
therefore, a nonzero value provides a way to certify GME.
More precisely, the GMN is nonzero for any state that
cannot be written as a positive partial transpose (PPT)
mixture. Recall that a multipartite state ρ is called a PPT
mixture if it admits a mixed state decomposition
ρ ¼PApAρA, where fpAgA is a probability distribution
and ρA has a positive partial transposition (we say, ρA is
PPT) with respect to the bipartition AjĀ. That is, formally,

ρTA
A ≥ 0. As noted earlier, a state is called biseparable if it
can be written as a convex combination of states that are
separable with respect to one bipartition AjĀ. Since any
separable state is PPT, every biseparable state can be
written as a PPT mixture. Consequently, a state with
nonzero GMN is GME.
Moreover, the GMN quantifies the entanglement in the

sense that a state ρ is more entangled than σ if
N gðρÞ ≥ N gðσÞ. The underlying mathematical property
is that the GMN is nonincreasing under so-called full local
operations and classical communication operations. In
particular, from this property it follows that no GME state
can be generated from a non-GME state with local
operations only.
A further beneficial property of writing the GMN as in

Eq. (B2) is that this yields an entanglement witness, that is,
an observable that provides ideally a sharp lower bound to
the GMN as in Eq. (5) in the main text and may be accessed
experimentally. For our purposes note that whether a
witness can be measured depends on the measurements
that are available in our experiment. We therefore discuss
those measurements next. The procedure of obtaining the
entanglement witnesses that are accessible for us is then
described subsequently in Appendix B 3 in more detail.

2. Accessible measurements on k neighboring sites

Here, we discuss the operators that can be measured
locally on k consecutive sites with the data available in our
experiment. Our starting point is hence the set of all
possible observables whose measurement outcomes can
be obtained from the 27 measurement settings that we
mentioned in Sec. III. As we noted there, these measure-
ment settings can be used to obtain estimates of the
expectation values of all possible products of the identity
and the three Pauli operators on all groups of three
neighboring qubits in the chain of 20 qubits. On such
triples of neighboring qubits this thus allows us to estimate
the expectation value of any operator, in particular, any
possible entanglement witness. However, the situation is
different for more than three neighboring sites. Regarding
this case, recall that in the 27 settings we consider, the 20
qubits are measured simultaneously such that the accessible
information turns out to be more than just knowing the
three-body reductions of neighboring qubits. Also as a
consequence of how we choose these 27 settings, each of
them has the property that the local bases in which sites i
and iþ 3 are measured are identical. To illustrate what this
implies for the accessible operators, let us consider the
example of four sites. In terms of projective qubit mea-
surements, a basis of operators that we can measure with

the 27 settings is given by B4 ¼ fPð4Þ
s⃗;α⃗gs⃗;α⃗, where Pð4Þ

s⃗;α⃗

denotes the projector onto the state

js⃗; α⃗i ¼ js1; s2; s3; s4iα1;α2;α3;α1 ; ðB3Þ
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where s⃗≡ ðs1; s2; s3; s4Þ ∈ f↑;↓g×4 and α⃗≡ ðα1;α2;α3Þ∈
f1;2;3g×3. In words, these operators comprise all projec-
tive qubit measurements where the first and the fourth qubit
are measured in the same direction. Notably, with the Pauli
operators X, Y, and Z, this set of operators spans the same
subspace as the operators fσα1 ⊗ σα2 ⊗ σα3 ⊗ σα1gα⃗, where
α⃗∈ f0;1;2;3g×3 and σ0¼ 1, σ1 ¼X, σ2¼Y, σ3 ¼Z. For
the construction of the witness we will, however, use the
projectors as our basis set. Accordingly, generalizing this to
arbitrary number of sites, we denote the projectors that
form a basis of the operators that can be measured on k
consecutive sites with the 27 settings by Bk. As a further
remark, let us mention that the number of elements in Bk

grows exponentially with k as jBkj ¼ 27 × 2k.

3. Accessible quantitative entanglement witnesses

Next, we turn to the construction of an entanglement
witness that is fully accessible from the available informa-
tion provided by the 27 measurement settings. The main
step is to solve the optimization given in Eq. (B6) below,
which provides a quantitative witness. The witness can then
be evaluated using the experimental data.
We distinguish between a simple entanglement witness,

which is an operatorQ that has a positive expectation value
TrðQρsepÞ ≥ 0 for any separable state ρsep and for which
there exists at least one entangled state ρ with TrðQρÞ ≤ 0,
and a quantitative entanglement witness, i.e., an operator
that fulfills the property of being an entanglement witness
and additionally provides a lower bound to the GMN via
(minus) its expectation value S ¼ −TrðQρÞ of the form

S ≤ N gðρÞ ðB4Þ

for any ρ, as noted in the main text.
Now, considering k neighboring sites in the chain of 20

qubits, the available information from the 27 settings is
determined by the projectors in the set Bk as described
above. Then, an entanglement witness Ŵ is accessible from
this information if it can be written as a linear combination
of operators from Bk, i.e., if

QðkÞ
i ¼

X
s⃗;α⃗

cðkÞi;s⃗;α⃗P
ðkÞ
s⃗;α⃗; ðB5Þ

with coefficients cðkÞi;s⃗;α⃗ ∈ R, since, in this case, it is fully
determined by the set Bk.

Here, for a given state ρðkÞi (as defined in the main text),

we can optimize over the coefficients cðkÞi;s⃗;α⃗ in order to find a
quantitative witness that provides the best lower bound
to the GMN of ρ. As the computation of the GMN itself,
see Eq. (B2), this optimization can be expressed as a
semidefinite program. That is, with the definition

pðkÞ
i;s⃗;α⃗ ¼ TrðPðkÞ

s⃗;α⃗ρ
ðkÞ
i Þ, the solution of

SðkÞ
i ðfPðkÞ

s⃗;α⃗; p
ðkÞ
i;s⃗;α⃗gÞ ¼ max

ci;s⃗;α⃗;KA;RA

�
−
X
s⃗;α⃗

cðkÞi;s⃗;α⃗p
ðkÞ
s⃗;α⃗

�
X
s⃗;α⃗

cðkÞi;s⃗;α⃗P
ðkÞ
s⃗;α⃗ ≥ KA þ RTA

A ∀ AjĀ;

0 ≤ KA and 0 ≤ RA ≤ 1; ðB6Þ

is the best lower bound of the from SðkÞ
i ðfPðkÞ

s⃗;α⃗; p
ðkÞ
i;s⃗;α⃗gÞ ¼

−TrðQðkÞ
i ρðkÞi Þ ≤ N gðρðkÞi Þ, with QðkÞ

i a quantitative witness
as in Eq. (B5) and with the coefficients for which the
maximum in Eq. (B6) is achieved. Note that for brevity we
denote both the optimization parameters in Eq. (B6) as well

as, in the following, the optimal coefficients by cðkÞi;s⃗;α⃗. As a

further remark, we note that SðkÞ
i ðfPðkÞ

s⃗;α⃗; p
ðkÞ
i;s⃗;α⃗gÞ and the

optimal witness Q depend only on the (accessible) prob-
abilities ps⃗;α⃗ (and the corresponding projectors), such that
these quantities are sufficient to determine the bound.
In order to obtain the bounds in Fig. 4 we determine an

entanglement witness W that can be decomposed as a sum
of projectors as in Eq. (B5) and, hence, it can readily be
evaluated using the frequencies measured in the experi-
ment. The basic steps to determine a quantitative witness
are then (as also described in the main text) as follows. We
first perform a numerical simulation to obtain the time-
evolved state ρsimðtÞ and determine its reduced density
matrices on neighboring sites. Then, for every reduction
ρXsimðtÞ ¼ TrnX ½ρsimðtÞ�, where X ⊂ f1;…; Ng denotes the
sites corresponding to the Hilbert space on which ρXsimðtÞ
acts on, we solve the optimization of Eq. (B6) (plus some

practical amendments; see Appendix B 4) with pðkÞ
i;s⃗;α⃗ ¼

Tr½PðkÞ
s⃗;α⃗ρ

X
simðtÞ� as input to obtain the witness.

In the numerical simulation we include mixing due to an
imperfect initial state, as described in the main text. To this
end, we use an initial state that is diagonal in the Z bases as
ρsimð0Þ ¼

P
s⃗fs⃗js⃗ihs⃗j, where js⃗i≡ js⃗; ð3;…; 3Þi is a state

of the product basis in the Z direction [see Eq. (B3) for the
notation we use] and fs⃗ is the frequency of the qubit
configuration s⃗ that we observe using the experimental data
obtained at t ¼ 0 ms. Since, besides the ideal initial state
with alternating qubits, only 42 other configurations with
nonzero frequency fs⃗ occur, the participating configura-
tions are readily evolved separately and mixed in order to
obtain a density matrix ρsimðtÞ at later times.
The optimization of Eq. (B6) used to determine the QEW

QðkÞ
i depends on the probabilities pðkÞ

i;s⃗;α⃗ but not on the

underlying quantum state ρðkÞi . One may be tempted to
insert experimentally measured estimates for the probabil-

ities pðkÞ
i;s⃗;α⃗ to determine a witness which is optimal for the

(unknown) quantum state of the experiment. However,

there is, in general, no quantum state ρðkÞi which satisfies
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TrðPðkÞ
s⃗;α⃗ρ

ðkÞ
i Þ ¼ p̃ðkÞ

i;s⃗;α⃗ where the p̃ðkÞ
i;s⃗;α⃗ are experimentally

estimated probabilities because the p̃ðkÞ
i;s⃗;α⃗ are affected by

statistical noise from a finite number of measurements. As a
consequence, the optimization may fail to be feasible.

Therefore, we use the probabilities pðkÞ
i;s⃗;α⃗ from the reduced

density matrices of the numerically simulated state ρsimðtÞ
in the optimization of Eq. (B6) in order to determine the

QEW QðkÞ
i . After QðkÞ

i has been determined, its expectation
value, which provides the lower bounds in Fig. 4, is
determined from the experimental data.
Instead of using the numerically simulated state ρsimðtÞ

to determine the witness, we furthermore test states
obtained from quantum state tomography. For this purpose
we split the data into two statistically independent sets of
samples and use one set for tomography and the other to
evaluate the witness. We pursue this strategy using global
pure-state MPS reconstruction and find no significant
advantage of the approach over using the numerically
simulated state ρsimðtÞ as a starting point.
After performing the optimization of Eq. (B6) to

determine QðkÞ
i , we perform an additional optimization

which makes the QEW more robust to statistical noise and
experimental imperfection. The lower bounds presented in
Fig. 4 of the main text are based on this improved witness,
and the remaining steps are discussed in the next section.

4. Additional conditions for practical witnesses

To make the witnesses less sensitive to experimental

imperfections, we modify the coefficients cðkÞi;s⃗;α⃗ as discussed
in the following. The major step is to reduce the number of
nonzero coefficients. This can be achieved by employing an
interactive l1-relaxation method with weight updating that
is intended to find sparse solutions [42]. We incorporate
this into our considerations by solving the following
optimization in the nth iteration step:

min
cðkÞ;n
i;s⃗;α⃗

X
i;s⃗;α⃗

jcðkÞ;ni;s⃗;α⃗ j
jcðkÞ;n−1i;s⃗;α⃗ j þ ϵ

Tr½ðQðkÞ;n
i −QðkÞ;0

i ÞρðkÞi � ≤ ϵ;

QðkÞ;n
i ≥ KA þ RTA

A ∀ AjĀ; ðB7Þ

where QðkÞ;n
i ¼Ps⃗;α⃗c

ðkÞ;n
i;s⃗;α⃗ P

ðkÞ
s⃗;α⃗, and initially the coefficients

are obtained from Eq. (B6) with cðkÞ;0s⃗;α⃗ ¼ cðkÞi;s⃗;α⃗ with the
coefficients that are found from solving Eq. (B6). We allow
the bound to diminish by at most ϵ from the optimal one in
order to find a sparse solution. In the results we present, we
choose ϵ ¼ 5 × 10−3 and use three iteration steps. Except
for the tolerance ϵ, this step does not deteriorate the bound.
We then further add two simple constraints to Eqs. (B6) and

(B7). First, we choose the coefficients as cðkÞ;ni;s⃗;α⃗ ∈ ½−1; 1�.
Second, we add the semidefinite condition KA ≤ 1 to
Eq. (B6). Note that this condition has previously been
employed in an earlier version of the GMN; see
Refs. [26,27]. However, there the quantitative witnesses
are exact functions of the operators KA and RA, whereas
here they are only related via an inequality. Solving
Eqs. (B6) and (B7) with the constraints introduced in this

section results in the bounds SðkÞ
i presented in the main text.

We observe that the additional modifications significantly
help to improve the lower bounds.
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