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Information-theoretic approaches provide a promising avenue for extending the laws of thermodynamics
to the nanoscale. Here, we provide a general fundamental lower limit, valid for systems with an arbitrary
Hamiltonian and in contact with any thermodynamic bath, on the work cost for the implementation of any
logical process. This limit is given by a new information measure—the coherent relative entropy—which
accounts for the Gibbs weight of each microstate. The coherent relative entropy enjoys a collection of
natural properties justifying its interpretation as a measure of information and can be understood as a
generalization of a quantum relative entropy difference. As an application, we show that the standard first
and second laws of thermodynamics emerge from our microscopic picture in the macroscopic limit.
Finally, our results have an impact on understanding the role of the observer in thermodynamics: Our
approach may be applied at any level of knowledge—for instance, at the microscopic, mesoscopic, or
macroscopic scales—thus providing a formulation of thermodynamics that is inherently relative to the
observer. We obtain a precise criterion for when the laws of thermodynamics can be applied, thus making a
step forward in determining the exact extent of the universality of thermodynamics and enabling a
systematic treatment of Maxwell-demon-like situations.
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I. INTRODUCTION

Thermodynamics enjoys an extraordinary universality—
applying to heat engines, chemical reactions, electromag-
netic radiation, and even to black holes. Thus, we are
naturally led to further apply it to small-scale quantum
systems. In such a context, the information content of a
system plays a key role: Landauer’s principle states that
logically irreversible information processing incurs an
unavoidable thermodynamic cost [1]. Landauer’s principle
has generated a new line of research in which information
and thermodynamic entropy are treated on an equal footing
[2], in turn providing a resolution to the paradox of the
Maxwell demon [3]. In the context of statistical mechanics, a
significant effort has also been made to elucidate the role of
the second law [4–9]. Statistical mechanics has further
provided important contributions to understanding the inter-
play between information and thermodynamics [10–18],
with works studying the energy requirements of information
processing [19–21]. This has also led to an improved

understanding of nanoengines and information-driven
thermodynamic devices [22–31], paving the way for exper-
imental demonstrations [32–34].
When studying the thermodynamics of small-scale

quantum systems, it is particularly relevant to define
the thermodynamic framework precisely. A customary
approach, the resource theory approach, is to investigate
the state transformations that are possible after imposing a
restriction on the types of elementary physical operations
that are allowed. Such frameworks have enabled us to
understand general conditions under which it is possible to
transform one state into another [35–42] and to study
erasure and work extraction in the single-shot regime
[43–45]. Such results have been extended to the case where
quantum side information is available [46,47], to situations
with multiple thermodynamic reservoirs [48–53], and to the
case of a finite bath size [54–57]. The role of coherence and
catalysis has been underscored [58–66], the effect of
correlations studied [67–71], and the efficiency of nano-
engines investigated [57,72–74]. Fully quantum fluctuation
relations [75] and a second-law equality [76] have been
derived, and further connections to the recoverability
of quantum information have been exhibited [77].
Furthermore, fully quantum state transformations were
characterized [78,79]. We refer to Ref. [80] for a more
comprehensive review covering these approaches to quan-
tum information thermodynamics.
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Our main result is a fundamental limit to the work cost of
any logical process implemented on a system with any
Hamiltonian and in contact with any type of thermody-
namic reservoir. It accounts for the necessary changes in the
energy-level populations in the system, as well as for the
thermodynamic cost of resetting any information that needs
to be discarded by the logical process. It is valid for a single
instance of the process and ignores unlikely events, thus
capturing statistical fluctuations of the work cost.
Our thermodynamic framework is specified by imposing

a restriction on the operations, which can be carried out
along with a battery system, allowing us to invest resources
to overcome this restriction. The restriction we consider
here is to impose that the allowed operations must be
Gibbs-preserving maps, that is, mappings for which the
thermal state is a fixed point. This framework is a natural
generalization of the setup in Ref. [81] and has close ties to
resource theory approaches [36,38,41]. Gibbs-preserving
maps are the most generous set of physical evolutions that
can be allowed for free, in the sense that if any non-Gibbs-
preserving map is allowed for free, arbitrary work can be
extracted, rendering the framework trivial. Since in most
existing thermodynamic frameworks the allowed free
operations preserve the thermal state, our bound still holds
in other standard settings such as the framework of thermal
operations [38,41]. (However, if one considers catalytical
processes, more general transformations can be carried out,
and hence additional care has to be taken in order to apply
our framework, e.g., by including the catalyst explicitly as
part of the process [41,60,70,77].) As a battery system, we
consider an information battery, that is, a memory register
of qubits that are all individually either in a pure state or in a
maximally mixed state. The pure qubits are a resource that
can be invested in order to implement logical processes that
are not Gibbs preserving.
Our main result is expressed in terms of a new

purely information-theoretic quantity, the coherent relative
entropy. The coherent relative entropy observes several
natural properties, such as a data-processing inequality,
invariance under isometries, and a chain rule, justifying its
interpretation as an entropymeasure. It is a generalization of
both the min- and max-relative entropy as well as the
conditional min and max entropy. In the asymptotic limit of
many independent repetitions of the process (the i.i.d. limit),
the coherent relative entropy converges to the difference of
the usual quantum relative entropy of the input state and the
output state relative to the Gibbs state. Our quantity hence
adds structure to the collection of entropy measures forming
the smooth entropy framework [82–84].
In fact, our result may be phrased in purely information-

theoretic terms, abstracting out physical notions such as
energy or temperature in an operator Γ, which may be
interpreted as assigning abstract “weights” to individual
quantum states. In the case of a system in contact with a
heat bath, these weights are simply the Gibbs weights,

where at inverse temperature β, the value e−βE is assigned
to each energy level of energy E. Our main result then
quantifies how many pure qubits need to be invested, or
howmany pure qubits may be distilled, while carrying out a
specific logical process given as a completely positive,
trace-preserving map, subject to the restriction that the
implementation must globally preserve the joint Γ operator
of the system and the battery. In this picture, the coherent
relative entropy intuitively measures the amount of infor-
mation “forgotten” by the logical process, conditioned on
the output of the process, and counted relative to the
weights encoded in the Γ operator.
Our framework can be applied to the macroscopic limit,

to study transitions between thermodynamic states of a
large system. (For instance, an isolated gas in a box that is
in a microcanonical state may undergo a process that brings
the gas to another microcanonical state of different energy
and volume.) Remarkably, it turns out that the work cost of
any mapping relating two thermodynamic states, as given
by the coherent relative entropy, is equal to the difference of
a potential evaluated on the input and the output state,
regardless of the details of the logical process. For an
isolated system, we show that this potential is precisely the
thermodynamic entropy. By coupling the system to another
system that plays the role of a piston, i.e., that is capable of
reversibly furnishing work to the system, we recover the
standard second law of thermodynamics relating the
entropy change of the system to the dissipated heat.
Our framework naturally treats thermodynamics as a

subjective theory, where a system can be described from the
viewpoint of different observers. One may thus account for
varying levels of knowledge about a quantum system. This
feature allows us to systematically analyze Maxwell-
demon-like situations. Furthermore, we find a criterion that
certifies that the laws of thermodynamics hold in a coarse-
grained picture. For instance, this criterion is not fulfilled in
the case of the Maxwell demon, signaling that a naive
application of the laws of thermodynamics to the gasmay be
disrupted by the presence of the demon. We hence obtain a
precise notion of when the laws of thermodynamics can be
applied, contributing to the long-standing open question of
the exact extent of the universality of thermodynamics.
The results presented in this paper have been, to a large

extent, reported in the recent work of one of the authors [85].
The remainder of the paper is structured as follows. In

Sec. II, we present the general setup in which our results are
derived. In Sec. III, we explain our main result, the work
cost of any process in contact with any type of reservoir
(Sec. III A); we then provide a collection of properties of
our new entropy measure (Sec. III B), a study of a special
class of states whose properties make them suitable
“battery states” for storing extracted work (Sec. III C),
a discussion of how the macroscopic laws of thermody-
namics emerge from our microscopic considerations
(Sec. III D), and an analysis of how to relate the views
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of different observers in our framework (Sec. III E).
Section IV concludes with a discussion and an outlook.

II. FRAMEWORK OF RESTRICTED
OPERATIONS

Consider a system S described by a Hamiltonian HS. In
the framework of Gibbs-preserving maps, an operation
Φð·Þ is forbidden if it does not satisfy Φðe−βHS=ZÞ ¼
e−βHS=Z, where β is a given fixed inverse temperature and
Z ¼ tr½e−βHS �. In other words, Φð·Þ is forbidden if it does
not preserve the thermal state. Now, observe that the
condition on Φð·Þ depends on β and HS only via the
thermal state, so we can rewrite the condition in a more
general, but abstract, way as follows: An operation Φð·Þ is
forbidden if it does not preserve some given fixed operator
Γ, that is, if it does not satisfy ΦðΓÞ ¼ Γ. We trivially
recover Gibbs-preserving maps by setting Γ ¼ e−βHS . For
technical reasons and for convenience, we choose to loosen
the condition on Φ from being trace preserving to being
trace nonincreasing; correspondingly, we only require that
ΦðΓÞ ≤ Γ, instead of demanding strict equality. By enlarg-
ing the class of allowed operations, we can only obtain a
more general bound. The advantage of this abstract version
of the Gibbs-preserving-maps model is that our framework
and its corresponding results may be potentially applied to
any setting where a restriction of the form ΦðΓÞ ≤ Γ
applies, for a given Γ, which does not necessarily have
to be related to a Gibbs state. The way Γ should be defined
is determined by which restriction of the form ΦðΓÞ ≤ Γ
makes sense to require in the particular setting considered.
Finally, it proves convenient to consider non-normalized Γ
operators (this becomes especially relevant if we consider
different input and output systems). For instance, in the
case of a system with Hamiltonian H in contact with a heat
bath at inverse temperature β, the trace of Γ ¼ e−βH

actually encodes the canonical partition function of the
system.
Our framework is defined in its full generality as follows.

To each system S corresponds an operator ΓS, which may
be any positive semidefinite operator. We then define as
free operations those completely positive, trace-nonincreas-
ing maps ΦA→B, mapping operators on a system A to
operators on another system B, which satisfy

ΦA→BðΓAÞ ≤ ΓB: ð1Þ

One may think of the Γ operator as assigning to each state
in a certain basis a “weight” characterizing how “useless” it
is. As a convention, if ΓS has eigenvalues equal to zero,
then the corresponding eigenstates are considered to be
impossible to prepare—these states will never be observed.
In the following, a map obeying Eq. (1) will be referred to
as a Γ-subpreserving map.

As mentioned above, in the case of a system S with
HamiltonianHS in contact with a single heat bath at inverse
temperature β, we essentially recover the usual model of
Gibbs-preserving maps by setting Γ ¼ e−βHS . In the case of
multiple conserved charges such as a Hamiltonian HS,
number operator NS, etc., we recover the relevant Gibbs-
preserving-maps model by setting Γ ¼ e−βðHS−μNSþ���Þ, with
the corresponding chemical potentials, as expected; further-
more, the physical charges do not have to commute [52,53].
Our framework is designed to be as tolerant as possible

(to the extent that our allowed operations are ultimately a
set of quantum channels), so as to result in the strongest
possible fundamental limit. We start with this observation
in the case of thermodynamics with a single heat bath: If we
allow any physical evolution for free that does not preserve
the thermal state, then we may create an arbitrary number of
copies of a nonequilibrium quantum state for free; however,
this renders our theory trivial since usual thermodynamical
models allow us to extract work from many copies of a
nonequilibrium state. Accordingly, quantum thermody-
namics models that can be written as a set of allowed
physical maps (such as thermal operations) necessarily
have the Gibbs state as a fixed point, ensuring that our
fundamental limit applies for those models as well. We note
that models in which catalysis is permitted allow for more
general state transformations [41,60,70,77], exploiting the
fact that, for a forbidden transition σ ↛ ρ, there might exist
some state ζ such that σ ⊗ ζ → ρ ⊗ ζ (where ζ may be
chosen suitably depending on σ and ρ). In order to apply
our framework in such a context, we can consider the
catalyst explicitly. For instance, in the context of catalytic
thermal operations [41], after the catalyst has been included
in the picture, the physical evolution that is applied is a
thermal operation and thus has to be Gibbs preserving.
Ultimately, the correct choice of framework depends on the
underlying physical model: For instance, in a macroscopic
isolated gas, the whole system evolves according to an
energy-preserving unitary, and under suitable independ-
ence assumptions, the evolution of an individual particle is
well modeled by a thermal operation; however, other
situations might warrant the inclusion of a catalyst, for
instance, in a paranoid adversarial setting in which an
eavesdropper may manipulate a thermodynamic system. In
the first case, our ultimate limits apply straightforwardly,
whereas in the second, one would need to include the
catalyst explicitly.
Work storage systems are often modeled explicitly but

are mostly equivalent in terms of how they account for
work [2,38,39,58,81,86]. Among these, the information
battery is easily generalized to our abstract setting. An
information battery is a register A of n qubits whose Γ
operator is ΓA ¼ 1A. (If ΓA ¼ e−βHA for an inverse temper-
ature β and a Hamiltonian HA, the requirement that
ΓA ¼ 1A is fulfilled by choosing the completely degenerate
HamiltonianHA ¼ 0.) The register starts in a state where λ1

FUNDAMENTAL WORK COST OF QUANTUM PROCESSES PHYS. REV. X 8, 021011 (2018)

021011-3



qubits are maximally mixed and n − λ1 qubits are in a pure
state. In the final state, we require that λ2 qubits are
maximally mixed and n − λ2 are in a pure state. The
difference λ ¼ λ1 − λ2 is the number of pure qubits
extracted or “distilled.” In this way, we may invest a
number of pure qubits in order to enable a process that
is not a free operation, or we may try to extract pure qubits
from a process that is already a free operation.
Depending on the physical setup, the λ pure battery

qubits can themselves be converted explicitly to some
physical resource, such as mechanical work. In the case
where we have access to a single heat bath at temperature T,
a pure qubit can be reversibly converted to and from kT ln 2
work using a Szilárd engine [22], where k is Boltzmann’s
constant; thus, a process from which we can extract λ pure
qubits is a process from which we can extract λ kT lnð2Þ
work using the heat bath. More generally, we may replace
the information battery entirely by other battery models,
such as corresponding generalizations to our framework of
the work bit (wit) [41], or the “weight system” [39,58].
These work storage models are known to be equivalent
[41]; the equivalence persists in our framework, with a
suitable generalization of the “extracted resource” λ. In the
presence of several physical conserved charges, and cor-
responding thermodynamic baths, the number λ of pure
qubits extracted acts as a common currency that allows us
to convert between the different resources. Hence, a
number λ of extracted pure qubits may be stored in different
forms of physical batteries, corresponding to different
forms of work, such as chemical work [52,53]. Hence,
the quantity λ should be thought of as a dimensionless
value, expressed in number of qubits, characterizing the
“extracted resource value” of the logical process independ-
ently of which type of battery is actually used in the
implementation, in the same spirit as the free entropy of
Ref. [52], and bearing some similarity to currencies in
general resource theories [87,88].
The main question we address may thus be reduced to

the following form (Fig. 1). Given operators ΓX;ΓX0 ≥ 0, an
input state σX, and a logical process EX→X0 (that is, a trace-
nonincreasing, completely positive map), the task is to find
the maximum number of qubits that can be extracted, or the
minimum number of qubits that need to be invested, in
order to implement the logical process on the given input
state. Note that we require the correlations between the
input and the output to match those specified by EX→X0, a
condition that is not equivalent to just requiring that the
given input state σX is transformed into the given output
state EX→X0 ðσXÞ. Equivalently, we require that the imple-
mentation acts as the process ðEX→X0 ⊗ idRX

Þ on a purified
state jσiXRX

of the input, where idRX
denotes the identity

process on RX.
Finally, we ignore improbable events with total proba-

bility ϵ, which is necessary in order to obtain meaningful
physical results [89]. Indeed, in textbook thermodynamics

when calculating the work cost of compressing an ideal gas,
for instance, one ignores the exceedingly unlikely event
where all gas particles conspire to hit against the piston at
much greater force than on average, a situation that would
require more work for the compression but that happens
with overwhelmingly negligible probability. For our pur-
poses, we may optimize the zero-error work cost over states
that are ϵ approximations of the required state [81], which
is a standard approach in quantum information and cryp-
tography [82,90].
At this point, it is useful to introduce the notion of the

process matrix associated with the pair ðEX→X0 ; σXÞ of the
logical process and input state. First, we define a reference
system RX of the same dimension as X and choose some
fixed bases fjkiXg and fjkiRX

g of X and RX. Then, we
define the process matrix of the pair ðEX→X0 ; σXÞ as the
bipartite quantum state ρX0RX

¼ðEX→X0 ⊗ idRX
ÞðjσihσjX∶RX

Þ,
where jσiX∶RX

¼σ1=2X ðPjkiX⊗ jkiRX
Þ. The process matrix

corresponds to the Choi matrix of EX→X0 , yet it is
“weighted” by the input state σX in the sense that the
reference state is σXRX

instead of a maximally entangled
state. The process matrix is in one-to-one correspondence
with the pair ðEX→X0 ; σXÞ except for the part of EX→X0 that
acts outside the support of σX; i.e., the specification of ρX0RX

uniquely determines σX as well as the logical process EX→X0

on the support of σX. The reduced states σX and σRX
of

jσiXRX
are related by a partial transpose, σRX

¼ σTX.
Intuitively, the reference system RX may be thought of
as a “mirror system,” which “remembers” what the input
state to the process was.
As a further remark, one might be worried that

the relaxation of the set of allowed operations from
Γ-preserving and trace-preserving maps to Γ-subpreserving

FIG. 1. Implementation of a logical process E (any quantum
process) using thermodynamic operations. The process acts on X
and has output on X0, and is implemented by acting on the system
and the battery with a joint Gibbs-preserving operation. The
battery starts with a depletion state λ1 and finishes with a
depletion state λ2. The overall extracted work is given by the
difference λ1 − λ2.
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and trace-nonincreasing maps is too drastic. Indeed, while
yielding a valid bound, the relaxed set of operations is
unphysical, and we might thus obtain a looser bound than
necessary. In fact, this is not the case. Rather, trace-
nonincreasing, Γ-subpreserving processes are a technical
convenience, which allows for more flexibility in the
characterization of what the process effectively does in
the situations of interest to us while ignoring other
irrelevant situations; yet, ultimately, we show that an
equivalent implementation can be carried out as a single
trace-preserving, Γ-preserving map. For instance, consider
a box separated into two equal-volume compartments, one
of which contains a single-particle gas (a setup known as a
Szilárd engine [22]). The particle may be in one of two
states, jLi, jRi, representing the particle being located in
either the left or right compartment. If the particle is located
in the left compartment, then work can be extracted by
attaching a piston to the separator and letting the gas
expand in contact with a heat bath. Yet, if we know the
particle to be initially in the left compartment, it makes no
difference what the process would have done had the
particle been in the right compartment—that situation is
irrelevant. Hence, we may define the corresponding “effec-
tive process” as the trace-nonincreasing map, which maps
jLi to the maximally mixed state (allowing us to extract
work) and which maps jRi to the zero vector. Evidently, the
full actual physical implementation is a trace-preserving
process, yet it is convenient to represent the “relevant part”
of this process using a trace-nonincreasing map. Crucially,
both mappings have the same process matrix, given that the
input state is jLi. This picture is justified on a formal level:
We show that any trace-nonincreasing, Γ-subpreserving
map Φ̃ can be dilated in the following way. There exists a
trace-preserving, Γ-preserving map over an additional
ancilla whose process matrix is as close to a given ρX0RX

as the process matrix of Φ̃ combined with a transition on
the ancilla between two eigenstates of the Γ operator.
(For technical details, we refer to the Supplemental
Material [91].)

III. RESULTS

A. Fundamental work cost of a process

Consider two systems X and X0 with corresponding
operators ΓX and ΓX0 , respectively, as described above and
as imposed by the appropriate thermodynamic bath
[48,49,52,53]. We consider any input state σX as well as
any logical process EX→X0 , i.e., any completely positive,
trace-preserving map. With a reference system RX of the
same dimension as X, which purifies the input state as
jσiXRX

, the logical process and the input state jointly define
the process matrix ρX0RX

¼ ðEX→X0 ⊗ idRX
ÞðσXRX

Þ.
Our main result is phrased in terms of the coherent

relative entropy, defined as

D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ ¼ max
T ðΓX Þ≤2−λΓX0

T ðσXRX Þ≈ϵ ρX0RX

λ; ð2Þ

where the optimization ranges over completely positive,
trace-nonincreasing maps T X→X0 . The notation “≈ϵ” sig-
nifies the proximity of the quantum states in terms of the
purified distance, a distance measure derived from the
fidelity of the quantum states related to the ability to
distinguish the two states by a measurement [84,90,92],
which is closely related to the quantum angle, Bures
distance, and infidelity distance measures [93,94].
The definition (2) is independent of which purification

jσiXRX
is chosen on RX, noting that ρX0RX

also depends
on this choice. Furthermore, we use the shorthand
D̂X→X0 ðρX0RX

kΓX;ΓX0 Þ ≔ D̂ϵ¼0
X→X0 ðρX0RX

kΓX;ΓX0 Þ.
At this point, we may formulate our main contribution:
Main Result. The optimal implementation of the

process EX→X0 on the input state σX, with free operations
acting jointly on the system X and an information battery,
can extract a number λoptimal of pure qubits given by the
coherent relative entropy,

λoptimal ¼ D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ: ð3Þ

If λoptimal < 0, then the implementation needs to invest at
least −λoptimal pure qubits.
The resources required to carry out the process, counted

in terms of λoptimal pure qubits, may be converted into
physical work. For instance, if we have access to a heat bath
at temperature T, we may convert each pure qubit into
kT lnð2Þ work and vice versa, and thus the work extracted
by an optimal implementation of the process is

W ¼ kT lnð2Þ D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ: ð4Þ

In fact, it is not necessary to implement the process using
the information battery at all, and the resources may be
directly supplied by a variety of other battery models. The
work can even be supplied by a macroscopic pistonlike
system, as we will see later.
Here, we provide the main technical ingredients to

understand the idea of the proof of our main result while
deferring details to the Supplemental Material [91].
A central step in our proof is a characterization of how

much battery charge needs to be invested in order to exactly
implement any completely positive, trace-nonincreasing
map T X→X0 . Such maps are those over which we optimize
in Eq. (2) to define the coherent relative entropy. The work
yield, or negative work cost, of performing T X→X0 with
Γ-subpreserving processes using an information battery is
given by “how Γ-subpreserving” the process is.
Proposition I. Let T X→X0 be a completely positive,

trace-nonincreasing map, and let y ∈ R. Then, the follow-
ing are equivalent:
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(a) The map T X→X0 satisfies

T X→X0 ðΓXÞ ≤ 2−yΓX0 : ð5Þ

(b) For a large enough battery A (with ΓA ¼ 1A) and for
any λ1, λ2 ≥ 0 such that λ1 − λ2 ≤ y, there exists a
trace-nonincreasing, Γ-subpreserving map ΦXA→X0A
satisfying, for all ωX,

ΦXA→X0A(ωX⊗ð2−λ112λ1 Þ)¼T X→X0 ðωXÞ⊗ð2−λ212λ2 Þ;
ð6Þ

where 2−λ12λ denotes a uniform mixed state of rank 2λ

on system A.
Proposition I shows that if there is an allowed operation

in our framework which implements a given completely
positive, trace-nonincreasing map T exactly while charging
the battery by an amount λ, then the mapping must
necessarily satisfy T ðΓÞ ≤ 2−λΓ. Conversely, for any
trace-nonincreasing map T satisfying T ðΓÞ ≤ 2−λΓ for
some value λ, there exists an operation in our framework
acting on the system and a battery system which imple-
ments T while charging the battery by some value λ. This
operation is a trace-nonincreasing, Γ-subpreserving map
acting on the system and the battery. From this operation,
we can then construct a fully Γ-preserving, trace-preserving
map that implements T , as argued at the end of the previous
section.
Our main result then exploits Proposition I in order to

answer the original question, that is, to find the optimal
battery charge extraction when approximately implement-
ing a logical process E on an input state σ. In effect, one
needs to optimize the implementation cost over all maps T
whose process matrix is ϵ close to the required process
matrix. This optimization corresponds precisely to the one
carried out in the definition of the coherent relative entropy
in Eq. (2). (If σX is full rank and if ϵ ¼ 0, then necessarily
T ¼ E; in general, however, a better candidate T may
be found.)

B. Coherent relative entropy and its properties

The coherent relative entropy D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ
defined in Eq. (2) intuitively measures the amount of
information discarded during the process, relative to the
weights represented in ΓX and ΓX0 . It ignores unlikely
events of total probability ϵ, a parameter that can be chosen
freely. Its interpretation as a measure of information is
justified by the collection of properties it satisfies, which
are natural for such measures, and since it reproduces
known results in special cases. We provide an overview of
the properties of this quantity here and refer to the
Supplemental Material for the technical details [91].

1. Elementary properties

The coherent relative entropy obeys some trivial bounds.
Specifically,

− log2trðΓXÞ − log2kΓ−1
X0 k∞

≤ D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ þ log2ð1 − ϵ2Þ
≤ log2kΓ−1

X k∞ þ log2trðΓX0 Þ: ð7Þ

These bounds have a natural interpretation in the context of
a single heat bath at inverse temperature β ¼ 1=ðkTÞ. The
extracted work may never exceed an amount corresponding
to starting in the highest energy level of the system and
finishing in the Gibbs state; similarly, it may never be less
than the amount corresponding to starting in the Gibbs
state and finishing in the highest excited energy level.
(A correction is added to account for additional work that
can be extracted by exploiting the ϵ accuracy tolerance.)
Under scaling of the Γ operators, the coherent relative

entropy simply acquires a constant shift: For any a; b > 0,

D̂ϵ
X→X0 ðρX0RX

kaΓX;bΓX0 Þ ¼ D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þþ log2
b
a
:

ð8Þ

In the case of a single heat bath at inverse temperature
β ¼ 1=ðkTÞ, this property simply corresponds to the fact
that, if the Hamiltonians of the input and output systems
are translated by some constant energy shifts, then the
difference in the shifts should simply be accounted for in
the work cost. Indeed, if HX → HX þ ΔEX and HX0 →
HX0 þ ΔEX0 , then ΓX → e−βΔEXΓX, ΓX0 → e−βΔEX0ΓX0 and
the optimal extracted work of a process, given by kT lnð2Þ
times the coherent relative entropy, has to be adjusted
according to Eq. (8) by kT lnð2Þlog2ðe−βΔEX0=e−βΔEXÞ ¼
ΔEX − ΔEX0 .

2. Recovering known entropy measures

In special cases, we recover known results in single-shot
quantum thermodynamics, reproducing existing entropy
measures from the smooth entropy framework [82,84].
In the case of a system described by a trivial

Hamiltonian, the work cost of resetting the system to a
fixed pure state is given by the max entropy [43], a measure
that characterizes data compression or information recon-
ciliation [95]; similarly, preparing a state from a pure state
allows us to extract an amount of work given by the min
entropy of the state, a measure that characterizes the
amount of uniform randomness that can be extracted from
the state. These results turn out to be special cases of
considering the work cost of any arbitrary quantum process
for systems with a trivial Hamiltonian [81], which is given
by the conditional max entropy of the discarded informa-
tion conditioned on the output of the process:
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D̂ϵ
X→X0 ðρX0RX

k1X;1X0 Þ≈−Ĥϵ
maxðEjX0Þ ¼ Ĥϵ

minðEjRXÞ; ð9Þ

where jρiEX0RX
is a purification of ρX0RX

and where

Ĥϵ
maxðEjX0Þ and Ĥϵ

minðEjRXÞ are the smooth conditional
max entropy and min entropy that were introduced in
Ref. [82] and are also known as the alternative conditional
max entropy and min entropy [96]. A precise meaning
of the approximation in Eq. (9) is provided in the
Supplemental Material [91].
We recover more known results with an arbitrary

Hamiltonian in contact with a heat bath by considering
state formation and work extraction of a quantum state
[38,44]. It is known that the work that can be extracted from
a quantum state, or that is required to form a quantum state,
is given by the min-relative entropy and the max-relative
entropy, respectively; these single-shot relative entropies
were introduced in Ref. [83] and are related to hypothesis
testing [97–102]. We show that if the input or output system
is trivial, then

D̂ϵ
X→∅ðρRX

kΓX; 1Þ ≈Dϵ
min;0ðρXkΓXÞ; ð10aÞ

D̂ϵ
∅→X0 ðρX0 k1;ΓX0 Þ ≈ −Dϵ

maxðρX0kΓX0 Þ; ð10bÞ

matching the previously known results. We note that a
trivial system as output or input of a process is equivalent to
mapping to or from a pure, zero-energy eigenstate; this is
because the coherent relative entropy is insensitive to
energy eigenstates (or more generally, eigenstates of the
Γ operator) that have no overlap with the corresponding
input or output state.

3. Data-processing inequality and chain rule

The coherent relative entropy satisfies a data-processing
inequality: If an additional channel is applied to the output,
mapping the Gibbs weights to other Gibbs weights, then the
coherent relative entropy may only increase. In other
words, for any channel FX0→X00 ,

D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ
≤ D̂ϵ

X→X00(FX0→X00 ðρX0RX
ÞkΓX;FX0→X00 ðΓX0 Þ): ð11Þ

Intuitively, this holds because the final state after the
application of FX0→X00 is less valuable as it is closer to
the Gibbs state, and hence more work can be extracted by
the optimal process realizing the total operation X → X00.
The coherent relative entropy also obeys a natural chain

rule: The work extracted during two consecutive processes
may only be less than an optimal implementation of the
total effective process. We refer to the Supplemental
Material [91] for a technically precise formulation.

4. Asymptotic equipartition

An important property of the coherent relative entropy is
its asymptotic behavior in the limit of many independent
copies of the process (known as the i.i.d. limit). In this
regime, the coherent relative entropy converges to the
difference in the quantum relative entropies of the input
state to the output state, which is consistent with previous
results in quantum thermodynamics [37,41]:

lim
n→∞

1

n
D̂ϵ

Xn→X0nðρ⊗n
X0RX

kΓ⊗n
X ;Γ⊗n

X0 Þ
¼ DðσXkΓXÞ −DðρX0kΓX0 Þ; ð12Þ

recalling that σX is the input state of the process and ρX0 the
resulting output state, and where ϵ is small and either kept
constant or taken to zero slower than exponentially in n.
Crucially, the average work cost of performing a process in
the i.i.d. regime with Gibbs-preserving operations does not
depend on the details of the process but only on the input
and output states, as was already the case for systems
described by a trivial Hamiltonian [81].

5. Miscellaneous properties

We show a collection of further properties, including the
following: The coherent relative entropy is equal to zero for
a pure process matrix, which corresponds to an identity
mapping, for any input state and for ϵ ¼ 0; the smooth
coherent relative entropy can be bounded in both directions
as differences of known entropy measures; the coherent
relative entropy does not depend on the details of the
process if the input state is of the form ΓX=trðΓXÞ (e.g., a
Gibbs state), and it reduces, in this case, to a difference of
input and output relative entropies and hence only depends
on the output of the process.

C. Battery states and robustness to smoothing

Previous work has already shown the equivalence of
several battery models known in the literature [41], notably
the information battery, the wit [38,41], and the “weight”
system [39,76]. Our framework allows us to make this
equivalence manifest, by singling out a class of states on
any system for which the system can act as a battery. These
states exhibit the property that they are reversibly inter-
convertible (as in Ref. [103])—the resources invested in a
transition from one battery state to another can be recovered
entirely and deterministically by carrying out the reverse
transition.
For any systemW with a corresponding ΓW , we consider

as battery states those states of the form

τðPÞ ¼ PΓWP
trðPΓWÞ

; ð13Þ

where P is a projector such that ½P;ΓW � ¼ 0. In the
presence of a single heat bath at inverse temperature β,
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this class of states includes, for instance, individual energy
eigenstates or also maximally mixed states on a subspace of
an energy eigenspace. We define the value of a particular
battery state τðPÞ as

Λ(τðPÞ) ¼ −log2trðPΓWÞ: ð14Þ

We require the systemW to start in such a battery state τðPÞ
and to end in another such state τðP0Þ corresponding to
another projector P0 with ½P0;ΓW � ¼ 0. The following
proposition asserts that the system W can act as a battery
enabling exactly the same state transitions on another
system S as an information battery with charge difference
λ1 − λ2 ¼ Λ(τðP0Þ) − Λ(τðPÞ) (we again refer to the
Supplemental Material for proof [91]):
Proposition II. Let T X→X0 be a completely positive,

trace-nonincreasing map, and let y ∈ R. Then, statements
(a) and (b) in Proposition I are further equivalent to the
following:
(c) For any quantum system W with corresponding ΓW ,

and for any projectors P, P0 satisfying ½P;ΓW �¼½P0;ΓW �¼0
such that Λ(τðP0Þ) − Λ(τðPÞ) ≤ y, there exists a
Γ-subpreserving, trace-nonincreasing map ΦXW→X0W such
that for all ωX,

ΦXW→X0W(ωX ⊗ τðPÞ) ¼ T X→X0 ðωXÞ ⊗ τðP0Þ: ð15Þ

The information battery, the wit as well as the weight
system are themselves special cases of this general battery
system. Indeed, the states 2−λi12λi of the information battery
can be cast in the form (13), with P ¼ 12λi since Γ ¼ 1 for
the information battery; the corresponding value of the state
is indeed Λ(τðPÞ) ¼ −λi. Similarly, in the case of the wit
and of the weight system, and in the presence of a single
heat bath at inverse temperature β such that ΓW ¼ e−βHW ,
the relevant states are energy eigenstates jEiW , whose
value is precisely their energy, up to a factor β:
Λ(τðjEihEjWÞ) ¼ βE. The equivalence of these models
is thereby manifest.
As can be expected, the battery states of the general

form τðPÞ are reversibly interconvertible, implying that for
any process that maps τðPÞ to τðP0Þ on a system, the
coherent relative entropy is equal to the difference
Λ(τðPÞ) − Λ(τðP0Þ).
This general formulation enables us to prove an inter-

esting property of these battery states—they are robust to
small imperfections. Indeed, when implementing a process
on a system S using a battery W, it makes no difference
whether one optimizes over ϵ approximations of the overall
process on the joint system S ⊗ W or over ϵ approxima-
tions on S, only with no imperfections on the battery state
(as the smooth coherent relative entropy is defined above).
More precisely, we prove that the smooth coherent relative
entropy is exactly the optimal difference in the charge state
of the battery while capturing all implementations that

include slight imperfections on the battery for any battery
system:

D̂ϵ
X→X0 ðρX0RX

kΓX;ΓX0 Þ ¼ max
W;PW ;P0

W
;

ΦXW→X0W

− log2
trðP0

WΓWÞ
trðPWΓWÞ

; ð16Þ

where the optimization ranges over all battery systems W
with correspondingΓW , over all battery states corresponding
to projectors PW , P0

W with ½PW;ΓW � ¼ ½P0
W;ΓW � ¼ 0, and

over all free operations ΦXW→X0W , which are an ϵ approxi-
mation of a joint process XW → X0W, with a resulting
process matrix on the system of interest given by ρX0RX

and a
transition on the battery from τðPWÞ to τðP0

WÞ [91].

D. Emergence of macroscopic thermodynamics

We now apply our general framework to the case of
macroscopic systems and recover the standard laws of
thermodynamics as emergent from our model. On one
hand, the goal of this section is to show that our framework
behaves as expected in the macroscopic limit, further
justifying it as a model for thermodynamics. On the other
hand, the arguments presented here reinforce the picture
of the macroscopic laws of thermodynamics as emergent
from microscopic dynamics, in line with common
knowledge and existing literature [37,41,104–107], by
providing an alternative explanation of this emergence
based on Γ-subpreserving maps. (In fact, this emergence
may be understood as defining the order relation in
Refs. [104,105,108–110] as the ordering induced by trans-
formation by Γ-subpreserving maps.)

1. General mechanism

The macroscopic theory of thermodynamics is recovered
when it is possible to single out a class of states that obey a
reversible interconversion property. More precisely, sup-
pose there are a class of states fτz1;z2;…;zmg specified by m
parameters z1;…; zm, and suppose there exists a potential
Λðz1;…; zmÞ such that for any pair of states τz1;…;zm

X and

τ
z0
1
;…;z0m

X0 from this class, we have, for any process matrix
ρX0RX

mapping one state to the other,

lnð2Þ D̂X→X0 ðρX0RX
kΓX;ΓX0 Þ

¼ Λðz1;…; zmÞ − Λðz01;…; z0mÞ: ð17Þ

The ln(2) factor merely serves to change the units of the
coherent relative entropy from bits, which is standard in
information theory, to nats, which will prove convenient to
recover the standard laws of thermodynamics. We call the
function Λðz1;…; zmÞ the “natural thermodynamic poten-
tial” corresponding to the physics encoded in the Γ
operators. In other words, the two states τz1;…;zm and
τz

0
1
;…;z0m may be reversibly interconverted, as any work

invested when going in one direction may be recovered
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when returning to the initial state, and this is irrespective of
which precise logical process is effectively carried out
during the transition. An obvious choice is a state of the
same form as the battery states introduced above, which
motivates recycling the same symbols τ and Λ. [We have
set ϵ ¼ 0 in Eq. (17) because smoothing such battery-type
states has no significant effect.]
Suppose that the parameters are sufficiently well

approximated by continuous values. This would typically
be the case for a large system such as a macroscopic gas.
Consider an infinitesimal change of a state ðz1;…; zmÞ →
ðz1 þ dz1;…; zm þ dzmÞ. If there is a free operation
that can perform this transition, then, necessarily,
the coherent relative entropy is positive; hence,
Λðz1 þ dz1;…; zm þ dzmÞ ≤ Λðz1;…; zmÞ. Conversely, if
the coherent relative entropy is positive, then there neces-
sarily exists a free operation implementing the said
transition. We deduce that the infinitesimal transition z →
zþ dz is possible with a free operation if and only if

dΛ ≤ 0: ð18Þ

This condition expresses the macroscopic second law of
thermodynamics, as we will see below.
We may define the generalized chemical potentials

μi ¼
�∂Λ
∂zi

�
z1;…;zi−1;ziþ1;…;zm

; ð19Þ

where the notation ð∂f=∂xÞy;z denotes the partial derivative
with respect to x of a function f, as y and z are kept
constant. We may then write the differential of Λ as

dΛ ¼
X

μidzi: ð20Þ

The generalized potentials μi are often directly related to
physical properties of the system in question, such as
temperature, pressure, or chemical potential.
Under external constraints on the variables z1; z2;…; zm,

we may ask what the “most useless thermodynamic state”
compatible with those conditions is. The answer is given by
minimizing the potential Λ subject to those constraints—
this is a variational principle. For instance, if two systems
with natural thermodynamic potentials Λ1ðz1;…; zmÞ and
Λ2ðz01;…; z0mÞ are put into contact under the constraints that
for all i, zi þ z0i must be kept constant (such as for extensive
variables in thermodynamics), then we may write dzi ¼
−dz0i and minimize Λ ¼ Λ1 þ Λ2 by requiring that

0 ¼ dΛ ¼
X

ðμi − μ0iÞdzi; ð21Þ

and we see that the minimum is attained when μi ¼ μ0i.
If the system is undergoing suitable thermalizing dynamics,
then its evolution will naturally converge towards that
point.

2. Textbook thermodynamic gas

We proceed to recover the usual laws of thermodynamics
in this fashion for a macroscopic isolated gas S composed
of many particles (Fig. 2). The Hamiltonian of the gas is
denoted by HðVÞ, where the volume V occupied by the gas
is a classical parameter of the Hamiltonian that determines,
for instance, the width of a confining potential. We assume,
for simplicity, that the number N of particles constituting
the gas is kept at a fixed value throughout, restricting our
considerations to the corresponding subspace.
Let us first consider the case of an isolated gas at fixed

parameters E, V. In order to apply our framework, we must
identify the Γ operator, which encodes the relevant restric-
tions imposed by the physics of our system. Recall that our
restriction is meant to explicitly forbid certain types of
processes, without worrying whether a nonforbidden oper-
ation is achievable. Here, we assume that at fixed E, V, the
system is isolated and hence evolves unitarily. In particular,
the projector PE;V

S onto the eigenspace of HðVÞ correspond-
ing to energy E is preserved. Hence, the Γ operator
characterizing the gas alone for fixed E, V can be taken as

ΓE;V
S ¼ PE;V

S : ð22Þ

This is compatible with standard considerations in statis-
tical mechanics, which identify the state of the gas in such
conditions as the maximally mixed state in the subspace
projected onto by PE;V

S (the microcanonical state), which
we denote by τE;VS ¼ PE;V

S =trðPE;V
S Þ. Indeed, at fixed E, V

on the control system, an allowed transformation may not
change this state.
Now, we would like to account for changes in E, V. It is

convenient to introduce a physical control system C, which
plays the following roles: It stores the information about
all the controlled external parameters of the state in which
the gas was prepared—here, the parameters are E, V;

FIG. 2. Macroscopic thermodynamics emerges from our frame-
work when singling out a set of states that can be parametrized by
continuous parameters to a good approximation and can be
reversibly interconverted into one another. We consider the case
of a textbook thermodynamic gas confined in a box, with a piston
capable of furnishing work. In this setting, we recover the usual
second law of thermodynamics, dS ≥ δQ=T, relating the change
in entropy, the dissipated heat, and the temperature.
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furthermore, it provides the necessary physical constraints
on the gas and physical resources necessary for trans-
formations, taking on the role of a battery. In our case, the
control system includes a piston that confines the gas to a
volume V and is capable of furnishing the energy required
to change the state of the gas. For concreteness, we imagine
that the piston is balanced by a weight, causing the piston to
exert a force f on the gas. The force f may be tuned by
varying the weight. The states of the control system are
je; xiC, where e is the energy stored in the control system
and x the position of the piston. The energy e is the
potential energy of the weight, and it must be equal to
e ¼ Etot − E as enforced by total energy conservation,
where Etot is the fixed total energy of the joint CS system.
Furthermore, x determines the volume of the gas as
V ¼ A · x, where A is the surface of the piston. If the
control systemwere isolated and not coupled to the gas, then
the nonforbidden operations on the control systemwould be
those preserving the operator Γ0

C ¼ P
e;xge;xje; xihe; xjC,

where ge;x encodes the relevant physics of the control
system: It decreases as either e increases or x increases,
meaning that a state je; xiC cannot be brought to the state
je0; xiC with e0 > e or je; x0iC with x0 > x. In other words,
we do not forbid reducing the weight charge or lowering it.
The coupling between the control system and the gas can

be enforced with a Γ operator of the form

ΓCS ¼
X
e;x

ge;xje; xihe; xjC ⊗ PE¼Etot−e;V¼Ax
S : ð23Þ

If the control system is the state je; xiC, then any allowed
operation must preserve the operator ΓE;V

S for the corre-
sponding E ¼ Etot − e and V ¼ Ax. Furthermore, Eq. (23)
accounts for the physics of the control system itself with the
coefficient ge;x.
The states τe;xCS ¼ je; xihe; xjC ⊗ τE¼Etot−e;V¼Ax

S are of the
form (13); hence, they are reversibly interconvertible as per
Eq. (17), and they are a valid class of states for our
macroscopic description. The corresponding natural
thermodynamic potential is given as per Eq. (14),

ΛCSðe; xÞ ¼ ΛCðe; xÞ þ ΛSðEtot − e; AxÞ; ð24Þ
where we have defined ΛCðe;xÞ¼−lnge;x and ΛSðE;VÞ ¼
− ln trðPE;V

S Þ. Observe that trPE;V
S ¼ΩSðE;VÞ is the micro-

canonical partition function, and hence ΛSðE; VÞ is, up to
Boltzmann’s constant k and a minus sign, the quantity
SðE;VÞ ¼ k lnΩSðE; VÞ, which is known as the thermo-
dynamic entropy of the gas:

ΛSðE; VÞ ¼ −k−1SðE; VÞ: ð25Þ
As the gas is macroscopic, we assume that the param-

eters E, V are well approximated by continuous variables. It
is useful to define the conjugate variables to e, x and E, V
via the differentials of ΛC and ΛS:

dΛC ¼ νedeþ νxdx; ð26aÞ

dΛS ¼ μEdEþ μVdV; ð26bÞ

with the coupling inducing the relations dE ¼ −de and
dV ¼ Adx. The force f exerted by the piston onto the
gas is given by f ¼ ð∂e=∂xÞΛC

. Using Eq. (26a), we see
that de ¼ ν−1e ðdΛC − νxdxÞ, and hence f ¼ −νx=νe. The
thermodynamic work provided by the piston is the
mechanical work performed by the weight,

δW ¼ −f dx ¼ νx
νe

dx: ð27Þ

Any operation mapping two states τe;xCS → τeþde;xþdx
CS , which

obeys our global restriction, i.e., which preserves the
operator Eq. (23), must obey Eq. (18) or, equivalently,
dΛS ≤ −dΛC; hence,

dΛS ≤ −νede − νxdx ¼ νeðdE − δWÞ ¼ νeδQ; ð28Þ

where we have defined the change in energy of the gas that
is not due to thermodynamic work as heat: δQ ¼ dE − δW.
The temperature of the gas is defined as Tgas ¼

ð∂S=∂EÞ−1 ¼ −ðkμEÞ−1 as in standard textbooks, as
the conjugate variable corresponding to entropy. The
control system also acts as a heat bath, so we define its
temperature T as the temperature of a gas that it would be
“in equilibrium” with, in the sense that our variational
principle is achieved. The potential ΛCS attains its mini-
mum under the constraints dE ¼ −de and dV ¼ Adx if
0¼dΛCS¼ðμE−νeÞdEþðμVþA−1νxÞdV, implying that
μE ¼ νe and hence T ¼ −ðkνeÞ−1. We may now write
Eq. (28) in its more traditional form,

dS ≥
δQ
T

: ð29Þ

Our control system is in fact another example of a battery
system. Indeed, it can convert another form of a useful
resource, mechanical work, into the equivalent of pure
qubits for enabling processes on the system, while still
working under the relevant global constraints such as
conservation of energy.
The thermodynamic gas illustrates a situation in which

the macroscopic second law of thermodynamics is recov-
ered as emergent. Note that the argument can also be
applied to a system with different relevant physical quan-
tities, such as magnetic field and magnetization of a
medium.

E. Observers in thermodynamics

In standard thermodynamics, one describes systems
from the macroscopic point of view. This point of view
is usually assumed only implicitly, to the point that notions
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such as thermal equilibrium or the thermodynamic entropy
function are often thought of as objective properties of the
system. Yet, a closer look reveals that they can be thought
of as observer-dependent quantities, which can be extended
to observers with different amounts of knowledge about the
system [46,47,111]. This observation is at the core of a
modern understanding of the Maxwell demon.
The present section begins with a brief motivation,

reviewing a variant of the Maxwell demon. Then, we show
that our framework is well suited for describing different
observers and that it provides a natural notion of coarse
graining. Indeed, the framework itself, thanks to the
abstraction provided by the Γ operator, is scale agnostic
and can be applied consistently from any level of knowl-
edge about the system. More precisely, we show how to
relate two descriptions from the viewpoints of two observ-
ers, where one observer sees a coarse-grained version of
another observer’s knowledge. The coarse graining is given
by any completely positive, trace-preserving map. We
define a sense in which we can carry out the reverse
transformation, where one recovers the fine-grained infor-
mation, given the coarse-grained information, with the help
of a recovery map. This allows us to relate the laws of
thermodynamics in either observer’s picture, where by the
“laws of thermodynamics” in an observer’s picture, we
mean that the evolution of the system is governed in their
picture by Γ-subpreserving maps. This provides a precise
criterion that can guarantee, in a given setting, that the laws
of thermodynamics hold in the coarse-grained picture or,
intuitively, that “no Maxwell-demon-type cheating” is
happening. Namely, if the fine-grained picture has no more
information than what can be recovered from the coarse-
grained picture, then our framework may be applied
consistently from either picture, with both observers
agreeing on the class of possible processes.
Consider the variant of the Maxwell demon depicted in

Fig. 3. A gas is enclosed in a box separated into two equal
volume compartments, which communicate only through a
small trap door controlled by a demon. The demon is able
to observe individual particles and activates the trap door at
appropriate times, letting a single particle through each
time, in order to concentrate all particles on one side of the
box. From a macroscopic perspective, and looking only at
the gas, one observes an apparent entropy decrease as the
gas now occupies a smaller volume. However, from a
microscopic perspective, the demon is essentially trans-
ferring entropy from the gas into a memory register, which
is initially in a pure state [2,3]. Consider in more detail the
following process: The demon performs a series of CNOT

gates using the gas degrees of freedom as controls and his
memory qubits as targets, which “replicates” the informa-
tion about the gas particles into his memory. Since this
process is unitary, it preserves the joint entropy of the
memory and the gas. The result is a classically correlated
state between the memory register and the gas. So, what is

the entropy of the gas? It is now clear that the answer
depends on the observer. The macroscopic observer sees
the gas with its usual macroscopic thermodynamic entropy,
while the demon has engineered a state where the gas has
zero entropy conditioned on the side information stored in
his memory—he knows all there is to know about the gas.
Conceptually, the thermodynamic reason for this difference
is that the demon is able to extract work from the gas,
whereas the macroscopic observer is not. Indeed, the
demon can exploit the side information stored in his
memory to design a perfect trap-door opening schedule,
which, when executed, concentrates all the particles on one
side of the box. (This process can itself be thought of as
CNOT gates acting in the other direction.) With all particles
concentrated on one side of the box, the demon can now
extract work by replacing the separator by a piston and
letting the gas expand isothermally. (Of course, the memory
register is still littered with all the information about
the gas; resetting the register costs work according to
Landauer’s principle, which is where the demon pays back
his extracted work if he wishes to operate cyclically [2,3].)
The above example shows that a fully general framework

of thermodynamics should be universally applicable from
the point of view of any observer, accounting for any level
of knowledge one might possess about a system. One also
expects that if an observer sees a violation of their laws of
thermodynamics, while knowing that in a finer-grained
picture the corresponding laws are obeyed, then they may
attribute this effect to lack of knowledge about microscopic
degrees of freedom which the observed process exploits.

(a) (b)

FIG. 3. The Maxwell demon concentrates all particles on one
side of the box by opening the trap door at appropriate times.
(a) A macroscopic observer describing only the gas sees its
entropy decrease, in apparent violation of the macroscopic
observer’s idea of the second law of thermodynamics. (b) The
demon observes no entropy change, as the state of the gas is
conditioned on his knowledge. By modeling his memory as an
explicit system, originally in a pure state, we may understand his
actions as simply correlating his memory with the state of the gas.
In doing so, a macroscopic observer may be induced into
witnessing a violation of a macroscopic second law. If the demon
wishes to operate cyclically, he needs to reset his memory register
back to a pure state, which costs work according to Landauer’s
principle [2,3]; any work he might have extracted using his
scheme is paid back at this point.

FUNDAMENTAL WORK COST OF QUANTUM PROCESSES PHYS. REV. X 8, 021011 (2018)

021011-11



In the following, we show that our framework displays
these desired properties.
Consider two observers, Alice and Bob, who have

distinct degrees of knowledge about a system. We assume
that the system’s microscopic state space HA, which Alice
has access to, is transformed by a completely positive,
trace-preserving map FA→B

A→B to a state space HB, which is
used by Bob to describe the situation (Fig. 4). For instance,
Alice might have access to individual position and
momenta of all the particles of a gas, while Bob only
has access to partial information given by macroscopic
physical quantities such as temperature, pressure, volume,
etc. More generally, if the microscopic system can be
embedded in a bipartite system HK ⊗ HN that stores,
respectively, the macroscopic information (available to
both Bob and Alice) and the microscopic information
(available to Alice only), then Bob’s observations can be
related to Alice’s simply by tracing out the HN system.
Suppose that Alice observes some microscopic dynamics

happening within HA and that this evolution is Γ-preserv-
ing with a particular operator ΓA

A . How does this evolution
appear to Bob? It turns out that for Bob, these maps are also
Γ-preserving maps, but they are relative to his Γ operator,
which is simply given as ΓB

B ¼ FA→B
A→B ðΓA

A Þ, that is, by
transforming Alice’s Γ operator into Bob’s picture.
Conversely, a map that appears as ΓB preserving to Bob
is observed by Alice as being ΓA preserving.

In order to give a precise meaning to the above state-
ments, it is necessary to specify how a state described by
Bob can be translated back to Alice’s picture. Indeed, there
can be several possible states for Alice that are compatible
with Bob’s state. We describe this “recovery process” using
a recovery map, which gives, in a sense, the “best guess” of
what the state on HA could be, given only knowledge of
Bob’s state on HB. More precisely, we define the state
transformation from Bob’s picture to Alice’s picture as the
application of a completely positive, trace-preserving map
RB→A

B→A ð·Þ, with the property that RB→A
B→A ðΓB

BÞ ¼ ΓA
A , recall-

ing that ΓB
B ¼ FA→B

A→B ðΓA
A Þ. This ensures that the completely

useless state in Bob’s picture is mapped back to the
completely useless state in Alice’s picture. An example
of a suitable recovery map is the Petz recovery map
[77,112–116], defined as

RB→A
B→A ð·Þ ¼ ΓA 1=2

A FA←B†
A←B ðΓB−1=2

B ð·ÞΓB−1=2
B ÞΓA 1=2

A ; ð30Þ

where FA←B†
A←B is the adjoint of the superoperator FA→B

A→B .
The Petz recovery map is completely positive and trace
preserving, and satisfies RB→A

B→A ðΓB
BÞ ¼ ΓA

A (assuming that
ΓB
B is full rank).
Hence, given a trace-nonincreasing mapping EA

A in
Alice’s picture, we define Bob’s description of the mapping
as the composed map of transforming into Alice’s picture,
applying the map, and transforming back to Bob’s picture:

EB
B ¼ FA→B

A→B ∘ EA
A ∘RB→A

B→A : ð31Þ

Our claim is the following: If EA
A satisfies EA

A ðΓA
A Þ ≤ ΓA

A ,
then EB

B satisfies EB
BðΓB

BÞ ≤ ΓB
B. Conversely, if we are given

a trace-nonincreasing mapping EB
B in Bob’s picture, then

this map is described in Alice’s picture as the composed
map of transforming to Bob’s picture, applying the map,
and transforming back:

EA
A ¼ RB→A

B→A ∘ EB
B ∘FA→B

A→B ; ð32Þ

we assert that if EB
BðΓB

BÞ ≤ ΓB
B, then EA

A ðΓA
A Þ ≤ ΓA

A .
The proof of both claims is straightforward, using

FA→B
A→B ðΓA

A Þ ¼ ΓB
B and RB→A

B→A ðΓB
BÞ ¼ ΓA

A . More generally,
these claims hold as well for any trace-nonincreasing,
completely positive maps FA→B

A→B , RB→A
B→A satisfying

FA→B
A→B ðΓA

A Þ ≤ ΓB
B and RB→A

B→A ðΓB
BÞ ≤ ΓA

A , in which case
ΓB
B does not have to be full rank.
The above provides a general criterion that is able to

guarantee that the laws of thermodynamics in the coarse-
grained picture are valid: If the state of the system in Alice’s
picture is one that can be recovered from Bob using a fixed
recovery map, then Alice’s free operations correspond to
free operations in Bob’s picture, and hence Alice’s laws of

FIG. 4. Observers in thermodynamics. Alice has access to
microscopic degrees of freedom of a gas, while Bob can only
observe its coarse macroscopic properties, such as its temperature
T, volume V, and pressure p. Alice describes the evolution of the
gas using Gibbs-preserving maps, with a Gibbs state ΓA

A on the
full state space of the many particles of the gas. On the other
hand, Bob describes the gas using his own knowledge—for
instance, the macroscopic variables T, V, p—which, in full
generality, we can represent as a quantum state in a state space
HB, which is obtained by applying a given mapping FA→B

A→B ð·Þ on
Alice’s state. (For instance, this map may trace out the inacces-
sible microscopic information.) States of the gas described by
Bob may be transformed to Alice’s picture by applying a suitable
recovery map, such as the Petz map [77,112–116]. Then, Alice’s
ΓA
A -preserving maps appear to Bob as ΓB

B-preserving maps, where
Bob’s ΓB

B operator is taken to be ΓB
B ¼ FA→B

A→B ðΓA
A Þ. Conversely,

operations that preserve ΓB
B for Bob may be described by Alice as

preserving ΓA
A .
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thermodynamics indeed translate to Bob’s idea of what the
laws of thermodynamics are.
A simple example is the relation of the microcanonical to

the canonical ensemble. (This is also known as Gibbs
rescaling, an essential tool to relate thermal operations to
noisy operations [38,41,45].) If Alice describes unitary
dynamics within an energy eigenspace of the joint system
and a large heat bath, then Bob describes the dynamics of
the system alone as Gibbs-preserving maps. Consider a
system S and a heat bath R, with respective Hamiltonians
HS and HR and total Hamiltonian HSR ¼ HS þHR.
Suppose that Alice has microscopic access to the heat
bath and hence describes the situation using the state space
A ¼ S ⊗ R. Assume that the global state and evolution are
constrained to unitaries within a subspace of fixed total
energy E. This evolution is, in particular, Γ subpreserving if
we choose ΓA

A ¼ PE
SR, where P

E
SR is the projector onto the

eigenspace of HSR corresponding to the energy E. On
the other hand, Bob only has access to the system B ¼ S.
The mapping FA→B, which relates Alice’s point of view to
Bob’s, simply traces out the heat bath R. Bob then describes
the operator ΓA

A as

ΓB
S ¼ trRðΓA

SRÞ ¼
X
ES;k

gðE − ESÞjES; kihES; kjS; ð33Þ

where gðERÞ is the degeneracy of the energy eigenspace of
the heat bath corresponding to the energy ER and where the
vectors fjES; kiSg are the energy eigenstates on S with a
possible degeneracy index k. Following standard argu-
ments in statistical mechanics, and as argued in Ref. [38],
we have, in typical situations and under mild assumptions,
gðE − ESÞ ∝ e−βES , and we hence recover in Eq. (33) the
standard canonical form of the thermal state. In other
words, Bob describes the dynamics on S as maps that
preserve the Gibbs state.
The above reasoning can be seen as a rule for trans-

forming one observer’s picture into another; it remains
important to analyze the situation in the picture that
accurately describes the state of knowledge of the input
state of the agent carrying out the operations. The pictures
are equivalent when Alice’s state of knowledge of A is no
more than what B can recover using the recovery map, i.e.,
when her input state is exactly of the form RB→A

B→A ðρBBÞ,
where ρBB is the state of the system in Bob’s picture.
However, not all actions that Alice can perform using ΓA

A -
subpreserving maps must induce a ΓB

B-subpreserving effec-
tive map on B. Indeed, if Alice’s input state is more refined,
i.e., if she has more fine-grained information about the
microscopic initial state than what Bob can infer, then her
actions might appear to Bob as violating his idea of the
second law of thermodynamics. In this case, Alice may
indeed perform ΓA

A -subpreserving operations that result in

an effective mapping on B that is not ΓB
B subpreserving.

Enter the Maxwell demon.
Our framework hence allows us to systematically ana-

lyze a variety of settings inspired by the Maxwell demon.
Returning to our example depicted in Fig. 3, we identify
Alice as possessing a microscopic description of the gas
and the demon, and Bob as the macroscopic observer.
The demon, as described by Alice, can perform Gibbs-
preserving operations on the joint system of the gas S and
the demon’s memory register M, which, for simplicity, we
choose to have a completely degenerate HamiltonianHM ¼
0 and thus ΓM ¼ 1M. Bob, on the other hand, describes the
gas alone using standard thermodynamic variables, say,
energy E, volume V, and number of particles, N. To relate
both points of view, we write the gas system (including a
possible control system to fix macroscopic thermodynamic
variables) as a bipartite system S ¼ K ⊗ N with states of
the form jE; V;NihE;V;NjK ⊗ τE;V;NN , where τE;V;NN is the
microcanonical state corresponding to the macroscopic
variables E, V, N. We have τE;V;NN ¼ PE;V;N

N =ΩðE;V;NÞ,
where PE;V;N

N projects onto the subspace of the microscopic
system corresponding to fixed E, V, N, and where the
partition function is ΩðE;V;NÞ ¼ tr½PE;V;N

N �. Then, Bob’s
picture is obtained from Alice’s by disregarding the
memory register as well as the microscopic information,
which corresponds to the mapping FA→B

KNM→Kð·Þ ¼ trMNð·Þ.
Alice uses the description ΓA

KNM ¼ P
E;V;N jE; V;Ni

hE;V;NjK ⊗ PE;V;N
N ⊗ 1M (see previous section). Bob,

on the other hand, describes the gas using ΓB
K ¼

FA→B
KNM→KðΓA

KNMÞ ¼ dM
P

ΩðE;V;NÞjE;V;NihE;V;NjK ,
where dM is the dimension of the systemM. Using the fact
that FA←B†

KNM←Kð·Þ ¼ ð·Þ ⊗ 1NM, the Petz recovery map
corresponding to FA→B

KNM→K is determined to be

RB→A
K→KNMð·Þ ¼ ðRK→KN ½ð·Þ ⊗ 1N �R†

K←KNÞ ⊗
1M
dM

; ð34Þ

where we have defined the operator

RK→KN ¼
X
E;V;N

jE;V;NihE;V;NjK ⊗
PE;V;N
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩðE;V;NÞp : ð35Þ

Importantly, the recovery map applied to any state of the
form jE;V;NiK gives

RB→A
K→KNMðjE;V;NihE;V;NjKÞ

¼ jE;V;NihE;V;NjK ⊗ τE;V;NN ⊗
1M
dM

; ð36Þ

i.e., Bob assigns a standard thermal state to all systems that
he cannot otherwise access. From Alice’s perspective (the
demon’s), the memory registerM starts in a pure state j0iM,
in order to store the future results from observations of the
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gas. On the other hand, Bob has no way to infer this
state from his macroscopic information. Because of this,
Alice can design processes that are perfectly Γ subpreserv-
ing from her perspective but which can trick Bob into
thinking he is observing a violation of the second law (as
described in Fig. 3). Consider, for concreteness, the
following procedure: Alice performs a unitary process
mapping the state jE;V;NihE;V;NjK⊗τE;V;NN ⊗ j0ih0jM
to jE;V=2; NihE;V=2; NjK ⊗ τE;V=2;NN ⊗ ðd−1M 1MÞ, where
we assume that the systemM has just the right dimension to
store all the entropy resulting frommapping a state τE;V;NN to
the state τE;V=2;NN of lower rank [we assume, for simplicity,
that the rank of τE;V=2;NN divides that of τE;V;NN , and thus
ΩðE;V;NÞ ¼ dMΩðE; V=2; NÞ]. Alice’s process is fully Γ
preserving because it is unitary and commutes with ΓA

KNM.
However, from Bob’s perspective, the gas changed its state
from jE;V;NiK to jE; V=2; NiK , in a blatant violation of
his idea of the second law of thermodynamics. Of course, a
clever Bob would be led to infer that there exists some
system (M) that has interacted with the gas and absorbed
the surplus entropy. The point is, however, that Bob can still
very well apply his laws of thermodynamics (in the form of
the restriction imposed by Γ-subpreserving maps) as long
as Alice does not “actively mess with him.” In other words,
any observer can consistently apply the laws of thermo-
dynamics (in the form of our framework) from their
perspective, using the restriction of Γ-subpreserving maps
for appropriately chosen Γ operators as long as this
restriction indeed holds. A Γ-subpreserving restriction
inferred from coarse graining a finer Γ-subpreserving
restriction fails exactly when the finer-grained observer
actively makes use of their privileged microscopic access.
A further example illustrating the necessity of treating

thermodynamics as an observer-dependent framework,
where our framework could be applied, is provided by
Jaynes’ beautiful treatment of the Gibbs paradox [111].

IV. DISCUSSION

One might think that thermodynamics, as a physical
theory in essence, would require physical concepts, such as
energy or number of particles, to be built into the theory, as
is done in usual textbooks. Our results align with the
opposite view, where thermodynamics is a generic frame-
work itself, agnostic of any physical quantities such as
“energy,” which can be applied to different physical
situations, in the same spirit as previously proposed
approaches [104,105,110,117–119]. The physical proper-
ties of the system, such as energy, temperature, or number
of particles, are accounted for in our framework only
through the abstract Γ operator.
Our results provide an additional step in understanding

the core ingredients of thermodynamics and hence the
extent of its universality. Our approach reveals the follow-
ing picture: Given any situation where the system obeys

some physical laws that imply the restriction that the
evolution must preserve (or subpreserve) a certain operator
Γ, then purity may be invested to lift the restriction on any
process, as quantified by the coherent relative entropy;
depending on how Γ is defined, one may express this
abstract resource in terms of a physical resource such as
mechanical work. Furthermore, if the states of interest of
our system form a class of states that happen to be
reversibly interconvertible, the macroscopic laws of
thermodynamics emerge, along with the relevant thermo-
dynamic potential. In a coarse-grained picture, the thermo-
dynamic laws apply as long as our thermodynamic coarse-
graining criterion is fulfilled, namely, if the fine-grained
state is not more informative than what can be recovered
from the coarse-grained information.
The notion of macroscopic limit considered here is more

general than assuming that the state of the system is a
product state ρ⊗n, where each particle or subsystem is i.i.d.
While typical thermodynamic systems are indeed close to
an i.i.d. state (for instance, the Gibbs state of many
noninteracting particles is an i.i.d. state), we only rely
on a notion of “thermodynamic states,” defined by their
ability to be interconverted reversibly and with certainty.
Thermodynamic states may include arbitrary interaction
between the particles or, in fact, may even be defined on a
small system of a few particles. More precisely, our notion
of thermodynamic states coincides with our definition of
battery states and corresponds to a state that is of the form
PΓP=trðPΓÞ for a projector P that commutes with Γ. These
states can be reversibly interconverted in our framework,
and usual statistical mechanical states are precisely of this
form. The thermodynamic states may be used as reference
charge states of a battery system, in the sense that they
enable the same processes.
The core of the framework is the Γ-subpreserving

restriction imposed on the free operations. The Γ operator
encodes all the relevant physics of the system considered.
The restriction may be due to any physical reason—for
instance, by assuming that the evolution is modeled by
thermal operations on the microscopic level, or by other-
wise justifying or assuming that the spontaneous dynamics
are thermalizing in an appropriate sense. Furthermore, Γ
subpreservation may come about in any situation where one
or several conserved physical quantities are being
exchanged with a corresponding thermodynamic bath, in
a natural generalization of thermal operations [49,52,53].
Our framework is not limited to usual thermodynamics:

By considering the Γ operator as an abstract entity, all
considerations in our framework are of a purely quantum
information theoretic nature and make no explicit reference
to any physical quantity. For instance, one can consider
purity as a resource and impose that operations subpreserve
the identity operator; our framework applies by taking
Γ ¼ 1; in this way, one can recover the max entropy as the
number of pure qubits required to perform data
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compression of a given state. We might further expect
connections with single-shot notions of conditional mutual
information [69,120–122], which in the i.i.d. case can also
be expressed as a difference of quantum relative entropies.
Our approach is also promising for calculating remainder
terms in recovery of quantum information [77,115,
123–126]. Furthermore, being a Γ-subpreserving map is
a semidefinite constraint, and thus optimization problems
over free operations may often be formulated as semi-
definite programs, which exhibit a rich structure and can be
solved efficiently.
Although the goal of our paper is to derive a fundamental

limitation on operations in quantum thermodynamics, one
can also ask the question of whether this limit can be
achieved within a physically well-motivated set of oper-
ations. Because our bound is given by an optimization over
Gibbs-preserving maps, it is clear that there is one such
map that will attain that bound (or get arbitrarily close).
However, it is not clear under which conditions our bound
can be approximately attained in a more practical or
realistic regime such as thermal operations (possibly
combined with additional resources), as is the case for a
system described by a fully degenerate Hamiltonian [81] or
for classical systems [127].
The question of achievability is related to coherence in

the context of thermodynamic transformations, an issue of
significant recent interest [58–63]. In particular, thermal
operations do not allow the generation of a coherent
superposition of energy levels, while this is allowed, to
some extent, by Gibbs-preserving maps, which are hence
not necessarily covariant under time translation [127]. Our
approach suggests a possible interpretation for why this is
the case: With Γ-subpreserving operations, one requires no
assumption that the system in question is isolated—for
instance, Γ could be the reduced state on one party of a joint
Gibbs state of a strongly interacting bipartite system.
Indeed, the example in Ref. [127] can be explained in this
way (see also Sec. 4.4.4 of Ref. [85]). Still, the question of
whether Gibbs-preserving maps may be implemented
approximately using a more practical framework, such
as thermal operations (perhaps under certain conditions),
remains an open question. We note, though, that the
coherence resources required in order to implement a
process can be determined using the techniques of
Ref. [66]. These general tools might thus clarify the precise
coherence requirements of implementing Gibbs-preserving
maps with covariant operations. In a similar vein, one could
study the effect of catalysis in our framework [60,70,128],
presumably in the context of state transitions rather than
logical processes. A closer study of this type of situation is
expected to reveal connections with smoothed, generalized,
free energies [129] and the notion of approximate majo-
rization [130]. Furthermore, we expect tight connections
with recent results, providing a complete set of entropic
conditions for fully quantum state transformations under

either general Gibbs-preserving maps or time-covariant
Gibbs-preserving maps [79]. As a condition on state
transformations, it automatically provides an upper bound
to the amount of work one can extract when implementing
a specific process, which, in particular, implements a
specific state transformation. Furthermore, the way the
covariance constraint is enforced in Ref. [79] provides a
promising approach for including the covariance constraint
in our framework as well and tightening our fundamental
bound in the context of operations, which are restricted to
be time covariant. Finally, the conditions of Ref. [79] may
be used to prove the achievability of state transformations
with a covariant mapping; one could expect a suitable
generalization of both frameworks to simultaneously han-
dle possible symmetry constraints and logical processes as
well as state transformations, and a tolerance against
unlikely events using ϵ approximations.
Finally, our framework can describe a system at any

degree of coarse graining, including intermediate scales
between the microscopic and macroscopic regimes. We can
consider, for instance, a small-scale classical memory
element that stores information using many electrons or
many spins (such as everyday hard drives): The electrons
may need to be treated thermodynamically but not the
system as a whole since we have control over the
information-bearing degrees of freedom on a relatively
small scale. Other such examples include Maxwell-demon-
type scenarios, which our framework allows to treat
systematically. Our framework is also suitable for describ-
ing agents who possess a quantum memory containing
quantum side information about the system in question. In
other words, we provide a self-contained framework of
thermodynamics, which allows us to make the dependence
on the observer explicit, underscoring the idea that thermo-
dynamics is a theory that is relative to the observer [111].
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Generalizations of the Conditional Quantum Mutual
Information, J. Math. Phys. (N.Y.) 56, 022205 (2015).

[122] M. Berta, M. Christandl, and D. Touchette, Smooth
Entropy Bounds on One-Shot Quantum State Redistrib-
ution, IEEE Trans. Inf. Theory 62, 1425 (2016).

[123] N. Datta and M.M. Wilde, Quantum Markov Chains,
Sufficiency of Quantum Channels, and Rényi Information
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