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The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation,
fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have
been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by
heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is
any deep connection between fast β and slow αmodes. To settle these issues, here we introduce a set of new
structural order parameters characterizing sterically favored structures with high local packing capability,
and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle
mobility is under control of the static order parameter field. The fast β process is controlled by the
instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the
mobility field progressively develops with time t, following the initial order parameter field from disorder
to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity)
is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this
mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at
t ¼ 0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ∼ ξ4, indicating
that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an
intrinsic link between τα and ξ: the growth of the static length ξ is the origin of dynamical slowing-down.
These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a
static structure has two intrinsic characteristic lengths, particle size and ξ, which control dynamics in local
and nonlocal manners, resulting in the emergence of the two key relaxation modes, fast β and slow α
processes, respectively. Because the two processes share a common structural origin, we can even predict a
dynamic propensity pattern at long timescale from the fast β pattern. The presence of such intrinsic
structure-dynamics correlation strongly indicates a thermodynamic nature of glass transition.
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I. INTRODUCTION

Glasses are ubiquitous in nature and have a wide range
of applications in our daily lives as well as in modern
technology, thanks to the unique physical and chemical
properties distinct from the crystal counterparts. Despite
thousands of years of experience, however, the mechanism
of the rapid increase in the viscosity and the emergence of
complex dynamics of glass-forming liquids near the glass
transition remains a major unsolved problem in condensed
matter physics and materials science [1–8]. A major

mystery of the glass transition lies in the fact that, upon
the transition, the emergence of the solidity is accompanied
by little change in the geometric structure, as measured by
the two-point correlation functions like the radial distribu-
tion function gðrÞ or the static structure factor SðqÞ (see, for
example, Ref. [4]). This is in marked contrast to another
type of liquid-solid phase transition, i.e., crystallization,
where the solidity emerges as a result of the formation of
ordered structures, i.e., long-range translational order [9].
A further mystery lies in the dynamic heterogeneity of a
supercooled liquid observed in both experiments and
simulations [10], whose length scale tends to diverge when
approaching the glass transition. While this points to a
similarity between the dynamic arrest of glass-forming
liquids and the critical slowing-down in critical phenomena
[11–15], there are crucial differences between them: the
dynamic heterogeneity is detected through dynamic vari-
ables so the corresponding length scale is dynamical in its
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nature. Furthermore, unlike ordinary critical phenomena,
the glassy dynamics slows down even at a microscopic
(particle) level, which results in the emergence of the
universal two-step relaxation.
The difficulty to uncover the mystery of glassy dynamics

and glass transition is therefore linked to the following
fundamental issues: (i) how to characterize the subtle
growing structural order, which is sometimes named
amorphous order or glassy order, if it exists, and (ii) how
it is correlated to the complex dynamics, including two-step
relaxation, dynamic heterogeneity, and drastic slowing-
down [5]. Although the presence of a growing static length
scale with direct correlation to dynamic heterogeneity was
suggested for some glass formers [13,14,16,17], its gen-
erality is a matter of debate. A serious conflict arises from
results on binary glass formers indicating a distinct decou-
pling between them [18–25]. Furthermore, the character-
istic relaxation time is related to the correlation length of
the order parameter fluctuations via dynamic scaling for
critical phenomena [9], but such a relationship between the
static length and dynamics has not yet been established for
glass transition. Resolution of these questions is expected
to largely improve our understanding of the glassy phe-
nomena and provide a proper theoretical description of the
glass transition. Here it is worth noting that, although not
direct, there is a rigorous inequality between the time scale
τα and the length scale ξ [26]: τα ≤ τ0 expðconst × ξdÞ,
where τ0 is the microscopic time scale, d is the dimension-
ality of the system, and ξ is the longest correlation length in
the system. This relation comes from the fact that the
slowest possible relaxation mechanism would be a ther-
mally activated process whose largest possible activation
energy (for particles with finite-ranged interactions) would
scale like ξd [15].
Since the pioneering works by Widmer-Cooper and co-

workers [27,28], many pieces of evidence have accumu-
lated for the correlation between static structure and
dynamic heterogeneity [29–31]; however, the structural
features behind it and the degree of the correlation have
remained elusive until now. Logically, it is natural to expect
higher mobility in more disordered structures. But simple
structural quantities like the local free volume, the local
potential energy, and the pair free energy have shown little
correlation with the heterogeneous dynamics [16,28,32].
Large amounts of effort have been devoted to the identi-
fication of local structural order to compare with dynamics,
such as icosahedral [33,34], crystal-like orders [13,14,16],
or more complicated topological clusters (see Ref. [24] for
a review). This has been an extremely difficult task due to
the complex and temporally fluctuating nature of disor-
dered liquid structures. While positive correlations between
specific structures and glassy slow dynamics have indeed
been observed in various simulation models and exper-
imental systems, the relation between structures and
dynamics has not been universal: Some studies reported

almost one-to-one correspondence between structural
order and dynamics [13,14,16,17], whereas other studies
reported a disparity between them [18–22] (see also
Ref. [24] for a recent review). Even the qualitative
correlation has recently been suggested to be highly system
dependent [35]. Therefore, new approaches, e.g., going
beyond a local correspondence between structure and
dynamics, are necessary to clarify the mystery.
Instead of searching for particular structural orders, a

number of approaches that are claimed as “order agnostic”
have been proposed to detect the growth of amorphous
order, e.g., point-to-set (PTS) correlations [18–20,36],
finite-size scaling of entropy [21], vibrational-mode analy-
sis of inherent states [22], and machine-learning analysis
[31]. The common result is that the static length is distinct
from and grows much slower than the dynamic one with
decreasing temperature [18–23,25]. There are at least two
possibilities to rationalize the situation: (1) additional
mechanisms other than the structural ordering are important
in the development of dynamic heterogeneity, and (2) other
forms of structural order exist which control the glassy
dynamics but remain undetectable by the above methods.
Actually, the order-agnostic nature of PTS correlation
lengths was recently questioned, for a polydisperse hard
disk system, that the length scale associated with bond-
orientational order, rather than the PTS length, correlates
with dynamics [17]. This result has triggered reconsidera-
tion of the pinning-protocol dependence in probing the PTS
correlations [37], leading to debates about possible differ-
ent natures of glass formers with and without medium-
range crystalline order [23,37]. To clarify the puzzle,
further studies in the other classes of glass formers, e.g.,
binary systems widely used in previous studies [18–22], are
necessary.
In this paper, we introduce a new nonlocal approach to

tackle the classical problem of how the structure and
heterogeneous dynamics are correlated in supercooled
liquids. Three important types of glass formers with very
different nature, namely, two-dimensional polydisperse and
binary mixtures of soft disks and three-dimensional binary
mixtures of soft spheres, are studied using molecular
dynamics simulations. First, we introduce a set of new
structural order parameters, which quantifies the capability
to be efficiently packed locally. Then, using this order
parameter, we establish an intimate structure-dynamics
correlation for all three systems by revealing the underlying
correspondence of time and length scales. In particular, the
dynamic heterogeneity developed over the structural relax-
ation time τα can be predicted with remarkable precision by
a spatial coarse graining of the static order parameter field
over a particular length scale ξ. Such strong structure-
dynamics correlations have so far never been reported for
binary systems [18–22,24], mainly because the complex
disordered structure has impeded the identification of the
hidden structural ordering. Since the spatial coarse graining
is purely a static operation, this result clearly indicates not
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only that the dynamic correlation length ξ4 coincides with
the static one ξ, but also that the glassy slow dynamics
characterized by τα is controlled by the static length scale ξ.
We further show that the correlation of spatial hetero-
geneity in fast (short-time) and slow (long-time) dynamics
is rooted in their common structural origin. These findings
suggest a purely static origin for the dynamics of glass-
forming liquids including not only α but also fast β
relaxations.
The paper is organized as follows. In Sec. II, we

introduce a set of new order parameters to detect the
structural feature responsible for slow dynamics in both
two and three dimensions. In Sec. III, we describe our
simulation models and analysis methods for structure,
dynamics, and their correlation. In Sec. IV, we first
visualize the good correlation between structure and
dynamics for both 2D polydisperse and binary systems
(Fig. 2), which cannot be achieved in previous local
approaches. This leads to the nonlocal scenario of struc-
ture-dynamics correlation in glass-forming liquids (Fig. 3).
Key time and length scales are revealed through detailed
analyses of the structure-dynamics correlation for the 2D
and 3D systems, and possible theoretical descriptions of the
data are discussed (Figs. 4 and 5). Structural contribution to
dynamic fluctuations is disentangled to clarify the meaning
of a causal correlation between structure and dynamics
(Fig. 6). We further discuss the relation between fast and
slow dynamics and demonstrate a common structural origin
behind them (Fig. 7). Discussions about the role of order
parameter and spatial coarse graining in characterizing the
subtle structural order are given in Sec. V. Finally, we
provide concluding remarks in Sec. VI.

II. INTRODUCTION OF NEW STRUCTURAL
ORDER PARAMETER OF GLASSINESS

A. Basic concept

Here, we introduce a set of new structural order
parameters in both 2D and 3D, which can characterize
many-body correlations responsible for slow dynamics.
Our basic standpoint is that the structure of a supercooled
liquid is controlled by the free energy. For a glass-forming
system of hard spheres, for example, the free energy is
determined by the steric constraint and the configurational
entropy. For example, it is the steric constraint that is a
driving force for hard-sphere crystallization. Thus, it is
natural to expect that structural order should be associated
with sterically favored structures. Provided that the density
is basically homogeneous beyond the particle scale, such a
sterically favored configuration should provide more room
for particles, and hence, higher correlational (or, vibra-
tional) entropy [14]. The validity of this last assumption has
been confirmed by the absence of the correlation in the
structure factor at the corresponding wave number. This
physical picture should basically be valid for particle
systems without directional bonding, which is justified

by the absence of the growth of density fluctuations beyond
the particle scale in such glass formers even with attractive
interactions. Thus, we introduce a structural order param-
eter for such glass-forming systems, according to the
strategy to seek a structural parameter that can characterize
the capability to be efficiently packed locally.
Here it is worth stressing that the above-mentioned

structural fluctuation has a quite asymmetric link to local
dynamics: sterically favored regions have slow dynamics.
Among a number of peculiar critical-like behaviors seen in
glass-forming systems, this feature is unique to glassy
criticality and absent in ordinary critical phenomena, in
which the order parameter fluctuations do not have any
coupling to local dynamics.
In this article, we consider three important model glass

formers: weakly polydisperse and binary mixtures of soft
disks in 2D and binary mixtures of soft spheres in 3D. The
packing efficiency is determined by the configuration of a
particle and its neighbors. In all three cases, the neighbor-
ing particles are defined according to the radical Voronoi
tessellation [38].

B. Order parameter for weakly polydisperse disks

For weakly polydisperse disks, such a local structure
with high packing capability can be described by the
hexatic bond-orientational order parameter Ψ6 [39], which
has been proven to be effective in glassy systems with
moderate strength of disorder in 2D [13,14,17]. This order
parameter is linked to local sixfold rotational symmetry.
For particle j we have Ψj

6 ¼ jPke
6iθjk=njj, where nj is the

number of nearest neighbors of particle j, and θjk is the
angle of the bond rjk ¼ rk − rj with respect to the x axis.
0 ≤ Ψ6 ≤ 1, and ordered particles have larger Ψ6.

C. Order parameter for binary disk mixtures

The local structure in binary mixtures of (soft) disks is
more complex and obviously distinct from the crystalline
order described by Ψ6. In other words, the order parameter
for binary mixtures is not linked to the breakdown of
obvious spatial symmetry. Because of this difficulty, a well-
established structural order parameter for such systems is
still missing in the literature. On the basis of the above
physical picture, here we introduce a new order parameter
Θ for 2D binary disk systems. Considering a local
configuration including a central particle o and its neigh-
bors, for each pair hiji of neighboring particles next to each
other, we measure the angle between roi and roj, indicated
as θ1ij in Fig. 1(a). Such triangles of three neighboring
particles are considered as basic structural units in 2D. The
reference configuration with these three particles perfectly
just in touch is plotted in Fig. 1(b), with the central angle
indicated as θ2ij. Then we define the order parameter for
particle o as
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Θo ¼
1

No

X

hiji
jθ1ij − θ2ijj: ð1Þ

Here, No is the number of pairs of neighbors which equals
the number of neighbors of particle o, and the summation
runs over all pairs of neighbors that are next to each other.
Θmeasures the deviation from sterically favored structures,
i.e., the deviation of a local packing from the arrangement
in which neighboring particles are most efficiently packed
around the central particle. Larger values of Θ indicate
stronger deviations from sterically favored configurations,
i.e., less ability to be packed efficiently, and hence more
disordered. We have confirmed that this order parameter
can also be used for polydisperse disk systems, but here
we employ the hexatic order parameter for polydisperse
systems, which we already studied previously [13,14], to
show the power of this new method connecting structure
and dynamics developed on the basis of the same physical
concept.

D. Order parameter for binary sphere mixtures

Next, we construct the structural order parameter Ω for
binary mixtures of (soft) spheres in 3D with the same spirit
as in the 2D case, but the situation is much more
complicated. In the case of systems with one type of
spheres, there is a general approach to unambiguously
partition the space into basic structure units of four
particles, that is, a tetrahedron. This is done using the
Voronoi-Delaunay tessellation, well known in both physics
and mathematics [40]. The tetrahedron with vertices in
these four spheres is called the Delaunay simplex.
However, such a process is not straightforward in binary
mixtures. The corresponding Delaunay tessellation does
not exist dual to the radical Voronoi tessellation, and simple
generalization gives miscounting. Thus, we develop the
following procedures to characterize the local structural
order in 3D. (1) The coordination shell is identified

according to the radical Voronoi tessellation. An example
of such local configuration is illustrated in Fig. 1(c),
including the central particle o and its neighbors.
(2) Each three neighbors, which contribute to a vertex in
the Voronoi cell of the central particle (the three Voronoi
faces contributed by these three particles intersect at a
Voronoi vertex), are identified together with the central
particle to be a tetrahedron. This is key to correctly partition
the local configuration into units of tetrahedra: not all of
groups of three particles are necessarily selected, but only
the ones which share a vertex according to the radical
Voronoi tessellation. An example of such selection is
indicated in Fig. 1(c). The lengths of each edge of this
tetrahedron are denoted as roi, roj, etc. (3) The reference
tetrahedron with these four particles perfectly just in touch
is then constructed, as shown in Fig. 1(d). The edge lengths
are denoted as σoi, σoj, etc. (4) The irregularity of a
tetrahedron in the original configuration is measured as

ωhoijki ¼
P

habijrab − σabjP
habiσab

: ð2Þ

Here, habi runs over the six edges of the tetrahedron
hoijki. (5) Finally, the structural order parameter of particle
o is calculated as

Ωo ¼
1

Ntetra
o

X

hoijki
ωhoijki; ð3Þ

where Ntetra
o is the total number of tetrahedra surrounding

particle o and the summation is performed over all these
tetrahedra. Similar to Θ in 2D, Ω measures the deviation
from sterically favored structures, or the deviation of a local
packing from the perfectly packed arrangement around
the central particle. Larger values of Ω indicate stronger
deviations and more disordered. We stress that Ω
(or ωhoijki) is mainly contributed by the irregularity of
bond-orientational order, rather than a simple extension or

(a) (c) (d)(b)

FIG. 1. Definition of the structural order parameter for binary systems. Left two panels: 2D binary disk system. (a) Illustration of a
local configuration with a central particle o surrounded by its six neighbors, two of which are indicated as i and j. (b) Reference
configuration with the three indicated particles just in touch. The definitions of central angles θ1ij and θ2ij are illustrated in (a) and (b),
respectively. Right two panels: 3D binary sphere system. (c) Illustration of a local configuration with a central particle o surrounded by
its 14 neighbors, three of which are indicated as i, j, and k. (d) Reference configuration with the four indicated particles just in touch. See
text for detailed definition of the structural order parameters.
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compression at fixed shape, because no obvious density
fluctuation is observed in our systems.

III. METHODS

A. Models and simulation methods

We perform molecular dynamics simulations of three
types of model glass formers: both polydisperse and binary
mixtures of soft disks in 2D, and binary mixtures of soft
spheres in 3D. The interaction between particle i and j is
given by VðrijÞ ¼ ϵð1 − rij=σijÞ2=2 for rij < σij and zero
otherwise. Here, rij is the separation between particles i
and j and σij is the sum of their radii. For the polydisperse
case, we introduce a Gaussian distribution of particle size
with polydispersity Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ2i − hσi2

p
=hσi and set the

averaged diameter hσi as the length unit. We choose Δ ≥
11% to avoid crystallization. We mainly present the results
for Δ ¼ 11%, but confirm basically the same results for
Δ ¼ 12% and 13%. For the binary case, large and small
particles with equal number have a diameter ratio of 1.4,
with the small particle diameter σs being the length unit.
For all three cases, all particles have the same mass m. The
energy, time, and temperature are in units of ϵ,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
(σ

represents hσi or σs) and ϵ=kB, with kB being the
Boltzmann constant. We fix the volume fraction ϕ ¼
0.91 (¼ P

N
i¼1 πσi=4L

2) in 2D, and ϕ ¼ 0.661 591 5
(¼ P

N
i¼1 πσ

3
i =6L

3) in 3D. This volume fraction in 3D
corresponds to a number density of ρ ¼ 0.675 971 5 for
which PTS correlations have been computed [19],
and therefore facilitates a direct comparison of the PTS
length scale with others. The number of particles is set to
N ¼ 10 000 for the polydisperse case in 2D and 4096 for
the binary cases both in 2D and 3D. Simulations are
performed in square boxes in 2D and cubic boxes in 3D,
with periodic boundary conditions in the NVT ensemble.

B. Spatial coarse graining of the order parameters

We introduce systematic coarse graining to pick up the
correlated nature of structural ordering. The coarse graining
of order parameter X (here, X represents Ψ6, Θ, or Ω) for
particle i is calculated by averaging over all particles within
a length L: X̄iðLÞ ¼ ½PjXjPðjrj − rijÞ=

P
jPðjrj − rijÞ�.

We use an exponential core PðxÞ ¼ expð−x=LÞ, under the
hypothesis that the influence of the local structure decays
exponentially in space. This provides a better consistency
of the time and length scales (see Fig. 5), compared to other
forms of coarse-graining cores like PðxÞ ¼ 1 and PðxÞ ¼
exp½−ðx=LÞ2�. Discussions on the power of coarse graining
are given in Sec. V B.

C. Characterization of dynamics

For 2D systems, there exist long-wavelength vibrational
motions, known as Mermin-Wagner-type fluctuations
[41–44], yet which are irrelevant to the structure relaxation

if we properly characterize the dynamics. Therefore, we
characterize the dynamics by using relative positions
rjðtÞ ¼ rjðtÞ −

P
krkðtÞ=nj, where the summation goes

over all neighbors of particle j. Note that the neighboring
particles are always defined at the initial configurations
t ¼ 0. General features of glassy dynamics, e.g., the two-
step relaxation, are recovered by such analyses in 2D,
which are shown in Figs. S1 and S2 of the Supplemental
Material [45]. We report results based on direct motions in
Appendix B to show the importance of removing Mermin-
Wagner-type fluctuations in the analysis. For 3D systems,
the dynamics are characterized using the original positions
as usual. In the following, we use the notation of 2D relative
positions in the formulas, which may be directly applied in
3D by using the direct positions.
The dynamic propensity hΔri is defined in the isoconfi-

gurational ensemble [27,28,30]. After the equilibration run,
we quench the system to the nearest inherent structure by
using the FIRE algorithm [46] to remove the random initial
displacements. Starting from this initial configuration, 100
trajectories are simulated with different momenta assigned
randomly from the appropriate Maxwell-Boltzmann
distribution. The dynamic propensity of particle i is
then calculated through the isoconfigurational average:
hΔriiðtÞ ¼ hjriðtÞ − rið0Þjiiso. Instead of particle motion
in one realization, the dynamic propensity measures the
probability of a particle to undergo a substantial displace-
ment within a time interval. Twenty and thirty initial
configurations are used in the calculations to ensure good
statistics (see Figs. 4–6) for polydisperse and binary cases,
respectively. We confirm good convergence by comparing
the data with those from 200 trajectories and more initial
configurations.
We disentangle the structural and purely dynamical

contributions to the dynamic fluctuations within the iso-
configurational ensemble [29]. The dynamic fluctuations
with a structural origin are calculated as ΔsðtÞ ¼
hPihwiðtÞi2iso=Niinit − hPihwiðtÞiiso=Ni2init, where h·iiso
denotes the isoconfigurational average and h·iinit is the
average over all initial configurations. To monitor the
structure relaxation, we use wiðtÞ¼1, if jriðtÞ−rið0Þj<b,
and zero otherwise, and set b ¼ 0.15. Accordingly,
the overall fluctuation is given as ΔtotðtÞ ¼ hPi
hwiðtÞ2iiso=Niinit − hPihwiðtÞiiso=Ni2init. The ratio RfðtÞ ¼
ΔsðtÞ=ΔtotðtÞ hence measures the relative amount of
fluctuations with a structural origin.

D. Rank correlation between structure and dynamics

Our purpose is to measure the correspondence of
structure and dynamic heterogeneity, i.e., whether particles
in a more disordered environment tend to be more mobile.
This is usually shown by pictures or quantified by the
overlap of selected number of particles, which has a large
degree of arbitrariness. Here we employ Spearman’s rank
correlation coefficient to quantify the correlation, which
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assesses the monotonic relationship (note its difference
from a linear relation) between two variables without
floppy parameters [47]. First the particles are sorted
according to the structural order with the disordered ones
in front and the ranksOi are assigned to each particle i. The
same is done according to hΔri with the mobile ones in
front and the ranks Qi are assigned. The correlation is then
calculated as Cr ¼ 1–6

P
iðOi −QiÞ2=NðN2 − 1Þ. For the

binary cases, we calculate the rank correlations for large
and small particles separately and then average them.
A monotonic increasing relationship between the two
quantities gives Cr ¼ 1, whereas Cr ¼ 0 indicates the
absence of the correlation.

IV. RESULTS

A. Nonlocal scenario for the correlation between
structural order and dynamic heterogeneity

First, we illustrate how key structural features respon-
sible for dynamics emerge through progressive spatial
coarse graining of an initial inherent structure and how
it is correlated with the development of dynamic hetero-
geneity. For the ease of visualization, results are shown for
2D cases. The dynamics is investigated by calculating the
averaged displacement amplitude hΔri, i.e., dynamic pro-
pensity, in the isoconfigurational ensemble (see Sec. III C).
Time evolutions of hΔri for polydisperse and binary cases
are shown in Figs. 2(a) and 2(c), respectively. In both cases,
particles with large dynamic propensity are very sparse at
short times (see the first column), and then gradually form
correlated clusters (see the second column). Thus, the
mobility contrast becomesmaximized (see the third column),
then becomes obscure at very long times (see the fourth
column), and finally should disappear. Note that the third
column corresponds to hΔri at around the α relaxation time
τα. Therefore, the heterogeneous dynamics shows different
spatial features at different timescales. This result indicates
that, in addition to analyses focusing on a specific duration
like the structure relaxation time τα, the full timescale is an
important axis to unveil a complete relationship between
structure and dynamics.
Corresponding to Figs. 2(a) and 2(c), respectively, the

static structures at different coarse-graining lengths are
shown in Figs. 2(b) and 2(d). In addition, the structural
orders without coarse graining are given in Appendix A,
Fig. 8. We find a strongly fluctuating nature at short length
scales, correlated patterns at intermediate ones, and blurred
patterns at long ones. The emergence of spatial correlation
in the structure upon coarse graining, especially for the
binary system, demonstrates the power of our approach in
revealing the hidden structural ordering, which is masked
by the superficially disordered structure, the thermal noise,
and the currently limited knowledge of glassy order. This
also suggests that the length scale is another crucial axis to
consider the structure-dynamics correlation in supercooled
liquids.

If we compare the bare (local) structural order parameter
field with the dynamic propensity at τα, we can only see
marginal correlation [e.g., for the binary case compare
Fig. 8(b) with Fig. 2(c3)]. This clearly shows the inability
of previous approaches searching for correlation between
local structure and long-time α relaxation, which have
hitherto left the structure-dynamics correlation undercover
for the binary system and many others. However, strong
structure-dynamics correlation is visible for the polydis-
perse (binary) case by comparing Fig. 2(a) [Fig. 2(c)] with
Fig. 2(b) [Fig. 2(d)] in the same columns. In particular,
we can see the best correspondence between Fig. 2(a3)
[Fig. 2(c3)] and Fig. 2(b3)[Fig. 2(d3)] for the polydisperse
(binary) case. This strongly indicates an intimate nonlocal
link between static structural order and dynamic hetero-
geneity at the corresponding length and timescales.
We illustrate the nonlocal scenario of the structure-

dynamics correlation schematically in Fig. 3. Here we
include the full time axis for dynamics with two impor-
tant timescales, namely, the fast β (τβ) and α relaxation
times (τα). In addition, the structural order is described in
a full length axis, where two intrinsic length scales
naturally emerge, i.e., the interparticle distance (∼σ)
and static correlation length ξ. Different from previous
local approaches (gray arrow), we propose that the
structure-dynamics correlation exists in a nonlocal man-
ner (vertical blue arrows): starting from an initial con-
figuration, the dynamic field developed over time t can be
best predicted by structural information from a certain
spatial range. In particular, the local structure controls the
short-time β relaxation, whereas the structural feature
over its static correlation length ξ controls the long-time α
relaxation. This we show by Fig. 2 and demonstrate
quantitatively in the following section. The important
point is that the mobility field develops from an initial
structure and systematically follows the initial order
parameter field, spreading from the disordered to more
ordered regions. This is different from the dynamic
facilitation picture, where the most defective spots trigger
initial movement and further motions facilitate randomly
from these regions.

B. Time and length scales in the
structure-dynamics correlations

Here, we quantify the correlation between structure and
dynamics by looking at the tendency of more disordered
particles being more mobile. In short, the correlations of the
structural order at a coarse-graining length L and hΔri at
time t are calculated in order to pick up the relevant length
scale in the static structure for the dynamic heterogeneity
developed in a specific time range (see Sec. III D). Results
are plotted in Figs. 4(a) and 4(d) for 2D polydisperse
and binary systems, respectively, and Fig. 4(g) for the 3D
binary system, in the complete spatial-temporal space
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spanned by time t and coarse-graining lengthL. The brighter
color, which means better correlation, in the diagonal area
confirms the nonlocal scenario suggested by Fig. 2 to be
statistically valid.

Next, we extract more detailed information on the
correlation. For the dynamic propensity at time t, we
can identify a relevant length scale in the structure,
i.e., the coarse-graining length Lp, which maximizes their

FIG. 2. Illustration of correlation between structural order and dynamic heterogeneity. Top two rows: 2D polydisperse disk system
(polydispersity Δ ¼ 11%) at T ¼ 2 × 10−3, with a corresponding α relaxation time τα ≈ 6541. (a1)–(a4) Spatial distribution of dynamic
propensity hΔri at different timescales. (b1)–(b4) Spatial distribution of 1 − Ψ̄6 (the degree of disorder) of the initial configuration of the
isoconfigurational ensemble for (a) at different coarse-graining length scales L. Bottom two rows: 2D binary disk system at
T ¼ 1.5 × 10−3, with τα ≈ 1942. (c1)–(c4) Spatial distribution of hΔri at different timescales. (d1)–(d4) Spatial distribution of Θ̄ (the
degree of disorder) for the same system as (c) at different coarse-graining length scales L. Note the clear resemblance in the same
column, which indicates a structure-dynamics correlation at corresponding time and length scales. The similarity between the dynamic
and static patterns is maximized for the third column for both polydisperse and binary systems (see text on its implication). See Secs. II
and III for the definitions of structural order parameters and simulation details, and Appendix A, Fig. 8, for structural orders without
coarse graining.
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correlation. The values of the peak correlation Cr;p and the
corresponding Lp are plotted as functions of time t in
Figs. 4(b) and 4(e) for 2D polydisperse and binary systems,
respectively, and Fig. 4(h) for the 3D binary system.
Interestingly, the initial strong correlation between structure
and dynamics is established at fast β timescale, as evi-
denced by the plateau or even a peak of Cr;pðtÞ at t ≈ 10.
The corresponding coarse-graining length is at particle-size
level. Further discussion on this fast β process is given in
Sec. IV D. While the correlation maintains at a high value
until the α timescale, the relevant length scale of the
structural order grows with time. This observation points
to an intriguing relation between the structure and the
development of dynamic heterogeneity, which definitely
deserves further investigation in the near future. Moreover,
we demonstrate the superiority of our nonlocal approach
over the previous ones in Fig. 4(c), where the correlation of
structural order and dynamic propensity hΔriðt ¼ 4900Þ is
plotted as a function of coarse-graining length L [i.e., the
vertical cut of Fig. 4(a) across the peak around τα]. Cr is
enhanced from 0.43 (L ¼ 0.5 means bare structural order)
to 0.76 at the peak after coarse graining. The same
information for the 2D binary system (from 0.28 to
0.62) is conveyed by Fig. 4(f), and for the 3D binary
system (from 0.35 to 0.54) by Fig. 4(i). From a theoretical
view point, this big enhancement of structure-dynamics
correlation also suggests that the α relaxation is intrinsically
controlled in a nonlocal manner by the structure at the static
correlation length ξ.
As shown in Fig. 4(a) and further illustrated by the black

vertical arrow in Fig. 4(b) for the 2D polydisperse case,
the correlation shows a peak that we identify at t ¼ τp;Ψ6

and L ¼ ξp;Ψ6
. Similarly, in Figs. 4(d) and 4(e) for the 2D

binary case, we identify the peak at t ¼ τp;Θ, L ¼ ξp;Θ,

and in Figs. 4(g) and 4(h) for the 3D binary case at t ¼ τp;Ω,
L ¼ ξp;Ω. We have also independently calculated the
structural relaxation time τα through the intermediate
scattering function, and the dynamic time τ4 and correlation
length ξ4 through the four-point density correlation func-
tions (see Figs. S1–S6 in the Supplemental Material [45]).
In Figs. 5(a) and 5(b) [Figs. 5(c) and 5(d)] for the 2D
polydisperse [binary] case, and Figs. 5(e) and 5(f) for the
3D binary case, we plot the obtained time and length scales
as a function of temperature T, respectively. The nice
collapse of all data quantitatively confirms the intrinsic role
of static structure in the glassy slow dynamics: (1) the
dynamic heterogeneity develops following the underlying
static structure, and hence, they share the same correlation
length, and (2) there is a typical timescale for the dynamics
to fully “feel” the influence of the structure, and that is why
both τ4 and τp;x (x representsΨ6 andΘ for 2D polydisperse
and binary systems, and Ω for the 3D binary system) follow
τα, because τα is the characteristic lifetime of local structures.
In Fig. 5(f), we also include the length scales computed

in the same system using the PTS method (open symbols)
by Kob et al. [19]. Apart from an overall coefficient, the
temperature dependence of the PTS dynamic length ξdyns

(open circles) is consistent with our data within numerical
precision; however, the PTS static length ξstat (open
diamonds) shows much milder temperature dependence
and does not follow the growth of the dynamic one. It is
based on this observation that the dynamic length scale was
proposed to decouple with the static one and different
natures were suggested between them [18–20]. This con-
flicts with our results, where the consistent growth of both
static and dynamic length scales is observed. As in the 2D
polydisperse hard disk system where the PTS static length
is decoupled from the steeper growth of hexatic structural
order and dynamic heterogeneity [17], our results seem to
suggest that PTS also fails in detecting the subtle structural
ordering in 3D binary mixtures, which is responsible for
glassy slow dynamics. Since binary sphere systems are
widely used as typical glass formers, our results strongly
support a general structural origin of the dynamic hetero-
geneity and call for reconsideration of the order-agnostic
nature of the PTS length. At even lower temperatures below
the mode-coupling Tc, nonmonotonic temperature evolu-
tion of PTS dynamic length was observed [19]. It would be
interesting to study the structure evolution using our order
parameter in this temperature regime in the future.
For all three types of model glass formers, both 2D

polydisperse and binary disk systems and the 3D binary
sphere system, we find that the temperature dependence of
timescales is well fitted by the Vogel-Fulcher-Tammann
(VFT) function τ ¼ τ0 exp½DT0=ðT − T0Þ� [solid lines in
Figs. 5(a), 5(c), and 5(e)]. Here, T0 is the VFT glass
transition (or Kauzmann) temperature and D is the so-
called fragility index. On the other hand, the temperature
dependence of length scales can be fitted by the following

FIG. 3. Illustration of the nonlocal scenario of structure-
dynamics correlation. Top: The glassy dynamics evolves with
time and shows two characteristic timescales, the fast β (τβ) and α
relaxation times (τα). Bottom: The structure can be characterized
by a static order parameter based on local configurations, which
are intrinsically correlated over a characteristic length ξ. The
nonlocal causal relation between structure and dynamics is
represented by vertical arrows (blue), where the correspondences
such as local structure σ → dynamics over τβ and ξ → τα are
highlighted. The previous approaches focusing on the correlation
between local structure (σ) and α relaxation are indicated by the
inclined arrow (gray).
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power law [solid curves in Figs. 5(b), 5(d), and 5(f)]:
ξ ¼ ξ0½ðT − T0Þ=T0�−2=d, where d is the spatial dimension-
ality (d ¼ 2 for weakly polydisperse and binary disk
systems, whereas d ¼ 3 for binary sphere systems).
Then we have made simultaneous fittings for the VFT
relation of τα and the power-law relation of ξ and confirmed
that a common ideal glass transition temperature T0 gives
reasonable fittings to both of them. The results of the
fittings are quite satisfactory, although there are rather large

standard deviations of the data. We further identify a
scaling relation between the obtained length scale and
the structural relaxation time: τα ¼ τ0 exp½Dðξ=ξ0Þd=2�,
which we show in the insets of Figs. 5(b), 5(d), and 5(f).
Here, we briefly mention the concept of activated

dynamic scaling in disordered system [48], which ratio-
nalizes the above relationship between ξ and τα [14,15].
In ordinary critical phenomena, the competition causing
the critical point is between energy and entropy, and the
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FIG. 4. Correlation between structural order and dynamic heterogeneity. Top: 2D polydisperse system (Δ ¼ 11%) at T ¼ 2 × 10−3.
(a) Cross-correlation (Cr) of the structural order Ψ̄6 at different coarse-graining length L with the dynamic propensity hΔri at different
time t. See Sec. III for the calculation of the cross-correlation. Note that the correlation shows a peak at t ¼ τp;Ψ6

and L ¼ ξp;Ψ6
. (b) The

maximum structure-dynamics correlation Cr;p and the corresponding coarse-graining length Lp at each time t. The black vertical arrow
indicates where the peak position, i.e., τp;Ψ6

and ξp;Ψ6
, is identified. (c) Change of Cr as a function of coarse-graining length L along the

vertical cut of (a) across the peak around τα. The peak of Cr highlights significant improvement compared to the local scenario without
coarse graining. Middle: 2D binary system at T ¼ 1.5 × 10−3. (d) Cross-correlation between the structural order Θ̄ and hΔri. The peak
of correlation at longer time and length scales is identified at t ¼ τp;Θ and L ¼ ξp;Θ. The appearance of peak correlation at short time and
length scales in both (a) and (d) are discussed in Sec. IV D. (e),(f) The same as (b) and (c) for the 2D binary system. Bottom: 3D binary
system at T ¼ 6 × 10−4. (g) Cross-correlation between the structural order Ω̄ and hΔri. The peak of correlation is identified at t ¼ τp;Ω
and L ¼ ξp;Ω. (h),(i) The same as (b) and (c) for the 3D binary system. All data are from ensemble average, and error bars indicate the
standard derivations.

REVEALING HIDDEN STRUCTURAL ORDER CONTROLLING … PHYS. REV. X 8, 011041 (2018)

011041-9



contribution of the latter to the free energy is always of the
order of the thermal energy. Thus, the critical dynamics does
not involve any large activation barriers. This leads to the
power-law dependence of the relaxation time on the corre-
lation length. In disorder systems, on the other hand, the
dynamics in the correlation length ξ is controlled by the
internal frustration in energy itself: for example, competition
between different steric preference in polydisperse systems.
This leads to the activation energy scaled as ξθ. This exponent
θ is estimated as θ ¼ d=2 from the following argument [15]:
the characteristic correlation volume of length ξ involves a
number of particles proportional to ξd. Considering thermal
fluctuations of individual particles, the correlation volume
undergoes Gaussian fluctuations of a characteristic magni-
tude of ξd=2, which sets the activation barrier.
The power-law relation of ξwith ðT − T0Þ and the relation

between ξ and τα are consistent with two known scenarios:
the Ising-type critical scenario for theglass transition [13–15]
and the random first-order transition theory [5,8,49]. The key
difference between the two scenarios is the relation between
static and dynamic correlation length, ξ and ξ4: The former
predicts ξ ≅ ξ4. On the other hand, the latter predicts that the
dynamical correlation length ξ4 and the mosaic length ξ

diverge towards the mode coupling Tc and T0, respectively
[19]. The divergence of ξ4 is a consequence of a spinodal
singularity at Tc, above which metastability is lost and,
therefore, the mosaic picture is no longer valid [5,49]. Since
Tc > T0, ξ4 should increasemuchmore rapidly than ξ,which
is not consistent with our observation. Thus, our observation
is more consistent with the critical scenario, but further
investigation is necessary for drawing a definite conclusion
including a possibility of other scenarios. Nevertheless, the
common behaviors of polydisperse and binary disk systems
in 2D and binary sphere system in 3D, three important model
glass formers with very different nature, strongly suggest the
generality of an intimate correlation between structural
ordering and glassy dynamics. We therefore speculate that
all glass formers can be unified within this picture. The
relevant structural ordering in glass transition may be steri-
cally favored structures, no matter whether it is linked to
crystalline order or subtle amorphous order, which does not
show obvious symmetry breaking.

C. Causal relation between structure and dynamics

Here, it is worth noting that a causal link between
structural and dynamic heterogeneity does not mean a
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FIG. 5. Time and length scales in the structure-dynamics correlations. Left: 2D polydisperse system (Δ ¼ 11%). (a) Temperature
dependences of the α relaxation time τα, the timescale of dynamic heterogeneity τ4, and τp;Ψ6

. The solid line shows a VFT fit with
T0 ¼ 8.6 × 10−4. (b) Temperature dependences of the dynamic length scale ξ4 and ξp;Ψ6

. The solid line is a power-law fit with
ξ ¼ ξ0½ðT − T0Þ=T0�−2=d, where d is the spatial dimension. Inset: Relationship of τα to ξ4 and ξp;Ψ6

. The solid line represents
τα ¼ τ0 exp½Dðξ=ξ0Þd=2�. (c),(d) The same analysis of temperature dependences of time and length scales as in (a) and (b) for the 2D
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one-to-one determinant relation. This point has been raised
in a number of studies [27–29] and is evident by comparing
the real-space plot of the dynamic propensity and the
displacements from one trajectory [27]. Actually, the static
ordering determines the probability of a particle to be
mobile or not, and the displacement in one run is controlled
by structure in a statistical sense where the thermal
fluctuations also play an important role. The consistence
of the structural and dynamical correlation lengths shown
in Fig. 5 indicates that the long-time and large-scale
correlated motions are mainly determined by the structure
(note that the ξ4 is probed at τ4 ∼ τα). The fluctuations of
purely dynamic origin are expected to be random and short
ranged in both space and time. Still, it is interesting to
quantify the relative amount of fluctuations with a struc-
tural origin over the total value RfðtÞ ¼ ΔsðtÞ=ΔtotðtÞ [29].
Here we show results in two dimensions. From Fig. 6(a),
we observe two major features: (1) Rf shows a peak at
around τα and (2) the peak value of Rf, Rf;p, increases
significantly with decreasing temperature and reaches
∼35% for the lowest T in the study. The appearance of
the peak further highlights the importance of the structural
relaxation time τα in the correlation between structure and
dynamics. We find that for polydisperse systems Rf;p

grows with a decrease in temperature as lnRf;p ∝ −ðT −
T0Þ ∝ −ξ−1 commonly for three different polydispersities
[see Fig. 6(b)]. Qualitatively, this relation may be reason-
able since the relative importance of the order in the
dynamics to the stochastic effect may be scaled by ξ.
For the binary system, we find a different relation, which
may stem from the presence of two types of particles
with different mobilities. This point needs further study.
It would be interesting to check whether Rf;p really grows
towards unity when approaching the ideal glass transition

temperature in future works and reveal the physics behind
the above empirical relation. We also make a similar
analysis focusing on the fast-β process, and find a similar
significant influence from a structure (see Appendix C for
details).

D. Common structural origin of fast
and slow dynamics

Next, we study the connection between the short-time
(fast β) and long-time (α) dynamics. The fast cage-rattling
dynamics was considered as a direct probe of initial
configuration and its resemblance with slow α relaxation
was taken as the evidence of structure-dynamics correlation
[28]. On the contrary, it was also proposed that the fast
dynamics is localized and the slow dynamics develops as a
result of dynamic facilitation, which is purely of dynamic
origin [50]. We construct unique simulation schemes to
resolve this controversy. First, we pick up the dynamic
propensity at short times, i.e., Fig. 2(a1), and spatially coarse
grain it at different length scales. The marked resemblance
between Figs. 7(a)–7(c) and Figs. 2(b2)–2(b4) proves that
(the propensity of) fast dynamics contains similar struc-
tural information as the static order parameter; in other
words, the fast β dynamics is also controlled by the static
order. In fact, the initial correlation of structural and
dynamic heterogeneity builds up at the fast β timescale
[see Figs. 4(b) and 4(e) for the first peak or plateau of
the cross-correlation]. Therefore, although being localized
and highly fluctuating, the fast dynamics is actually
cooperative in nature, in line with a recent work by
Karmakar et al. [51]. Second, we stop the dynamics of
the isoconfigurational runs at short times t ¼ 10.7 [corre-
sponding to Fig. 2(a1)] and restart it by assigning a new
velocity field from the Maxwell-Boltzmann distribution at
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the same temperature. In this stop-and-go process, the
connection between the short-time and long-time dynam-
ics due to dynamical correlation is eliminated and the only
remaining connection is from the structure. The recalcu-
lated dynamic propensities are shown in Figs. 7(d)–7(f).
The obvious resemblance compared to Figs. 2(a2)–2(a4)
strongly suggests that the close correlation between the fast
and slow dynamics emerges as a natural result of the
underlying structural order in common.

V. DISCUSSIONS

A. Role of structural order parameters

Here, we briefly discuss the physical meaning of
structural order parameters (see also Sec. II). The first
choice for the description of a liquid state is the density
field ρðrÞ and its two-body correlation, which is the basic
input of standard liquid-state theories including the mode-
coupling theory [52,53]. However, for supercooled liquids
at high density, many-body correlation due to local struc-
tural ordering plays an important role which is intrinsically
not captured by ρðrÞ [14]. Bond-orientational order param-
eters represent many-body correlations in a natural manner.

However, our newly defined order parameters for the
binary mixture in both 2D and 3D have nothing to do
with crystal-like bond-orientational order. We emphasize
that what is important is that in any system a supercooled
liquid tends to locally attain sterically favored structures, or
structures of high packing capability. For monodisperse or
weakly polydisperse systems, this sterically favored local
structure is captured by crystal-like bond-orientational
order (hexatic order described by Ψ6 in our case). This
is a consequence of natural symmetry selection under dense
packing for nearly equal-size particles. For binary mixtures,
on the other hand, this is no longer the case, and sterically
favored structures are captured by our new structural order
parameters (Θ in 2D and Ω in 3D), which are not linked to
any crystal-like symmetry but to more exotic amorphous
order. The common feature of all three order parameters is
that they can detect sterically favored local structures.

B. Physical consequence of coarse graining

In Sec. IV, we successfully unveil an intimate correlation
between the structural and dynamic heterogeneity, despite
the fact that we can neither construct a perfect order

FIG. 7. Correlation of fast and slow dynamics. (a)–(c) Spatial distribution of dynamic propensity coarse grained from the one at β
timescale t ¼ 10.7 for the 2D polydisperse system (Δ ¼ 11%) at T ¼ 2 × 10−3 [i.e., Fig. 2(a1) for fast dynamics]. (d)–(f) Spatial
distribution of dynamic propensity corresponding to Figs. 2(a2)–2(a4), but here the dynamics is stopped at t ¼ 10.7 and then restarted
by assigning each particle a new velocity from the Maxwell-Boltzmann distribution at the same temperature. The new velocity field is
different from and independent of the initial one, so the dynamic correlation before and after t ¼ 10.7 is totally eliminated after this
operation. Note the clear resemblance between (a)–(c) [(d)–(f)] and Figs. 2(b2)–2(b4) [Figs. 2(a2)–2(a4)]. This indicates the common
structural origin behind fast β and slow α dynamics.
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parameter to characterize the disordered structures, espe-
cially for the binary systems, nor know a perfect way to do
the spatial coarse graining. The mechanism behind the
robustness of our method can be explained as follows:
A structural order parameter X, which is imperfect but
somehow effectively picks up the relevant many-body
correlations through orientational order, can be decom-
posed into two parts as X ¼ fðXpÞ þ Xr. Here, Xp is the
unreachable perfect order parameter which is spatially
correlated at length ξp ≫ 1. fð·Þ is some unknown function
and Xr is a trivial component which is irrelevant to glassy
dynamics and supposed to be highly fluctuated with a
correlation length ξr ≲ 1. The construction of the order
parameter X has two consequences: (1) it is not necessarily
feasible to extract the static correlation length directly from
the spatial correlation function of X and (2) upon coarse
graining at a length scale ξ > ξr, the trivial component will
be naturally blurred into a smooth background and the
correlated feature from the nontrivial part will emerge and
maximize at ξp.
Based on the above argument, the quality of an order

parameter depends on the relative amount of its nontrivial
component. We stress that an order parameter which
appropriately captures the important many-body corre-
lation is fundamental to reveal the structure-dynamics
correlation, while our coarse-graining approach works to
uncover this correlation which may be blurred by the
imperfectness of the order parameter. In other words, the
static length scale revealed here is intrinsically embedded
in the order parameter, rather than in the coarse-graining
process. We illustrate this point in Appendix D by
showing the failure of local potential energy E as a
structural order parameter.
Finally, we mention that time averaging was previously

employed to remove thermal noise and unveil structural
order (see, e.g., Ref. [13]). This is an effective way to
remove thermal noise, but the structural order extracted in
this way can no longer be regarded as a purely static order
in a strict sense and the amount of dynamic information
thus included is without control. In a practical sense, it
would be interesting to clarify the effect of time averaging
systematically, by using our spatial coarse graining as a
reference.

VI. CONCLUDING REMARKS AND SUMMARY

To summarize, herein we propose a new nonlocal
scenario to study the role of structural order in glassy
dynamics and successfully unveil an intimate correlation
between the structural and dynamic heterogeneity for both
fast and slow dynamics. This we show by visualizing that
the dynamic propensity field develops from most disor-
dered regions of the initial structure systematically fol-
lowing the coarse graining of the order parameter field,
and quantitatively by confirming that the dynamical

correlation length coincides with the static correlation
length which maximizes the structure-dynamics correla-
tion around τα. The results are consistent for three types of
glass formers, polydisperse and binary disk systems in 2D
and a binary sphere system in 3D, implying the generality
of the conclusion. We emphasize that, for binary glass-
forming liquids, especially in 3D, such a direct and nearly
one-to-one structure-dynamic correlation has remained
undercover despite decades of efforts [24,27,28,35]. Since
the growth of structural order is of thermodynamic origin,
our finding suggests that the glassy slow dynamics is
influenced by the thermodynamics, pointing to a thermo-
dynamic nature of glass transition (see also Sec. II). Our
new structural order parameter and nonlocal approach can
be easily implemented in colloidal experiments with
single-particle resolutions, and therefore we hope that
our work may trigger further experimental studies to
reveal the nonlocal structure-dynamics correlation in real
systems [44,54–57].
The bond-orientational order parameter and our new

order parameters we employ in this study commonly
characterize sterically favored structures. This suggests
that the structural order parameter of glass transition
may be generally linked to sterically favored structures
for systems without directional bonding. This looks physi-
cally natural on noting that vitrification is induced by high
packing. Since packing is intrinsically a consequence of
many-body effects, our study indicates the essential role of
many-body correlations in glass transition.
The power of our method is rooted in the fact that some

subtle structural order indeed develops when glass-forming
liquids are supercooled approaching the glass transition. If
the cooperative nature of glassy dynamics is a consequence
of the underlying structural order, then a natural step is not
only to look at the local structure but also to pick up the
structural order at a longer length scale, e.g., the static
correlation length. As evidenced by our results (Fig. 2),
hierarchical structural features emerge upon spatial coarse
graining which are hardly visible at a local level. Our
spatial coarse-graining procedure reveals the presence of
the two key length scales, which govern the dynamics of
glass-forming liquids: a structural feature at a short length
scale controls the short-time β relaxation, whereas that at a
mesoscopic length scale ξ controls the long-time α relax-
ation. The important point is that both fast and slow
dynamics are controlled by the same static order. This
provides us with a new understanding of the universal two-
step relaxation in supercooled liquids: The presence of the
two timescales is a natural consequence of the presence
of the two key spatial scales in supercooled liquids,
the particle size σ and the static correlation length ξ.
The former is the unique fundamental scale of any
“equilibrium” liquids and the latter is specific to a super-
cooled state.
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Finally, it is worthwhile to mention a fundamental
remaining open question: what physical mechanism con-
nects the diverging length scales with the glassy slow
dynamics, or more specifically, how does the correlation
between structural ordering and complex dynamics builds
up? Our work can provide a strong hint for this: the
characteristic relaxation time τα is actually the time
required for the progressive development of the mobility
field characterized by the correlation length of the dynamic
heterogeneity to reach the length ξ: ln τα ∝ ξd=2 for the two
d ¼ 2 and one d ¼ 3 systems studied. This implies that the
structural relaxation τα is determined by the spatial extent ξ
of the kinetically activated cooperative processes. We hope
that our finding will initiate further studies on this funda-
mental problem.
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APPENDIX A: SPATIAL DISTRIBUTION
OF ORDER PARAMETERS WITHOUT

COARSE GRAINING

Figure 8 shows the spatial distribution of order param-
eters Ψ6 and Θ without coarse graining for 2D polydisperse
and binary systems, respectively. The highly fluctuated
nature, especially for Θ in the binary system, is obvious
compared to Figs. 2(b) and 2(d) after coarse graining.
Therefore, the correlated nature of the structure may be
masked due to the imperfectness of the order parameter at
the local level.

APPENDIX B: TIME AND LENGTH SCALES IN
THE STRUCTURE-DYNAMICS CORRELATIONS

IN 2D ACCORDING TO DIRECT MOTIONS

For 2D systems, there exist the Mermin-Wagner-type
long-wavelength vibrations [41–44], which may mask the
motions relevant to the structure relaxation. In the main
text, we characterize the dynamics by using relative
positions in 2D and successfully unveil the structural
origin of dynamic heterogeneity. Here, we show results
of time and length scales in the structure-dynamics
correlations according to direct motions to quantity the
influence of long-wavelength vibrations. In the calcula-
tion of four-point correlation functions of direct motions
[see Eqs. (3) and (4) of the Supplemental Material [45]],
the cutoff in the overlap function QðtÞ is set as b ¼ 0.3.
Corresponding to Figs. 5(a) and 5(b), Fig. 9 shows the
temperature dependences of time and length scales in the
2D polydisperse system according to direct motions.
Obvious deviations are observed, especially for the length
scales. This can actually be expected as following. Since
the reversible long-wavelength vibrations are counted
which overestimate the relaxation rate, we obtain a
smaller structure relaxation time τα and dynamic time-
scale τ4. In the meantime, while we expect faster
relaxation of more defective particles, the part of motions
from the long-wavelength vibrations are collective over
much larger scale than the particle size. The inclusion of
long-wavelength vibrations therefore has two conse-
quences: (1) it masks the correspondence between struc-
tural order and relaxation dynamics, and influences the
accuracy in the estimations of τp;Ψ6

and ξp;ψ6
, and (2) the

long-range correlation of vibrational motion results in an
overestimation of the dynamic length scale ξ4. These lead
to the discrepancy of both time and length scales, as
shown in Figs. 9(a) and 9(b) respectively.

APPENDIX C: SIGNATURES OF STRUCTURAL
INFLUENCE ON FAST β DYNAMICS

In Sec. IV C, we show the relative contribution from
the structure to the overall dynamic fluctuations
RfðtÞ ¼ ΔsðtÞ=ΔtotðtÞ. As specified in Sec. III C, there
we set the cutoff b ¼ 0.15 to monitor the (α) structure
relaxation. Here, we choose smaller values of b to magnify
the signal of structural influence on the fast β process, and
the results for a 2D polydisperse system are shown in
Fig. 10(a). Besides the main peak at around τα, a shoulder
at short time t ≈ 10 emerges with decreasing b, strongly
indicating a significant influence from the structure at β
timescale.
To further illustrate the fast β process, we plot the overlap

function qðtÞ in Fig. 10(b), which is defined as qðtÞ ¼P
iwiðtÞ=N [see Sec. III C for the definition of wiðtÞ]. The

appearance of the two-step relaxation process is obvious.

FIG. 8. Spatial distribution of order parameters without coarse
graining. (a) Spatial distribution of hexatic order Ψ6 for an
inherent state of 2D polydisperse systems at T ¼ 2 × 10−3,
corresponding to Fig. 2(b). (b) Spatial distribution of order
parameter Θ for an inherent state of 2D binary systems at
T ¼ 1.5 × 10−3, corresponding to Fig. 2(d).
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Note that the timescales of the initial fast decay and the
final decay after the plateau correspond approximately to
the shoulder and the peak of Rf in Fig. 10(a).

APPENDIX D: FAILURE OF LOCAL POTENTIAL
ENERGY AS A STRUCTURAL ORDER

PARAMETER

Here, we examine the importance of many-body
correlations in the description of amorphous order in
supercooled liquids. In Fig. 11, we show the behavior
of local potential energy E upon coarse graining in
both polydisperse and binary systems in 2D. The local
potential energy of particle j is calculated as Ej ¼P

kVðrjkÞ, where the summation goes over all particles
that interact with particle j. The same as for the other
structure order parameters, E is computed in the
inherent states to remove the irrelevant random signals.
There are conflicting results on whether E can be used

as a good structural indicator for dynamics hetero-
geneity [28,58,59]. Since E takes into account only the
two-body information (in the case of pair interactions),
its failure to describe the subtle amorphous structural
order in general can be expected. Indeed, by comparing
Fig. 11 with the corresponding parts in Fig. 2, we find
that the spatial distribution of Ē appears totally different
from that of Ψ̄6 and Θ̄ at the same coarse-graining
length for polydisperse and binary systems, respec-
tively. Even after coarse graining at the static or
dynamic correlation length, the local potential energy
shows little correlation with the dynamic propensity
at τα.
We quantify the correlation between structural order

based on Ē and the dynamic propensity hΔri and show
results in Fig. 12. Compared to Figs. 4(a) and 4(d)
accordingly, the marginal value of correlation and the
absence of a peak correlation at proper time and length
scales clearly indicate the failure of E.
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Finally, we point out that it is a more serious test of the
structure-dynamics correlation by looking at their micro-
scopic correspondence. Previous studies based on the
potential energy landscape (PEL) formalism have suggested
a clear correlation between the inherent structure energy EIS,
that is, the total potential energy of the inherent states (local
minima in PEL), and the diffusion coefficient [59,60]. It is
shown that deeper basins are characterized by sterically
favored structures with larger vibrational entropy, and hence,
thermodynamically more favored. This is true also in our

systems: starting from an initial random state, the inherent
structure energy decreases as the system evolves towards
equilibrium and the dynamics slows down. However, it
does not conflict with our conclusion that a significant
microscopic correspondence does not exist between the local
potential energy and particle-level dynamics (see Ref. [28]
for similar observations in a different system). As a global
quantity, EIS measures the basin depth in PEL, which takes
into account all degrees of freedom and therefore contains
sufficient many-body information to show correlation with
the global dynamics. However, locally, E is too simple to
quantify the packing capability and misses the important
many-body correlations to correlate with particle-level
dynamics. The same is true for the free volume, the global
average of which has been applied to understand glassy
dynamics [61,62], but fails to explain the dynamic hetero-
geneity at a local level [32].

[1] C. A. Angell, Formation of Glasses from Liquids and
Biopolymers, Science 267, 1924 (1995).

[2] M. D. Ediger, Spatially Heterogeneous Dynamics in Super-
cooled Liquids, Annu. Rev. Phys. Chem. 51, 99 (2000).

[3] P. G. Debenedetti and F. H. Stillinger, Supercooled
Liquids and the Glass Transition, Nature (London) 410,
259 (2001).

[4] J. C. Dyre, Colloquium: The Glass Transition and Elastic
Models of Glass-Forming Liquids, Rev. Mod. Phys. 78, 953
(2006).

FIG. 11. Coarse graining of local potential energy. (a1)–(a4) Spatial distribution of local potential energy Ē at different coarse-graining
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FIG. 12. Cross-correlation of local potential energy and dy-
namics heterogeneity. Cross-correlation of local potential energy
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